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Non-renewable resources in the long run

Rob Hart

Department of Economics, Swedish University of Agricultural Sciences, Box 7013, 750 07 Uppsala, Sweden.

Abstract

We model a competitive economy in which production is dependent on labour and a non-renewable resource, the
stock of which is inhomogeneous. We solve the model analytically and show how—in infinite time—the economy
moves away from an initial balanced growth path (b.g.p.) and towards a mature b.g.p. The characteristics of the
initial b.g.p. match historical observations of slowly declining resource price and consumption growth tracking global
product. The mature b.g.p. depends on the nature of the stock; the more steeply cross-sectional area declines with
depth, the faster the rate of price increase. We show how the theoretical model may be adapted and parameterized
to explain and predict the evolution of markets for specific resources, applying the model in two cases, copper and
petroleum.

Keywords: Non-renewable natural resources, Exhaustible resources, Hotelling rule.
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1. Introduction

The optimal exploitation of an exhaustible resource is a classic problem in economics. However, the solution is
well-characterized only for a narrow subclass of problems, i.e. those in which the resource stock is homogeneous.
In this paper we develop a simple and elegant solution to a much broader class of problems with inhomogeneous
resource stocks. In the theoretical model we show how, given the state of the economy at some point in time, we
can characterize the paths of extraction, price, and resource rent over infinite time both into the future and the past.
We then apply the model to the explanation of historical observations and to the prediction of the future evolution of
markets for real resources.

The seminal paper in the resource extraction literature is Hotelling (1931). Hotelling builds a partial equilibrium
model focusing on the extraction sector, and shows that—given a finite homogeneous stock of a resource traded on
a perfect market—resource price is the sum of unit extraction cost and the scarcity rent, where the latter rises at
the discount rate. Furthermore, he demonstrates that the extraction rate is socially optimal as long as markets are
competitive.

Dasgupta, Heal, Solow, and Stiglitz—in a series of papers the first of which were published in 1974—apply
Hotelling’s insight to the question of how an exhaustible resource should be exploited at the general equilibrium level,
giving rise to what is now known as the DHSS mo#érhe model is based on the neoclassical growth model, but
with a resource input added to the production function and a Hotelling-type extraction sector. It has spawned a large
literature focusing on questions such as the ability of capital to substitute for the exhaustible resource, and the ability
of technological progress to compensate for declining resource extraction.

In the baseline version of the DHSS model the production function is Cobb—Douglas, and the resource is extracted
from a known non-renewable stock at zero cost. An immediate consequence of the Cobb—Douglas is that the resource
factor share is constant, which fits with very long-run observations for aggregate resources such as ‘metals’ and

Email addressrob.hart@slu.se (Rob Hart)
1The original papers are Dasgupta and Heal (1974), Solow (1974), Stiglitz (1974).
2A classic paper on the former question is Hartwick (1977); for a useful survey of the latter see Groth (2007).
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Figure 1: Long-run growth in consumption and prices, cora@do growth in global product (i.e. world GDP), for (a) Matahnd (b) Primary
energy from combustion.

Note: Global product data from Maddison (2010). Metals: Al, Cr, Bu, Fe, Pb, Mg, Mn, Hg, Ni, Pt, Rare earths, Ag, Sn, W, Zn. Aditals data
from Kelly and Matos (2012). Energy: Coal, oil, natural gasd biofuel. Fossil quantity data from Boden et al. (2012j).p@ice data from BP
(2012). Coal and gas price data from Fouquet (2011); notdtikae data are only for average prices in England; we makgh#roic) assumption
that weighted average global prices are similar. Biofuelniity data from Maddison (2003). Biofuel price data frormugoet (2011); again, we
assume that the data are representative for global prioelsywa extrapolate from the end of Fouquet's series to theepteassuming constant
prices. Sensitivity analysis shows that the assumptiomsatr critical in driving the results.

‘energy’, as shown in Figure 1. On the other hand, the assompf zero extraction costs leads directly to the
prediction that resource price should rise at the discaatetwhile the consumption rate declines exponentiallys Thi
is totally contrary to the evidence, which is that pricesvgimo long-run trend while consumption rates tend to track
long-run GDP (see Figure 1 again).

Stocks of exhaustible resources are in reality inhomogemeaad costly to extract, hence an obvious extension
to the model is to include these characteristics. Howewés,drea is relatively unexplored, despite the early con-
tributions from Heal (1976) and Solow and Wan (1976). Theuese stocks assumed by Heal and Solow and Wan
are both special cases: in the former, long-run extrac8dnoim an infinite homogeneous stock, hence the scarcity
rent is zero; in the latter it is from a finite homogeneousstdence the scarcity rent grows at the discount rate
(the simple Hotelling result). Questions remain regardimgtransition paths to these long-run states, but alsogmor
generally) the long-run solution to the case in which renmagrstocks are always inhomogeneous. Hence there is
a need for a more general model of resource stocks to be ioi@gal into a general equilibrium model of long-
run economic development. The need for such a general ledquiti model is indirectly supported by the analysis
of Livernois and Martin (2001), who review related work inrg@ equilibrium frameworks; Livernois and Martin
[p.840] state that their findings can easily be reconciletth véiny kind of behaviour for scarcity rent and price over
time’, simply by introducing exogenous trends or shocksdriables such as extraction productivity (they could also
have mentioned resource demand, or the prices of extraopanms). In general equilibrium, trends in such variables
can be endogenized.

We develop a general equilibrium model of the global econaiitly competitive markets and very simple models
of final-good production and biased technological changesdats which are broadly in line with historical data and
our understanding of the key processes—and focus our iattemt extraction. We assume a representative resource
owner with extraction rights to a contiguous mass of the uesm underground. The resource owner hires labour

SExamples of partial-equilibrium models can be found in Lavland Liviatan (1977), Hanson (1980), Slade (1982), kg{lt993), and Farzin
(1992). Levhari and Liviatan (1977) and Hanson (1980) shmt the scarcity rent declines over time, Krulce (1993)warisifficient conditions
for increasing rent, and Farzin (1992) argues that rent nsyfallow a non-monotonic path. Livernois and Martin (20@how that the results
depend crucially on the nature of the instantaneous neffib&mnection which can be expressed &, n;) wherex is the extraction rate analis
cumulative extraction. For ‘clean’ results—in which thestty rent is always increasing, and approaches the digcate —they show that the
function should be jointly concave andn. But in practice the shape of the function will depend on thrire of stocks, and there exist highly
plausible stock characteristics—such as lower-gradeuress being more abundant than higher-grade resourcesehwhply that the function
will not be concave.



inputs in order to extract the resource, and the rate of etkdraper unit of labour depends on the productivity of
the input, plus the depth of the marginal resource (an istmgafunction of cumulative extraction). The alternative
employment for labour is in final-good production; therehigg an arbitrage condition between the sectors. Labour
productivity in the two sectors grows exogenously at ralted may difer. We specify the functional form of the
relationship between depth and the cross-sectional are oésource stock, which allows us to obtain an analytical
solution for the dynamic equilibrium path from any givertiai state.

Given the state of the economy at any tilm@e can derive the optimal path of the economy both forwards an
backwards in time fron. In the baseline model the economy starts close to an ihitiap. on which the extraction
rate tracks GDP and resource price is constant or slowlyrdiegl technological change drives up the extraction rate
and demand for the resource, but has litfieeet on price as improved productivity is matched by increasehe
wage. As the extraction rate increases, resource depth gidancrease significantly, pushing up extraction costs an
braking the rise in the extraction rate. Gradually the ecoyapproaches a ‘mature’ b.g.p. on which depth increases
at a constant rate, and this increase pushes up the resoieeapd slows the growth rate of consumption. Assuming
that the total resource stock is finite (implying a restonton the parameterization of the stock function) then the
extraction rate must decline on the mature b.g.p., implytrag the price rises faster than the growth rate of GDP. On
the mature b.g.p. the scarcity rent is a constant fractidh@price, and this fraction is a decreasing function of the
discount rate.

We go on to consider more general cases in which more comyaek sharacteristics are allowed. The simplest
extension is to allow for a maximum depth beyond which nohferrtstocks exist (or are extractable), and there is no
substitute for the resource. In such a case the economy wilerfrom the initial b.g.p. towards the mature b.g.p., but
instead of approaching this b.g.p. asymptotically it wilsame finite time start to move away from it and approach a
Hotelling path along which the resource price rises at teeddint rate.

