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Stress biology and interactions between Solanum species and 
Phytophthora infestans-Studies in laboratory and field conditions 

Abstract 

Phytophthora infestans is a highly destructive pathogen in potato production. 

Developing potato cultivars with resistance against the pathogen is considered the most 

sustainable solution to address the problem. Wild Solanum species are a source of 

genes conferring resistance to P. infestans (Rpi-genes); however, the Solanum species 

genepool from Europe remains untapped. Since the pathogen can overcome host 

resistance, it is crucial to also consider alternative ways to enhance basal defence using 

resistance-inducers. Improving the knowledge base of Solanum - Phytophthora 

interactions, as well as unravelling possible effects of the interactions on other 

microbes and herbivores, can facilitate the use of host resistance to reduce yield losses. 

Furthermore, understanding plant innate immunity activation and the response to stress 

of host plants growing in field conditions can increase the efficiency of future disease 

control efforts. 

 

Characterization of the resistance against P. infestans in the three wild Solanum species 

growing in Sweden showed that S. nigrum is resistant and S. physalifolium is 

susceptible whereas there was large resistance variation among S. dulcamara 

accessions. A study of S. physalifoilum showed direct and transgenerational BABA-

induced resistance against P. infestans. To further understand the molecular basis of 

these interactions, a transcriptome comparison based on RNA-seq data was performed 

in the three wild Solanum species and three potato clones with varying resistance level 

to the pathogen, after inoculation with P. infestans. The transcriptome analysis 

identified expanded or depleted transcript families which are associated with resistance. 

It also retrieved host R-gene like sequences and possible pathogenicity factors produced 

by the pathogen during the infection process. Moreover, a tritrophic interaction study 

showed that a generalist moth (Spodoptera littoralis) prefers to oviposit on a 

susceptible potato clone inoculated with P. infestans compared to uninoculated control 

plants as well as inoculated resistant clone. Introduction of a resistance gene from a 

wild Solanum species into potato can reduce the effects of P. infestans as well as S. 

littoralis. 

 

To understand the prevalence of innate immunity activation in agriculture and nature, 

more than 500 apoplastic leaf samples isolated from S. nigrum and S. dulcamara 

growing in natural populations as well as from five potato cultivars with varying levels 

of resistance to P. infestans were analysed for the presence of PR proteins. The results 

showed that only one third of the plants have the innate immunity activated. Presence 

of PR proteins increases towards the end of the growing season, which may be is linked 

to an increased presence of natural enemies. Moreover, we performed apoplastic 



proteome analysis, using label free quantitative proteomics and activity based protein 

profiling (ABPP) in order to get overview of involved processes. We found that most of 

the proteins with increased abundance in the field compared to in greenhouse condition 

were related to biotic stress response. ABPP also showed differential activity statuses 

of serine hydrolases and β-glucosidases in field and greenhouse growing conditions. 

Furthermore, the activity of serine hydrolases and β-glucosidases varies across the 

growing season within the same field. Non-plastic peptide biomarkers for potato 

stress response were suggested. 

 

Keywords: Solanum, P. infestans, Rpi-genes, BABA, tritrophic, apoplast, quantitative 

proteomics, ABPP, Biomarkers 

 

Author’s address: Kibrom Berhe Abreha, SLU, Department of Plant Protection 

Biology, P.O. Box 102, 230 53 Alnarp, Sweden  

E-mail: Kibrom.abreha@slu.se    

 

mailto:Kibrom.abreha@slu.se


Dedication 

To my family  

  



 

Contents 

List of Publications 8 

Abbreviations 13 

1 Introduction 15 

2 Background 18 
2.1 Potato (Solanum tuberosum L.) 18 
2.2 Wild Solanum species 19 

2.2.1 Sources of resistance trait 19 
2.2.2 Wild Solanum species in Sweden 21 

2.3 Phytophthora infestans 23 
2.3.1 The pathogen and mating types 23 
2.3.2 Life cycle and infection process 24 

2.4 Plant innate immunity 26 
2.4.1 PAMPs triggered immunity (PTI) 27 
2.4.2 Effector triggered immunity (ETI) 28 
2.4.3 Solanum species stress response in field conditions 30 
2.4.4 Apoplast: the frontier in plant-pathogen interaction 31 

2.5 The -Omics of potato-Phytophthora pathosystem 31 
2.5.1 Potato-P. infestans interaction transcriptome 32 
2.5.2 Proteomics of the potato-Phytophthora pathosystem 32 

2.6 BABA-induced resistance 33 
2.7 Effects of potato-P.infestans interactions on herbivore behaviour 34 

3 Aim and Objectives 36 

4 Results and Discussion 38 
4.1 Solanum-P. infestans interactions and response to stress in field 

condition 38 
4.2 Phytophthora resistance in Swedish wild Solanum species (Paper I, II) 39 
4.3 Understanding the Solanum-P. infestans interactions and effects on a 

generalist moth (Paper III and IV ) 44 
4.4 Activation of Solanum defence response in greenhouse and field 

conditions (Paper V, VI) 47 

5 Conclusions and future perspectives 52 



References 56 

Acknowledgements 71 
 

 



8 

List of Publications 

This thesis is based on the work contained in the following papers, referred to 

by Roman numerals in the text: 

I Kibrom B. Abreha, Åsa Lankinen, Laura Masini, Sofia Hydbom, Erik 

Andreasson. Investigation of late blight resistance of all three putative 

natural Solanum hosts in Sweden reveals large variation in S. dulcamara. 

Manuscript 

II Åsa Lankinen, Kibrom B. Abreha, Erik Alexandersson, Stefan 

Andersson, and Erik Andreasson (2016). Nongenetic inheritance of 

induced resistance in a wild annual plant. Phytopathology 106:877-883. 

III Itziar Frades*, Kibrom B. Abreha*, Estelle Proux-Wéra, Åsa Lankinen, 

Erik Andreasson and Erik Alexandersson (2015). A novel workflow 

correlating RNA-seq data to Phythophthora infestans resistance levels in 

wild Solanum species and potato clones. Front.PlantSci.6:718. doi: 

10.3389/fpls.2015.00718. *co-first author 

IV Kibrom B. Abreha, Erik Alexandersson, Jack H. Vossen, Peter Anderson, 

Erik Andreasson (2015). Inoculation of transgenic resistant potato by 

Phytophthora infestans affects host plant choice of a generalist moth. 

PLoS ONE 10(6): e0129815. doi:10.1371/journal.pone.0129815. 

V Åsa Lankinen, Kibrom B. Abreha, Laura Masini, Ashfaq Ali, Erik 

Andreasson. Plant immunity is seldom activated in natural populations and 

agricultural fields. Submitted manuscript 



9 

VI Kibrom B. Abreha, Erik Alexandersson, Åsa Lankinen, Daniela Sueldo, 

Kaschani Farnusch, Markus Kaiser, Renier A. L. van der Hoorn, Fredrik 

Levander, Erik Andreasson. Leaf apoplast of field- and greenhouse-grown 

potato analysed by quantitative proteomics and activity based protein 

profiling. Manuscript 

Papers II-IV reproduced with the permission of the publishers.  

* Equally contributing authors  



10 

The contribution of Kibrom B. Abreha the papers included in this thesis was 

as follows: 

I Planned the experiment together with co-authors, performed the practical 

work and data analysis, and writing of the manuscript.  

II Planned the experiment together with co-authors, performed the practical 

work, and participated in data analysis and writing of the manuscript.  

III Planned the experiment together with co-authors, performed the practical 

work, and participated in the analysis and writing of the manuscript. 

IV Planned the experiment together with co-authors, performed the practical 

work and data analysis, and writing of the manuscript. 

V Planned the experiment together with the co-authors, performed part of the 

practical work, and participated in data analysis and writing of the 

manuscript. 

VI Planned the experiment together with co-authors, performed the practical 

work and data analysis, and writing of the manuscript. 



11 

Related works by Kibrom B. Abreha but not included in this Thesis: 

I Erik Andreasson, Kibrom B. Abreha, Svante Resjö (2017). Isolation of 

Apoplast. In: Isolation of Plant Organelles and Structures: Methods and 

Protocols (eds N.L. Taylor & A.H. Millar), pp. 233-240. Springer New 

York, New York, NY. 

II Tina Boddum, Bela Molnar, Sharon R Hill, Göran Birgersson, Bill S 

Hansson, Kibrom B. Abreha, Erik Andreasson and Ylva Hillbur. 

Contarinia nasturtii host selection. Manuscript 

III Tewodros M. Zewdie, Bayeh Mulatu, Kibrom B. Abreha, Habte Tekie, 

Mohammed Yessuf, Erik Andreasson, Erik Alexandersson. The influence 

of phosphite on P. infestans and synergism with conventional fungicides in 

field-grown potato and tomato in Ethiopia. Manuscript  

  



12 

 



13 

Abbreviations 

ABPP activity based protein profiling 

Avr avirulence 

BABA β-aminobutyric acid 

BABA-IR BABA- induced resistance 

BLAST Basic Local Alignment Search Tool 

ETI effector triggered immunity 

ETS effector triggered susceptibility 

FAO Food and Agricultural Organization 

 GO Gene ontology 

HR hypersensitive response 

LC/MS liquid chromatography–mass spectrometry 

NBS-LRR nucleotide binding site-leucine rich repeats 

NGS next Generation Sequencing 

PAMPs pathogen-associated molecular patterns 

PCA principal components analysis 

PRR  pattern recognition receptor 

PTI PAMP trigerred immunity 

RK receptor kinases 

RLP receptor-like proteins 

Rpi-genes Resistance genes against Phytophthora infestans 

SDS-PAGE  sodium dodecyl sulfate polyacrylamide gel electrophoresis 

STEM Short Time-series Expression Miner  

 

  



14 

  



15 

1 Introduction  

Potato (Solanum tuberosum, 2n = 4x = 48), a member of Solanaceae family, is 

one of the most important food crops in the world. The crop has high yield 

potential and grows in a wide agro-ecological range delivering more than 380 

million tons (MT) total annual production (FAO, 2016). Increasing annual 

potato production in the developing world underlines a growing role of this 

crop in global food security. However, potato suffers from a multitude of biotic 

and abiotic stresses, especially in the face of a changing climate. 

 

Ever since causing the Irish potato famine, in the 1840’s, late blight disease 

caused by the notorious oomycete Phytophthora infestans is recognised as the 

most destructive disease in potato production. The estimated 5 billion US 

dollars annual losses due to P. infestans (Haverkort et al., 2009) and its wide 

geographical distribution makes the pathogen one of the most economically 

significant oomycetes (Kamoun et al., 2014). Use of fungicides to control P. 

infestans is not affordable or environmentally sustainable. Moreover, evidence 

shows isolates of the pathogen can develop fungicide resistance (Chowdappaa 

et al., 2014; Grunwald et al., 2001; Gisi & Cohen, 1996). Therefore, 

developing potato cultivars resistant against P. infestans, using resistance genes 

(R-gene) from wild species, is considered the most sustainable solution to 

address this problem. However, the pathogen can also overcome R-gene based 

resistance (Fry, 2008). To ensure durability of R genes mediated resistance, 

pyramiding of multiple R genes into a potato genotype is now considered the 

best strategy. This, enables the plant to recognize multiple effectors of the 

pathogen, and should decrease the risk of pathogen escape from this multigenic 

recognition. A multigene strategy has already been used in the new commercial 

potato cultivar Sarpo Mira (Rietman et al., 2012), which is so far showing 

stable resistance against P. infestans. 
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Wild Solanum species carry traits that can be used to improve potato resistance 

against biotic stresses, including P. infestans. Various resistance genes against 

P. infestans (Rpi-genes) have been identified in wild Solanum species and 

some of them have been successfully introduced into potato cultivars 

(Rodewald & Trognitz, 2013). Due to the pathogen’s ability to adapt and 

overcome host resistance (Haas et al., 2009; Fry, 2008), more resistance 

sources and a deeper understanding of plant-pathogen interactions are needed 

to ensure durability of such resistance in potato. Understanding of the 

interactions between the host and the pathogen using state of the art ‘-omics’ 

and molecular biology tools will facilitate the efforts of breeders to develop 

stable resistance in commercial cultivars of potato. Little is known about the 

effects of the potato-P. infestans interactions and introduction of R-genes into 

the crop, on host preference of herbivores. Due to ability of the pathogen to 

overcome host resistance, it is crucial to enhance this resistance by using 

resistance inducers such as β-aminobutyric acid (BABA) (Bengtsson et al., 

2014a; Liljeroth et al., 2010; Olivieri et al., 2009). Furthermore, understanding 

the status of the innate immunity activation in agricultural fields can help end-

user decision making for timely and appropriate application of disease control 

measures.  

