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Non-renewable resources in the long run

Rob Hart

Department of Economics, Swedish University of Agricultural Sciences, Box 7013, 750 07 Uppsala, Sweden.

Abstract

We model a competitive economy in which production is dependent on labour and a non-renewable resource, the
stock of which is inhomogeneous. We solve the model analytically and show how—in infinite time—the economy
moves away from an initial balanced growth path (b.g.p.) and towards a mature b.g.p. The characteristics of the
initial b.g.p. match historical observations of slowly declining resource price and consumption growth tracking global
product. The mature b.g.p. depends on the nature of the stock; the more steeply cross-sectional area declines with
depth, the faster the rate of price increase. We show how the theoretical model may be adapted and parameterized
to explain and predict the evolution of markets for specific resources, applying the model in two cases, copper and
petroleum.

Keywords: Non-renewable natural resources, Exhaustible resources, Hotelling rule.

JEL codes: O30; O40; Q31; Q41; Q43.

1. Introduction

The optimal exploitation of an exhaustible resource is a classic problem in economics. However, the solution is
well-characterized only for a narrow subclass of problems, i.e. those in which the resource stock is homogeneous.
In this paper we develop a simple and elegant solution to a much broader class of problems with inhomogeneous
resource stocks. In the theoretical model we show how, given the state of the economy at some point in time, we
can characterize the paths of extraction, price, and resource rent over infinite time both into the future and the past.
We then apply the model to the explanation of historical observations and to the prediction of the future evolution of
markets for real resources.

The seminal paper in the resource extraction literature is Hotelling (1931). Hotelling builds a partial equilibrium
model focusing on the extraction sector, and shows that—given a finite homogeneous stock of a resource traded on
a perfect market—resource price is the sum of unit extraction cost and the scarcity rent, where the latter rises at
the discount rate. Furthermore, he demonstrates that the extraction rate is socially optimal as long as markets are
competitive.

Dasgupta, Heal, Solow, and Stiglitz—in a series of papers the first of which were published in 1974—apply
Hotelling’s insight to the question of how an exhaustible resource should be exploited at the general equilibrium level,
giving rise to what is now known as the DHSS model.1 The model is based on the neoclassical growth model, but
with a resource input added to the production function and a Hotelling-type extraction sector. It has spawned a large
literature focusing on questions such as the ability of capital to substitute for the exhaustible resource, and the ability
of technological progress to compensate for declining resource extraction.2

In the baseline version of the DHSS model the production function is Cobb–Douglas, and the resource is extracted
from a known non-renewable stock at zero cost. An immediate consequence of the Cobb–Douglas is that the resource
factor share is constant, which fits with very long-run observations for aggregate resources such as ‘metals’ and

Email address:rob.hart@slu.se (Rob Hart)
1The original papers are Dasgupta and Heal (1974), Solow (1974), Stiglitz (1974).
2A classic paper on the former question is Hartwick (1977); for a useful survey of the latter see Groth (2007).
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Figure 1: Long-run growth in consumption and prices, compared to growth in global product (i.e. world GDP), for (a) Metals, and (b) Primary
energy from combustion.

Note: Global product data from Maddison (2010). Metals: Al, Cr, Cu, Au, Fe, Pb, Mg, Mn, Hg, Ni, Pt, Rare earths, Ag, Sn, W, Zn. All metals data
from Kelly and Matos (2012). Energy: Coal, oil, natural gas,and biofuel. Fossil quantity data from Boden et al. (2012). Oil price data from BP
(2012). Coal and gas price data from Fouquet (2011); note that these data are only for average prices in England; we make the (heroic) assumption
that weighted average global prices are similar. Biofuel quantity data from Maddison (2003). Biofuel price data from Fouquet (2011); again, we
assume that the data are representative for global prices, and we extrapolate from the end of Fouquet’s series to the present assuming constant
prices. Sensitivity analysis shows that the assumptions are not critical in driving the results.

‘energy’, as shown in Figure 1. On the other hand, the assumption of zero extraction costs leads directly to the
prediction that resource price should rise at the discount rate while the consumption rate declines exponentially. This
is totally contrary to the evidence, which is that prices show no long-run trend while consumption rates tend to track
long-run GDP (see Figure 1 again).

Stocks of exhaustible resources are in reality inhomogeneous and costly to extract, hence an obvious extension
to the model is to include these characteristics. However, this area is relatively unexplored, despite the early con-
tributions from Heal (1976) and Solow and Wan (1976). The resource stocks assumed by Heal and Solow and Wan
are both special cases: in the former, long-run extraction is from an infinite homogeneous stock, hence the scarcity
rent is zero; in the latter it is from a finite homogeneous stock, hence the scarcity rent grows at the discount rate
(the simple Hotelling result). Questions remain regardingthe transition paths to these long-run states, but also (more
generally) the long-run solution to the case in which remaining stocks are always inhomogeneous. Hence there is
a need for a more general model of resource stocks to be incorporated into a general equilibrium model of long-
run economic development. The need for such a general equilibrium model is indirectly supported by the analysis
of Livernois and Martin (2001), who review related work in partial equilibrium frameworks; Livernois and Martin
[p.840] state that their findings can easily be reconciled with ‘any kind of behaviour for scarcity rent and price over
time’, simply by introducing exogenous trends or shocks in variables such as extraction productivity (they could also
have mentioned resource demand, or the prices of extractioninputs). In general equilibrium, trends in such variables
can be endogenized.3

We develop a general equilibrium model of the global economywith competitive markets and very simple models
of final-good production and biased technological change—models which are broadly in line with historical data and
our understanding of the key processes—and focus our attention on extraction. We assume a representative resource
owner with extraction rights to a contiguous mass of the resource underground. The resource owner hires labour

3Examples of partial-equilibrium models can be found in Levhari and Liviatan (1977), Hanson (1980), Slade (1982), Krulce (1993), and Farzin
(1992). Levhari and Liviatan (1977) and Hanson (1980) show that the scarcity rent declines over time, Krulce (1993) derives sufficient conditions
for increasing rent, and Farzin (1992) argues that rent may also follow a non-monotonic path. Livernois and Martin (2001) show that the results
depend crucially on the nature of the instantaneous net benefit function which can be expressed asπ(xt ,nt) wherex is the extraction rate andn is
cumulative extraction. For ‘clean’ results—in which the scarcity rent is always increasing, and approaches the discount rate—they show that the
function should be jointly concave inx andn. But in practice the shape of the function will depend on the nature of stocks, and there exist highly
plausible stock characteristics—such as lower-grade resources being more abundant than higher-grade resources—which imply that the function
will not be concave.
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inputs in order to extract the resource, and the rate of extraction per unit of labour depends on the productivity of
the input, plus the depth of the marginal resource (an increasing function of cumulative extraction). The alternative
employment for labour is in final-good production; there is thus an arbitrage condition between the sectors. Labour
productivity in the two sectors grows exogenously at rates that may differ. We specify the functional form of the
relationship between depth and the cross-sectional area ofthe resource stock, which allows us to obtain an analytical
solution for the dynamic equilibrium path from any given initial state.

Given the state of the economy at any timet we can derive the optimal path of the economy both forwards and
backwards in time fromt. In the baseline model the economy starts close to an initialb.g.p. on which the extraction
rate tracks GDP and resource price is constant or slowly declining: technological change drives up the extraction rate
and demand for the resource, but has little effect on price as improved productivity is matched by increases in the
wage. As the extraction rate increases, resource depth starts to increase significantly, pushing up extraction costs and
braking the rise in the extraction rate. Gradually the economy approaches a ‘mature’ b.g.p. on which depth increases
at a constant rate, and this increase pushes up the resource price and slows the growth rate of consumption. Assuming
that the total resource stock is finite (implying a restriction on the parameterization of the stock function) then the
extraction rate must decline on the mature b.g.p., implyingthat the price rises faster than the growth rate of GDP. On
the mature b.g.p. the scarcity rent is a constant fraction ofthe price, and this fraction is a decreasing function of the
discount rate.

We go on to consider more general cases in which more complex stock characteristics are allowed. The simplest
extension is to allow for a maximum depth beyond which no further stocks exist (or are extractable), and there is no
substitute for the resource. In such a case the economy will move from the initial b.g.p. towards the mature b.g.p., but
instead of approaching this b.g.p. asymptotically it will at some finite time start to move away from it and approach a
Hotelling path along which the resource price rises at the discount rate.

Finally, we apply the model to explaining and predicting theevolution of global markets for copper and petroleum:
the case of copper illustrates the power of the model, whereas the case of petroleum also highlights some limitations.
In the case of copper the cross-sectional area of the representative resource deposit increases with depth initially, and
then declines. When extraction is from the upper part of the stock (up to approximately 2050) price declines slowly
and the scarcity rent makes up only a very small part of the price, but once extraction moves to the deeper stocks for
which cross-sectional area declines with depth, the price starts to rise and the scarcity rent moves towards 40 percent
of the price. In the case of petroleum, stocks are funnel-shaped. Again, the scarcity rent is initially low, but once
extraction moves onto the ‘pipe’ part of the funnel (around 2030) the scarcity rent is around 20 percent of the price.
Exhaustion occurs around 2125, and the price path in the finaldecades depends almost entirely on the price of the
backstop.