Finally, we apply the model to explaining and predictingéfelution of global markets for copper and petroleum:
the case of copper illustrates the power of the model, wisateacase of petroleum also highlights some limitations.
In the case of copper the cross-sectional area of the refiegise resource deposit increases with depth initialg a
then declines. When extraction is from the upper part of theks(up to approximately 2050) price declines slowly
and the scarcity rent makes up only a very small part of theepbiut once extraction moves to the deeper stocks for
which cross-sectional area declines with depth, the ptaréssto rise and the scarcity rent moves towards 40 percent
of the price. In the case of petroleum, stocks are funngbatha Again, the scarcity rent is initially low, but once
extraction moves onto the ‘pipe’ part of the funnel (arouf8@) the scarcity rent is around 20 percent of the price.
Exhaustion occurs around 2125, and the price path in thedmeddes depends almost entirely on the price of the
backstop.

To place our contribution within the literature on non-rerable resource prices and the Hotelling rule—as re-
viewed by Livernois (2009)—consider the basic Hotellingdabwith competitive markets, perfect information, a
fixed homogeneous stock of the non-renewable resourcetactiechnology, and partial equilibrium. We stick with
competitive markets and perfect information, but allow ifitnomogeneity of the stock and technological change,
and put the extraction sector into a general equilibriumteat The paper can thus been seen as building on the
tradition where the countervailingtects of resource degradation and technological changeegreske for instance
Slade (1982), Farzin (1992), and Lin et al. (2009). In thisréiture the most common approach is to write down an
extraction cost function in which extraction costs are aeasing function of technology and an increasing function
of cumulative extraction. However, in our general equilibon model we must explicitly account for the inputs used
in the extraction sector, and the natural approach is theogd an extraction function in which the rate of extraction
is a function of technology, input use, and the quality ofrtierginal resource; extraction costs are then derived from
the extraction function, given input prices. By focusingtba quality of the resource currently being extracted mathe
than cumulative extraction or remaining resources—anagabr which follows Slade (1982) butftérs from much
of the subsequent literature—we focus on the factor thatctir afects extraction costs rather than proxies for that

4Clearly resource markets are frequently characterizedotly imarket power and uncertainty about stocks. (Regardiakeh power, see for
instance Ellis and Halvorsen (2002) and Lin (2011).) Howethe dfects of market power are ambiguous: Stiglitz (1976) shoasitha simple
case with constant-elasticity demand there is riietince between the extraction path (and hence also thepaticeunder monopoly and perfect
competition. Furthermore, Arrow and Chang (1982) showthaertainty about stocks should lead to fluctuation arohadgtice trend rather than
changing that trend.



factor. Furthermore, in general equilibrium it becomesctlat technological progress does not automaticallyaedu
extraction costs since overall technological progressesaboth the price and the productivity of extraction inguts
Finally, and crucially, our general equilibrium approaibwas us to endogenize the demand function for the resource,
which dfects the extraction rate and—given our stock function—#te of change of the quality of the marginal
resource, and hence extraction costs.

Two papers which share some of the aims of this paper are dWagner (2007) (on non-renewable resource
extraction in general) and André and Smulders (2014) (omxdiaction). However, our treatment of resource stocks
and extraction costs is much more general than in these @aperand Wagner simply assume that extraction costs
rise iso-elastically with cumulative extraction from atfifite stock, whereas in André and Smulders oil extraction
is costless in the sense that no external inputs are used, fmaportion of the oil stock is used up in the extraction
process and hence does not reach the market. For a comml#telgnt approach to understanding resource-price
dynamics see Spiro (2014).

Other relevant papers include Rogner (1997), Mercure atas $2012), and Goeller and Weinberg (1978), which
are close to this one in the sense that they assess the naglobal resource stocks, linking these assessments to
predictions of future price trends. However, in these pafiegre is no economic model of demand or scarcity rent,
hence no quantitative prediction of price or scarcity remgrdime’

Our main focus is on the development of resource prices aver, however, the size of the scarcity rent itself is
also important for a number of reasons, of which we highltgltt (see Hart and Spiro, 2011, for further discussion).
Firstly, any policy measure which reduces the scarcity adsurce will cause a fall in the scarcity rent, reducing
the price of the resource and raising the extraction ratee fimous result that a constaad valoremtax has no
effect on the extraction path of Hotelling resource (with zetwaetion cost) falls into this category. (For the result
see Dasgupta and Heal, 1979; for extensions see Ulph and(U§®4) and Sinclair (1994).) Secondly, any policy
that leads to expectations of lower future demand—suchearihouncement of future taxes—uwill also lower the
scarcity rent and hence boost resource consumption in tré rsim. This is the ‘green paradox’ of Sinn (2008); see
also for instance Di Maria et al. (2012) and Van der Ploeg aittagjen (2012).

The remainder of the paper is organized as follows. In Se@iwe present the general model without specifying
the nature of resource stocks. In Section 3 we introduce theéeirof resource stocks, and we solve the infinite-
horizon problem in which resource depth is unbounded ane iseno substitute for the resource. In Section 4 we
explore solutions to more general types of problem in whidbssitutes exist and the nature of resource deposits is
more complex than the baseline model allows. In Section 5avampeterize the model for the cases of copper and
petroleum. Section 6 concludes.

2. The general model

In this section we set out the general model of resource @idraand use, setting up the Hamiltonian of the
representative resource owner and deriving necessarytioorsfor an optimal solution. Note that since markets are
competitive in the model we could also set up the social @aaproblem to yield the same conditions.

5Note that the approaches are mathematically equivalentwie could reformulate the model starting by writing downeatraction cost
function in terms of a technology index and cumulative ettom, and from these equations derive the equations of théein after making
explicit what inputs are used in the extraction process.oltilel then be clear that the technology index in the extraatiost function is actually
the ratio of labour productivity in the extraction sectorlabour productivity in the final-good sector, so technatadjiprogress drives extraction
costs down when it is faster in the extraction sector thahérfinal-good sector.

SRogner (1997) assess global hydrocarbon resources (ciivauséock) as a function of the predicted extraction costhzerel of oil equiv-
alent at the time of extraction, and Mercure and Salas (2p&2form a similar operation plotting resources againstenurextraction cost.
Goeller and Weinberg (1978) consider the chemical comiposaf ‘demandite’ and ‘avalloy’, which are weighted avezagof non-renewable
resources and metal alloys respectively. They find—withetteeption of fossil fuels and phosphorus—that the majorpmments of demandite
and avalloy are féectively inexhaustible, and that there is a great deal o$ttulability between alternative elements in most cablevertheless
they predict that ‘present patterns of use will persist far hext 30 to 50 years’ (implying a change anytime now givenddte of publication),
followed by a transition phase which might last several madd/ears, and finishing in the very long run in the ‘Age of Silogbility’, a steady
state based on abundant materials and recycling. An exderasion of our model would allow these conclusions—whighraore-or-less pulled
out of a hat by Goeller and Weinberg—to be probed more deeply.



2.1. The basic environment
Total utility U is a linear function of consumption of the aggregate géod

U= f e*ty,dt.
0

The discount rate is thus constant and equal to

There is a unit continuum of resource owners, each of whonsaddentical stocks of the resource; we can thus
consider the representative resource owner and her tédk define the extraction rate of the representative owner
asx and cumulative extraction as. We thus have

ht = X. (1)

There is a technology paramet&y associated with each unit of resource, reflecting the physiitficulty of
extracting that particular unit. We denote this parametemomic depthThe representative owner hires extraction
labourly as the sole input to extraction. The productivity of extiattabour isay, and the resultant flow of extraction
X is given by the following equation:

Xt = lyxi@xe/@nt, (2)

whereay is the economic depth of the unit of resource extracted & tirdue to discounting, resources are always
extracted in order of increasiray, hence we can write

ant = F(ny), ®3)

whereF is an increasing function. The functidghdepends on the nature of the resource stocks, which we discus
further in Section 3, where we also specify a formFor

Resources are sold to price-taking firms producing the finatlgtotal quantityy. There is a unit continuum of
such firms, hence (i) we can consider a representative takdeg firm, and (ii) the flow of resource inputs to the
representative production firm is equal to the flow of reseuatputx from the representative extraction firm. The
representative firm’s production, denotgds a Cobb—Douglas function of labour and resource inpst&lows:

y = (ayly) X"

Herea is a parameter between 0 andél, is labour productivity in final-good production, ahgand x are the
respective quantities of labour and resources used by firesentative firm in production. We thus abstract from
capital, which simplifies the model at little cost in termseaplanatory power since there is perfect foresight and the
discount rate is constant; if capital were included its long growth rate would be equal to the growth ratéfjrthe
capital share would be constant, and the model results waildhange in essence.