 

The overall aim of this thesis was to enhance our understanding of Solanum 

species interactions with P. infestans. Specifically to 1) evaluate the resistance 

to P. infestans in wild Solanum species 2) find out if BABA can induce 

resistance in a wild species 3) demonstrate possible effects of potato-P. 

infestans interactions on herbivore behaviour, 4) to unravel the status of plant 

innate immunity activation in the field, and 5) to investigate stress response of 

Solanum species growing under field conditions.  

 

Resistance to P. infestans of the three wild Solanum species (S. dulcamara, S. 

nigrum, and S. physalifolium) collected from southern Sweden was 

characterized. A study of BABA-induced resistance in S. physalifolium showed 

epigenetic inheritance of this induced resistance against P. infestans. A 

transcriptomics approach was used to understand the interactions of the three 

wild Solanum species and three potato clones with P. infestans. Moreover, the 

effects of potato- Phytophthora interactions on host plant choice and 

performance of a generalist moth (Spodoptera littoralis) was investigated. By 

using the presence of pathogenesis related proteins (PR1, PR2-3) as markers, 

the frequency of innate immunity activation in S. dulcamara and S. nigrum in 

natural populations and S. tuberosum in agricultural conditions was 
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investigated. Finally, to understand plant stress response, quantitative 

proteomics coupled with Activity Based Protein Profiling (ABPP) was used to 

investigate differences in the apoplastic proteome between greenhouse- and 

field-grown potato.  
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2 Background 

2.1 Potato (Solanum tuberosum L.)  

Cultivated potato (Solanum tuberosum, 2n = 4x = 48), traces its origin from the 

wild species of Solanum brevicaule in the Andean highlands of South America 

(Spooner et al., 2005). The other cultivated potato species is the diploid 

Solanum phureja (or Group Phureja), growing in the eastern valleys of the 

Andes. This species is selected for early maturity (Bradshaw & Ramsay, 2005). 

Archaeological evidences suggest domestication of potato ~10,000 years ago 

in present-day Peru and Chile. Spanish explorers introduced potato into Europe 

in the 16
th
 century (Ames & Spooner, 2008). Today, potato is the third most 

important food crop in the world, after wheat and rice. Potato is produced in 

over 150 countries in the world, covering a wide range of agro-ecological 

zones. The total area of potato cultivation exceeds 19 million ha, delivering an 

annual world production of more than 380MT (FAO, 2016). Currently, 

mainland China is the largest potato producer followed by Russia, India and 

the United States of America.  

 

A more steady production in developed countries is common, for example, in 

Sweden potato is an irreplaceable part of the diet (Eriksson et al., 2016). In 

contrast, the total potato production in developing countries is increasing 

(Gastelo et al., 2014; Haverkort et al., 2009). Since the majority of humans live 

in developing countries, increasing potato production in these countries 

highlights the growing significance of this crop in generating income and as an 

important contribution to global food security. 

 

Potato is a starch-accumulating tuberous crop and hence a good source of 

dietary carbohydrates. Compared to the major cereal crops, potato produces 

more dry-matter and protein per unit growing area. The nutritive value analysis 
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of potato tubers indicate that it is also a source of good quality protein that can 

complement the lysine deficiency in cereals (Friedman, 1996). Moreover, 

potato is an excellent source of minerals including potassium, phosphorus, 

magnesium and vitamin C, B-1, B-3, and B-6 (Camire et al., 2009; Prokop & 

Albert, 2008); as well as antioxidants like flavonoids, phenolics, and 

anthocyanins  (Brown, 2005). However, potato also contains gluco-alkaloids 

like solanin that can be poisonous to humans (Friedman, 2006; Friedman, 

1996). In order to keep gluco-alkaloids at low levels, potato tubers should be 

stored in a dark cool place and peeled before cooking (Prokop & Albert, 2008).  

 

However, whilst there are many benefits to growing and consuming potatoes, 

as a crop it is susceptible to a wide range of biotic and abiotic stresses. For 

instance, early blight (Alternaria solani), blackleg disease (Dickeya solani), 

viral infections (e.g. potato virus Y) as well as yellow potato cyst nematode 

(Globodera rostochiensis) and potato tuber moth (Phthorimaea operculella) 

are known to cause significant yield losses in the crop (Eves-van den Akker et 

al., 2016; Burra et al., 2015; Odilbekov et al., 2014; Kroschel et al., 2013; 

Gray et al., 2010). However, the damage caused by Phytophthora infestans in 

potato production is unparalleled (Kamoun et al., 2014; Haverkort et al., 

2009). Host plant resistance is an effective, environmentally friendly and 

sustainable method to protect potato from P. infestans.  

2.2 Wild Solanum species  

Solanum is an economically significant genus of flowering plants. It contains 

more than 1500 species, including important crops like potato, tomato, and 

eggplant. Although mainly considered as weeds and usually poisonous to 

humans and animals, wild Solanum species can also be used for food, source of 

medicine or as ornamentals thus are important source of income, e.g. in Africa 

(Samuels, 2015; Katambo, 2007). Moreover, wild Solanum species can be used 

as a source of resistance traits to improve the disease resistance of cultivated 

related species. Conversely they could also be potential alternative hosts of 

pathogens. Some wild Solanum species, for example S. sisymbriifolium, S. 

physalifolium and S. sarrachoides, are known to be susceptible to P. infestans 

and could play important role as natural reservoirs of the pathogen inoculum 

(Deahl et al., 2005; Andersson et al., 2003; Flier et al., 2003).  

2.2.1 Sources of resistance trait 

There are more than 4,000 edible varieties of potato, most of which are 

growing in the Andean highlands of Peru (http://cipotato.org/potato/). 

http://en.wikipedia.org/wiki/Species


20 

However, outside of South America, potato has a narrow genetic diversity. 

This is partly due to limited genetic variance in the germplasm introduced into 

new areas and inbreeding depression (Potato Genome Sequencing, 2011). 

Moreover, farmers tend to prefer few high yielding clones adapted to local 

growing conditions and that deliver marketable products. Intensive potato 

breeding efforts are aimed at improving disease resistance of the crop. 

However, the success of conventional potato breeding for resistance to late 

blight disease is limited by its clonal propagation (Bradshaw et al., 2006). 

Conventional potato breeding for resistance against P. infestans takes longer 

than 10 years (Slater et al., 2014). However, P. infestans contains fast evolving 

effector genes, located in the gene sparse and transposon rich region of the 

genome (Haas et al., 2009), enabling the pathogen to evade host resistance 

(Malcolmson & Black, 1966). To cope with P. infestans, developing resistant 

potato cultivars with several different resistance sources is an attractive method 

in breeding. Therefore, finding resistance traits particularly genes conferring 

resistance against P. infestans (Rpi-genes) in wild Solanum species and transfer 

of these genes into potato is to date the most pursued breeding strategy to 

improve potato resistance.  

 

Wild Solanum species are the major source of resistance traits used in potato 

breeding. Since the discovery of major resistance (R-) gene against P. infestans 

in Solanum demissum, introduction of these R-genes into potato is considered a 

compelling method to protect the crop (Reddick, 1934). To reduce yield losses 

resistance genes against P. infestans (aka, Rpi-genes) are cloned from various 

wild Solanum species and transferred into commercial potato cultivars 

(Rodewald & Trognitz, 2013; Vleeshouwers et al., 2011; Malcolmson & 

Black, 1966). So far, 27 Rpi-genes conferring resistance against P. infestans 

have been cloned from wild Solanum species of South American origin 

(Rodewald & Trognitz, 2013). However, all the resistance genes cloned so far 

belong to the CNL class and are from the wild Solanum species adapted to 

South America; hence they may not recognize all strains of the pathogen. 

Because of its ability to overcome host resistance, P. infestans is known as ‘the 

plant R-gene destroyer’ (Fry, 2008). Therefore, there is a continued interest to 

find novel Rpi-genes that can be introduced into potato individually or by 

pyramiding. Whilst Rpi-genes from native South American Solanum species 

have been well studied, the genetic potential of native European wild Solanum 

species has so far received little attention and the genetic resource of these 

species remains untapped.  
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2.2.2 Wild Solanum species in Sweden 

Three species of Solanum, which are potential alternative hosts of P. infestans, 

grow in natural habitats and agricultural fields in south Sweden. These are 

Solanum dulcamara L., Solanum nigrum L. and Solanum physalifolium. 

  

S. dulcamara L., named after the latin dulcis (= sweet) and amarus (= bitter), is 

widely known as bittersweet nightshade. S. dulcamara is a semi-woody 

perennial species. Since it has a predominantly climbing growth habit, it is also 

known as climbing nightshade, and its branches may grow up to 2 meters or 

more. Originally from Europe, S. dulcamara is widely distributed and found in 

diverse habitats including seashores, dense thickets, roadsides, hedgerows, and 

along the banks of ponds. The leaves are dark green and alternately arranged 

along the branches at different internode lengths. Often, leaves within the same 

plant, even on the same branch, exhibit different shapes. For instance, it is not 

uncommon to find leaves with entire or serrated margins and leaves with or 

without stipules on the same branch. Flowers are purple with yellow anthers 

that produce oval or round shaped red berries (Figure 1).  

 

S. dulcamara is a diploid (2n = 2x = 24) out-crossing species (Golas et al., 

2010a). It is also a clonal species reproduced by stem cuttings. Despite its 

limited role in P. infestans epidemiology (Golas et al., 2010c), S. dulcamara is 

considered an alternative host of the pathogen (Paper I) and (Flier et al., 

2003). Using AFLP markers and next-generation sequencing derived SNPs in a 

crossing population of S. dulcamara segregating for P. infestans resistance, 

loci for two putative R-genes (Rpi-dlc1 in chr-9 and Rpi-dlc2 in chr-10) have 

been identified (Golas et al., 2013; Golas et al., 2010b). In RNA-seq analysis 

of P. infestans infected leaves of this species we also found R-like genes 

(Paper III).  

 

S. nigrum L. (black nightshade), native to the old world Eurasia, is widely 

distributed in Europe, Asia, Africa, and North America. It is a self-pollinating 

annual species, weed problem in potato fields (Defelice, 2003). S. nigrum 

plants have decumbent or erect stems, ovate and lanceolate leaves with entire 

to sinuate-dentate margins, and can grow up to 70 cm high (Edmonds & 

Chweya, 1997). Flowers are whitish and berries turn purple-black when 

ripened (Figure 1).  