To place our contribution within the literature on non-renewable resource prices and the Hotelling rule—as re-
viewed by Livernois (2009)—consider the basic Hotelling model with competitive markets, perfect information, a
fixed homogeneous stock of the non-renewable resource, constant technology, and partial equilibrium. We stick with
competitive markets and perfect information, but allow forinhomogeneity of the stock and technological change,
and put the extraction sector into a general equilibrium context.4 The paper can thus been seen as building on the
tradition where the countervailing effects of resource degradation and technological change are key: see for instance
Slade (1982), Farzin (1992), and Lin et al. (2009). In this literature the most common approach is to write down an
extraction cost function in which extraction costs are a decreasing function of technology and an increasing function
of cumulative extraction. However, in our general equilibrium model we must explicitly account for the inputs used
in the extraction sector, and the natural approach is then toposit an extraction function in which the rate of extraction
is a function of technology, input use, and the quality of themarginal resource; extraction costs are then derived from
the extraction function, given input prices. By focusing onthe quality of the resource currently being extracted rather
than cumulative extraction or remaining resources—an approach which follows Slade (1982) but differs from much
of the subsequent literature—we focus on the factor that directly affects extraction costs rather than proxies for that

4Clearly resource markets are frequently characterized by both market power and uncertainty about stocks. (Regarding market power, see for
instance Ellis and Halvorsen (2002) and Lin (2011).) However, the effects of market power are ambiguous: Stiglitz (1976) shows that in a simple
case with constant-elasticity demand there is no difference between the extraction path (and hence also the pricepath) under monopoly and perfect
competition. Furthermore, Arrow and Chang (1982) show thatuncertainty about stocks should lead to fluctuation around the price trend rather than
changing that trend.
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factor. Furthermore, in general equilibrium it becomes clear that technological progress does not automatically reduce
extraction costs since overall technological progress raises both the price and the productivity of extraction inputs.5

Finally, and crucially, our general equilibrium approach allows us to endogenize the demand function for the resource,
which affects the extraction rate and—given our stock function—the rate of change of the quality of the marginal
resource, and hence extraction costs.

Two papers which share some of the aims of this paper are Lin and Wagner (2007) (on non-renewable resource
extraction in general) and André and Smulders (2014) (on oilextraction). However, our treatment of resource stocks
and extraction costs is much more general than in these papers: Lin and Wagner simply assume that extraction costs
rise iso-elastically with cumulative extraction from an infinite stock, whereas in André and Smulders oil extraction
is costless in the sense that no external inputs are used, buta proportion of the oil stock is used up in the extraction
process and hence does not reach the market. For a completelydifferent approach to understanding resource-price
dynamics see Spiro (2014).

Other relevant papers include Rogner (1997), Mercure and Salas (2012), and Goeller and Weinberg (1978), which
are close to this one in the sense that they assess the nature of global resource stocks, linking these assessments to
predictions of future price trends. However, in these papers there is no economic model of demand or scarcity rent,
hence no quantitative prediction of price or scarcity rent over time.6

Our main focus is on the development of resource prices over time; however, the size of the scarcity rent itself is
also important for a number of reasons, of which we highlighttwo (see Hart and Spiro, 2011, for further discussion).
Firstly, any policy measure which reduces the scarcity of a resource will cause a fall in the scarcity rent, reducing
the price of the resource and raising the extraction rate. The famous result that a constantad valoremtax has no
effect on the extraction path of Hotelling resource (with zero extraction cost) falls into this category. (For the result
see Dasgupta and Heal, 1979; for extensions see Ulph and Ulph(1994) and Sinclair (1994).) Secondly, any policy
that leads to expectations of lower future demand—such as the announcement of future taxes—will also lower the
scarcity rent and hence boost resource consumption in the short run. This is the ‘green paradox’ of Sinn (2008); see
also for instance Di Maria et al. (2012) and Van der Ploeg and Withagen (2012).

The remainder of the paper is organized as follows. In Section 2 we present the general model without specifying
the nature of resource stocks. In Section 3 we introduce the model of resource stocks, and we solve the infinite-
horizon problem in which resource depth is unbounded and there is no substitute for the resource. In Section 4 we
explore solutions to more general types of problem in which substitutes exist and the nature of resource deposits is
more complex than the baseline model allows. In Section 5 we parameterize the model for the cases of copper and
petroleum. Section 6 concludes.

2. The general model

In this section we set out the general model of resource extraction and use, setting up the Hamiltonian of the
representative resource owner and deriving necessary conditions for an optimal solution. Note that since markets are
competitive in the model we could also set up the social planner’s problem to yield the same conditions.

5Note that the approaches are mathematically equivalent, i.e. we could reformulate the model starting by writing down anextraction cost
function in terms of a technology index and cumulative extraction, and from these equations derive the equations of the model, after making
explicit what inputs are used in the extraction process. It would then be clear that the technology index in the extraction cost function is actually
the ratio of labour productivity in the extraction sector tolabour productivity in the final-good sector, so technological progress drives extraction
costs down when it is faster in the extraction sector than in the final-good sector.

6Rogner (1997) assess global hydrocarbon resources (cumulative stock) as a function of the predicted extraction cost per barrel of oil equiv-
alent at the time of extraction, and Mercure and Salas (2012)perform a similar operation plotting resources against current extraction cost.
Goeller and Weinberg (1978) consider the chemical composition of ‘demandite’ and ‘avalloy’, which are weighted averages of non-renewable
resources and metal alloys respectively. They find—with theexception of fossil fuels and phosphorus—that the major components of demandite
and avalloy are effectively inexhaustible, and that there is a great deal of substitutability between alternative elements in most cases.Nevertheless
they predict that ‘present patterns of use will persist for the next 30 to 50 years’ (implying a change anytime now given the date of publication),
followed by a transition phase which might last several hundred years, and finishing in the very long run in the ‘Age of Substitutability’, a steady
state based on abundant materials and recycling. An extended version of our model would allow these conclusions—which are more-or-less pulled
out of a hat by Goeller and Weinberg —to be probed more deeply.
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2.1. The basic environment

Total utility U is a linear function of consumption of the aggregate goodY:

U =
∫

∞

0
e−ρtYtdt.

The discount rate is thus constant and equal toρ.
There is a unit continuum of resource owners, each of whom owns identical stocks of the resource; we can thus

consider the representative resource owner and her stock.7 We define the extraction rate of the representative owner
asxt and cumulative extraction asnt. We thus have

ṅt = xt. (1)

There is a technology parameteran associated with each unit of resource, reflecting the physical difficulty of
extracting that particular unit. We denote this parametereconomic depth. The representative owner hires extraction
labourlx as the sole input to extraction. The productivity of extraction labour isax, and the resultant flow of extraction
x is given by the following equation:

xt = lxtaxt/ant, (2)

whereant is the economic depth of the unit of resource extracted at time t. Due to discounting, resources are always
extracted in order of increasingan, hence we can write

ant = F(nt), (3)

whereF is an increasing function. The functionF depends on the nature of the resource stocks, which we discuss
further in Section 3, where we also specify a form forF.

Resources are sold to price-taking firms producing the final good, total quantityY. There is a unit continuum of
such firms, hence (i) we can consider a representative price-taking firm, and (ii) the flow of resource inputs to the
representative production firm is equal to the flow of resource outputx from the representative extraction firm. The
representative firm’s production, denotedy, is a Cobb–Douglas function of labour and resource inputs, as follows:

y = (ayly)1−αxα.

Hereα is a parameter between 0 and 1,ay is labour productivity in final-good production, andly and x are the
respective quantities of labour and resources used by the representative firm in production. We thus abstract from
capital, which simplifies the model at little cost in terms ofexplanatory power since there is perfect foresight and the
discount rate is constant; if capital were included its long-run growth rate would be equal to the growth rate inY, the
capital share would be constant, and the model results wouldnot change in essence.

The productivity indicesay andax grow exogenously at strictly positive rates, and total labour L is exogenous
(although it may vary over time):

ȧy/ay = θay; ȧx/ax = θax; L̇/L = θL; L = lx + ly.