The productivity indices, anday grow exogenously at strictly positive rates, and total latlois exogenous
(although it may vary over time):

ay/ayzgay; ay/ay = fax; I.—/|—=9L; L= |x+|y~

We now return to the final-good production function in ordeifind the market-clearing conditions. Defipe
as the price of extracted resource, amés the wage, and normalize the price of the final good to uritfect
competition in the final goods sector then implies the foilayvequilibrium conditions (after eliminatinig using
L=Ix+1y):

w=(1-a)y/(L-1y) (4)
and p = ay/X. (5)
where y=a; "(L- L)X (6)

“We make this assumption for conceptual simplicity. All tesults follow if we instead assume the same overall chaistits of the stock,
but with heterogeneous ownership, as long as there are mamre at all possible resource depths.

5



2.2. Characterization of equilibrium

We are now in a position to specify the representative resoawner’s problem more precisely, and to define
competitive equilibriunt The resource-owner’s problem is to choose an extractidm [pdf:, in order to maximize
the net present value of revenue minus cost,

f e (px — wly)dt, (7)
0
subject to the extraction rate (2), the evolution of thelsi@gjuations 1 and 3), market clearing (equations 4—6), and
the constant exogenous growth ratesypfnday.

Definition 1. A competitive equilibrium of the model consists of pathxthetion, wage rates, resource prices, and
labour allocation such that factor prices are given by (4da®), and the representative resource owner maximizes
(7) subject to the extraction rate (2), the evolution of tteek (1 and 3), and factor prices.

Having defined equilibrium we now set about characterizingRecall that in the next section we specify the
functionF and solve the model; here we set up the current-value Hamahowvith n—cumulative extraction—as
the state variable, find the (necessary) first-order camgstinx andn, and find the dynamic equationsxnn, anda,
consistent with these conditions.

To write down the Hamiltonian, start with equation (7) andgtitute forly using equation (2), foa, using
equation (3), and fon using equation (1). Hence

H = px— wxF(n)/ay — AX, (8)

where—2 is defined as the shadow price of cumulative extraction, &mdén is the current-value scarcity rent.
Take the first-order condition irand use equation (2) to obtain

A= p—wan/ay, 9)

which simply states that the scarcity rent is equal to tHEedince between price and unit cost. Now defines
the share of unit extraction costs in the price, implying tha y is the share of the scarcity rent in the price. Thus
v = wly/(pX) and (from 2 and 9)

Aay = wan(1-)/y. (10)
Now use equations (1) and (3) to show that
a, = nF’(n) = xF'(n), (11)

return to the Hamiltonian and take the first-order condition, substitute fof=’(n) using (11) to yieldl/A = p —
wan/(1ay), and substitute fotay using (10) to yield

p| an v

Zo, 2 12

P (12)
So the growth rate of the scarcity rent is equal to the distoate minus the growth rate of economic deptithe
weight of extraction costs in the price relative to the sitarent.
To help understand this result, and the debate referredttzeiintroduction, consider an economy with perfect

markets, and a resource stock made up of a series of Rnitherei = 1,...,m. The extraction rights to a given

8Note that the symmetric equilibrium is optimal. To see thiisjde the representative resource owner’s resourcestidcequal parts, and
assume that the owner has extracted to a greater depth orudriegn on the other. In the presence of discounting thisiesar be optimal, since
costs are borne unnecessarily early along the asymmettic ance the resource owners have no market power, whas fadhe representative
owner must also hold across owners; it can never be optimalfe owner to have extracted to a greater depth than the othrars. That is, they
extract symmetrically.



unit R are an asset, and the value (or shadow price) of this agsehould rise at the same rate as the value of other
assets in the economy, i.e. at the discount patéurthermore, given a perfect market the price of extractsdurce
will be the sum of unit extraction cost an at the time of extraction. Now define tilsearcity rentl; as the valug/
associated with the unit of resource being extractedlathe resource stock is homogeneous tewill be the same
for all i, and the scarcity ren; will rise at the discount rate (Hotelling, 1931). On the athand, if the resource stock
is inhomogeneous then the asset vaMeassociated with diierent units of the stock will dier, with lower-quality
resources having lower value. Since—given competitiveketarand discounting—resources are extracted in order
of decreasing quality, theffect of inhomogeneity will in general be to slow the rate oérié the scarcity rent, and its
growth rate must be in the intervaldo, p).°

Now write (9) asp = 1 + wan/ax, and note that = (1 — y)p while wa,/ax = yp. Differentiate w.r.tt to yield

P _Aeq oy B, W
p_/l(l 7)+(an+w gax)')” (13)
and use (12) to eliminatéand obtain
p/p=p(L—7y)+ (W/W-0ar)y. (14)

This corresponds to the expression found (for instance)autkraemer (1998) (his equation 8): the growth rate of
the resource price equals the discount satbe rent share plus the growth rate of productivity-adjdisa®our costs
x the extraction-cost share. Thus if the resource price ie pamt it grows at the discount rate, whereas if it is pure
extraction cost then it tracks extraction costs. Note thattove equations make clear that increasing productif/ity
extraction inputs does not necessarily lead to downwarskpre on the resource price: if these inputs are in limited
supply then there may be a countervailing increase in threie pand the overallféect on the resource price will only
be negative if the rate of productivity increagg,j outstrips the rate of price increase of the inputw).

Finally we reexpress the above results in a form that malezs that we have solved for the necessary conditions
on the dynamic evolution of the economy (for the derivatiea Appendix A.1):

X1y I YN Y

g = H(1+a— E)(eaxwL) +(1— E)(I - 1)(% - (9ay+9L))— E%’ (15)
n x

S= (16)
% _ XF'(I’]) (17)
an an

wherely, = xan/ax (equation 2). Given these equations—and if the funciida known—then if we knowk, n, and
a, at any timet we can solve for the entire equilibrium path of the economy.

3. The baseline model with a specified resource stock

In this section we specify the functidh, which allows us to solve the model analytically and fullyachcterize
the long-run development of the economy. In 3.1 we explaim tesource stocks are modelled in the baseline case,
in 3.2-3.4 we concentrate on the mathematical solutionefitbdel, and in 3.5 we discuss the economic intuition.

9To make the point explicitly, consider two units of stoBl,andRy, whereR; is lower quality tharR;. At timet, their shadow prices ah (t)
andVx(t) respectively, wher&/;(t) > Va(t). Both units of the stock are tradable assets, hence\gth and V> (t) grow at the discount raie, so
V1(t)/Va(t) is constant. Now assume the extraction path is suchRhat extracted at tims andR; at times+ T. Then4, is Vi(s) at times, and
Va(s+T) = Va(s) - €T at times+ T. Therefore the average growth rate of the scarcity rentsadite period ig — (1/T) In(V1/V2), which must
be in the interval {0, p).
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Figure 2: The relationship between depihand cross-sectional ar@afor three alternative resource stocks. In each cgse- 1, ry = 1, and
mp = 1. The dark shading represents cumulative extraction &tttim, and the lighter shading represents remaining resourdeset. Resource
stocks in the first case are finite, while in cases (ii) anjittigy are infinite. In Section 4 we analyse more general dasekich stocks are always
finite.

3.1. Resource stocks

We now assume that the representative owner’s stock is &oonis mass, underground, which extends in space
according to the following function:

Herer is depth underground for remotenegsmis the cross-sectional area of the resourgeandmy are the depth
and cross-sectional areatat 0, and¢ is a parameter which may take any (real) value. Although weotdr, as
depth, the model can encompass a situation in which thiewlty of extraction is a function of several variables,
which may include depth but also grade (i.e. the percenthtieeaesource by weight in the rock), and the size of the
deposit (larger deposits will typically have lower unit&dtion costs). In Section 5.3 we give an example of lnpw
can be related to depth and grade in a specific case, extrattampper.