 

S. nigrum is a highly variable species which can be found in di-tetra- and 

hexaploid cytotypes (Venkateswarlu & Rao, 1972). The species contains high 

levels of glycoproteins, including solanine, solamargine, solasonine in its 

leaves, berries and stem. The medicinal value of S. nigrum was known as early 
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as 870 AD (Katambo, 2007) and it has largely been investigated for its 

pharmaceutical value. Glycoproteins (Heo & Lim, 2005) and lunasin, a 43-

amino acid polypeptide (Jeong et al., 2010), isolated from S. nigrum show 

anticancer property by promoting apoptosis of tumor cells and preventing 

oxidative DNA damage, respectively.  

 

Despite S. nigrum is considered poisonous, its leaves are consumed as 

vegetables in some countries (Edmonds & Chweya, 1997). S. nigrum was 

considered a non-host to P. infestans (Vleeshouwers et al., 2000), but strains of 

the pathogen that can infect genotypes of this wild species were recently found 

in Poland and the Netherlands (Lebecka, 2008; Flier et al., 2003). Monogenic 

dominant inheritance of resistance to P. infestans was shown using a crossing 

population of S. nigrum between susceptible and resistant individuals 

(Lebecka, 2009). This species harbours R1 orthologs. R1 is a member of the 

CC-NBS-LRR resistance gene class, conferring resistance against P. infestans 

(Gyetvai, 2010), by recognition of the Avr1 effector (Du et al., 2015).  

 

S. physalifolium (2n = 2x =24) also known as hairy nightshade is an annual and 

self-pollinating species, native to South America but widely distributed. 

Usually S. physalifolium plants grow as small herbs, with light green stems, 

leaves that are ovate to ovate-lanceolate to trullate, small whitish flowers, and 

berries that are dark green, purple or brownish-green (Edmonds & Chweya, 

1997) (Figure 1). This species is a common weed problem in agricultural fields 

in Sweden. Recently, S. physalifolium has been identified as possible alternate 

host of P. infestans in Sweden, due to its high sensitivity to this pathogen 

(Andersson et al., 2003). Compared to isolates from potato leaves, isolates of 

the pathogen from S. physalifolium leaves showed shorter latency period and 

higher sporangia numbers when inoculated on potato leaves (Gronberg et al., 

2012). Therefore, S. physalifolium might increase aggressiveness of the 

pathogen (Gronberg et al., 2012) and enhance pathogenicity of the P. infestans 

population in the area.  
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Figure 1. Morphology of the three wild Solanum species growing in southern 

Sweden: Solanum nigrum, S. dulcamara and S. physalifolium. 

2.3 Phytophthora infestans 

2.3.1 The pathogen and mating types 

Phytophthora infestans (Mont.) de Bary is an oomycete causing potato late 

blight and tuber blight. The origin of P. infestans is still a debatable topic. 

Using sequences of nuclear genes and mitochondrial loci, (Gomez-Alpizar et 

al., 2007) suggested an Andean origin of P. infestans. However, phylogenetic 

analysis based on microsatellite markers and sequences of four nuclear genes, 

including longer sequences of the β-tubulin gene also used in the previous 

study (Gomez-Alpizar et al., 2007), suggested a Mexican origin of P. infestans 

(Goss et al., 2014). Therefore, the origin of P. infestans still awaits a 

conclusive study.   

 

The first migration of P. infestans out of southern America to Europe and USA 

is believed to have occurred in the early 19
th

 century (Goodwin et al., 1994). 

The pathogen was introduced into the rest of the world through the 
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international trade of seed potatoes (Fry et al., 1993). P. infestans is a 

heterothallic pathogen with A1 and A2 mating types. Prior to the 1970’s the P. 

infestans population was predominantly the A1 clonal lineage (Fry et al., 

1993), and coexistence of both mating types had been previously confined to 

Mexico (Fry, 2008). Second migration event of P. infestans was from Mexico 

to Europe in 1976 (Niederhauser, 1991), which might have introduced the A2 

clonal lineage (Hohl & Iselin, 1984). At present, both A1 and A2 mating types 

coexist, e.g. in the Czech Republic (Mazáková et al., 2006), Russia (Beketova 

et al., 2015), eastern Estonia (Runno-Paurson et al., 2010), the Netherlands 

(Fry, 1991), and Tunisia (Harbaoui et al., 2014). This coexistence might enable 

the pathogen to reproduce both sexually and asexually, which may increase 

genetic recombination and diversity and promote pathogen survival under 

adverse conditions (Yuen & Andersson, 2013; Fay & Fry, 1997). Coexistence 

of the A1 and A2 mating types of the P. infestans and oospores production in 

southern Sweden might suggest sexual reproduction of the pathogen in the area 

(Yuen & Andersson, 2013; Widmark et al., 2007; Andersson et al., 2003). In 

Sweden, there is unusually large variation of the P. infestans population within 

the same field and the A1 and A2 mating types exist in almost 50:50 ratios 

(Gronberg et al., 2012; Sjöholm, 2012). 

 

Due to similarities in terms of absorptive mode of nutrition, growth by hyphal 

extension, and reproduction through formation of spores, oomycetes were 

historically identified as fungi (Money, 1998). However, (Harper et al., 2005) 

using six genes encoding cytoplasmic proteins showed distinct evolution 

between the fungi and oomycetes. Furthermore, the cell wall of the oomycete 

is composed predominantly of glucans and cellulose in contrast to the chitin 

rich wall of fungi (Fry, 2008). Haas et al. (2009) revealed that the P. infestans 

genome has 17, 797 predicted protein coding genes with a large number of 

effectors genes localized in the gene sparse but repetitive sequences and 

transposable elements rich region of the genome (Haas et al., 2009). This leads 

to the ‘two speed genome’ model, where the effectors containing section of the 

genome is rapidly evolving thus facilitating adaptive evolution of the pathogen 

(Dong et al., 2015).  

 

2.3.2 Life cycle and infection process  

Late blight disease starts from either aerial or soil borne inoculum, the later 

usually originates from inoculum surviving on infected tubers, or as soil-borne 

oospores when conditions favour sexual reproduction. Aerial borne sporangia 

may penetrate plant tissue directly through formation of a germ tube or 

indirectly through the release of bi-flagellated zoospores (Figure 2). The later 
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predominantly occurs in high humidity and cool temperatures, whilst direct 

germination is favoured at higher temperatures with lower relative humidity. 

Direct or indirect germination is followed by production of a specialised 

penetration structure, the appressoria, which releases cell-wall degrading 

enzymes and accumulates turgor pressure to allow the pathogen to breach the 

host cell wall and enter the plant to initiate infection. The pathogen obtains 

nutrients from the host by production of haustoria (Birch et al., 2003). The first 

macroscopic disease symptoms, (small necrotic areas), can be visible two days 

after penetration (Fry, 2008). Large areas of necrosis appear as the disease 

progresses. Sporangiophores, bearing sporangia emerging through stomata can 

be seen on the leaf surface within 3-4 days (Vleeshouwers et al., 2000). Since 

each sporangium can go on to cause successive cycles of infection, this rapid 

reproduction of inoculum can lead to complete destruction of the whole field 

within a few days. 

 

Furthermore, in the presence of both A1 and A2 mating types, sexual 

reproduction can also occur. The pathogen forms haploid anthridia and oogonia 

which come together through karyogamy to form diploid oospores. Oospores 

contribute positively to the long-term survival of the pathogen in the soil 

through resistance to harsh environmental conditions, as well as to pathogen 

fitness through sexual recombination. As an inoculum source oospores may 

directly germinate, produce sporangia and infect stems or leaves that directly 

contact the soil to further propagate the disease (Figure 2).  

 

To better understand the infection process and biology of the pathogen, many 

molecular components of P. infestans life cycle have been elucidated (Fry, 

2008). A large number of P. infestans genes showed differential expression 

during the life cycle, indicating dynamic structural and physiological 

difference among the life stages (Judelson et al., 2008).  Light conditions and 

spore-associated transcripts, protein kinase Pks1 and transcription factors 

Myb2R1 and Myb2R3, play crucial role in sporangia formation during the P. 
infestans life cycle (Xiang & Judelson, 2014). A protein kinase of P. infestans 

(Pipkz1) is required for zoospores motility and appressoria formation (Blanco 

& Judelson, 2005). P. infestans requires active cellulose synthesis for 

production of appressoria and subsequent penetration and successful infection 

(Grenville-Briggs et al., 2008). But during the infection process, the plant 

activates its defence related repertoire in order to restrict the pathogen growth, 

for example, HR in the penetrated epidermal cells, thickening of cell wall and 

condensing of the nuclei (Vleeshouwers et al., 2000). Thirty-eight members of 

the bZIP transcription factor family can be found in the P. infestans genome, 

some of which protects the pathogen from oxidative stress (Gamboa-Melendez 

et al., 2013). 
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Figure 2. Sexual and asexual life cycle of Phytophthora infestans. Illustration by 

Kibrom Berhe Abreha.  

 

2.4 Plant innate immunity 

Through evolution plants have developed sophisticated defence responses to 

thwart pathogen attack. At the same time, pathogens have co-evolved 

mechanisms to evade host plant defences. Beyond the constitutive level of 

defence, plants have distinctive inducible defence mechanisms against a broad 

spectrum of pathogens (Conrath et al., 2002). Plant innate immunity is 

discerned into pathogen associated molecular pattern (PAMP) triggered 

immunity (PTI) and Effector triggered immunity (ETI), described by the so 

called zig-zag model of plant immunity (Figure 3; Jones & Dangl, 2006). 

According to the zig-zag model (Figure 3), plants detect PAMPs via pathogen 

recognition receptors (PRRs), which activate PTI. Some pathogens may release 

effectors to suppress PTI, leading to effector-triggered susceptibility (ETS) 

(Jones & Dangl, 2006). However, some plants can recognize effectors of the 

pathogen via NB-LRR proteins and trigger ETI (Jones & Dangl, 2006). The 

model is widely used to explain plant-microbe interactions. PTI and ETI are 

regarded as extremes of the continuous plant defense response to the 
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infecting pathogen (Pritchard & Birch, 2014; Thomma et al., 2011). PTI 

and ETI components of potato in response to P. infestans infection are 

identified and their molecular function partially elucidated.  

 

 
 

Figure 3. Zig-zag model of plan innate immunity system (Jones & Dangl, 2006).  

 

2.4.1  PAMPs triggered immunity (PTI) 

Pathogen-associated molecular patterns (PAMPs) are conserved structural 

components or molecules of the pathogen. At the onset of an infection attempt, 

PAMPs are perceived by extracellular domains of host cell surface receptors 

called pattern recognition receptor proteins (PRR) (Zipfel 2008; Thomma et al. 

2011). PRRs are cell-surface localized receptor kinases (RKs) or receptor-like 

proteins (RLPs) containing a ligand-binding ectodomain, a single-pass 

transmembrane domain, and sometimes an intracellular kinase domain (Zipfel, 

2014). Perception of PAMPs by PRRs activates downstream defence signalling 

pathways. The leucine-rich repeat receptor-like kinase (LRR-RLK) 

BAK1/SERK3 is central regulator of plant innate immunity against pathogens 

(Heese et al., 2007). Thus, recognition of PAMPs triggers the defence 

signalling cascade resulting in PTI (Figure 3), which is the first line of defence, 

and is often marked by callose deposition and activation of other general 

defence responses such as the production of reactive oxygen species (ROS).  
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The cell wall of P. infestans plays a crucial role in the infection process and 

survival of the pathogen. Silencing of the cellulase synthase genes CesA1, 

CesA2, CesA3, and CesA4 disrupts the cell wall of P. infestans appressoria and 

leads to complete loss of pathogenicity of the pathogen (Grenville-Briggs et 

al., 2008). During the infection process, the cell wall components can be 

recognized by the plant thus trigger host defence signalling. For example, the 

P. infestans PAMP (PiPE) derived from mycelial wall binds to the Ca
2+

 

dependent protein kinase (CDPK), located upstream of NADPH oxidase in 

plasma membrane, and induces a hypersensitivity response (HR) in potato 

(Furuichi, 2014). Similarly, infiltration of potato leaves with conserved motif 

of peptidase 13 (Pep-13), a constituent of the cell wall transglutaminase 

(TGase) of Phytophthora species, increases lipoxygenase, 4-coumarate:CoA 

ligase, SA, JA, and H2O2 accumulation in potato (Halim et al., 2009; Halim et 

al., 2004; Brunner et al., 2002). A cell wall component of P. infestans can 

increase virulence of the pathogen. For instance, β-glucans isolated from 

virulent strain of P. infestans could inhibit the potato phytoalexin and reduce 

glucanase accumulation in the host to promote invasion (Andreu et al., 1998). 