We now return to the final-good production function in order to find the market-clearing conditions. Definep
as the price of extracted resource, andw as the wage, and normalize the price of the final good to unity.Perfect
competition in the final goods sector then implies the following equilibrium conditions (after eliminatingly using
L = lx + ly):

w = (1− α)y/(L − lx) (4)

and p = αy/x. (5)

where y = a1−α
y (L − lx)1−αxα. (6)

7We make this assumption for conceptual simplicity. All the results follow if we instead assume the same overall characteristics of the stock,
but with heterogeneous ownership, as long as there are many owners at all possible resource depths.
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2.2. Characterization of equilibrium

We are now in a position to specify the representative resource owner’s problem more precisely, and to define
competitive equilibrium.8 The resource-owner’s problem is to choose an extraction path [xt]∞t=0 in order to maximize
the net present value of revenue minus cost,

∫

∞

0
e−ρt(px− wlx)dt, (7)

subject to the extraction rate (2), the evolution of the stock (equations 1 and 3), market clearing (equations 4–6), and
the constant exogenous growth rates ofay andax.

Definition 1. A competitive equilibrium of the model consists of paths of extraction, wage rates, resource prices, and
labour allocation such that factor prices are given by (4) and (5), and the representative resource owner maximizes
(7) subject to the extraction rate (2), the evolution of the stock (1 and 3), and factor prices.

Having defined equilibrium we now set about characterizing it. Recall that in the next section we specify the
function F and solve the model; here we set up the current-value Hamiltonian with n—cumulative extraction—as
the state variable, find the (necessary) first-order conditions inx andn, and find the dynamic equations inx, n, andan

consistent with these conditions.
To write down the Hamiltonian, start with equation (7) and substitute for lx using equation (2), foran using

equation (3), and for ˙n using equation (1). Hence

H = px− wxF(nt)/ax − λx, (8)

where−λ is defined as the shadow price of cumulative extraction, and henceλ is the current-value scarcity rent.
Take the first-order condition inx and use equation (2) to obtain

λ = p− wan/ax, (9)

which simply states that the scarcity rent is equal to the difference between price and unit cost. Now defineγ as
the share of unit extraction costs in the price, implying that 1− γ is the share of the scarcity rent in the price. Thus
γ = wlx/(px) and (from 2 and 9)

λax = wan(1− γ)/γ. (10)

Now use equations (1) and (3) to show that

ȧn = ṅF′(n) = xF′(n), (11)

return to the Hamiltonian and take the first-order conditionin n, substitute forF′(n) using (11) to yieldλ̇/λ = ρ −

wȧn/(λax), and substitute forλax using (10) to yield

λ̇

λ
= ρ −

ȧn

an

γ

1− γ
. (12)

So the growth rate of the scarcity rent is equal to the discount rate minus the growth rate of economic depth× the
weight of extraction costs in the price relative to the scarcity rent.

To help understand this result, and the debate referred to inthe introduction, consider an economy with perfect
markets, and a resource stock made up of a series of unitsRi wherei = 1, . . . ,m. The extraction rights to a given

8Note that the symmetric equilibrium is optimal. To see this,divide the representative resource owner’s resources intotwo equal parts, and
assume that the owner has extracted to a greater depth on one part than on the other. In the presence of discounting this cannever be optimal, since
costs are borne unnecessarily early along the asymmetric path. Since the resource owners have no market power, what holds for the representative
owner must also hold across owners; it can never be optimal for one owner to have extracted to a greater depth than the otherowners. That is, they
extract symmetrically.
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unit Ri are an asset, and the value (or shadow price) of this asset,Vi , should rise at the same rate as the value of other
assets in the economy, i.e. at the discount rateρ. Furthermore, given a perfect market the price of extractedresource
will be the sum of unit extraction cost andVi at the time of extraction. Now define thescarcity rentλt as the valueV
associated with the unit of resource being extracted att. If the resource stock is homogeneous thenVi will be the same
for all i, and the scarcity rentλt will rise at the discount rate (Hotelling, 1931). On the other hand, if the resource stock
is inhomogeneous then the asset valuesVi associated with different units of the stock will differ, with lower-quality
resources having lower value. Since—given competitive markets and discounting—resources are extracted in order
of decreasing quality, the effect of inhomogeneity will in general be to slow the rate of rise of the scarcity rent, and its
growth rate must be in the interval (−∞, ρ).9

Now write (9) asp = λ + wan/ax, and note thatλ = (1− γ)p while wan/ax = γp. Differentiate w.r.t.t to yield

ṗ
p
=
λ̇

λ
(1− γ) +

(

ȧn

an
+

ẇ
w
− θax

)

γ, (13)

and use (12) to eliminatėλ and obtain

ṗ/p = ρ(1− γ) + (ẇ/w− θax)γ. (14)

This corresponds to the expression found (for instance) in Krautkraemer (1998) (his equation 8): the growth rate of
the resource price equals the discount rate× the rent share plus the growth rate of productivity-adjusted labour costs
× the extraction-cost share. Thus if the resource price is pure rent it grows at the discount rate, whereas if it is pure
extraction cost then it tracks extraction costs. Note that the above equations make clear that increasing productivityof
extraction inputs does not necessarily lead to downward pressure on the resource price: if these inputs are in limited
supply then there may be a countervailing increase in their price, and the overall effect on the resource price will only
be negative if the rate of productivity increase (θax) outstrips the rate of price increase of the input ( ˙w/w).

Finally we reexpress the above results in a form that makes clear that we have solved for the necessary conditions
on the dynamic evolution of the economy (for the derivation see Appendix A.1):

ẋ
x
=

lx

αL

(

1+ α −
lx

L

)

(θax+ θL) +

(

1−
lx

L

) (

lx

αL
− 1

)

(

ρ

1− α
− (θay+ θL)

)

−
lx

L
ȧn

an
, (15)

ṅ
n
=

x
n
, (16)

ȧn

an
=

xF′(n)
an

, (17)

wherelx = xan/ax (equation 2). Given these equations—and if the functionF is known—then if we knowx, n, and
an at any timet we can solve for the entire equilibrium path of the economy.

3. The baseline model with a specified resource stock

In this section we specify the functionF, which allows us to solve the model analytically and fully characterize
the long-run development of the economy. In 3.1 we explain how resource stocks are modelled in the baseline case,
in 3.2–3.4 we concentrate on the mathematical solution of the model, and in 3.5 we discuss the economic intuition.

9To make the point explicitly, consider two units of stock,R1 andR2, whereR2 is lower quality thanR1. At time t, their shadow prices areV1(t)
andV2(t) respectively, whereV1(t) > V2(t). Both units of the stock are tradable assets, hence bothV1(t) andV2(t) grow at the discount rateρ, so
V1(t)/V2(t) is constant. Now assume the extraction path is such thatR1 is extracted at times andR2 at times+ T. Thenλt is V1(s) at times, and
V2(s+ T) = V2(s) · eρT at times+ T. Therefore the average growth rate of the scarcity rent across the period isρ − (1/T) ln(V1/V2), which must
be in the interval (−∞, ρ).
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3.1. Resource stocks

We now assume that the representative owner’s stock is a contiguous mass, underground, which extends in space
according to the following function:

m
m0
=

(

rx

rx0

)φ−1

. (18)

Hererx is depth underground (r for remoteness), m is the cross-sectional area of the resource,rx0 andm0 are the depth
and cross-sectional area att = 0, andφ is a parameter which may take any (real) value. Although we denoterx as
depth, the model can encompass a situation in which the difficulty of extraction is a function of several variables,
which may include depth but also grade (i.e. the percentage of the resource by weight in the rock), and the size of the
deposit (larger deposits will typically have lower unit extraction costs). In Section 5.3 we give an example of howrx

can be related to depth and grade in a specific case, extraction of copper.
The function is flexible, as shown in Figure 2, where three different cases are illustrated. Furthermore, in Sections

4 and 5 we show how a more complex stock may be approximated by building up the total stock piecewise from
substocks, and by putting a lower bound on depth. In Section 4we show how such a case may be solved in theory,
and in Section 5 we calibrate the model for copper and petroleum.

Since extraction will always be performed in order of increasing depth, cumulative extractionn is as follows:

nt =

∫ rxt

rx0

m drx. (19)

Substitute form from equation (18) to obtain

nt =
m0rx0

φ













(

rxt

rx0

)φ

− 1













. (20)

Note that whenφ ≥ 0 thenn → ∞ whenrx → ∞, so if we want the stockn to be bounded we must impose a limit
on rx beyond which there are no further stocks (see Sections 4 and 5); on the other hand, whenφ < 0 thenrx → ∞

whenn→ −(m0rx0)/φ, hence the total available stock att = 0 is−(m0rx0)/φ. Note also the special case whenφ = 0,
in which caserx/rx0 = exp(n/(m0rx0)).

Finally, to obtain the functionF (recall equation (3),ant = F(nt)) we need to link depthrx to economic depthan.
We define the link as follows, also introducing parametersψ andF0 to simplify notation:

an = rχx , ψ = φ/χ, F0 = m0rx0/χ. (21)
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Hence (from 20 and 21)

F(nt) = ant = an0

(

1+
ψnt

F0

)1/ψ

. (22)

Parameterχ determines the elasticity of economic depthan to the physical measurerx. For instance, if we interpretrx

literally as depth underground, then if depth doubles, unitextraction costs are multiplied by 2χ.