The function is flexible, as shown in Figure 2, where thrékedént cases are illustrated. Furthermore, in Sections
4 and 5 we show how a more complex stock may be approximatedibdiry up the total stock piecewise from
substocks, and by putting a lower bound on depth. In Sectiwe 4how how such a case may be solved in theory,
and in Section 5 we calibrate the model for copper and petrole

Since extraction will always be performed in order of ingiag depth, cumulative extractiaris as follows:

T xt
n =f mdry. (19)
M0
Substitute fom from equation (18) to obtain
Morso [{ xt)’
fy = TN (_) _af. (20)
¢ I'xo

Note that wherp > 0 thenn — oo whenry — oo, so if we want the stock to be bounded we must impose a limit
onry beyond which there are no further stocks (see Sections 4 Jammh $he other hand, whep < 0 thenry —
whenn — —(mgryo)/¢, hence the total available stocktat 0 is —(morxo)/¢. Note also the special case whge: 0,
in which case/ryo = exp(/(morxo))-

Finally, to obtain the functiofr (recall equation (3)a,; = F(n;)) we need to link depth, to economic depth,,.
We define the link as follows, also introducing parameteandF, to simplify notation:

an = r/)gv lp = ¢/X? FO = nbrXO//\/' (21)
8



Hence (from 20 and 21)

1y
n
Fm) = e =1+ 1) 22
0
Parametey determines the elasticity of economic deptfto the physical measurg. For instance, if we interpre
literally as depth underground, then if depth doubles, extitaction costs are multiplied by 2

3.2. The steady state

We now show that, given the above functional formfgithere exists a balanced growth path which is consistent
with the necessary conditions above (15, 16, and 17), aridhisapath may be characterized as a steady state in a
new coordinate system. First use (22) to rewrite (17),

an X 1
2-=_ - 23
an  Fo(an/an0)” =
and substitute in to (15) to yield just two dynamic equatidifsen choose the following coordinates:
ay/an L ay/an X/L )
B)=|——.Ik/L|=|———, ——|. 24
@1 =% @ao ) (Fo (an/an0)"” ax/an 4)

Note thata is a state variable reflecting the extraction technologyelation to the remaining resource stock (with
higha corresponding to easy extraction), wherEashe proportion of labour in extraction) is a control vat@abWVe
then have the following proposition.

Proposition 1. The following equations must be satisfied on an equilibriathp

2 = a6~ (L+ y)al (25)
PPN I% p

==A-)lalk—|1- = ||fax— Oay + . (26)
I% a l-a

Proor. To derive (25) dierentiatea w.r.t. time to yielda/a = fax + 6. — (1 + ¢)an/as, then substitute foa,/a, using
(23), and finally use (24). To derive (26Xidirentiatd;, w.r.t. time to yieldl}/1; = X/X+an/an—0ax— 0L, then substitute
for x/x using (15) and,/a, using (23), and finally use the definitionsaéndl;. O

This leads directly to Proposition 2.
Proposition 2. Assume that parameter values are such that

p/(L—a)— (fay + 61) . Y
Oax + 0L 1+y

Then there is a unique stable steady state to the systemiukesdtry equations (25) and (26). The steady state is given

by the point of intersection of the following curves.

a1 1
14y

- 1

=0, a=— (1 -

s
|X

a=0, (gax + HL); (27)

|>k

EX) (eax — oy + ﬁ) (28)

Proor. The proof is straightforward, hence we only sketch it héfe.find internal the steady state, set="0 and

I = 0in equations (25) and (26), while ruling out corner solngiovith either no extraction or no production. To find
the restriction on parameter values, first note that when-1 the locus of'= 0 is never in the allowed region where
botha andly are positive. Then verify that—far > —1—the locus o&'= 0 is always steeper than the locudpE 0
for givena (and allowed values of(1,/L)), hence if the lines cross they will do so only once. The dio (which
implies thaty > —1) is necessary and icient for the lines to cross. Given that the lines cross itrasightforward to
verify that the steady state is stable, for instance withhie of the phase diagram. O
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Figure 3: The phase diagram plotted with twéfelient scales on tHg-axis: (a) to show the overall characteristics, and (b) tmstine stable path.

Given equations (27) and (28) we can construct the phaseasiagnd characterize the relationship between the
initial choice of extraction labout, and the subsequent development of the economy: see Figfire 3.

3.3. Transversality

Having characterized the phase diagram we have charadesits of paths—from any initial stade—all of
which are consistent with the necessary conditions (25)(261 Of these, one set of paths leads to a situation in
which all labour is employed in extraction and none in prdauc and another to a situation in which no labour is
employed in extraction. Finally, there is the unique pathcivtieads to the long-run steady state. Before proceeding
we should verify that the path leading to the steady statetisnal. We do this using the transversality condition,
which is that

tIim e un = 0. (29)

That is, the present value of resources in the ground (theetsa of cumulative extraction) must approach zero
looking into the very distant future; if that is not the casenust be possible for the representative resource holder
to raise returns by increasing extraction (if the value isifpee) or reducing it (if it is negative). For the proof that
this transversality condition is a fiicient condition for optimality, and that only the long-rueady state satisfies the
transversality condition, see Appendix A.2.

3.4. The transition path and two b.g.p.s

Having established that the stable path—as illustratedgarg 3(b)—is unique and optimal, it is time to charac-
terize it. First note that on any b.g.p. in this economy thfzng two equations must hold:

y_w X,

92 V_\I+9L = (1—a)(9ay+9|_)+a;(, (30)
P_W, o X

p—W+9|_ " (31)

These equations follow directly from equations (4)—(6) wke hold labour allocation constant.
Now consider infinite time and recall thaj anda, both grow exogenously at constant rates. So if we move
backwardsn time then bottax anday, must approach zero. Wheg — 0 thena — 0 (equation 24), so we approach

10parameter valuegi = 1,¢ = 1,a = 0.05,p = 0.05,60,x = 0.023,6,y = 0.0179,L = 1, andFg = 1.
10
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Figure 4: The evolution op andx compared toy when the initial state = 10-3, for alternative values af. Other parameters as for Figure 3. In
both cases we see clearly the initial and mature extracti@sgs, and the transition between them.

they-axis asymptotically moving backwards along the stablb pataccordance with the above reasoning, denote the
present time as= 0—with known values o& andx—and assume that the economy at this time is somewhere on the
left-hand arm of the stable path illustrated in Figure 3. Ndlew t to approach-o, implying thata — 0 andx — 0.

It then follows straightforwardly from the representatfiren’s optimization problem that the economy approaches a
b.g.p. going backwards in time. On thistial b.g.p.a,/a, and the scarcity rent are both zepds simply equal to the
extraction cost, and

X/X = Oax + 0L - (32)

resource extraction grows at the growth rate of extracgchmnology plus labour.
Now move forward in time front = 0. Then the economy approaches the mature b.g.p. On thfs tug.can
show (Appendix A.3) that

X
v %(Gax +6L) (33)
1
A Ty
and E T Tl | p—(1—a)(faytbl) (34)
1+y Oax+0L

Summing up, in infinite time the economy starts arbitrariyse to the initial b.g.p. on which the scarcity rent is zero
and equations (30)—(32) hold. Over time it moves away froim Ithg.p. and approaches the mature b.g.p. on which
equations (30)—(31) and (33)—(34) hold. The long-run dgwelent of the economy—i.e. the transition away from
the initial b.g.p. and towards the mature b.g.p.—is illattd in Figure 4 for two dierent values of/, one positive
and the other negative.

3.5. Economic intuition

Consider a mineral resource such as copper or iron in a veylsiclosed economy with exogenous technological
progress in extraction and final-good production, and emogs population growth. Assume an initial state with low
population and primitive technology, both in extractiorddimal-good production. The extraction rate is thus very
low; the primitive workers are simply scratching the suefax the resources stocks, and depth is almost constant.
Moving forwards from this point labour productivity incises, hence the extraction rate increases (equation 32),
as does demand for the resource from the final-good sectoe. r@3ource price is approximately constant since
the productivity increase in final-good production—whicives up the wage—Ilargely cancels out the productivity
increase in extraction: from equations (30)—(32) we haMe = (1 — @)(6ay — fax). So if labour productivity grows
at the same rate in both sectors then the resource pricessaetinbut if extraction productivity grows faster then the
resource price will decline slowly.

11



As the extraction rate increases the approximationahas constant holds less and less well: depth begins to
increase, pushing up the resource price and thus reduangté of increase in the quantity demanded in the final-
good sector, and also braking the increase in depth. In thg fon the economy approaches the mature b.g.p. on
which depth increases at a constant rate. The key equationd@rstanding the mature b.g.p. is (33), which gives the
unigue growth rate of extraction that leads to a constant-geyo) growth rate of depth,. Wheny > 0, implying
an infinite stock, then this growth rate is positive; howewaneny, < 0 then the stock is finite and the extraction
rate declines on the mature b.g.p. In the special cage-6f0 then the extraction rate is constant on the b.g.p. The
resource-price trends are opposite to the extractiontreels, since the resource share is constamt atheny = 0
the resource price tracks the overall growth rate (and ttgeyyavheny > 0 price growth is slower than the overall
growth rate (Figure 4(a)), and wheén< 0 the resource price grows faster than the overall growth(Figure 4(b)).

Regarding the scarcity rent, (34) shows that it is a condtaction of the resource price on the mature b.g.p.
Furthermore, the level of the scarcity rent on the b.g.pa(&sction of the resource price) is increasingrnand
decreasing iy andp. Asy — oo the scarcity rent on the b.g.p. approaches zero; whenlarge depth is almost
constant and the scarcity rent is very low. On the other hanthe limit when the inequality in Proposition 2
is satisfied with equality then equation (34) shows that tteeaty rent approaches 100 percent of the price, also
implying (equations 12 and 13) thayd = p/p = p; wheny is negative depth increases rapidly on the b.g.p.,
implying that current extraction drives up future extraotcosts, hence the scarcity rent is high.