2.4.2 Effector triggered immunity (ETI) 

The PTI results in massive physiological changes important to overcome the 

infection process. However, to counteract the PTI response from plants, some 

pathogens secrete effector proteins that are targeted to disrupting PTI defences. 

This process is called effector-triggered susceptibility (ETS) (Figure 3). 

However, as a result of the arms race between the plant and pathogen, resistant 

hosts are endowed with another layer of defence, effector-triggered immunity 

(ETI) (Figure 3).  

 

Recognition of intracellular effectors, secreted from pathogens into host cells 

occurs through the activation of major resistance gene (R-gene) encoded 

receptors. R-genes trigger host defence signalling cascades resulting in ETI. R 

genes encode resistance proteins most of which are of the nucleotide-binding-

leucine-rich-repeat (NB-LRR) type (Rodewald & Trognitz, 2013; Zhang et al., 

2013). This recognition of the effector proteins by the NBS-LRRs initiates ETI 

responses that can specifically inhibit pathogen growth.  

 

P. infestans genome contains two major effector families: ~563 genes 

encoding RXLR effectors and ~200 genes encoding crinklers (CRN) (Haas et 

al., 2009). RXLR effectors are secreted proteins with  N-terminal region 

containing the Arg-X-Leu-Arg (in which X represents any amino acid) motif 
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that is required for delivery of the effectors into host cells (Kamoun, 2006). 

Fast evolving C-terminal region of the RXLR effectors is required for 

manipulating host defence (Win et al., 2007). CRN are cytoplasmic effectors, 

containing conserved N-terminal with ~50-amino-acid LFLAK domain, 

diversified DWL domain, and 60% of them also have predicted signal peptide 

(Haas et al., 2009). The C-terminal of CRN effectors contains diversified 

domain structures (Haas et al., 2009). Some of the RXLR and CRN effectors 

have been experimentally verified, and their function as virulence (causing 

disease) and avirulence factors (triggering host plant) have been elucidated.  

  

Compared to expression in growth media, seventy nine RxLR genes encoding 

P. infestans effector proteins including the Avr3a, Avr4, and Avrblb1 (ipiO), 

were highly expressed during potato infection (Haas et al., 2009). Recognition 

of the Avr4 by R4 (van Poppel et al., 2008) and Avrblb1 by Rpi-blb1 resulting 

in ETI have been reported (Vleeshouwers et al., 2008). The cytoplasmic 

effector Avr3a interacts with E3 Ubiquitin Ligase CMPG1 to suppress the 

INF1-induced cell death which is a form of PTI (Bos et al., 2010). The 

suppressing effect of Avr3a can be abolished if recognized by host plants 

containing the resistance gene R3a (Armstrong et al., 2005). Similarly, the 

PexRD8 and PexRD3645-1 effectors of P. infestans could also suppress this 

INF1- induced cell death (Oh et al., 2009). Recently, PexRD2 was found to 

suppress MAPKKK-induced cell death and enhance susceptibility to P. 

infestans (King et al., 2014).  

 

The P. infestans Avr2 should be associated with putative plant phosphatase 

BSU-LIKE PROTEIN1 (BSL1) to be recognized by the R2 protein (Saunders 

et al., 2012) but only 32aa region in the C-terminal of Avrblb2 is required to 

initiate Rpi-blb2 mediated HR (Oh et al., 2009). The Rpi-vnt1.2 and Rpi-

vnt1.3 but not their truncated versions, indel of 33 amino acids in their N-

terminal region, recognize the Avrvnt1 effector (Pel, 2010). However, the 

pathogen can also exploit components of the plant, known as susceptibility 

factors, to supress the defence response and promote host invasion. For 

example, to suppress INF1-mediated cell death, P. infestans RXLR effector 

(Pi02860) needs presence of the potato NPH3/RPT2-LIKE1 (NRL1) protein 

(Yang et al., 2016). Other RXLR effectors, Pi04089 and Pi04314, are known to 

interact respectively with host K-homology (KH) RNA-binding protein 

(KRBP1) and protein phosphatase PP1 catalytic subunits to promote the 

pathogen leaf colonization (Boevink et al., 2016). A Putative RXLR effector 

(PITG_03192) promotes disease development by interacting with NAC 

(NAM/ATAF/CUC) transcription factors and preventing its re-localization 
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from endoplasmic reticulum (ER) into nucleus (McLellan et al., 2013). 

Recently, Vetukuri et al. (2017) identified P. infestans effector (PITG_14054) 

involved in suppression of RNA silencing in Nicotiana benthamiana, and it 

showed increased expression during early infection of a susceptible potato cv. 

Bintje.  

 

Another major family of effectors is the Crinklers (CRN). 196 genes encoding 

CRN proteins reside in the sequenced P. infestans strain, and showed increased 

expression during potato infection (Haas et al., 2009). Moreover, CRN proteins 

are present in abundance during different life stages of the pathogen (Meijer et 

al., 2014; Resjo et al., 2014), indicating that they could be involved in 

promoting host colonisation by the pathogen. By mining the ESTs sequences 

of P. infestans extracellular proteins, Torto et al. (2003) identified CRN1 and 

CRN2 expressed during tomato infection. The CRN8 kinase is secreted into the 

nucleus of the host cell and enhances virulence of P. infestans on N. 

benthamiana (van Damme et al., 2012). The extracellular, cytoplasmic and 

nuclear localization of the effectors suggest that multiple host targets localized 

in the respective cellular compartments could be simultaneously targeted by 

the pathogen. In a resistant genotype, the recognition of PAMPs and effector 

proteins trigger downstream defence signalling cascade which results in PTI or 

ETI, restricting pathogen growth. 

 

2.4.3 Solanum species stress response in field conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

It is well known that plant responses to potential pathogens and/or herbivores 

may effect subsequent defence responses (Zamioudis & Pieterse, 2012), and 

host choice and performance of herbivores (Zakir et al., 2013; Jallow et al., 

2008; Anderson & Alborn, 1999). Moreover, abiotic stresses also affect 

defence responses to microbes and herbivores; a cross-talk between biotic and 

abiotic stress response pathways is well known (Rejeb et al., 2014). Due to 

compounding stress factors, which may be largely absent in controlled 

conditions, field-grown plant defence responses to these stresses are complex 

(Cramer et al., 2011). 

 

The zig-zag model of plant-microbe interactions (Jones & Dangl, 2006),  

assumes a single plant-pathogen interaction. However, the model does not 

consider the continuous presence and recognition of multiple pathogen-

associated molecular patterns (PAMPs) and effectors as well as the abiotic 

stresses in field and natural populations (Paper V). Moreover, in field 

conditions other interactions such as plant-plant interactions may affect plant 
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fitness and the composition of communities (Brooker, 2006). This in turn is 

likely to have a knock-on effect on plant defence responses to pests, pathogens 

and herbivores.  

2.4.4 Apoplast: the frontier in plant-pathogen interaction  

The apoplast is a compartment of plant tissue comprising the extracellular 

space and cell wall. The soluble fraction within this compartment known as the 

apoplastic fluid contains a myriad of proteins involved in biological processes 

related to maintaining cell wall structure, plant-pathogen interactions, 

responses to abiotic stresses, and nutrient transport (Andreasson et al., 2017; 

Delaunois et al., 2014; Alexandersson et al., 2013). During the course of 

infection, an array of pathogen effector proteins are secreted, some of which 

target processes inside the cell and some of which target the apoplast. P. 

infestans apoplastic effectors such as protease inhibitors, cysteine rich proteins, 

and nucleotide pyrophosphatase/phosphodiesterase (NPP1) family members 

were in higher abundance during early infection of potato (Haas et al., 2009). 

P. infestans also releases small extracellular proteins like elicitins INF1, 

INF2A, INF5 and INF6 (Du, 2014) into the apoplast. Furthermore, many 

proteins involved in plant defence like pathogenicity related proteins (PR1), 

P69B, and serine hydrolases are secreted into the apoplast by the host, 

presumably in response to perceived attack by potential pathogens (Ali et al., 

2014; Sueldo et al., 2014). Hundreds of proteins with differential abundance 

can be found in the apoplastic secretome of potato infected with P. infestans 

(Ali et al., 2014). This highlights the importance of the apoplastic compartment 

to understand the potato-P. infestans pathosystem.  

2.5 The -Omics of potato-Phytophthora pathosystem 

The perception of P. infestans signatures by potato and the ability of the 

pathogen to evade host defence indicates a complex network of interactions 

between the plant and the pathogen (Birch et al., 2003). Recent studies on 

plant-pathogen interactions are benefiting from the advancements in molecular 

biology methods and fast developing sequencing platforms (Burra et al., 2016). 

The -omics techniques (transcriptomics, proteomics, and metabolomics) play a 

crucial role in aiding our understanding of the underlying molecular events 

taking place during the infection process. Moreover, use of these techniques 

facilitates identification of candidate proteins for functional analysis. 
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2.5.1 Potato-P. infestans interaction transcriptome 

Sequencing the potato genome unravelled that the crop’s ~844-megabase (Mb) 

genome contains predicted 39,031 protein coding genes (Potato Genome 

Sequencing, 2011). A transcriptome analysis of 32 potato tissues, including 

leaves inoculated with P. infestans, provided a database of tissue-specific 

expression of transcripts (Massa et al., 2011). Moreover, the P. infestans 

genome has been sequenced, and is known to be ~240 Mb containing 17,797 

protein-coding genes (Haas et al., 2009). RNA-seq analysis in two P. infestans 

strains revealed transcriptome differences among life stages hyphae, sporangia, 

sporangia undergoing zoosporogenesis, motile zoospores, and germinated cysts 

(Ah-Fong et al., 2017). Such genomic and transcriptome sequences of the plant 

and the pathogen are useful sources to understand the pathosystem and crop 

response to multiple stresses.  

 

A large number of potato and P. infestans genes are up- or down-regulated 

during the infection process, and the total set of transcript changes is termed 

the interaction transcriptome (Birch et al., 2003). Previously, microarray 

analysis has been the predominant technique used for transcriptome profiling 

during compatible and incompatible interactions (Sierra et al., 2010; Wang et 

al., 2005). However, due to its capacity in detecting low abundance transcripts, 

differentiating biologically critical isoforms, and allowing the identification of 

genetic variants the Next Generation Sequencing (NGS) of RNA (RNA-seq) 

techniques is now preferred over microarray analysis (Zhao et al., 2014). 

Moreover, due to the continuous reduction of sequencing prices and 

improvements in data handling methods, most of the recent transciptome 

profiling studies are using RNA-seq techniques. 

 

Large numbers of differentially expressed transcripts were identified in potato-

P. infestans infection (Ali et al., 2014). As pointed out by the authors, the 

different sets of expressed transcripts may indicate the biotrophic and 

necrotrophic phases of the infection processes. This type of output is important 

to identify resistance gene candidates in either or both phases of the interaction. 

