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� Syntrophic acetate oxidation (SAO)
dominates in ammonia-adapted
biogas processes.

� SAO bacteria compete for acetate and
depend on their methanogenic
partner.

� Syntrophic acetate oxidisers are
present under a wide range of
operating conditions.

� Ammonia, acetate, temperature,
retention time and trace elements
influence SAO.

� Awareness of SAO enables strategies
for process optimisation.
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Anaerobic degradation of protein-rich materials has high methane potential and produces nutrient-rich
residue, but requires strategies to avoid ammonia inhibition. A well-adapted process can cope with sub-
stantially higher ammonia levels than an unadapted process and analyses of pathways for methanisation
of acetate, combined with determination of microbial community structure, strongly indicate that this is
due to a significant contribution of syntrophic acetate oxidation. The microorganisms involved in syn-
trophic acetate oxidation thus most likely occupy a unique niche and play an important role in methane
formation. This review summarises current insight of syntrophic acetate oxidising microorganisms, their
presence and the detection of novel species and relate these observations with operating conditions of
the biogas processes in order to explore contributing factors for development of an ammonia-tolerant
microbial community that efficiently degrades acetate through the syntrophic pathway. Besides high
ammonia level, acetate concentration, temperature and methanogenic community structure are consid-
ered in this review as likely factors that shape and influence SAO-mediated microbial ecosystems. The
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main purpose of this review is to facilitate process optimisation through considering the activity and
growth of this key microbial community.
� 2016 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Along with increased energy efficiency, substitution of fossil
fuel-derived energy with renewable sources is crucial in
achieving the goal of reduced emissions of anthropogenic green-
house gases. Biogas produced through anaerobic degradation of
organic residues has good potential in climate change mitigation
and also involves indirect environmental benefits such as reduced
emissions of air pollutants and ammonia. European biogas pro-
duction is experiencing high growth at the moment [1], increas-
ing the demand for establishment of new production plants, but
also process optimisation to increase energy output in existing
plants.

Protein-rich substrates are of interest for commercial biogas
production due to the relatively high methane yield potential
[2,3] and the high level of plant-available ammonium (NH4

+-N) in
the residue. This residue can be applied to arable land as fertiliser,
which reduces the need for production of mineral fertiliser, con-
tributes to recirculation of nutrients and improves soil quality. A
high content of ammonium considerably increases the value of
the residue and thereby enhances profits for the biogas plant. How-
ever, due to the high amounts of ammonium in equilibrium with
ammonia, the anaerobic degradation of protein-rich substrates is
often associated with process instability, indicated by reduced bio-
gas production and/or methane content, fluctuations in pH and
alkalinity, and accumulation of volatile fatty acids (VFA) [4].
Protein-rich substrates are also a common source for formation
of sulphide [5,6], which is not only toxic for various microbial pop-
ulations but also forms complexes with metals, resulting in
decreased bioavailability of trace elements essential for microbial
activity [7]. However, the positive factors are still strong incentives
for commercial biogas plants to operate at high ammonia, resulting
in demands for solutions and strategies to handle the associated
problems.
Suggested physical and chemical solutions to handle the com-
plications associated with nitrogen-rich material include dilution
of substrate, air-stripping, ammonia recovery through integration
of a microbial desalination cell and inclusion of material with ion
exchange capacity or carbon fibre [3,4,8,9]. Furthermore, the
importance of microbial adaptation to high ammonia levels has
long been emphasised in the literature [4], indicating the necessity
for allowing the microbial community to acclimatise to the prevail-
ing conditions for successful operation. Recent achievements in
analyses of pathways for methanisation of acetate, combined with
determination of microbial community structure, provide strong
indications of a significant contribution of syntrophic acetate oxi-
dation (SAO) to methane formation in high-ammonia processes
[2,10–16]. Consequently, operating parameters enhancing the
activity and/or growth of key microbial constituents could poten-
tially result in significantly improved process stability and biogas
yield. Hence, this review sought to correlate current insights into
microbial structures and dynamics, growth conditions of the
microorganisms involved and the influence of operating parame-
ters in SAO-mediated processes.

2. Ammonia inhibition

The dominant influence on ammonium-nitrogen concentration
in digester sludge is the nitrogen content of the substrate. Organic
waste streams originating from animal breeding (slaughterhouse
waste, dairy wastewater stream, animal manure, aquaculture
sludge) and ethanol fermentation (distiller’s waste) are examples
of ammonia- andprotein-rich substrates commonlyused for current
biogas production [3–5,17,18]. The nitrogen level in certain food
industry and householdwastes can also be enough to perturb diges-
ter operation [19]. In addition, the level of ammonium-nitrogen is
dependent on the degree of decomposition of the process, i.e. the
proportion of the organic material converted to methane. A smaller

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. The Wood–Ljungdahl pathway (also called the Acetyl-CoA pathway). The
pathway comprises two branches, the methyl and the carbonyl branch, and
involves a series of reactions resulting in the reduction of two carbon dioxide
molecules and the final production of acetate. During the process no net ATP is
formed and energy production is dependent on chemiosmotic processes coupled to
the translocation of protons or sodium ions [64].
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proportion of the organic nitrogen in the substrate is mineralised to
ammonium-nitrogen at low compared with higher degree of
decomposition,which in turn is dependenton sludge retention time,
temperature and themicrobial community [20]. Moreover, temper-
ature and pH indirectly affect the level of inhibition, since these
parameters regulate the equilibrium between ammonium (NH4

+)
and ammonia (NH3) in the sludge. As shown in Eq. (1), increased
temperature and pH shift the ratio towards NH3, which is reported
to be the actual cause of microbial inhibition [21].