The discount rat@ plays no role in the rate of change of the resource price ob.th@. (equations 33-34), by
contrast to the classic Hotelling result thatp = p for a homogeneous resource with zero extraction cost. Hewev
—as shown by equation (34)—the level of the scarcity reneisrélasing in the discount rate. This is because the
scarcity rent arises from the fact that today’s extractaees future extraction costs, and the weight of tiiieat is
small when the discount rate is high.

Another way of thinking about theffect of the discount rate is to consider a given state of theesyat timet
(technology, endowments, resource stock), and assunrealtes discount rates. First consider a simple Hotelling
model: a resource-dependent economy with a finite stocky eefraction costs, and a backstop input at a fixed
exogenous pric@. Then we know (i) thap = 4, i.e. the resource price is pure rent, (ii) thep = p (the Hotelling
rule), and (iii) that the resource price must be equdl & the point of exhaustion (transversality). A higher digtio
rate leads to a lower resource price and a higher extractitmatt, and hence a lower growth rate of resource
extraction and thus also lower growth in aggregate prodaoctsimilar results follow in our model: for a given state
of the system at, a higher discount rate implies that the weight of incre@sésture extraction costs is lower, hence
the scarcity rent is lower, as is the resource price, andxtraation rate is higher. Given the higher extraction rate,
depth and thus also resource price increase faster in ouelsacthe growth rate of resource extraction and aggregate
production is lower. What distinguishes the present madehfthe simple Hotelling model is the way that increasing
short-run extraction leads to a faster increase in depthipg up prices and braking both the increase in extraction
and the increase in prices.

4. Solving the model in more complex cases

Study of the actual nature of resource stocks and asso@gtexttion costs (next section) shows that the case with
¥ > 0is empirically relevant; that is, marginal stocks may temihcrease with increasing depth (or decreasing grade)
rather than decreasing. However, since total stocks mufhibe there must come a point at which marginal stocks
decline with depth, or there may be an upper limit on the deptithich resource stocks exist. Furthermore, there
may be a limit on the depth at which extraction is practicalsgble) irrespective of extraction technology. Finally,
because substitutes for the resource may be availableyibmaptimal to cease extraction even though stocks remain
in the ground. The solution methods for all of these problanesclosely related, and we therefore begin with the
simplest problem, in which there is some deptheyond which extraction is impossible. Having solved thiyem
we consider the more general problem in which the stock isldivinto layers each of which hadldirent parameters.
The two types of case are illustrated in Figure 5.

1INote also that if we choose parameter values such that theatity in Proposition 2 is reversed then the Iocb(}iridi; approach each other
asymptotically as — oo andly — 0, and on the optimal path we also haves « andl}; — 0, and agaim/1 = p/p = p.
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represents cumulative extraction at titne;, and the lighter shading represents remaining resourd¢eset.

4.1. When ais bounded

Assume there is some depthbeyond which extraction is impossible, either because géighl constraints on
the extraction technology, or because no resource stod&shmyond this depth. This leads to an upper bound on
a,, economic depth. When we put an upper boundgthere is no &ect on the expression for the Hamiltonian,
and hence noftect on the necessary conditions for optimization statedap&sition 1, and noféect on the phase
diagram. The fect is simply to change the transversality condition, amdrésult of this change is that the mature
b.g.p. is no longer the long-run optimum; this is to be expecsince the bound oa, would be violated if the
economy stayed on that b.g.p. indefinitely.

If we continue to assume that there is no substitute for therabresource input then transversality implies that
the resource must be used up asymptotically as time appesduiinity; a greater rate of resource use would violate
the stock restriction, whereas a lower rate would leaveuress in the ground unnecessarily. In the limit—as the
extraction rate approaches zer@nis again constant, as it is in the limit of the initial extiact phase moving
backwards in time. Whea, is constant whiley continues to grow ang — 0, thenl, — 0 (equation 2). Now verify
from (4) and (5) that wheh, — 0, wly/(pX) — 0, hence (from 9) in the limip = A, implying (equation 12) that

A/A=p/p=p.

We thus have a third growth path, in addition to the initiatlanature growth paths characterized above, which is
(in the limit) a simple Hotelling extraction path in whichetiprice is pure rent (hence rising at the discount rate) and
extraction costs are zero. Extraction costs approach amause,, approaches a limit whereag/a, grows without
bound.

So given the bound oa, the economy approaches the initial path going backwardsz tand the Hotelling path
going forwards. What about the mature b.g.p.? The econohgetiapproach the mature growth path asymptotically;
however, the characterization of the mature b.g.p. isus#iful. To see this, start by denoting the optimal path given
the bound o, as the bounded path, and denote the optimal path when theseigper bound oa, as the unbounded
path. If the unbounded path is followed even thoagls bounded then at some tiniedeptha, will reach the bound.
Now assume some tintewheret < T, and consider the bounded path.TIf> t then (given positive discounting)
the diference between the unbounded and the bounded paths will &l simd if we letT —t — oo then the
difference must approach zero. So, loosely, as long as resdacks are sfiiciently large the extraction path must
first approach the mature path before (as depth starts t@agipthe bound) moving away from it and approaching
instead the Hotelling path.

4.2. When the stock is divided into layers
When the stock is divided into layers, as in Figure 5(ii), eipgimization problem is divided into sections. Because
of discounting, it remains true that resource depositshelextracted in order of increasing depth, and the firstrorde
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conditions derived above apply at all times: we are againwéh the problem of transversality. The solution is
straightforward, as shown by the following proposition.

Proposition 3. At the boundary between layers of the stock, as long as m isigncous function of g the initial
values of(a, I}) for the deeper layer are uniquely determined by the valuda,df) at the time of exhaustion of the
upper layer. The optimal path is then the one for which thgah¢hoice of the control variablé Ifor the uppermost
layer of the stock leads to satisfaction of the transvetgalbndition for the deepest layer.

Proor. We need to prove that the initial choice of control varidpldetermines the entire extraction path. We know
that this choice determines the path up to exhaustion oftbiddiyer, but does it determine the initial valuesaflf)
for the second layer? If it does, induction proves that theepath is determined.

Regardingg, since the time of the transition is known (fixiag), and the characteristics of the stock are known,
the value ofa when extraction from the second layer begins is determiRegiardind;, note that the transversality
condition between layers implies that price must be a captiis function of time; there cannot be a price discontinuity
across a boundary between layers, since this would implyamtimal behaviout? This implies that the extraction
rate X must also be a continuous function of time, since the extmactte is a continuous function of time if and
only if the price is a continuous function of time. Furthemmowe know by assumption that the cross-sectiois
a continuous function dd,, including across boundaries between layers. This imiasextraction employmeit
must also be a continuous function of time, i.e. extractadyolr does not change discontinuously at the boundary
between layers; ify did change discontinuously, then the extraction rate wahkhge discontinuously, which we
ruled out above. Hence initial extraction labour for thecsetlayer is determined by final extraction labour for the
first layer. O

4.3. When there is a backstop input

Finally, assume that there is a backstop input availablea&xagenous price, and that there is an upper bound
ona,. Furthermore, assume (for simplicity) that the backstapepis high in the sense that the backstop price is not
reached until the resource is exhausted, at which pointdaecity rent is strictly positive. Now the transversality
condition states that the resource price at the point ofestien is equal to the price of the backstdgn terms of the
phase diagram, the initial level &f (given the initial stat@) is chosen such that exhaustion occurs when p; and
when the starting point is determined, the evolution of fstem is determined by the dynamic equations. Again, if
p is suficiently high then the resource price will be almost pure netihe run-up to exhaustion, hence the price will
rise at close to the discount rate and resource extractibdedline.

In Figure 6 we show the paths of price and economic depth ukimgame parameters as previously but adding a
fixed backstop price and a limit on economic dep#y,. Note the three distinct growth paths—initial, mature, and
Hotelling—in accordance with the analytical model: thepsle of Inp in the three cases are (i) o) (0ay — bax); (ii)

(1 — @)(Bay — Oax)¥/ (1 + ¢); and (iii) p.

5. Parameterization

We now turn to the parameterization of the model. The pararzetions are illustrative rather than strictly
predictive, the main reason being the great uncertaintg@ming many of the assumptions. Nevertheless, the model
succeeds in explaining observations from the last 100 yaatsmakes apparently reasonable predictions for the next
several hundred in the cases of oil and copper. We choosetthesurces based on availability of data and importance
of the resources to the global economy.