Prior to transcriptome assembly, sequence reads of the pathogen from RNA-

seq data of infected potato leaves could be extracted by mapping the dataset to 

the P. infestans genome and filtering sequence reads which mapped uniquely 

to the genome (Paper III). In doing so, RNA-seq identifies a set of RXLR 

effectors of P. infestans expressed in infected potato (Gao et al., 2013).  

2.5.2 Proteomics of the potato-Phytophthora pathosystem  

Detection of more than 20,000 expressed genes in a transcriptome studies 

(Massa et al., 2011) suggests that large number of proteins are involved in 

plant response to biotic and abiotic stresses. Proteomics studies identified life 
stage specific proteins of the pathogen, including the CRN2 (Ebstrup et al., 

2005) and phosphorylated proteins of RXLR and CRN effector families (Resjo 

et al., 2014). Proteins involved in cell wall modifications, pathogenesis, 
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defence responses, and proteolytic process were identified (Meijer et al., 

2014). Grenville-Briggs et al. (2010) also identified appressorial and mycelial 

cell wall proteins, several of them classified as PAMPs and CRN effectors. 

Moreover, amino acid biosynthesis genes such as methionine synthase 

threonine synthase were with higher abundance in P. infestans, during 

appressorium formation and potato infection (Grenville-Briggs et al., 2005). 

Such studies may provide valuable insights to understand establishment of 

infection process and pathogenicity of the pathogen, and may help to 

accurately predict developmental stages of the pathogen which could be 

targeted with chemical or biological control methods. However, the above 

studies have been performed on in vitro grown P. infestans and may not 

reproduce the proteome profile of the pathogen when grown in planta.  

  

Potato proteins which are either involved in recognizing the pathogen or 

signalling transduction are localized in different compartments of the plant cell. 

The proteome of cell wall, cytoplasmic (Lim et al., 2012) and apoplastic fluid 

(Ali et al., 2014) components of potato leaf tissue have been profiled. Secreted 

proteins, containing N-terminal signal peptides, residing in the apoplastic fluid 

may play a crucial role in plant-pathogen interactions. The methods to isolate 

and identify these proteins have been discussed in a review by Alexandersson 

et al. (2013). Simultaneous isolation of the proteins in the cell wall, cytoplasm, 

and apoplastic fluid would be of great interest to get a more global proteome 

profile. Some proteins could be isolated whilst on their secretion pathway and 

contamination of a sample with materials from other compartments is 

inevitable. A differential centrifugation approach has been used to separately 

isolate cell wall and cytoplasmic proteins of the same potato leaf samples. 

However, even at low centrifugal forces (1500× g), cell wall proteins were 

contaminated by proteins from other organelles (Lim et al., 2012). Due to 

tissue maceration after pathogen infection, a less disruptive and reproducible 

method should be used to isolate proteins in different sub-cellular 

compartments. For precise proteomics analysis of specific organelles, laser 

micro-dissection has been used to study layers of epidermal cells from 

Arabidopsis leaves (Faltert et al., 2015). However, non-destructive in planta 

secretome sampling methods are yet to be developed.  

2.6 BABA-induced resistance  

Induced resistance can be described as potentiation of basal defence 

mechanisms of plants against biotic and abiotic stresses (Alexandersson et al., 

2016). A non-proteinaceous amino acid β-aminobutyric acid (BABA) is a 

potent inducer of plant defence against biotic and abiotic stresses (Jakab et al., 

2001). Application of BABA induces both local and systemic resistance in 

different pathosystems and reduced potential pathogen infection in potato 

(Alexandersson et al., 2016; Bengtsson et al., 2014a; Liljeroth et al., 2010; 
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Olivieri et al., 2009; Altamiranda et al., 2008; Si-Ammour et al., 2003). A 

combination of BABA with the commercial fungicide Shirlan can reduce the 

total fungicide usage by 20-25%, whilst still adequately protecting potato 

against late blight under field conditions (Liljeroth et al. 2010). Thus, BABA 

may play crucial role in reducing fungicide use against P. infestans. 

 

The BABA induced resistance (BABA-IR) against pathogens is related to an 

elevated expression of basal defence system in plants, a process known as 

priming (Ton & Mauch-Mani, 2004). Treatment of Arabidopsis with BABA 

leads to a faster and higher expression of defence related genes from the 

salicylic acid pathway and plants show enhanced defences against P. syringae 

(Slaughter et al., 2012). In addition, increased expression of Jasmonic acid-

dependent genes, the (lipoxygenase, LOX-9; and PR-4), enhanced resistance of 

BABA-treated grapevine (Vitis vinifera) against the oomycete downy mildew 

(Plasmopara viticola) (Hamiduzzaman et al., 2005). The phytohormones, 

jasmonic acid (JA) and salicylic acid (SA) are important in plant defence 

response to multiple stresses. BABA treatment also enhances general defence 

responses such as callose deposition and accumulation of PR1 in potato 

(Floryszak-Wieczorek et al., 2015). Direct restriction of P. infestans growth 

after treatment of potato with BABA has also been observed (Floryszak-

Wieczorek et al., 2015; Bengtsson et al., 2014a). Moreover, BABA-induced 

resistance transduces into the next generation as shown in potato (Floryszak-

Wieczorek et al., 2015) and its wild relative S. physalifolium (Paper II). 

BABA-IR is inherited epigenetically; hence, the information from parents to 

offspring is transferred without changes in the DNA sequence. It has been 

reported that chromatin modification and DNA-methylation in Arabidopsis 

(Luna et al., 2012; Slaughter et al., 2012), play important role in 

transgenerational stability of BABA-IR against Pseudomonas syringae. 

 

Potato cultivars show differences in efficacy of BABA-induced resistance 

against P. infestans (Liljeroth et al., 2010; Olivieri et al., 2009; Altamiranda et 

al., 2008). The mechanisms of action, transgenerational stability of BABA-IR, 

and molecular determinants of genotype sensitivity to BABA treatment remain 

to be elucidated.  

2.7 Effects of potato-P.infestans interactions on herbivore 
behaviour 

Plant responses to pathogen attack involve activation of a myriad of defence 

signalling pathways. During the P. infestans infection process, a large number 
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of plant genes are up/down regulated, which may lead to changes in abundance 

of large number of proteins (Ali et al., 2014; Bengtsson et al., 2014b; Burra et 

al., 2014). Furthermore, P. infestans infection alters the volatile ((E)-2-hexenal, 

5-ethyl-2(5H)-furanone and benzene-ethanol) and non-volatile (phytoalexins, 

glycoalkaloids and phenolics) metabolite composition of potato plants 

(Laothawornkitkul et al., 2010; Andreu et al., 2001).  

 

The changes in plant appearance due to infection, as well as the plant defense 

response can affect host plant choice and performance of insects. For instance, 

inoculation of potato with P. infestans alters host choice behavior of the 

polyphagous moth Spodoptera littoralis, which is an invasive pest species in 

southern Europe (Paper IV). The C2H2 zinc finger transcription factor 

induced by P. infestans in potato was also induced by the generalist tobacco 

hornworm (THW, Manduca sexta L.) and the specialist Colorado potato beetle 

(Lawrence et al., 2014). Moreover, the tomato resistance gene (Mi-1 gene) is 

known to confer resistance to potato aphid (Macrosiphum euphorbiae), 

whitefly (Bemisia tabaci), and root-knot nematodes (Meloidogyne spp.) 

(Kaloshian, 2004). This indicates that there is a shared plant defence pathways 

against multiple biotic stresses. Therefore, it is crucial to extend pathogen 

resistance studies by assessing potential effects in non-target organisms.  
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3 Aim and Objectives 

The overall aims of this thesis were 1) to enhance the molecular understanding 

of the interactions between Solanum species and P. infestans, by investigating 

transcriptome of the interaction, induced resistance against the pathogen in 

these species and evaluating the potential effects of the pathosystem on 

behaviour of a herbivore, and 2) to study the stress response of Solanum 

species growing in agricultural fields and natural conditions to help design and 

apply disease control measures. The specific objectives of this thesis were to: 

 

 Evaluate the resistance to P. infestans of the three wild Solanum 

species in Sweden: S. dulcamara, S. nigrum and S. physalifolium 

(Paper I) 

 

 Determine the direct effects and non-genetic inheritance of BABA-

induced resistance against P. infestans in S. physalifolium (Paper II) 

 

 Analyse the transcriptome of three wild Solanum species and three 

potato clones with varying resistance towards P. infestans (Paper III) 

 

 Find out if potato-P. infestans interactions and introduction of an Rpi-

gene into a crop affects host plant preference of the generalist insect 

herbivore, Spodoptera littoralis (Paper IV) 

 

 Probe the level of activation of innate immunity in Solanum species 

growing in natural conditions and agricultural fields (Paper V) 

 

 Investigate the apoplastic proteome of potato grown in greenhouse and 

field conditions, and identify putative peptide biomarkers to help link 

studies in these growing conditions (Paper VI)   
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4 Results and Discussion  

4.1 Solanum-P. infestans interactions and response to stress in 
field condition 

In order to study the interactions of different Solanum species with P. infestans 

and unravel the biology of host plant stress response under natural conditions, 

several experiments were performed (Figure 4). Seeds of three wild Solanum 

species (S. dulcamara, S. nigrum and S. physalifolium) growing in southern 

Sweden were collected, grown and screened for resistance against P. infestans. 

Using S. physalifolium as a study system, direct and transgenerational BABA-

induced resistance was investigated. To understand Solanum-Phytophthora 

interactions transcriptome analysis was performed in the three wild Solanum 

species and three potato clones (Desirée, Sarpo Mira and SW93-1015) with 

varying resistance level against the pathogen. Furthermore, to understand the 

Solanum species response to stresses in natural conditions, the presence or 

absence of pathogenicity related (PR) proteins were used as markers to 

estimate the frequency of activation of innate immunity in the field. Finally, 

the apoplastic proteome of field and greenhouse grown potato (Bintje) was 

analysed using quantitative proteomics and activity based protein profiling 

(Figure 4), to get insight into functional status of the proteins.  
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Figure 4. Overview of the relationship between plant material, experiments 

performed and papers in this thesis. The central aim of this work was to understand 

the interactions between Solanum species and P. infestans. Furthermore, activation 

of innate immunity as a proxy for a general response of plants to biotic stress in 

natural conditions was explored.  

4.2 Phytophthora resistance in Swedish wild Solanum species 
(Paper I, II) 

Phytophthora infestans is infamous as the causal agent of the great Irish famine 

in 1840’s, and continues to cause huge yield losses in potato production, 

globally. Wild Solanum species are source of novel P. infestans resistance 

traits that can be used in potato breeding. The first step towards identifying the 

required resistance traits in these species for potato breeding programs is to 

identify which species act as alternate hosts of the pathogen. As a result of 

continuously evolving host-pathogen interactions, the unusually diverse P. 

infestans population structure found in Sweden (Sjöholm, 2012) might lead to 

variable defence mechanisms in the Solanum species. Since the Solanum 

species present in Sweden are native to Northern Europe, the resistance 

properties of these plants could be well adapted to the colder conditions 

prevalent in northern Europe. Therefore, we investigated resistance to P. 

infestans in the three wild Solanum species: S. dulcamara, S. nigrum and S. 

physalifolium growing in natural habitats in southern Sweden (Paper I).  
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To ensure sustainability of resistance, it is crucial to augment one host 

resistance source with other resistance genes or with other mechanisms such as 

induced resistance. Plants with induced resistance show enhanced or earlier 

activation of defence reactions against subsequent pathogen infection attempts. 