3.2. The steady state
We now show that, given the above functional form forF, there exists a balanced growth path which is consistent

with the necessary conditions above (15, 16, and 17), and that this path may be characterized as a steady state in a
new coordinate system. First use (22) to rewrite (17),

ȧn

an
=

x
F0

1
(an/an0)ψ

, (23)

and substitute in to (15) to yield just two dynamic equations. Then choose the following coordinates:

(a, l∗x) =

(

L
F0

ax/an

(an/an0)ψ
, lx/L

)

=

(

L
F0

ax/an

(an/an0)ψ
,

x/L
ax/an

)

. (24)

Note thata is a state variable reflecting the extraction technology in relation to the remaining resource stock (with
higha corresponding to easy extraction), whereasl∗x (the proportion of labour in extraction) is a control variable. We
then have the following proposition.

Proposition 1. The following equations must be satisfied on an equilibrium path:

ȧ
a
= θax + θL − (1+ ψ)al∗x, (25)

l̇∗x
l∗x
=

(

1− l∗x
)

[

al∗x −

(

1−
l∗x
α

)

(

θax − θay +
ρ

1− α

)

]

. (26)

Proof. To derive (25) differentiatea w.r.t. time to yieldȧ/a = θax+ θL − (1+ ψ)ȧn/an, then substitute for ˙an/an using
(23), and finally use (24). To derive (26) differentiatel∗x w.r.t. time to yieldl̇∗x/l

∗
x = ẋ/x+ ȧn/an−θax−θL, then substitute

for ẋ/x using (15) and ˙an/an using (23), and finally use the definitions ofa andl∗x. �

This leads directly to Proposition 2.

Proposition 2. Assume that parameter values are such that

ρ/(1− α) − (θay+ θL)

θax + θL
>
−ψ

1+ ψ
.

Then there is a unique stable steady state to the system described by equations (25) and (26). The steady state is given
by the point of intersection of the following curves.

ȧ = 0, a =
1
l∗x

1
1+ ψ

(θax + θL); (27)

l̇∗x = 0, a =
1
l∗x

(

1−
l∗x
α

)

(

θax − θay +
ρ

1− α

)

. (28)

Proof. The proof is straightforward, hence we only sketch it here.To find internal the steady state, set ˙a = 0 and
l̇∗x = 0 in equations (25) and (26), while ruling out corner solutions with either no extraction or no production. To find
the restriction on parameter values, first note that whenψ ≤ −1 the locus of ˙a = 0 is never in the allowed region where
botha andlx are positive. Then verify that—forψ > −1—the locus of ˙a = 0 is always steeper than the locus ofl̇∗x = 0
for givena (and allowed values of (a, lx/L)), hence if the lines cross they will do so only once. The condition (which
implies thatψ > −1) is necessary and sufficient for the lines to cross. Given that the lines cross it is straightforward to
verify that the steady state is stable, for instance with thehelp of the phase diagram. �
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Figure 3: The phase diagram plotted with two different scales on thelx-axis: (a) to show the overall characteristics, and (b) to show the stable path.

Given equations (27) and (28) we can construct the phase diagram and characterize the relationship between the
initial choice of extraction labourl∗x and the subsequent development of the economy: see Figure 3.10

3.3. Transversality

Having characterized the phase diagram we have characterized sets of paths—from any initial statea—all of
which are consistent with the necessary conditions (25) and(26). Of these, one set of paths leads to a situation in
which all labour is employed in extraction and none in production, and another to a situation in which no labour is
employed in extraction. Finally, there is the unique path which leads to the long-run steady state. Before proceeding
we should verify that the path leading to the steady state is optimal. We do this using the transversality condition,
which is that

lim
t→∞

e−ρtλtnt = 0. (29)

That is, the present value of resources in the ground (the converse of cumulative extraction) must approach zero
looking into the very distant future; if that is not the case it must be possible for the representative resource holder
to raise returns by increasing extraction (if the value is positive) or reducing it (if it is negative). For the proof that
this transversality condition is a sufficient condition for optimality, and that only the long-run steady state satisfies the
transversality condition, see Appendix A.2.

3.4. The transition path and two b.g.p.s

Having established that the stable path—as illustrated in Figure 3(b)—is unique and optimal, it is time to charac-
terize it. First note that on any b.g.p. in this economy the following two equations must hold:

ẏ
y
=

ẇ
w
+ θL = (1− α)(θay+ θL) + α

ẋ
x

; (30)

ṗ
p
=

ẇ
w
+ θL −

ẋ
x
. (31)

These equations follow directly from equations (4)–(6) when we hold labour allocation constant.
Now consider infinite time and recall thatax anday both grow exogenously at constant rates. So if we move

backwardsin time then bothax anday must approach zero. Whenax → 0 thena→ 0 (equation 24), so we approach

10Parameter values:ψ = 1, φ = 1, α = 0.05,ρ = 0.05,θax = 0.023,θay = 0.0179,L = 1, andF0 = 1.
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Figure 4: The evolution ofp andx compared toy when the initial statea = 10−3, for alternative values ofψ. Other parameters as for Figure 3. In
both cases we see clearly the initial and mature extraction phases, and the transition between them.

they-axis asymptotically moving backwards along the stable path. In accordance with the above reasoning, denote the
present time ast = 0—with known values ofa andx—and assume that the economy at this time is somewhere on the
left-hand arm of the stable path illustrated in Figure 3. Nowallow t to approach−∞, implying thata→ 0 andx→ 0.
It then follows straightforwardly from the representativefirm’s optimization problem that the economy approaches a
b.g.p. going backwards in time. On thisinitial b.g.p.ȧn/an and the scarcity rent are both zero,p is simply equal to the
extraction cost, and

ẋ/x = θax + θL : (32)

resource extraction grows at the growth rate of extraction technology plus labour.
Now move forward in time fromt = 0. Then the economy approaches the mature b.g.p. On this b.g.p. we can

show (Appendix A.3) that

ẋ
x
=

ψ

1+ ψ
(θax + θL) (33)

and
λ

p
=

1
1+ψ

1+(1−α)ψ
1+ψ +

ρ−(1−α)(θay+θL)
θax+θL

. (34)

Summing up, in infinite time the economy starts arbitrarily close to the initial b.g.p. on which the scarcity rent is zero
and equations (30)–(32) hold. Over time it moves away from this b.g.p. and approaches the mature b.g.p. on which
equations (30)–(31) and (33)–(34) hold. The long-run development of the economy—i.e. the transition away from
the initial b.g.p. and towards the mature b.g.p.—is illustrated in Figure 4 for two different values ofψ, one positive
and the other negative.

3.5. Economic intuition

Consider a mineral resource such as copper or iron in a very simple closed economy with exogenous technological
progress in extraction and final-good production, and exogenous population growth. Assume an initial state with low
population and primitive technology, both in extraction and final-good production. The extraction rate is thus very
low; the primitive workers are simply scratching the surface of the resources stocks, and depth is almost constant.
Moving forwards from this point labour productivity increases, hence the extraction rate increases (equation 32),
as does demand for the resource from the final-good sector. The resource price is approximately constant since
the productivity increase in final-good production—which drives up the wage—largely cancels out the productivity
increase in extraction: from equations (30)–(32) we have ˙p/p = (1 − α)(θay − θax). So if labour productivity grows
at the same rate in both sectors then the resource price is constant, but if extraction productivity grows faster then the
resource price will decline slowly.
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As the extraction rate increases the approximation thatan is constant holds less and less well: depth begins to
increase, pushing up the resource price and thus reducing the rate of increase in the quantity demanded in the final-
good sector, and also braking the increase in depth. In the long run the economy approaches the mature b.g.p. on
which depth increases at a constant rate. The key equation for understanding the mature b.g.p. is (33), which gives the
unique growth rate of extraction that leads to a constant (non-zero) growth rate of depthan. Whenψ > 0, implying
an infinite stock, then this growth rate is positive; however, whenψ < 0 then the stock is finite and the extraction
rate declines on the mature b.g.p. In the special case ofψ = 0 then the extraction rate is constant on the b.g.p. The
resource-price trends are opposite to the extraction-ratetrends, since the resource share is constant atα: whenψ = 0
the resource price tracks the overall growth rate (and the wage), whenψ > 0 price growth is slower than the overall
growth rate (Figure 4(a)), and whenψ < 0 the resource price grows faster than the overall growth rate (Figure 4(b)).