12)f the price jumps up across the boundary, the upper layet hawe been sold too cheaply, whereas if price steps dowrtlieempper layer's
price must have been unsustainably high given perfect ctitiope

13The resource price can never be higher than the price of tblestmp, whereas if the resource is exhausted with the poieerl than the
backstop price then resource owners are not extractingitheafue of the rent at that point, hence the price path magetbeen too low.
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is a maximum economic dep#y and a constant backstop pripe The dashed lines show the pathsagfand p when depth is unlimited, and the
dotted lines have slopes corresponding to the limiting ca$¢he three phases described above, initial, mature, ralistion. Parameters as for
Figure 3. Initial stateay = 0.001,ay0 = 1, a0 = 1. Exhaustiona, = 15, p = 1.1627x 104,

5.1. General observations

We start with some observations which apply whatever theureg for which we are parameterizing the model, in
particular the long-run growth rates of TFP, extractionduretivity, and the long-run discount rate. For long-run TFP
growth we use the estimate of Shackleton (2013).8fflercent per year (1870-201d)Regarding the productivity
ay of extraction labour, it could be argued that this should/\feosm resource to resource, and should be chosen from
case to case in order to fit the data available. However, a omrgervative approach is to assume tgashould in
the long run track manufacturing productivity generalggardless of the extraction industry. Thus we take thiségur
from the literature, hence reducing the degrees of freedotha parameterization; this reduces the probability that
we are able to achieve a spurious match of the model to oligmrsaWe take the value of2 percent per year from
Fagerberg (2000). We set the discount rate to 5 percent per $mce manufacturing productivity grow$@ercent
faster than TFP we expect extraction costs to decline.®y@rcent per year, ceteris paribus. Finallys simply the
factor share of the resource.

If we want to match global extraction data we must also carsmbpulation growth. We approximate global
population growth by assuming a constant growth rate®pércent per year from 1880-2037, after which population
is assumed to be constant; the expected gradual slow-devemds zero growth over the next several decades is thus
approximately by a kink in the curve in 2037 Recall from equation (15) that théfect of population growtld, in
the model can be captured by increasing the growth ratagariday to fax + 6. andéay + 6. ; since labour is the only
input, more labour is equivalent to more productive labdlote that the combination of the assumptions about TFP
and population growth gives a constant growth rate of glpbadiuct of 30 percent per year since 1880, which fits
well to the Maddison data used in Figure 1, where the averemetly rate since 1900 is@percent.

5.2. Extraction and economic depth a

It remains to find the parameters determining the relatipnsbhtween cumulative extraction and unit cost for
given productivity levels, and the initial values of theiadtes. How this problem is tackled varies from case to case,
hence we discuss our two cases in turn. First however weydisttuss the general applicability of the model.

The extraction model assumes a link between depth underdmqu economic deptta, = r¥, and the rate of
extractionx for given dfective inputsasly: X = axlx/an. However, when applying the model it is not necessary to
take the depth of the resource literally. Rather, depthhould be taken as some observable measure of resource
quality, which may typically be a combination of physicaptieand grade, as in the case of copper below. The key

Hwe define TFP growth as equal to{k)0ay.
15This approximation is broadly in line with UN observationslgredictions. See for instance United Nations (1999).
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is that cumulative extraction should lead to lower qual@gaurces being exploited over time, and that this change in
resource quality should be measurable.

One problem with this approach is the fact that for almostedlources, stocks are divided up into separate
deposits, and within-deposit quality varies. Given fixe@itd investments at a given site, relatively low-quality
resources are likely to be extracted as exhaustion of a gigposit approaches, even though higher-quality resources
exist at other sites. A special case of this arises in the ahpetroleum, where pressure declines with cumulative
extraction from a given depositffectively lowering the quality (i.e. raising) of that deposit. However, in the
long run we still expect to see a progression from high-dquakposits (lowy) to low-quality deposits (highy). A
second problem is that market power leads to extractionffdréint grades simultaneously, as discussed in the case of
petroleum below. See Black and LaFrance (1998) and Caimh®auis (2001) for analyses of petroleum extraction
incorporating geological aspects.

5.3. Copper

There are two key dimensions along which the quality of cogieposits varies. The first of these is grade (the
fraction of copper in the rock, by mass), and the second ithd&)ge use Kesler and Wilkinson (2008) as our primary
source of data concerning copper resources. They build @obtectonic migration of copper deposits and calibrate
it based on data about known deposits. In practice ‘knowrosiep is almost synonymous with ‘deposits part of
[whose] vertical thickness is at the surface’ (Kesler antkivgon, 2008, p256), and the key to estimating long-run
resources is the estimation of sub-surface deposits. Baiseae model they estimate a recoverable resource of
8.9 x 10 tons of copper, down to a depth of 3.3 km (below this depth #gsume that recovery is not possible).
Furthermore, marginal quantity increases with depth, up.8km. Regarding grade, Gerst (2008) argues that the
grade—tonnage density function is log-Gaussian (his emqua). Finally, Harmsen et al. (2013) estimate that 85
percent of produced copper historically has come from thé&@D metres. We use these four pieces of information—
the total quantity up to 3.3 km, the relationship betweertldepd quantity, the grade—tonnage density function, and
the depth of historical extraction—to calibrate our moedtingry to n.

The first problem is to calibrate equation (18), the relatfip between depth, and cross-sectional area We
do this in two stages. First we estimate a curve showing théaaship between, andm (without restrictions on the
functional form), then we calibrate equation (18) to fit theve. To estimate the curve we divide the total stock into 7
layers (indexed 1 to 7 with increasing depth) each 471 méitiels, and then use Figure 2 from Kesler and Wilkinson
(2008) to divide the total stock of8x 10*°tons into the fractions shown in Table 1. Regarding gradeasseime that
the global grade—tonnage density function in each layer &tordance with the estimate of Gerst (2008) for global
porphyry (his Table 3). Regarding théect of going down one layer, assume a deposit of gradieyerl. Then we
define the depth (or remoteness) of that deposit as 100/(g- 2-1). Thus a step down from one layer to the next
is equivalent to a halving of the grade, and extraction cfosta deposit of grade.b percent in the top layer are the
same as extraction costs for a deposit of grade 1 percentfresecond layer. This is consistent with the observation
of Harmsen et al. (2013) that extraction is starting from3beond layer at the same time as available stocks in the top
layer have dropped from 2 percent to 1 percent grade. For #ikainprogram for deriving the relationship between
depth and cumulative extraction (and thus also the equa#ind parameter values) see Appendix A.4; the relationship
itself is shown by the continuous lines in Figure 7, whereléffiehand panel focuses on the most accessible stock,
whereas the right-hand panel shows the entire stock.

Depth (m) 0-471 471-943 943-1414 1414-1886 1886-2357 282B- 2829-3300
Fraction of total 0.10 0.12 0.14 0.15 0.16 0.17 0.16

Table 1: Fraction of total available stock to be found #tedent depths.

The next task is to calibrate equation (18) in order to fit theve in Figure 7. In order to match the form of
the grade—cumulative stock relationship we divide theksio two substocks for which fferent parameters apply:
the high-grade substock, consisting a82x 10° tons of copper, has the following parametersy; = 50, ¢ = 4.66,
andmy = 0.0017; so in 1900, surface copper at 2 percent grade is alailabaccording with Gerst (2008). The
low-grade substock, consisting of 86« 10° tons of copper, has the following parametesg: = 142,¢ = 0.25, and
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Figure 7: The relationship between the combined measurephdind grade, and cross-sectional areafor copper, based on our interpretation
of the literature (continuous line), and the parametdomabf our economic model (dashed line). Notice th#edence in scale on the two panels.
The shaded area shows extraction from 1900—2015 6 10° tons, and the dotted lines show the relationship betweethdey cross-section
layer-by-layer.

mp = 0.0776. As we can see from Figure 7, the economic model stoc&ditstock from the physical model quite
well. A much better fit could be achieved by dividing the stadb three parts, each withféierent parameters.

Having fitted these curves, the final task is to parametehieedlationship betweery anday, i.e. to choose the
parametex (recall thaty = ¢/y). To set the value gf we assume that the economy was close to the ‘mature’ b.g.p. in
1900, implying that the growth rate of price shouldthg— (1 — @)y/(1 + ¥)0ax. We approximate the observed rate
of price decline over the period agi(percent per year, which givgs= 0.419, implying that unit costs are relatively
insensitive to increasing depth or decreasing grade. (Vgh&ae is divided by 2 at constant depth, unit cost rises by
a factor 134 at constant technology.) Given the observation of rdak@nd extraction rate in 1900, thifectively
completes the parameterization; the starting values agd by these observations.