A non-proteinaceous amino acid β-aminobutyric acid (BABA) can induce 

plant resistance against multiple pathogens, including potato resistance against 

P. infestans (Bengtsson et al., 2014a; Liljeroth et al., 2010). However, all the 

previous studies on BABA-induced resistance were performed on cultivated 

plants. Studying the role of BABA in resistance induction in wild species, 

directly collected from natural populations, is crucial to understand the 

importance of the induced resistance in nature. Furthermore, the study of this 

resistance inducer in a natural system will allow us to assess the evolution of 

induced resistance. Therefore, we have investigated if BABA can induce 

resistance against P. infestans and the transgenerational effect of this BABA-

IR in S. physalifolium (Paper II). This wild Solanum species is susceptible to 

the pathogen (Gronberg et al., 2012; Sjöholm, 2012) with no known resistance 

to P. infestans (Paper I).  

 

We collected seeds of S. dulcamara, S. nigrum and S. physalifolium from 

plants growing in natural habitats in southern Sweden. Ten accessions from 

three populations of S. physalifolium (Paper I and Paper II), 164 accessions 

of S. dulcamara from 12 populations, and 75 accessions from 20 S. nigrum 

populations were used in this study (Paper I).  

  

Resistance tests against P. infestans were performed using both detached leaf 

assays and field assessments (Paper I and Paper II). After removing leaves 

for detached leaf assays, plants were acclimatized for one-week in greenhouse 

and transferred into the experimental garden located at Alnarp (55° 66'N, 13° 

08'E). Experiments were performed at this garden in 2012, 2013 and 2014. 

During each experiment quantitative (lesion area) and qualitative (resistance 

classification) measurements were taken at 7 days after inoculation with P. 

infestans (Paper I).  

 

Resistance screening with material from controlled conditions showed that 

lesions were significantly larger in S. physalifolium compared to those in S. 

nigrum and S. dulcamara (Paper I, Figure 3). Moreover, all the S. 

physalifolium accessions showed a susceptibility reaction (S phenotype) to P. 

infestans (Paper I, Figure 4). In 2013 we planted 48 clonally propagated plants 

of two S. physalifoium genotypes at the experimental garden. These plants 

were naturally heavily infected by P. infestans. These plants shed infected 
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leaves, but rather than succumbing to full infection and subsequent death of the 

plant (the typical response of susceptible potato cultivars), these S. 

physalifolium were able to regrow new leaves (Paper I, Figure 2). Shedding of 

the blighted leaves and regrowth in this species can be a defence mechanism 

against the pathogen. In 2003, it was reported for the first time that S. 

physalifolium is an alternative host of P. infestans in Sweden (Andersson et al., 

2003). This finding was later followed by a study that shows P. infestans 

strains maintained on S. physalifolium leaves have higher aggressiveness upon 

subsequent infection of potato than the same strains maintained on potato 

leaves (Gronberg et al., 2012). Our study was the first to screen the resistance 

of accessions from different populations of S. physalifolium. In the field 

experiment in 2013, all the S. physalifolium plants were heavily infected, 

which is in agreement with the previous studies (Gronberg et al., 2012; 

Sjöholm, 2012). Defoliation of blighted leaves could be survival mechanism 

but the fallen leaves may increase local soil inoculum highlighting the 

significance of S. physalifolium in P. infestans epidemiology in Sweden. Given 

the susceptibility of this plant to P. infestans, we have used S. physalifolium to 

study transgenerational stability of BABA-induced resistance (Paper II).  

 

In contrast to S. physalifolium, all 75 S. nigrum accessions were either 

asymptomatic (R phenotype) or developed a necrotic lesion smaller or equal to 

the point of inoculation (R
N
 phenotype) (Paper I, Figure 4 and 5). S. nigrum 

was not naturally infected by P. infestans in 2012, which indicates that in 

Sweden this species has a high level of resistance to P. infestans. S. nigrum 

was referred to in previous studies as a non-host of P. infestans (Vleeshouwers 

et al., 2000; Platt, 1999; Pieterse et al., 1994). So far no P. infestans isolate 

from southern Sweden has been shown to infect S. nigrum (Andersson et al., 

2003), however, isolates of the pathogen that can infect S. nigrum have been 

found in Poland (Lebecka, 2008). R-gene based resistance and the presence of 

putative R-genes was reported previously in this species (Lebecka, 2008; Flier 

et al., 2003). Moreover, we identified R-gene like sequences in transcriptomic 

analysis of S. nigrum-P. infestans interactions (Paper III). This indicates that 

this species may be a good source of novel resistance alleles against P. 

infestans, which may be potentially mined for use in European breeding 

programs. 

 

In 2012, we found diverse resistance phenotypes in S. dulcamara. This 

diversity was consistently noted both in material from controlled conditions 

and from the experimental garden. In addition to the three phenotypes 

described earlier (R, R
N
, and S) we identified a fourth resistance phenotype 

(S
L
- a lesion larger than the point of inoculation) (Paper I, Figure 2) in S. 

dulcamara. Despite identification of these diverse resistance phenotypes, no 
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natural infections were observed in S. dulcamara during the seasons 2012-2014 

in the Alnarp experimental garden. This is consistent with previous reports that 

it is a rare event to find natural P. infestans infections in S. dulcamara (Flier et 

al., 2003; Cooke et al., 2002). In comparison to S. physalifolium, the lesions in 

S. dulcamara were smaller, even in the most susceptible interaction. 

 

Due to the diverse resistance phenotypes observed in the S. dulcamara 

accessions, we expanded the experiment by adding new accessions in 2013. 

The new accessions were screened for resistance against P. infestans in 

controlled conditions and then transferred into the experimental garden. In 

total, in 2013 and 2014, we screened 164 S. dulcamara accessions in the 

experimental garden, representing 34 sibling groups, obtained form 12 

populations in southern Sweden (Paper I, Figure 1). The results show that 

indeed there are four resistance phenotypes (R, R
N
, S

L
, and S) in S. dulcamara 

however the proportion of these phenotypes changed across the years (Paper I, 

Figure 5). Sibling accessions of this species showed different resistance 

phenotypes (Paper I, Table 2). Moreover, in S. dulcamara, the lesion size was 

negatively correlated with many of the performance parameters measured in 

2013 at the experimental garden (Paper I, Figure 8).  

 

In a previously reported resistance screening of European S. dulcamara 

accessions, it was rare to find both resistance and susceptible accessions within 

the same collection site (Golas et al., 2010b). Therefore, the resistance 

variation in our material that shows differences within a population, and even 

between sibling accessions, is highly novel. S. dulcamara is an out-crossing 

species Golas et al. (2010a). Thus the differences in resistance to P. infestans 

within the sibling groups (plants generated from seeds of the same wild parent) 

could be a result of the out-crossing nature and recombination ability of this 

species (Paper I). The diverse resistance phenotypes in this species may also 

indicate that diverse resistance mechanisms against P. infestans are present in 

S. dulcamara (Huang et al., 2005; Vleeshouwers et al., 2000). Previously in 

this species, two loci containing putative resistance genes, Rpi-dlc1 and Rpi-

dlc2, were mapped to chr-9 and chr-10 respectively (Golas et al., 2013; Golas 
et al., 2010b). By isolating genomic DNA from one of the accessions, and 

designing primers based on the predicted NBS-LRR gene sequence, we have 

cloned the putative gene and confirmed that it has 100% sequence similarity 

with the reference BAC-sequence. Functional analysis of this putative 

resistance gene (Rpi-gene) against P. infestans is currently underway.  

 

P. infestans contains fast evolving effector genes, located in a highly dynamic 

and expanded region of its transposon rich genome (Haas et al., 2009). The 

two-speed architecture of the genome allows the pathogen to carry out faster 

adaptive evolution (Dong et al., 2015). As a result, beyond using host 
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resistance, it is important to understand other control mechanisms that can be 

used to develop integrated late blight disease management systems in potato. 

For example, the use of BABA can reduce the need for so many fungicide 

applications since it has been suggested that this BABA-induced resistance can 

be used in combination with other management practices to reduce potential 

effects of P. infestans (Liljeroth et al., 2010). To understand this induced 

resistance we introduced S. physalifolium as a study system in relation to plant 

resistance inducers (Paper II). Since the plant material is directly collected 

from natural populations it is also important to understand the basic biology of 

this induced resistance. 

 

To find out if BABA can induce resistance against P. infestans, S. 

physalifolium plants were sprayed with BABA and three days later tested for 

resistance against the pathogen using detached leaf assays (Paper II). Using 

Arabidopsis thaliana, (Slaughter et al., 2012) showed a transgenerational effect 

of BABA-induced resistance against the bacterial pathogen, Pseudomonas 
syringae. To test for a similar transgenerational stability of BABA-induced 

resistance against P. infestans in wild species, seeds were collected and used to 

generate offspring from the sprayed and unsprayed S. physalifolium plants. 

These plants were then tested for resistance against the pathogen (Paper II).  

 

BABA treatment significantly reduced lesion area in two of the three 

genotypes (Paper II, Figure 2A and 2B). As previously reported in cultivated 

potato (Bengtsson et al., 2014a; Liljeroth et al., 2010), BABA can induce 

resistance against P. infestans in S. physalifolium. Seeds of BABA treated 

genotypes that showed direct BABA-induced resistance as well as control 

plants, were collected and used to generate next generation plants (S1). Before 

BABA treatment, these S1 plants were tested for resistance against P. infestans 

and descendants of one of the genotypes showed higher levels of resistant to P. 
infestans than descendants of control plants (Paper II, Figure 3), suggesting a 

transgenerational effect of BABA treatment. It was also previously reported 

that potato cultivars showed different degrees of inducibility after BABA-

treatment (Liljeroth et al., 2010). We hypothesize that the differences in BABA 

responsiveness among S. physalifolium plants might be due to differences in 

the surface structure and chemistry of the leaves (Balmer et al., 2015; Pastor et 

al., 2014). BABA-induced resistance can be transferred into the next vegetative 

progeny of potato (Floryszak-Wieczorek et al., 2015) and in bacteria 

inoculated descendants of Arabidopsis generated from seeds of treated plants 

(Slaughter et al., 2012). Our study, for the first time, confirmed that BABA can 

induce resistance against P. infestans in a wild species directly originated form 

seeds in wild populations. Furthermore, this induced resistance can be 

transferred into the next generation. Induction of plant defence typically 

involves changes in gene expression, protein abundance and metabolites, and 

thus IR may have a fitness cost (Alexandersson et al., 2016). However, BABA-

induced resistance did not affect seed traits (weight of berries and weight per 
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seed) under field conditions, in our study. This indicates that it may not 

significantly affect the fitness of S. physalifolium plants (Paper II). Further 

studies on this wild species may give meaningful insight into the molecular 

mechanisms of BABA-induced resistance in economically important crops; 

especially with regards to susceptibility genes and the potential role of induced 

resistance in nature.  

4.3 Understanding the Solanum-P. infestans interactions and 
effects on a generalist moth (Paper III and IV ) 

Screening of the wild Solanum species for P. infestans resistance showed that 

S. physalifolium is susceptible and S. nigrum is resistant whereas S. dulcamara 

showed variation in resistance to P. infestans (Paper I). To enhance our 

understanding of the plant response in the three wild Solanum species and 

cultivated S. tuberosum against P. infestans, transcriptome analysis was 

performed on inoculated leaves of these species (Paper III).  

 

Based on the P. infestans resistance screening using detached leaf assays one 

individual accession from each wild Solanum species, and three potato clones 

with varying resistance levels against the pathogen were selected for 

transcriptome analysis (Paper III). RNA was isolated from this material and 

RNA-seq data generated using next generation sequencing (Illumina 

HiSeq2000 platform). Sequence reads belonging to P. infestans were identified 

by mapping our obtained sequence data to the publically available P. infestans 

genome using TopHat2 (Kim et al., 2013), and were analyzed separately. The 

remaining RNA-seq data was de novo assembled using trinity (Grabherr et al., 

2011) (Paper III).  