Regarding the scarcity rent, (34) shows that it is a constantfraction of the resource price on the mature b.g.p.
Furthermore, the level of the scarcity rent on the b.g.p. (asa fraction of the resource price) is increasing inα, and
decreasing inψ andρ. As ψ → ∞ the scarcity rent on the b.g.p. approaches zero; whenψ is large depth is almost
constant and the scarcity rent is very low. On the other hand,in the limit when the inequality in Proposition 2
is satisfied with equality then equation (34) shows that the scarcity rent approaches 100 percent of the price, also
implying (equations 12 and 13) thatλ̇/λ = ṗ/p = ρ; whenψ is negative depth increases rapidly on the b.g.p.,
implying that current extraction drives up future extraction costs, hence the scarcity rent is high.11

The discount rateρ plays no role in the rate of change of the resource price on theb.g.p. (equations 33–34), by
contrast to the classic Hotelling result that ˙p/p = ρ for a homogeneous resource with zero extraction cost. However
—as shown by equation (34)—the level of the scarcity rent is decreasing in the discount rate. This is because the
scarcity rent arises from the fact that today’s extraction raises future extraction costs, and the weight of this effect is
small when the discount rate is high.

Another way of thinking about the effect of the discount rate is to consider a given state of the system at timet
(technology, endowments, resource stock), and assume alternative discount rates. First consider a simple Hotelling
model: a resource-dependent economy with a finite stock, zero extraction costs, and a backstop input at a fixed
exogenous price ¯p. Then we know (i) thatp = λ, i.e. the resource price is pure rent, (ii) that ˙p/p = ρ (the Hotelling
rule), and (iii) that the resource price must be equal to ¯p at the point of exhaustion (transversality). A higher discount
rate leads to a lower resource price and a higher extraction rate att, and hence a lower growth rate of resource
extraction and thus also lower growth in aggregate production. Similar results follow in our model: for a given state
of the system att, a higher discount rate implies that the weight of increasesin future extraction costs is lower, hence
the scarcity rent is lower, as is the resource price, and the extraction rate is higher. Given the higher extraction rate,
depth and thus also resource price increase faster in our model, so the growth rate of resource extraction and aggregate
production is lower. What distinguishes the present model from the simple Hotelling model is the way that increasing
short-run extraction leads to a faster increase in depth, pushing up prices and braking both the increase in extraction
and the increase in prices.

4. Solving the model in more complex cases

Study of the actual nature of resource stocks and associatedextraction costs (next section) shows that the case with
ψ > 0 is empirically relevant; that is, marginal stocks may tendto increase with increasing depth (or decreasing grade)
rather than decreasing. However, since total stocks must befinite there must come a point at which marginal stocks
decline with depth, or there may be an upper limit on the depthat which resource stocks exist. Furthermore, there
may be a limit on the depth at which extraction is practical (possible) irrespective of extraction technology. Finally,
because substitutes for the resource may be available, it may be optimal to cease extraction even though stocks remain
in the ground. The solution methods for all of these problemsare closely related, and we therefore begin with the
simplest problem, in which there is some depthrx beyond which extraction is impossible. Having solved this problem
we consider the more general problem in which the stock is divided into layers each of which has different parameters.
The two types of case are illustrated in Figure 5.

11Note also that if we choose parameter values such that the inequality in Proposition 2 is reversed then the loci of ˙a andl̇∗x approach each other
asymptotically asa→∞ andl∗x → 0, and on the optimal path we also havea→∞ andl∗x → 0, and agaiṅλ/λ = ṗ/p = ρ.
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4.1. When an is bounded

Assume there is some depthrx beyond which extraction is impossible, either because of physical constraints on
the extraction technology, or because no resource stocks exist beyond this depth. This leads to an upper bound on
an, economic depth. When we put an upper bound onan there is no effect on the expression for the Hamiltonian,
and hence no effect on the necessary conditions for optimization stated in Proposition 1, and no effect on the phase
diagram. The effect is simply to change the transversality condition, and the result of this change is that the mature
b.g.p. is no longer the long-run optimum; this is to be expected, since the bound onan would be violated if the
economy stayed on that b.g.p. indefinitely.

If we continue to assume that there is no substitute for the natural resource input then transversality implies that
the resource must be used up asymptotically as time approaches infinity; a greater rate of resource use would violate
the stock restriction, whereas a lower rate would leave resources in the ground unnecessarily. In the limit—as the
extraction rate approaches zero—an is again constant, as it is in the limit of the initial extraction phase moving
backwards in time. Whenan is constant whileax continues to grow andx→ 0, thenlx→ 0 (equation 2). Now verify
from (4) and (5) that whenlx → 0, wlx/(px)→ 0, hence (from 9) in the limitp = λ, implying (equation 12) that

λ̇/λ = ṗ/p = ρ.

We thus have a third growth path, in addition to the initial and mature growth paths characterized above, which is
(in the limit) a simple Hotelling extraction path in which the price is pure rent (hence rising at the discount rate) and
extraction costs are zero. Extraction costs approach zero becausean approaches a limit whereasax/ay grows without
bound.

So given the bound onan the economy approaches the initial path going backwards in time, and the Hotelling path
going forwards. What about the mature b.g.p.? The economy will not approach the mature growth path asymptotically;
however, the characterization of the mature b.g.p. is stilluseful. To see this, start by denoting the optimal path given
the bound onan as the bounded path, and denote the optimal path when there isno upper bound onan as the unbounded
path. If the unbounded path is followed even thoughan is bounded then at some timeT depthan will reach the bound.
Now assume some timet wheret < T, and consider the bounded path. IfT ≫ t then (given positive discounting)
the difference between the unbounded and the bounded paths will be small, and if we letT − t → ∞ then the
difference must approach zero. So, loosely, as long as resource stocks are sufficiently large the extraction path must
first approach the mature path before (as depth starts to approach the bound) moving away from it and approaching
instead the Hotelling path.

4.2. When the stock is divided into layers

When the stock is divided into layers, as in Figure 5(ii), theoptimization problem is divided into sections. Because
of discounting, it remains true that resource deposits willbe extracted in order of increasing depth, and the first-order
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conditions derived above apply at all times: we are again left with the problem of transversality. The solution is
straightforward, as shown by the following proposition.

Proposition 3. At the boundary between layers of the stock, as long as m is a continuous function of an, the initial
values of(a, l∗x) for the deeper layer are uniquely determined by the values of(a, l∗x) at the time of exhaustion of the
upper layer. The optimal path is then the one for which the initial choice of the control variable l∗x for the uppermost
layer of the stock leads to satisfaction of the transversality condition for the deepest layer.

Proof. We need to prove that the initial choice of control variablel∗x determines the entire extraction path. We know
that this choice determines the path up to exhaustion of the first layer, but does it determine the initial values of (a, l∗x)
for the second layer? If it does, induction proves that the entire path is determined.

Regardinga, since the time of the transition is known (fixingaxt), and the characteristics of the stock are known,
the value ofa when extraction from the second layer begins is determined.Regardingl∗x, note that the transversality
condition between layers implies that price must be a continuous function of time; there cannot be a price discontinuity
across a boundary between layers, since this would imply non-optimal behaviour.12 This implies that the extraction
rate x must also be a continuous function of time, since the extraction rate is a continuous function of time if and
only if the price is a continuous function of time. Furthermore, we know by assumption that the cross-sectionm is
a continuous function ofan, including across boundaries between layers. This impliesthat extraction employmentlx

must also be a continuous function of time, i.e. extraction labour does not change discontinuously at the boundary
between layers; iflx did change discontinuously, then the extraction rate wouldchange discontinuously, which we
ruled out above. Hence initial extraction labour for the second layer is determined by final extraction labour for the
first layer. �

4.3. When there is a backstop input

Finally, assume that there is a backstop input available at an exogenous price, and that there is an upper bound
on an. Furthermore, assume (for simplicity) that the backstop price is high in the sense that the backstop price is not
reached until the resource is exhausted, at which point the scarcity rent is strictly positive. Now the transversality
condition states that the resource price at the point of exhaustion is equal to the price of the backstop.13 In terms of the
phase diagram, the initial level ofl∗x (given the initial statea) is chosen such that exhaustion occurs whenp = p̄; and
when the starting point is determined, the evolution of the system is determined by the dynamic equations. Again, if
p̄ is sufficiently high then the resource price will be almost pure rentin the run-up to exhaustion, hence the price will
rise at close to the discount rate and resource extraction will decline.

In Figure 6 we show the paths of price and economic depth usingthe same parameters as previously but adding a
fixed backstop price ¯p and a limit on economic depth ¯an. Note the three distinct growth paths—initial, mature, and
Hotelling—in accordance with the analytical model: the slopes of lnp in the three cases are (i) (1− α)(θay− θax); (ii)
(1− α)(θay − θax)ψ/(1+ ψ); and (iii) ρ.

5. Parameterization

We now turn to the parameterization of the model. The parameterizations are illustrative rather than strictly
predictive, the main reason being the great uncertainty concerning many of the assumptions. Nevertheless, the model
succeeds in explaining observations from the last 100 years, and makes apparently reasonable predictions for the next
several hundred in the cases of oil and copper. We choose these resources based on availability of data and importance
of the resources to the global economy.