Given the change in the growth rate of population in 2037 stireilation must be done in three stages, the first of
which is from 1900 to 2037, the second of which is from 203" @ (Eendogenous) time at which the switch of stock
parameters must be made—which turns out to be 2054 —anditdeftwhich continues beyond this point until the
depth of 3.3 kilometres is reached and the stock is exhauBtegitime of exhaustion is also endogenous, and depends
on the backstop price. (For information about the progra® Appendix A.4.) The results are shown in Figure 8.
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Figure 8: Observed price and extraction rate of copper (thes), and the paths of price and extraction rate—up toithe bf exhaustion—
predicted by the model (thicker lines). Two model scenaai@sshown, which diier in the assumed backstop price. Note that the extractierisa
plotted on a (natural) logarithmic scale, normalized byrtte in 2000. Prices are in 1998 USD.

To help understand Figure 8 we perform two calculationsndigg the behaviour of the economy in the limit
when it is on each of the two mature balanced growth pathglyfifer the upper portion of the stock withh =
4.66/0.419 = 11.1, and secondly for the deeper part of the stock for whick 0.25/0.419 = 0.60. Firstly we
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calculate—using equation (31)—the growth rate of pricetenrespective b.g.p.s. Since the resource price grows at
ratefay — (1 — a)y/(1 + ¢)0ayx, the growth rate of the price is0.4 percent per year on the first b.g.p., an8 Percent

per year on the second b.g.p. Secondly we calculate theityoamet as a proportion of the total price, using equation
(34): on the first the scarcity rent makes up just percent of the total price, whereas on the later b.g.p.dfwis
approached after extraction has moved on to the narrowictgpseof the stock), the scarcity rent makes up a much
larger 40 percent of the total price. This is a reflection @& thuch higher degradation cost of extraction when the
cross-sectional area of the area of the imputed representasource deposit is declining with depth rather than
expanding.

Turning to the figure, the economy starts close to the firspbyghich applies for the initial stock, and price
declines by around.d percent per year. Once the initial stock is used up in 20%lrate of increase in depth
increases, and the economy starts moving towards the sdcgmd on which price rises by.® percent per year.
Finally, from around 2200 the scarcity rent starts to risexdsaustion approaches, at least in the case with a high
backstop price. With a low backstop price the scarcity remtly rises, and exhaustion occurs a few years earlier.
Note the close agreement between the model and observed treprices and extraction rates.

5.4. Petroleum

If the copper simulation is an advertisement for the powahefmodel, the petroleum simulation highlights its
weaknesses. There are two key aspects of the petroleumtdricd the model cannot handle as it stands: firstly, the
significance of market power in the petroleum market, andrsgly the inextricable links between petroleum and its
substitutes, including natural gas, coal, and other engwgyces such as nuclear power. Of course, market power and
substitutes also exist in the market for copper, but theitesand influence is greater in the oil mark&Concerning
market power, consider for instance the fact that petroleximaction occurs simultaneously from deposits for which
marginal extraction costsfiker by a factor of 5 or more (compare for instance the Ghawat iiieSaudi Arabia to the
Athabasca oil sands of Alberta). Concerning substitutespfeum demand is linked tightly to markets for coal and
other energy sources, and strongffeated by technological change. Consider for instance thstisution from coal
to oil driven by the development and refinement of the intecombustion engine. Given these problems—which are
evident in Figure 10—the model calibration is at best ilatte, showing possible future scenarios and highlightin
the dfect of backstop energy sources.

The data regarding petroleum resources in the ground aertaint. Furthermore, the data regarding the cost of
extraction of these resources are even more uncertain. Disé frequently cited paper on the subject is probably
Rogner (1997). However, Rogner’s curve relating cumugagixtraction to extraction cost (see for instance his Figure
6) shows estimated extraction casthe time of extractionlts calculation must therefore involve (implicit or exgt)
calculations of (i) current extraction costs, (ii) expebtiecline in extraction costs, and (iii) expected rate ofaotton.
Since we model the latter two, we need data on the first fatdoeai.e. unit extraction costs for each type of deposit
making up the reserves, if full-scale extraction were to &eied out today. This is estimated by the International
Energy Agency in their World Energy Outlook 2008 (p.218).eTdmata are very approximate, but can be broadly
summarized as follows: considering initial resource s¢otkere was a large rather homogeneous stock of easily
accessible stocks, approximately 2000 billion barrelsraee@onomic depth of around 18 Ugfarrel. Regarding
the remaining stocks—about 7000 billion barrels—econaejatha, rises approximately linearly with cumulative
extraction, reaching approximately 115 U®Brrel for the deepest stocks. We capture this in the modasbyming
an initial stock with lowy ( = —2.2), so that the entire near-homogeneous stock is at a depth-@0, switching to
the deeper stock witlr = 1 from 20-115. The cross-section of the second stock isméted by its size (assumed
to be 67 x 10° barrels), and the parameters for the first stock are then fiyate limits on depth (10-20), the size
(2.3 x 10° barrels), and the need famto be continuous over the boundary between the stocks. Eut is shown
in Figure 9. Note that the curve shows unit extraction cast2008 USD with today’s technology, for all petroleum
resources including the (hypothetical) current extractiost of resources already extracted. (Note that we ighere t
fact that a significant proportion of cumulative extractitas been from deeper stocks.)

Having fixed the curve in Figure 9, the data on initial pricel @ntraction rate (in 1880) is fiicient to determine
the starting value oy, given that we assume that the economy starts with a low \@flaeand hencé close toa.

18For recent work on market power in these markets see Lin (2009 Lawell and Zhang (2015) and Lin Lawell (2016).
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Figure 9: The relationship between economic degthand cross-sectional areafor oil, based on our interpretation of the InternationakEyy
Agency World Energy Outlook 2008. Depth is measured in 208®\and cross-sectional area in billion barrels per USD.sHeeled area shows
extraction from 1900-2008, 1100 billion barrels.

(Recall thatw is the share of petroleum in global product, which we set a¢i@gnt.) Unfortunately, however, this
parametrization fails to reflect the fact that the share afgbeum in global product rose rapidly from 1880 to 1970,
contrary to the assumption of constant share in the model.pfbblem is that although the sharecoimbustiblesn
global product show no long-run trend over this period (Hd€igure 1), petroleum substituted for other combustibles
and hence its share roseTo account for this in the model we raise the productivitygiorates during the period
up to 1970, reflecting petroleum’s increasing market patietn.

Having parameterized the model, and given the assumptioatdbe total stock of resources, the future devel-
opment of prices and quantities predicted by the model d#pen what we assume about the price of the backstop
(i.e. the substitutes for oil that will take over when oil ihausted or too expensive). Here we make two alternative
assumptions to demonstrate the role played by the backssopirce. In the first case we assume that a backstop is
available at a fixed price of 150 US dollars (2011); in the selamase we assume that a backstop is availallayat
that price, and that this price will decline at the réig— 6ay; that is, the backstop price declines as long as manufac-
turing productivity growth outstrips TFP growth. The resslthat the backstop price is around 65 USD at the time of
exhaustion, rather than 150.

Consider now Figure 10. Recall that there is no market powéne model economy, hence the results are what
the model predicts in an economy similar to the actual glelsahomy but without the exercise of market power by
oil producers; this implies that where observed price id al@bve that predicted by the model, a possible explanation
is the exercise of market power, an explanation supportedédgnalysis of Lin (2009). Turning now to the results, up
to the exhaustion of the upper stock, depth is almost cofjgtenscarcity rent is close to zero, and price declines at a
rate equal to the elierence between the growth rates of extraction productanty labour productivity in final-good
production, i.e. B percent per year (in accordance with equation 32). Howegethe upper stock nears exhaustion
depth starts to rise at a significant rate, and the econongshesck towards the b.g.p. for the stock, for whick 1;
the mature extraction phase. On this b.g.p. we have —froratems (33)—(34) —that the growth rate of extraction is
halved, the resource price rises hg Percent per year, and the scarcity rent makes up 21 perctw price!®

In the latter half of the 21st century the price paths of thierahtive backstop scenarios diverge significantly:
the upper path (high backstop price) is slightly above tigepbprice path, while the lower path is below it. Hence
when the backstop price is fixed at 150 USD the scarcity reesrabove 21 percent of the total price as exhaustion
approaches, whereas given the lower backstop price thefratéce increase slows down as exhaustion approaches,
and the rent actually declines as a proportion of the price.

1"The share also rose after 1974, but this was due to shorhalasticity of demand combined with steeply rising prices.

18Note that after the transition to the deeper stock with 1 the economy approaches the mature b.g.p. for that stockdbmve i.e. the state
variablea is above its level in the steady state. As the economy appesathe new b.g.m falls back, which is why prices rise quite steeply
throughout the 21st century.