 

To identify transcript families expanded or depleted in response to the 

pathogen both quantitative and qualitative groups were created. The 

quantitative group was assembled from sequence related to a gradient vector 

based on the results of the resistance assay and the qualitative group from 

sequences related to resistant vs. susceptible species and clones. Significantly 

different numbers of transcript families was found depleted in the resistance vs 

susceptible groups as well as among the wild Solanum species and the three 

potato clones (Paper III). Furthermore, functional annotation of the expanded 

transcript families using Gene ontology (GO) for functional characterisation 

analysis (Li et al., 2003), identified terms associated to plant defense. GO 

terms such as protein phosphorylation, defense response, hypersensitive 

response, host programmed cell death induced by symbiont and aspartic-type 

endopeptidase activity were expanded in the resistance group (Paper III; 

Figure 4; Figure S2). Expanded transcript families in the susceptible group 

were populated by terms such as lipoprotein biosynthetic process, signal 

transduction, protein acylation, transmembrane transport and nitrogen 

biosynthesis (Paper III, Figure4; Figure S2). A putative susceptible factor, the 
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cytokinin-regulated kinase 1 (CRK1) (Schafer & Schmulling, 2002) was found 

in this group. However, in the susceptible group we also found a few enriched 

GO terms associated with plant defence response, which might reflect the basal 

PAMP-triggered immunity (PTI) present in the susceptible hosts (Jones & 

Dangl, 2006). In addition, transcript families containing susceptibility factors 

and genes were identified in the susceptible group.  

 

The Solanum genome contains hundreds of resistance gene (R) homologues, 

mostly containing the nucleotide-binding-leucine-rich-repeat (NB-LRR) 

domains (Witek et al., 2016; Andolfo et al., 2014; Jupe et al., 2013). 

Therefore, we mined our data for R-gene like sequences to find out the number 

and type of these genes expressed during the Solanum-Phytophthora 

interactions. By identifying sequences containing NB-LRR domains (Jupe et 

al., 2012) and BLAST analysis to the 112 reference R-genes from the Plant 

Resistance Genes database (Sanseverino et al., 2013); different types of  R-

gene homologues (CNL, TNL, RLP, and RLK) were identified in the wild 

Solanum accessions and potato clones (Paper III, Table 3). The results 

indicate that it is possible to identify potentially functional resistance genes 

against P. infestans (Rpi-genes), by employing RNA-seq based transcriptome 

analysis of infected leaves.  

 

We also analyzed sequences in our dataset that were identified as from P. 

infestans in order to find the pathogenicity factors used by the pathogen to 

promote disease in these different host species and clones. Analysis of the P. 
infestans transcripts identified a total of 7769, 2612, 1471, 892, and 73 S. 

physalifolium, S. nigrum, SW93-1015, Desirée, and S. dulcamara, induced 

transcripts respectively (Paper III, Table 5). P. infestans uses pathogencity 

factors, RXLR and crinkler effectors, to colonize and manipulate host cells. 

Different numbers of RXLR effectors, Crinkler effectors (CRN) and elicitins 

were identified in our dataset (Paper III, Table5; Table S8). However, the 

number of P. infestans transcripts and pathogenicity factors identified did not 

follow the resistance gradient. For instance, the number of putative 

pathogenicity factors identified in the dataset from the resistant hosts (S. 

nigrum and SW93-1015) was larger than in the dataset from the susceptible cv. 

Desirée (Paper III, Table 5). This might highlight different resistance 

mechanisms and strategies of the pathogens to overcome these resistances.   

 

The perception of P. infestans leads to signaling transduction and phenotypic 

changes, which include changes in the metabolic profile of the plant. In the 

transcriptome analysis study (Paper III), we identified R-gene like sequences 

and putative P. infestans pathogenicity factors. During potato-Phytophthora 

interactions, large numbers of transcripts and proteins show differential 

abundance (Ali et al., 2014). Moreover, P. infestans infection alters the volatile 

and non-volatile profiles of potato (Laothawornkitkul et al., 2010; Andreu et 

al., 2001). To reduce potato yield losses caused by P. infestans introduction of 



46 

R genes is considered as one of the most powerful management strategies (Fry, 

2008). However, studies investigating the effects of inoculation with P. 

infestans and introduction of R-genes into potato on off-target organisms, such 

as insects are lacking. Therefore, we studied the effects of P. infestans 

inoculation and introduction of Rpi-blb1, from the Solanum bulbocastanum, 

against P. infestans on behavioral responses of the generalist insect herbivore 

Spodoptera littoralis, which is invasive in several ecosystems (Paper IV). 

 

Oviposition preference of adult S. littoralis for either P. infestans-inoculated or 

uninoculated (control) plants of cv. Desirée and Rpi-blb1 containing Desirée 

(A01-22) was tested in net cages. Female oviposition preference was tested in 

the following four two-choice bioassays: 1) inoculated vs uninoculated 

Desirée, 2) inoculated vs uninoculated clone A01-22, 3) cv. Desirée vs clone 

A01-22, both uninoculated, and 4) cv. Desirée vs clone A01-22, both 

inoculated. For the larval performance test, leaves of P. infestans-inoculated 

and uninoculated plants of cv. Desirée were used to feed first instar larvae. Egg 

and larvae weight data was collected to make host-preference and larva 

performance comparisons (Paper IV). 

 

We confirmed that the Rpi-blb1 gene confers resistance against the P. infestans 

strain SE-03058 (Paper IV). In the two-choice test between inoculated and 

uninoculated cv. Desirée, as well as inoculated and uninoculated A01-22, a 

significantly higher proportion of S. littoralis eggs were laid on the P. infestans 

inoculated plants (Paper IV, Figure 2). Previously it has been reported that in 

potato, P. infestans infection may lead to changes in the volatile and non-

volatile profiles of potato (Laothawornkitkul et al., 2010; Andreu et al., 2001). 

Therefore, these volatile differences between inoculated and non-inoculated 

plants may explain the preference of the S. littoralis females oviposit on 

inoculated plants. A two-choice test between uninoculated plants of Desirée 

and A01-22 did not show significant differences, indicating importance of the 

pathogen infection and/or plant response to the infection on host choice 

behavior of the S. littorlais. After P. infestans inoculation, a significantly 

higher percentage of eggs were found on the inoculated susceptible cv. Desirée 

than on the inoculated A01-22 (Paper IV, Figure 3). The cv. Desirée and A01-

22 are genetically identical except for the introduced Rpi-blb1 gene into A01-

22. Major Rpi-gene-based resistance leads to effector-triggered immunity 

(ETI), and Rpi-blb1 gene expression increases after P. infestans inoculation, 

this specific defence response is lacking in the susceptible cv. Desirée (Jones & 

Dangl, 2006). So that, we can conclude that introduction of the Rpi-gene into 

potato affects the host preference of S. littoralis only after inoculation of the 

plant with P. infestans.  

 

In spite of the host preference difference to P. infestans inoculated and non-

inoculated cv. Desirée, there was no larval weight differences between these 

hosts, which may indicate that the oviposition site decision of S. littoralis may 
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not be directly associated with performance (Paper IV, Figure 4). As shown in 

a meta-analysis (Gripenberg et al., 2010), host preference may not be 

associated with performance especially in generalist insect species. Our study 

showed that use of Rpi-genes to control late blight disease in potato production 

might also reduce the generalist insect herbivores infestation.  

4.4 Activation of Solanum defence response in greenhouse and 
field conditions (Paper V, VI) 

In nature and in agricultural fields, plants are continuously interacting with a 

multitude of above- and below-ground microbial populations and are at the 

same time challenged by abiotic stresses. However, most of the studies aimed 

at understanding the plant-microbe interactions are conducted in laboratory 

conditions. The predictability of laboratory based studies for field performance 

remains questionable. Moreover, understanding the activation of plant innate 

immunity in agricultural fields is crucial to allow informed decisions, for 

example, to maximise the efficiency of control methods. Therefore, we studied 

the activation of innate immunity in Solanum species growing in agricultural 

fields and natural populations (Paper V). To increase the predictability of 

studies conducted under controlled conditions we compared the apoplastic 

proteome of potato plants grown in greenhouse and field conditions (Paper 

VI).  

 

To investigate the status of plant innate immunity activation, we isolated over 

500 apoplastic samples of non-diseased potato (from agricultural fields) as well 

as wild S. dulcamara and S. nigrum, using the protocol described previously 
(Andreasson et al., 2017; Alexandersson et al., 2013). The samples were 

collected from three consecutive years, June-August, in Sweden. Apoplastic 

fluid was cleaned and proteins separated by SDS-PAGE (Paper V). The 

presence of pathogenesis-related PR proteins (PR1, a marker for salicylic acid 

(SA) induction; and PR2+3, as markers for Jasmonic acid (JA) related 

pathways), were used to indicate plant immunity activation in the gel analysis. 

 

Generally, our results showed immunity-activation in only 36.4% of all the 

field samples (Paper V, Figure 1A). PR1 was present in 16.5% and PR2+3 in 

32.7% of the samples.  This low PR presence frequency directly contrasts with 

predictions from the zig-zag model based on laboratory data. Such predictions 

suggest that PTI should be frequently expressed in the presence of PAMPs, and 

that since plants are continuously exposed to microbes, they would be 

continually exposed to PAMPs in the field (Paper V). We found an increased 

presence of PR1 later in the growing season (Paper V, Figure 1C). This could 
reflect an increasing density of microbes and thus increased presence of the 

PAMPs that trigger PTI as previously hypothesised in (Copeland et al., 2015). 
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Comparisons among the species showed that there was higher presence of 

PR2-3 in S. dulcamara than in S. tuberosum or S. nigrum (Paper V, Figure 

1B). S. dulcamara can be attacked by herbivores and the higher presence of 

these PR proteins may reflect induction of JA by such attacks (Kazan & Lyons, 

2014), even if we did not detect visible symptoms on any of the leaf material 

collected. The presence of PR1 was more common in the S. tuberosum plants 

grown in agricultural fields than the wild Solanum species collected from 

natural populations (Paper V, Figure 1A). This might suggest that induction of 

JA due to insect biting in wild populations has reduced the SA based defense 

response. Antagonistic interaction between JA and SA mediated defence 

signaling pathways was previously reported in the resistance of Arabidopsis to 

Cucumber Mosaic Virus (Takahashi et al., 2004). Thus, such antagonism is 

likely to exist in other plant species such as members of the Solanum Genus. 

 

In this study (Paper V), we used five potato clones that differ in resistance to 

P. infestans: Bintje = PTI; Desirée = PTI; Ovatio = PTI; Sarpo Mira = PTI + 

ETI; SW93-1015 = ETI + PTI. This sampling allowed us to investigate 

activation of different layers of innate immunity in asymptomatic potato 

growing in agricultural fields. The susceptible hosts are assumed to only be 

able to activate basal defence responses (PTI) since they either do not contain 

functional R gene alleles or contain alleles known to be overcome by all races 

of the pathogen. In contrast, the resistant hosts are presumed to be able to 

activate both PTI and ETI. Although we suggested that activation of ETI will 

be increased due to the presence of P. infestans in surrounding fields, the 

presence of PR proteins, in our gel analysis was similar between the 

susceptible and resistant groups. Based on the above results, we propose an 

extension of a zig-zag model depicting innate immunity activation in plants 

growing in natural conditions. The model denoted ‘Pyramide’ suggests that 

activation of innate immunity (PTI/ETI), in plants growing in field conditions, 

can be suppressed by effectors from the infecting pathogen (ETS). It can also 

be actively or passively down-regulated in the absence of disease (Paper V, 

Figure 2).  