12If the price jumps up across the boundary, the upper layer must have been sold too cheaply, whereas if price steps down thenthe upper layer’s
price must have been unsustainably high given perfect competition.

13The resource price can never be higher than the price of the backstop, whereas if the resource is exhausted with the price lower than the
backstop price then resource owners are not extracting the full value of the rent at that point, hence the price path must have been too low.
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5.1. General observations

We start with some observations which apply whatever the resource for which we are parameterizing the model, in
particular the long-run growth rates of TFP, extraction productivity, and the long-run discount rate. For long-run TFP
growth we use the estimate of Shackleton (2013) of 1.7 percent per year (1870–2010).14 Regarding the productivity
ax of extraction labour, it could be argued that this should vary from resource to resource, and should be chosen from
case to case in order to fit the data available. However, a moreconservative approach is to assume thatax should in
the long run track manufacturing productivity generally, regardless of the extraction industry. Thus we take this figure
from the literature, hence reducing the degrees of freedom in the parameterization; this reduces the probability that
we are able to achieve a spurious match of the model to observations. We take the value of 2.3 percent per year from
Fagerberg (2000). We set the discount rate to 5 percent per year. Since manufacturing productivity grows 0.6 percent
faster than TFP we expect extraction costs to decline by 0.6 percent per year, ceteris paribus. Finally,α is simply the
factor share of the resource.

If we want to match global extraction data we must also consider population growth. We approximate global
population growth by assuming a constant growth rate of 1.3 percent per year from 1880–2037, after which population
is assumed to be constant; the expected gradual slow-down towards zero growth over the next several decades is thus
approximately by a kink in the curve in 2037.15 Recall from equation (15) that the effect of population growthθL in
the model can be captured by increasing the growth rates ofax anday to θax+ θL andθay+ θL; since labour is the only
input, more labour is equivalent to more productive labour.Note that the combination of the assumptions about TFP
and population growth gives a constant growth rate of globalproduct of 3.0 percent per year since 1880, which fits
well to the Maddison data used in Figure 1, where the average growth rate since 1900 is 3.0 percent.

5.2. Extraction and economic depth an

It remains to find the parameters determining the relationship between cumulative extraction and unit cost for
given productivity levels, and the initial values of the variables. How this problem is tackled varies from case to case,
hence we discuss our two cases in turn. First however we briefly discuss the general applicability of the model.

The extraction model assumes a link between depth underground rx, economic depthan = rχx, and the rate of
extractionx for given effective inputsaxlx: x = axlx/an. However, when applying the model it is not necessary to
take the depth of the resource literally. Rather, depthrx should be taken as some observable measure of resource
quality, which may typically be a combination of physical depth and grade, as in the case of copper below. The key

14We define TFP growth as equal to (1− α)θay.
15This approximation is broadly in line with UN observations and predictions. See for instance United Nations (1999).
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is that cumulative extraction should lead to lower quality resources being exploited over time, and that this change in
resource quality should be measurable.

One problem with this approach is the fact that for almost allresources, stocks are divided up into separate
deposits, and within-deposit quality varies. Given fixed capital investments at a given site, relatively low-quality
resources are likely to be extracted as exhaustion of a givendeposit approaches, even though higher-quality resources
exist at other sites. A special case of this arises in the caseof petroleum, where pressure declines with cumulative
extraction from a given deposit, effectively lowering the quality (i.e. raisingrx) of that deposit. However, in the
long run we still expect to see a progression from high-quality deposits (lowrx) to low-quality deposits (highrx). A
second problem is that market power leads to extraction of different grades simultaneously, as discussed in the case of
petroleum below. See Black and LaFrance (1998) and Cairns and Davis (2001) for analyses of petroleum extraction
incorporating geological aspects.

5.3. Copper

There are two key dimensions along which the quality of copper deposits varies. The first of these is grade (the
fraction of copper in the rock, by mass), and the second is depth. We use Kesler and Wilkinson (2008) as our primary
source of data concerning copper resources. They build a model of tectonic migration of copper deposits and calibrate
it based on data about known deposits. In practice ‘known deposits’ is almost synonymous with ‘deposits part of
[whose] vertical thickness is at the surface’ (Kesler and Wilkinson, 2008, p256), and the key to estimating long-run
resources is the estimation of sub-surface deposits. Basedon the model they estimate a recoverable resource of
8.9 × 1010 tons of copper, down to a depth of 3.3 km (below this depth theyassume that recovery is not possible).
Furthermore, marginal quantity increases with depth, up to2.8 km. Regarding grade, Gerst (2008) argues that the
grade–tonnage density function is log-Gaussian (his equation 7). Finally, Harmsen et al. (2013) estimate that 85
percent of produced copper historically has come from the top 500 metres. We use these four pieces of information—
the total quantity up to 3.3 km, the relationship between depth and quantity, the grade–tonnage density function, and
the depth of historical extraction—to calibrate our model relatingrx to n.

The first problem is to calibrate equation (18), the relationship between depthrx and cross-sectional aream. We
do this in two stages. First we estimate a curve showing the relationship betweenrx andm (without restrictions on the
functional form), then we calibrate equation (18) to fit the curve. To estimate the curve we divide the total stock into 7
layers (indexed 1 to 7 with increasing depth) each 471 metresthick, and then use Figure 2 from Kesler and Wilkinson
(2008) to divide the total stock of 8.9×1010 tons into the fractions shown in Table 1. Regarding grade, weassume that
the global grade–tonnage density function in each layer is in accordance with the estimate of Gerst (2008) for global
porphyry (his Table 3). Regarding the effect of going down one layer, assume a deposit of gradeg, layer l. Then we
define the depth (or remoteness) of that deposit asrx = 100/(g · 2l−1). Thus a step down from one layer to the next
is equivalent to a halving of the grade, and extraction costsfor a deposit of grade 0.5 percent in the top layer are the
same as extraction costs for a deposit of grade 1 percent fromthe second layer. This is consistent with the observation
of Harmsen et al. (2013) that extraction is starting from thesecond layer at the same time as available stocks in the top
layer have dropped from 2 percent to 1 percent grade. For the matlab program for deriving the relationship between
depth and cumulative extraction (and thus also the equations and parameter values) see Appendix A.4; the relationship
itself is shown by the continuous lines in Figure 7, where theleft-hand panel focuses on the most accessible stock,
whereas the right-hand panel shows the entire stock.

Depth (m) 0–471 471–943 943–1414 1414–1886 1886–2357 2357–2829 2829–3300
Fraction of total 0.10 0.12 0.14 0.15 0.16 0.17 0.16

Table 1: Fraction of total available stock to be found at different depths.

The next task is to calibrate equation (18) in order to fit the curve in Figure 7. In order to match the form of
the grade–cumulative stock relationship we divide the stock into two substocks for which different parameters apply:
the high-grade substock, consisting of 2.35× 109 tons of copper, has the following parameters:r∗x0 = 50,φ = 4.66,
andm0 = 0.0017; so in 1900, surface copper at 2 percent grade is available, in according with Gerst (2008). The
low-grade substock, consisting of 86.7× 109 tons of copper, has the following parameters:rx0 = 142,φ = 0.25, and
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Figure 7: The relationship between the combined measure of depth and grade,rx, and cross-sectional aream for copper, based on our interpretation
of the literature (continuous line), and the parameterization of our economic model (dashed line). Notice the difference in scale on the two panels.
The shaded area shows extraction from 1900–2011, 5.75× 108 tons, and the dotted lines show the relationship between depth and cross-section
layer-by-layer.

m0 = 0.0776. As we can see from Figure 7, the economic model stock fitsour stock from the physical model quite
well. A much better fit could be achieved by dividing the stockinto three parts, each with different parameters.

Having fitted these curves, the final task is to parameterize the relationship betweenrx andan, i.e. to choose the
parameterχ (recall thatψ = φ/χ). To set the value ofχwe assume that the economy was close to the ‘mature’ b.g.p. in
1900, implying that the growth rate of price should beθay − (1− α)ψ/(1+ ψ)θax. We approximate the observed rate
of price decline over the period as 0.4 percent per year, which givesχ = 0.419, implying that unit costs are relatively
insensitive to increasing depth or decreasing grade. (Whengrade is divided by 2 at constant depth, unit cost rises by
a factor 1.34 at constant technology.) Given the observation of real price and extraction rate in 1900, this effectively
completes the parameterization; the starting values are fixed by these observations.