19



160 \

140

Backstop 1 | 1} /__/———
| 0
120} ;

100 |

80 Extraction rate, 1 and 2

lognormal

60

Price, USDbarrel

al Price, 1 and 2 1 e

20

1900 1950 2000 2050 2100 2150 1900 1950 2000 2050 2100 2150
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Boden et al. (2012), assuming a linear relationship betv@@nemissions and petroleum consumption.

5.5. Sensitivity to assumptions

Clearly the above simulations are sensitive to the assompthade, the most uncertain of which are those regard-
ing future demand, and future development of extractiompetivity. On the one hand, our assumption about future
demand is essentially at the upper bound of what is reglistichat demand per capita continues to grow indefinitely
at a similar rate to the rate observed over the last 100 y@areast two factors might be expected to lead to lower
future demand: firstly, if global growth slows in the long ramd secondly if there is a transition from ‘early’ growth
based on manufacturing and hence resources, and ‘posttiedigrowth based on services and hence laBddie
effect of lower demand would be to reduce extraction rates andehalso reduce the growth rate of prices predicted
by the model. On the other hand, our assumption regardingeutevelopment of extraction productivity is also an
upper bound; again, we assume that it continues to incredséinitely. This is unlikely, not least because in reality
resource extraction requires energy, and there are phiisiits to the eficiency with which this energy can be used.
Since these limits are already coming close in some cagespthplies that even if labour productivity continues to
increase, energy productivity will not do so and hence tlopprtion of the energy cost in the unit cost will rise, and
the rise of overall extraction productivity will slow. Thassumption therefore biases the results towards lowezpric
and higher extraction rates than are likely to be observed.

The dfect of assuming both lower future demand and lower prodittirowth rates in extraction is therefore
that the price path is likely to be relatively unchanged, wglas the extraction path will be lower. Furthermore, the
proportion of the price accounted for by the scarcity rerltlng lower. Given a finite stock, the lower extraction path
will lead to later exhaustion, and hence any price spike aaestion approaches is also likely to be delayed.

6. Conclusions

We show how the problem of optimal extraction of inhomogersa@source deposits can be set up in such a way
that an analytical solution for the equilibrium extractjwath can be obtained. The model provides an explanation for
the historical observation of slowly declining resource@s—the productivity of the extraction input grows faster
than its price, since extraction productivity grows fagken total factor productivity in the final-good sector—and
also predicts a more constant or slowly rising price trentheamedium term, as the abovfext is supplemented

1970 get a feel for the sizes of demand changes in the model, msider each simulation in turn. For copper, the extractita peaks at around
50 times the observed rate in year 2000. Compare this to Hieaay assumption that the entire future global poputattonsumes copper at the
same rate as the average U.S. citizen in year 2000; this vieadtto a global extraction rate approximatel$ 6mes greater than that observed
in 2000. If demand levelsfbin this way then the copper stocks will last for many centuriather than just two or three. For petroleum, the
extraction rate in the model peaks at around 3 times the @20 eate, which is less than the rate which would arise if alintries matched the
U.S. per-capita rate from year 2000.
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by the dfect of the increasing depth from which resources must beebed. Finally, if exhaustion beckons and
substitutes are very expensive there may be a third phaskighgrice rises at a rate approaching the discount rate
while the extraction rate declines.

We study just two resources empirically. It would be usefuapply the model to analysis of further resources,
both as a test of the model and to get further results. To gimeesperspective on the relevance of resource limits
in general consider the following calculation. The curneysical extraction rate of minerals is of the order 0f°0
tonnes per year globally according to the Kelly and Matosl @@lata, which is around 10 percent of the earth’s
crust (based on a figure of210' tons for the Earth’s crust). Now assume that the extractosmeontinues to grow
as it has done over the past 100 years, i.e. by approximatayc®nt per year. Then extraction would be multiplied
by a factor 20 each century, and in 700 years we would be miaimtjusing minerals roughly equal to the entire
earth’s crusevery year Clearly we live in an exceptional—and temporary—periodagfidly expanding resource
extraction.

The model is highly simplified. Better data about the natureesource stocks, and a better understanding of
long-run demand for resources (in particular whether iasireg resource extraction is primarily driven by relative
price dfects or by incomeféects) would allow the model to be refined and increase cordelénthe predictions.
Another relatively straightforward extension would bertolude other inputs—such as capital and energy—into the
extraction cost and production functions; this might beipalarly important in the extraction sector, which is dapi
and energy-intensive, potentially providing a more detaégxplanation of why extraction productivity grows faster
than productivity in the final-good secté.An extension with more subtle consequences would be to glirethe
utility function to allow the discount rate to vary over tim& general productivity slow-down, or a scarcity-induced
crisis, would then fiect the discount rate and via this channel also the evolutfadhe scarcity rent. Finally, to
account properly for resource markets in which the exemfisearket power is a crucial factor—such as the market
for petroleum—a major extension to the model would be remgliiNevertheless, the model as it stands supports the
view that the high price of petroleum is neither due to exteeccosts nor scarcity rent, and hence is presumably due
to market power.
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Appendix A Additional results, proofs, and material

A.1 The solution for equation (15)

Take equations (2), (4), (5), the labour restriction, and 6 = Ixax/an; W = (1 — a@)y/(L — X); p = ay/X;
L =Ix+ly;y=a,(L -1y x". Differentiate each with respectttto yield

v Y X I x| Lodgly x| '
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I

Substitute each of these equations, in turn, into equalidh p/p = p(1 — y) + (W/W — 0a4)y, and use the definition
of y (y = wlk/(pXx)) to yield (15).

20I1f we continue to assume labour-augmenting technologicagiiess and keep the interest rate fixed then it is straigtdial to show that
introducing capital makes noftiérence, even if the extraction sector is assumed to be mpitalemtensive. However, if we allowed for increases
in capital-augmenting knowledge as well as labour-augmgrthen we would have a mechanism explaining why TFP inesdaster in the
extraction sector than in the final-good sector.
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A.2 The transversality condition

Our proof of the sfficiency of the transversality condition (29) is based on Aggim (2009), Theorem 7.14, as
follows. Recall that we already have the current-value H@amian and necessary first-order conditionsiandn.
Having defined= we add the transversality condition, and find a solution best with the conditions. Then we
note that the value of the Hamiltonian along the optimal path Acemoglu’s notationM(t, n, 1) —is simply equal
to zero; this follows from the first-order condition ¥y because of the linearity of the HamiltonianXinSinceM = 0
it follows that M is concave im for all t. Then since the set of allowed values fois convex, and if there are no
discontinuities, the solution must achieve the global mmasxh.

Now we prove that only the stable path is consistent with taesversality condition. Consider first the corner
with I, = 0 anda — . As we head into this cornerapproachep (equation 9). Sa/1 = p/p. But from (14) we
have thap = p/pin this corner, so (putting these results together) we Rate= p. Hence the transversality condition
cannot be satisfied; valuable resources are unnecesstily the ground. Now to the corner with = L. Use (4)
and (6) to show that whelg — L, w — oo, implying (9) thati — —oo; loosely speaking, infinitely-priced labour is
being devoted to extracting resources which are then ndleifecause there is no production labour. Finally, it is
straightforward to show that the path leading to the stestdie satisfies the transversality condition, using eqoati
(31) and (33). (Note that whef > 0, thenn/n — x/x ast — oo, whereas whegr < 0 thenn/n — 0 ast — .)

A.3 The mature b.g.p.

To show that (33) holds in the steady state of the transforsgstém take (24) and use it to show that when the
growth rates ok andly are zero then

Oax = (L +¢)an/an  and X/X = fax — an/an,

hencex/x = v/(1+ ¢)bay, i.€. (33). Now take (9) and use it to show thdp is constant ifw/w + a,/an = p/p + Gax,
and verify that the latter equation holds on the b.g.p. usiegwo expressions above and (31).
To find the levels of the variables on the b.g.p., use the droate ofa, on the b.g.p.—an/an = Oax/(L + ¢)—
and (23) to show that
Oax X
1+y  Fo(an/am)’

Rearrange and substitute fayusing (2) to derive

. (ax|x)¢/(1+d/) ( Fogax)l/(lﬂb)
ano 1+y ‘

The value ofl, follows directly from (27) and (28):

14 P
Iy Tgfax—Oay+ 15

al Oax — Oay +

Ta
Now use (2), (4), (5), and (9) to show thatp = 1 - (1 — @)/a - Ix/(L — I¥). Insert the expression fox derived above
to yield the expression fot/pin (34).

A.4  Supplementary material regarding the solutions to theafs and the figures

All of the programs used to solve the models and generatedhee§ (including data) are to be found on the
following site:https://sites.google.com/site/exresmat/.
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