 

Most molecular studies aimed to understand plant resistance to biotic and 

abiotic stresses are conducted in controlled conditions. But, how well can these 

controlled experiments predict plant performance in (agricultural) field 

conditions? Therefore, we compared the apoplastic proteomes of potato plants 

grown in both greenhouse and field conditions using quantitative proteomics 

and activity based protein profiling (ABPP) (Figure 5). Apoplastic fluid was 

isolated by vacuum infiltration-centrifugation (Andreasson et al., 2017; 

Alexandersson et al., 2013) and used for quantitative analysis or activity based 

protein profiling (ABPP). To generate quantitative proteomics data, apoplastic 

proteins were in-solution digested with trypsin and subjected to mass 

spectrometry. The generated data was used for peptide identification and 

quantitative analysis to determine peptide abundance (Ali et al., 2014; Burra et 
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al., 2014). Part of the apoplastic fluid was used to label the active proteome in 

an ABPP assay. This technique uses fluorescence probes to irreversibly bind to 

the active residue of distinct protein classes, and proteins can be detected using 

SDS-PAGE and in-gel fluorophore scanning (van der Hoorn et al., 2011). To 

identify the active proteins detected in ABPP, proteins were co-

immunoprecipitated with Streptavidin beads, displayed by SDS-PAGE, 

subjected to in-gel tryptic digestion and then analyzed by mass spectrometry. A 

comparison between peptides identified in quantitative and ABPP-LC/MS/MS 

was also performed (Figure 5). In order to create a basis for identification of 

robust peptide biomarkers, we investigated differences in the apoplastic 

proteome of potato growing in two experimental sites (Mosslunda and 

Borgeby) in Southern Sweden. We also investigated the effects of fungicide 

treatment over two years at the Mosslunda site, and since we collected samples 

across the growing season (June-July-August), we were able to compare 

seasonal changes within and between locations. (Paper VI).  

 
Figure 5. Workflow of quantitative proteomics analysis coupled with Activity 

Based Protein Profiling (ABPP). (A) apoplastic fluid was isolated by vacuum 

infiltration-centrifugation and aliquoted until used for quantitative analysis or 

ABPP. (B) Apoplastic proteins were in-solution digested with trypsin and 

subjected to mass spectrometry. (C1) Part of the apoplastic fluid was used to label 

the active proteome in an ABPP assay using fluorescence probes followed by 

detection of the proteins through SDS-PAGE. (C2) Characterization of the active 

proteins detected in-C1 was performed using biotinylated probes. (Paper VI). 

Illustration by Kibrom B. Abreha.  

 

 

Field-grown and greenhouse-grown samples grouped separately in a principal 

component analysis (PCA), and a large number of peptide/proteins showed 
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different abundance in both conditions (Paper VI, Figure 2). MapMan 

pathways analysis (Thimm et al., 2004), showed that a large number of the 

proteins associated with plant responses to biotic and abiotic stresses were in 

higher abundance in field than greenhouse conditions (Paper VI, Figure 3). A 

similar result was reported in a recent comparative proteomics analysis of 

Arabidopsis plants grown in field and controlled conditions (Ruhe et al., 2016). 

Among the proteins found with higher abundance in field condition were 63 

proteins associated with proteolysis, 40 proteins involved in cell wall synthesis 

or degradation, 19 proteins classified as pathogenesis related proteins (PR-

proteins), 15 peroxidases and 25 proteins involved in defence signalling.  

 

Fungicide application is the most common strategy to reduce yield losses due 

to pathogens. Foliar application may, affect the apoplastic proteome of the 

plants. These effects may be direct or indirect, (e.g.by changing the microbial 

population in the phyllosphere). To understand the fungicide effect, a two-way 

comparison was performed but no differentially abundant proteins was 

detected between fungicide treated and untreated plants (Paper VI, Data not 

shown).  

 

Samples from two growing sites, Mosslunda and Borgeby, were grouped 

together in the PCA (Paper VI, Figure 5A). In agreement with this, in a PCA 

analysis an overlap of apoplastic proteome samples from plants growing in two 

different sites was reported (Ruhe et al., 2016). Despite the PCA showing 

similarity between the samples, we were still able to identify 314 peptides from 

234 proteins that were differentially abundant in the growing sites (Paper VI, 

Supplementary Figure S3). In evaluating the year effect, in spite of an overlap, 

samples from the same year grouped together (Paper VI, Figure 5B). 205 

peptides corresponding to 156 proteins showed differential abundance between 

2011 and 2012 in Mosslunda (Paper VI, Supplementary Figure S3).  

 

A multi group comparison was also performed and this revealed that 320 

peptides from 240 proteins were differentially regulated in at least one month 

of the June-July-August in a growing season. This allowed us to identify 

peptides and/or proteins co-regulated across the growing season. Furthermore, 

expression profile clustering analysis identified co-regulated proteins across 

the season and showed that 108 peptides increased in abundance in July and 

August compared to the early season sample in June (Paper VI, Figure 6C).  

 

The above quantitative analysis gives information about the relative abundance 

of a given peptide or protein in a proteome sample. In order to find out if some 

of these proteins were functionally active, we used activity based protein 

profiling. Serine and glycosyl hydrolase protein families are commonly found 

in the apoplast (Alexandersson et al., 2013) and both families were among the 

most abundant in our samples (Paper VI, Figure 1). Therefore, using ABPP 

we studied the activity profile of serine hydrolase and β-glucosidase proteins in 
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the apoplast. Our analysis showed a differential activity state of these protein 

families in field and greenhouse samples (e.g. the presence or absence of some 

proteins; or changes in the intensity of the protein signals) between field and 

greenhouse samples (Paper VI, Figure 7). To further characterize these 

proteins, protein bands were excised from SDS-PAGE and subjected to mass 

spectrometry analysis (Paper VI, Figure 8). This analysis detected a group of 

serine hydrolases: P69E (PGSC0003DMP400056894), P69E 

(PGSC0003DMP400007008), P69F (PGSC0003DMP400006964), peroxidase 

(M1AY17), Subtilase (PGSC0003DMP400011990) and Carboxypeptidase 

(PGSC0003DMP400054112) were among the active proteins in the samples 

(Paper VI, Figure 8). Moreover, member of the β-glucosidase family such as 

Beta-galactosidase (PGSC0003DMP400004621), Beta-glucosidase 

(PGSC0003DMP400015895), Beta-mannosidase (PGSC0003DMP400009956) 

and Alpha galactosidase (PGSC0003DMP400018078) were also detected as 

active proteins (Paper VI, Figure 8).  

 

To identify potential peptide biomarkers we used three different approaches. 

Firstly we combined the results from our quantitative proteomics and ABPP-

LC/MS-MS assays. Using this approach, we were able identify peptides that 

were both differentially regulated between field and greenhouse and that were 

were functionally active (Paper VI, Table 4). Secondly, we wanted to identify 

biomarkers that show stability across different conditions, to be able to more 

accurately predict plant performance in both growing conditions. Thus, we 

mined our data for peptide biomarkers that are were not differentially abundant 

in greenhouse or field conditions, and that showed stability across different 

conditions. Quantitative comparisons were made between field and greenhouse 

conditions, two growing sites, and between years and months within a growing 

season in the same experimental site. The analysis identified 750 stable 

peptides (Paper VI, Supplementary Table S3). We defined field physiology 

markers as peptides that were higher in abundance in the field than in the 

greenhouse, and the abundance of which, was not dependent on year or 

growing site.  
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5 Conclusions and future perspectives 

In this thesis, Solanum species growing in Sweden were evaluated for 

resistance against P. infestans and BABA-induced resistance was studied in 

one of these wild species. Transcriptome analysis was performed to enhance 

our understanding of the interactions between Solanum species and the 

pathogen. We studied the effects of potato inoculation with P. infestans on the 

host choice behaviour and performance of S. littoralis. Moreover, the stress 

response of the Solanum plants growing in both natural and field conditions 

was investigated by predicting the activation of innate immunity and 

identifying active apoplastic proteins as biomarkers of these responses. The 

main conclusions and future perspectives are: 

 

 The wild Solanum species growing in Sweden vary widely in 

resistance against P. infestans. S. physalifolium is susceptible and S. 

nigrum is resistant against the pathogen whereas there is a wide 

resistance-variation among S. dulcamara accessions. 

 

 The diverse resistance phenotypes identified in S. dulcamara suggest 

variable resistance reactions against P. infestans. Further 

characterization of the resistance phenotypes using cytological 

methods would provide invaluable insights into the specific 

mechanisms of pathogen infection and host defence.  

 

 BABA can induce resistance against P. infestans in S. physalifolium (a 

naturally susceptible host). This induced resistance can be transferred 

into the next generation. However, direct and transgenerational 

BABA-induced resistance is dependent on host genotype. Molecular 

studies of the mechanisms of action of BABA and identification of 

factors that determine the differences in BABA-inducibility among the 
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genotypes are needed in order to consider application of BABA-

induced resistance to enhance plant defence responses.  

 

 Unravelling how the BABA-induced resistance is carried into the next 

generation, i.e. understanding the mechanism of epigenetic 

inheritance, would help facilitate potential use of plant materials with 

induced resistance in agricultural production. In the future, this 

strategy may be applied together with host resistance or with reduced 

fungicide applications.  

 

 Transcriptome analysis of P. infestans inoculated leaves of three wild 

Solanum species and potato clones (Desirée, SW93-1015, and Sarpo 

Mira) with varying resistance levels towards the pathogen revealed 

transcript families expanded or depleted depending on whether the 

interaction was resistant or susceptible. Furthermore, different 

numbers of R-gene like sequences and P. infestans transcripts were 

identified reflecting the variability of interactions between the 

pathogen and different hosts. Characterization of potential genes 

related to plant resistance and specific effectors from pathogen can be 

useful to identify molecular targets of the pathogen used to promote 

host invasion.  

 

 Potato-P. infestans interactions can alter the host choice behaviour of a 

generalist moth Spodoptera littoralis. Introduction of Rpi-genes from 

wild Solanum species into potato can reduce the load of P. infestans as 

well as S. littoralis. Studies on the effects of Solanum-P. infestans 

interactions and introduction of cloned Rpi-genes on other herbivores 

and microbes are advised in order to increase applicability of the host 

resistance to broad range of natural enemies. Furthermore, 

identification of the volatile cues involved in the tri-trophic interaction 

can be an important input for example in pulling away the herbivore 

from potato fields.  

 

 In contrast to the perception that plants can constantly activate defence 

response in natural conditions, only one-third of the Solanum plants 

growing either in agricultural fields or in natural populations showed 

activation of innate immunity. Generally, the rate of innate immunity 

activation is higher towards the end of the season which may be linked 

with increased PAMPs pressure later in the growing season. Surveying 

the above and below-ground (micro)biota may further elucidate the 
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nature of this innate immunity activation in agricultural fields and 

nature.  

 

 Associating the differential innate immunity activation in field 

conditions across the growing season would be crucial to further 

connect it with efficiency of disease control measures, for example 

application of defence inducers or fungicides.  

 

 A large number of proteins related to plant response to biotic and 

abiotic stresses increased in abundance in field conditions compared to 

greenhouse conditions. Serine hydrolases and β-glucosidases, showed 

differential activity profiles in greenhouse and field conditions as well 

as across the growing season within the same field. Functional 

analysis of the proteins with differential abundance in different growth 

conditions may shed light into the possible biological role of the 

identified proteins in plant response to these conditions.  

 

 Peptide biomarkers with potential roles in predicting plant 

performance in field and greenhouse conditions have been identified. 

Confirming the applicability of these peptides in predicting plant 

performance would provide valuable insights into the concept of 

application of peptide biomarkers. To do this, further studies screening 

a larger number of genotypes are needed to make accurate predictions 

of plant performance in field and controlled conditions.  
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