Given the change in the growth rate of population in 2037, thesimulation must be done in three stages, the first of
which is from 1900 to 2037, the second of which is from 2037 to the (endogenous) time at which the switch of stock
parameters must be made—which turns out to be 2054—and the third of which continues beyond this point until the
depth of 3.3 kilometres is reached and the stock is exhausted. The time of exhaustion is also endogenous, and depends
on the backstop price. (For information about the program, see Appendix A.4.) The results are shown in Figure 8.
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Figure 8: Observed price and extraction rate of copper (thinlines), and the paths of price and extraction rate—up to the time of exhaustion—
predicted by the model (thicker lines). Two model scenariosare shown, which differ in the assumed backstop price. Note that the extraction rate is
plotted on a (natural) logarithmic scale, normalized by therate in 2000. Prices are in 1998 USD.

To help understand Figure 8 we perform two calculations regarding the behaviour of the economy in the limit
when it is on each of the two mature balanced growth paths, firstly for the upper portion of the stock withψ =
4.66/0.419 = 11.1, and secondly for the deeper part of the stock for whichψ = 0.25/0.419 = 0.60. Firstly we
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calculate—using equation (31)—the growth rate of price on the respective b.g.p.s. Since the resource price grows at
rateθay − (1− α)ψ/(1+ ψ)θax, the growth rate of the price is−0.4 percent per year on the first b.g.p., and 0.8 percent
per year on the second b.g.p. Secondly we calculate the scarcity rent as a proportion of the total price, using equation
(34): on the first the scarcity rent makes up just 5.3 percent of the total price, whereas on the later b.g.p. (which is
approached after extraction has moved on to the narrowing section of the stock), the scarcity rent makes up a much
larger 40 percent of the total price. This is a reflection of the much higher degradation cost of extraction when the
cross-sectional area of the area of the imputed representative resource deposit is declining with depth rather than
expanding.

Turning to the figure, the economy starts close to the first b.g.p. which applies for the initial stock, and price
declines by around 0.4 percent per year. Once the initial stock is used up in 2054, the rate of increase in depthan

increases, and the economy starts moving towards the secondb.g.p. on which price rises by 0.8 percent per year.
Finally, from around 2200 the scarcity rent starts to rise asexhaustion approaches, at least in the case with a high
backstop price. With a low backstop price the scarcity rent hardly rises, and exhaustion occurs a few years earlier.
Note the close agreement between the model and observed trends in prices and extraction rates.

5.4. Petroleum

If the copper simulation is an advertisement for the power ofthe model, the petroleum simulation highlights its
weaknesses. There are two key aspects of the petroleum market which the model cannot handle as it stands: firstly, the
significance of market power in the petroleum market, and secondly the inextricable links between petroleum and its
substitutes, including natural gas, coal, and other energysources such as nuclear power. Of course, market power and
substitutes also exist in the market for copper, but their scale and influence is greater in the oil market.16 Concerning
market power, consider for instance the fact that petroleumextraction occurs simultaneously from deposits for which
marginal extraction costs differ by a factor of 5 or more (compare for instance the Ghawar field in Saudi Arabia to the
Athabasca oil sands of Alberta). Concerning substitutes, petroleum demand is linked tightly to markets for coal and
other energy sources, and strongly affected by technological change. Consider for instance the substitution from coal
to oil driven by the development and refinement of the internal combustion engine. Given these problems—which are
evident in Figure 10—the model calibration is at best illustrative, showing possible future scenarios and highlighting
the effect of backstop energy sources.

The data regarding petroleum resources in the ground are uncertain. Furthermore, the data regarding the cost of
extraction of these resources are even more uncertain. The most frequently cited paper on the subject is probably
Rogner (1997). However, Rogner’s curve relating cumulative extraction to extraction cost (see for instance his Figure
6) shows estimated extraction costat the time of extraction. Its calculation must therefore involve (implicit or explicit)
calculations of (i) current extraction costs, (ii) expected decline in extraction costs, and (iii) expected rate of extraction.
Since we model the latter two, we need data on the first factor alone, i.e. unit extraction costs for each type of deposit
making up the reserves, if full-scale extraction were to be carried out today. This is estimated by the International
Energy Agency in their World Energy Outlook 2008 (p.218). The data are very approximate, but can be broadly
summarized as follows: considering initial resource stocks, there was a large rather homogeneous stock of easily
accessible stocks, approximately 2000 billion barrels at an economic depth of around 18 USD/barrel. Regarding
the remaining stocks—about 7000 billion barrels—economicdepthan rises approximately linearly with cumulative
extraction, reaching approximately 115 USD/barrel for the deepest stocks. We capture this in the model byassuming
an initial stock with lowψ (ψ = −2.2), so that the entire near-homogeneous stock is at a depth of10–20, switching to
the deeper stock withψ = 1 from 20–115. The cross-section of the second stock is determined by its size (assumed
to be 6.7× 109 barrels), and the parameters for the first stock are then fixedby the limits on depth (10–20), the size
(2.3× 109 barrels), and the need form to be continuous over the boundary between the stocks. The result is shown
in Figure 9. Note that the curve shows unit extraction costs,in 2008 USD with today’s technology, for all petroleum
resources including the (hypothetical) current extraction cost of resources already extracted. (Note that we ignore the
fact that a significant proportion of cumulative extractionhas been from deeper stocks.)

Having fixed the curve in Figure 9, the data on initial price and extraction rate (in 1880) is sufficient to determine
the starting value ofax, given that we assume that the economy starts with a low valueof a and hencelx close toα.

16For recent work on market power in these markets see Lin (2009), Lin Lawell and Zhang (2015) and Lin Lawell (2016).
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Figure 9: The relationship between economic depth,an, and cross-sectional aream for oil, based on our interpretation of the International Energy
Agency World Energy Outlook 2008. Depth is measured in 2008 USD, and cross-sectional area in billion barrels per USD. Theshaded area shows
extraction from 1900–2008, 1100 billion barrels.

(Recall thatα is the share of petroleum in global product, which we set at 3 percent.) Unfortunately, however, this
parametrization fails to reflect the fact that the share of petroleum in global product rose rapidly from 1880 to 1970,
contrary to the assumption of constant share in the model. The problem is that although the share ofcombustiblesin
global product show no long-run trend over this period (recall Figure 1), petroleum substituted for other combustibles
and hence its share rose.17 To account for this in the model we raise the productivity growth rates during the period
up to 1970, reflecting petroleum’s increasing market penetration.

Having parameterized the model, and given the assumption about the total stock of resources, the future devel-
opment of prices and quantities predicted by the model depends on what we assume about the price of the backstop
(i.e. the substitutes for oil that will take over when oil is exhausted or too expensive). Here we make two alternative
assumptions to demonstrate the role played by the backstop resource. In the first case we assume that a backstop is
available at a fixed price of 150 US dollars (2011); in the second case we assume that a backstop is availabletodayat
that price, and that this price will decline at the rateθax − θay; that is, the backstop price declines as long as manufac-
turing productivity growth outstrips TFP growth. The result is that the backstop price is around 65 USD at the time of
exhaustion, rather than 150.

Consider now Figure 10. Recall that there is no market power in the model economy, hence the results are what
the model predicts in an economy similar to the actual globaleconomy but without the exercise of market power by
oil producers; this implies that where observed price is well above that predicted by the model, a possible explanation
is the exercise of market power, an explanation supported bythe analysis of Lin (2009). Turning now to the results, up
to the exhaustion of the upper stock, depth is almost constant, the scarcity rent is close to zero, and price declines at a
rate equal to the difference between the growth rates of extraction productivityand labour productivity in final-good
production, i.e. 0.6 percent per year (in accordance with equation 32). However, as the upper stock nears exhaustion
depth starts to rise at a significant rate, and the economy heads back towards the b.g.p. for the stock, for whichψ = 1;
the mature extraction phase. On this b.g.p. we have—from equations (33)–(34)—that the growth rate of extraction is
halved, the resource price rises by 0.6 percent per year, and the scarcity rent makes up 21 percent of the price.18

In the latter half of the 21st century the price paths of the alternative backstop scenarios diverge significantly:
the upper path (high backstop price) is slightly above the b.g.p. price path, while the lower path is below it. Hence
when the backstop price is fixed at 150 USD the scarcity rent rises above 21 percent of the total price as exhaustion
approaches, whereas given the lower backstop price the rateof price increase slows down as exhaustion approaches,
and the rent actually declines as a proportion of the price.

17The share also rose after 1974, but this was due to short-run inelasticity of demand combined with steeply rising prices.
18Note that after the transition to the deeper stock withψ = 1 the economy approaches the mature b.g.p. for that stock from above, i.e. the state

variablea is above its level in the steady state. As the economy approaches the new b.g.p.a falls back, which is why prices rise quite steeply
throughout the 21st century.
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Figure 10: Observed price and extraction rate of petroleum (thin lines), and the paths of price and extraction rate—up tothe time of exhaustion—
predicted by the model (thicker lines). Two model scenariosare shown, which differ in the assumed backstop price. Note that the extraction rate is
plotted on a logarithmic scale, normalized by the rate in 2000. Prices are in 2012 USD. Scenarios: continuous lines, backstop price 150 USD (year
2012); dashed lines, current backstop price 150 USD, declining at a rateθax − θay per year. Price data from BP (2012), consumption data from
Boden et al. (2012), assuming a linear relationship betweenCO2 emissions and petroleum consumption.

5.5. Sensitivity to assumptions

Clearly the above simulations are sensitive to the assumptions made, the most uncertain of which are those regard-
ing future demand, and future development of extraction productivity. On the one hand, our assumption about future
demand is essentially at the upper bound of what is realistic, i.e. that demand per capita continues to grow indefinitely
at a similar rate to the rate observed over the last 100 years.At least two factors might be expected to lead to lower
future demand: firstly, if global growth slows in the long run, and secondly if there is a transition from ‘early’ growth
based on manufacturing and hence resources, and ‘post-industrial’ growth based on services and hence labour.19 The
effect of lower demand would be to reduce extraction rates and hence also reduce the growth rate of prices predicted
by the model. On the other hand, our assumption regarding future development of extraction productivity is also an
upper bound; again, we assume that it continues to increase indefinitely. This is unlikely, not least because in reality
resource extraction requires energy, and there are physical limits to the efficiency with which this energy can be used.
Since these limits are already coming close in some cases, this implies that even if labour productivity continues to
increase, energy productivity will not do so and hence the proportion of the energy cost in the unit cost will rise, and
the rise of overall extraction productivity will slow. Thisassumption therefore biases the results towards lower prices
and higher extraction rates than are likely to be observed.

The effect of assuming both lower future demand and lower productivity growth rates in extraction is therefore
that the price path is likely to be relatively unchanged, whereas the extraction path will be lower. Furthermore, the
proportion of the price accounted for by the scarcity rent will be lower. Given a finite stock, the lower extraction path
will lead to later exhaustion, and hence any price spike as exhaustion approaches is also likely to be delayed.

6. Conclusions

We show how the problem of optimal extraction of inhomogeneous resource deposits can be set up in such a way
that an analytical solution for the equilibrium extractionpath can be obtained. The model provides an explanation for
the historical observation of slowly declining resource prices—the productivity of the extraction input grows faster
than its price, since extraction productivity grows fasterthan total factor productivity in the final-good sector—and
also predicts a more constant or slowly rising price trend inthe medium term, as the above effect is supplemented

19To get a feel for the sizes of demand changes in the model, we consider each simulation in turn. For copper, the extraction rate peaks at around
50 times the observed rate in year 2000. Compare this to the arbitrary assumption that the entire future global population consumes copper at the
same rate as the average U.S. citizen in year 2000; this wouldlead to a global extraction rate approximately 6.3 times greater than that observed
in 2000. If demand levels off in this way then the copper stocks will last for many centuries rather than just two or three. For petroleum, the
extraction rate in the model peaks at around 3 times the year 2000 rate, which is less than the rate which would arise if all countries matched the
U.S. per-capita rate from year 2000.
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by the effect of the increasing depth from which resources must be extracted. Finally, if exhaustion beckons and
substitutes are very expensive there may be a third phase in which price rises at a rate approaching the discount rate
while the extraction rate declines.

We study just two resources empirically. It would be useful to apply the model to analysis of further resources,
both as a test of the model and to get further results. To give some perspective on the relevance of resource limits
in general consider the following calculation. The currentphysical extraction rate of minerals is of the order of 1010

tonnes per year globally according to the Kelly and Matos (2012) data, which is around 10−7 percent of the earth’s
crust (based on a figure of 2× 1019 tons for the Earth’s crust). Now assume that the extraction rate continues to grow
as it has done over the past 100 years, i.e. by approximately 3percent per year. Then extraction would be multiplied
by a factor 20 each century, and in 700 years we would be miningand using minerals roughly equal to the entire
earth’s crustevery year. Clearly we live in an exceptional—and temporary—period ofrapidly expanding resource
extraction.

The model is highly simplified. Better data about the nature of resource stocks, and a better understanding of
long-run demand for resources (in particular whether increasing resource extraction is primarily driven by relative
price effects or by income effects) would allow the model to be refined and increase confidence in the predictions.
Another relatively straightforward extension would be to include other inputs—such as capital and energy—into the
extraction cost and production functions; this might be particularly important in the extraction sector, which is capital-
and energy-intensive, potentially providing a more detailed explanation of why extraction productivity grows faster
than productivity in the final-good sector.20 An extension with more subtle consequences would be to generalize the
utility function to allow the discount rate to vary over time. A general productivity slow-down, or a scarcity-induced
crisis, would then affect the discount rate and via this channel also the evolutionof the scarcity rent. Finally, to
account properly for resource markets in which the exerciseof market power is a crucial factor—such as the market
for petroleum—a major extension to the model would be required. Nevertheless, the model as it stands supports the
view that the high price of petroleum is neither due to extraction costs nor scarcity rent, and hence is presumably due
to market power.
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Appendix A Additional results, proofs, and material

A.1 The solution for equation (15)

Take equations (2), (4), (5), the labour restriction, and (6): xt = lxtaxt/ant; w = (1 − α)y/(L − lx); p = αy/x;
L = lx + ly; y = a1−α

y (L − lx)1−αxα. Differentiate each with respect tot to yield
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=
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−
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ẋ
x
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l̇x

lx
+ θax −

ȧn

an
.

Substitute each of these equations, in turn, into equation (14), ṗ/p = ρ(1− γ) + (ẇ/w− θax)γ, and use the definition
of γ (γ = wlx/(px)) to yield (15).

20If we continue to assume labour-augmenting technological progress and keep the interest rate fixed then it is straightforward to show that
introducing capital makes no difference, even if the extraction sector is assumed to be more capital-intensive. However, if we allowed for increases
in capital-augmenting knowledge as well as labour-augmenting then we would have a mechanism explaining why TFP increases faster in the
extraction sector than in the final-good sector.
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A.2 The transversality condition

Our proof of the sufficiency of the transversality condition (29) is based on Acemoglu (2009), Theorem 7.14, as
follows. Recall that we already have the current-value Hamiltonian and necessary first-order conditions inx andn.
Having definedF we add the transversality condition, and find a solution consistent with the conditions. Then we
note that the value of the Hamiltonian along the optimal path—in Acemoglu’s notation,M(t, n, λ)—is simply equal
to zero; this follows from the first-order condition inx, because of the linearity of the Hamiltonian inx. SinceM ≡ 0
it follows that M is concave inn for all t. Then since the set of allowed values forn is convex, and if there are no
discontinuities, the solution must achieve the global maximum.

Now we prove that only the stable path is consistent with the transversality condition. Consider first the corner
with lx = 0 anda→ ∞. As we head into this cornerλ approachesp (equation 9). Sȯλ/λ = ṗ/p. But from (14) we
have thatρ = ṗ/p in this corner, so (putting these results together) we haveλ̇/λ = ρ. Hence the transversality condition
cannot be satisfied; valuable resources are unnecessarily left in the ground. Now to the corner withlx = L. Use (4)
and (6) to show that whenlx → L, w→ ∞, implying (9) thatλ → −∞; loosely speaking, infinitely-priced labour is
being devoted to extracting resources which are then not usable because there is no production labour. Finally, it is
straightforward to show that the path leading to the steady-state satisfies the transversality condition, using equations
(31) and (33). (Note that whenψ > 0, thenṅ/n→ ẋ/x ast → ∞, whereas whenψ < 0 thenṅ/n→ 0 ast→ ∞.)

A.3 The mature b.g.p.

To show that (33) holds in the steady state of the transformedsystem take (24) and use it to show that when the
growth rates ofa andlx are zero then

θax = (1+ ψ)ȧn/an and ẋ/x = θax − ȧn/an,

hence ˙x/x = ψ/(1+ ψ)θax, i.e. (33). Now take (9) and use it to show thatλ/p is constant ifẇ/w+ ȧn/an = ṗ/p+ θax,
and verify that the latter equation holds on the b.g.p. usingthe two expressions above and (31).

To find the levels of the variables on the b.g.p., use the growth rate ofan on the b.g.p.— ˙an/an = θax/(1+ ψ)—
and (23) to show that

θax

1+ ψ
=

x
F0(an/an0)ψ

.

Rearrange and substitute foran using (2) to derive

x =

(

axlx

an0

)ψ/(1+ψ) (F0θax

1+ ψ

)1/(1+ψ)

.

The value oflx follows directly from (27) and (28):

lx

αL
=

ψ

1+ψθax − θay +
ρ

1−α

θax − θay+
ρ

1−α

.

Now use (2), (4), (5), and (9) to show thatλ/p = 1− (1− α)/α · lx/(L − lx). Insert the expression forlx derived above
to yield the expression forλ/p in (34).

A.4 Supplementary material regarding the solutions to the models and the figures

All of the programs used to solve the models and generate the figures (including data) are to be found on the
following site:https://sites.google.com/site/exresmat/.
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