NH3-N ¼ NHþ
4 -N

1þ 10�pH

10
� 0:09018þ2729:92

Tð Þ
½21� ð1Þ

In this equation NH4
+-N is the total ammonia-nitrogen

(NH4
+ + NH3) and T is the temperature (kelvin). The impact of

increased temperature is further enhanced by the reduced solubility
of carbon dioxide, which increases the pH and thereby shifts the
equilibrium further towards the toxic ammonia.

Nevertheless, the actual digester response to ammonium
depends on the microbial community, which in turn is influenced
by inoculum, substrate characteristics and operating parameters.
Total and free ammonia concentration, together with temperature,
have been identified as the main influencing factors determining
bacterial community structure in full-scale anaerobic digesters
[22]. The inhibitory effects of ammonia on the microbial consortia
are also considered to have a pronounced impact in later stages of
degradation, involving the activity of hydrogen/formate-utilising
(hydrogenotrophic) or acetate-utilising (acetoclastic) methano-
gens, where the acetoclastic methanogens (Methanosaeta sp. and
certain Methanosarcina sp.) are considered to be most sensitive to
ammonia [4]. Since biogas production through anaerobic degrada-
tion of organic components demands complex microbial
communities, with close interspecies cooperation, the reduced
methanogenic activity subsequently influences reaction pathways
higher up in the degradation chain [23].

3. Syntrophic acetate oxidation

Conditions resulting in inhibition of acetate-utilising methano-
genic communities, such as high concentrations of ammonia, are
believed to result in appearance ofmicrobial competitors for acetate
and in numerous studies have been suggested to promote the devel-
opment of SAO [2,6,10,12,14–16,24–38]. The initial step of the
sequential SAO reaction involves oxidation of acetate to hydrogen
and carbon dioxide and formate by syntrophic acetate-oxidising
bacteria (SAOB), followed by consumption of these products by
hydrogenotrophic methanogens for the generation of methane.

3.1. Syntrophic acetate-oxidising bacteria

The currently known bacteria capable of syntrophic acetate oxi-
dation are the thermophilic Thermacetogenium phaeum [39] and
Pseudothermotoga lettingae [40,41], the thermotolerant Tepidanaer-
obacter acetatoxydans [42] and the mesophilic Clostridium ultunense
[43] and Syntrophaceticus schinkii [44]. Syntrophic acetate oxidisers
are considered slow growers [45], which can be a disadvantage in
the competition for acetate with the acetoclastic methanogens.
Nevertheless, hydrogenotrophic methanogens [46] and a majority
of the SAOB possess relatively high ammonia tolerance [42–
44,47,48], a feature that probably provides them with a competi-
tive advantage in ammonia-stressed systems.

3.1.1. Presence and relative abundance in anaerobic digestion
processes

Genes affiliated to known SAOB have been detected in digesters
operating under diverse conditions in terms of ammonia concen-
tration, temperature, hydraulic retention time (HRT), substrate
feed and digester configuration [11–13,16,17,29,49–61]. On corre-
lating the SAOB gene abundance obtained in the different anaero-
bic digesters, the levels appear to be interrelated depending on the
prevalent acetate degradation pathway. In mesophilic, high-
ammonia digesters with syntrophic acetate oxidation as the key
pathway, species-specific quantitative PCR (qPCR) analyses have
determined the abundances of genes affiliated to C. ultunense, S.
schinkii and T. acetatoxydans to range between 106–11, 106–9 and
104–10 per mL, respectively. The corresponding levels in digesters
operating at low ammonia and dominated by the acetoclastic path-
way are 105–7 for S. schinkii, whereas C. ultunense and T. acetatoxy-
dans levels vary from below threshold up to 105 and 103,
respectively [6,11–13,16,57]. However, it is noteworthy that the
levels of these syntrophic bacteria are relatively low in comparison
with the total bacterial gene abundance, despite confirmation of
SAO-mediated acetate degradation. In mesophilic digesters,
0–0.04%, 0–7.0% and 0–3.0% of total bacteria community has been
shown to be represented by C. ultunense, S. schinkii and T. aceta-
toxydans, respectively [11,13,16]. In thermophilic digesters, both
similar (0–0.7%) [13] and higher relative levels [52] have been
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reported. In the study with higher relative levels, 0.8–19% of the
total analysed sequences were allocated to the genome of a defined
syntrophic acetate oxidiser (based on 97% maximum identity) [52].

3.1.2. Detection of novel syntrophic acetate-oxidising bacteria
Distant relatedness based on the 16S ribosomal RNA gene and

the strict requirements of current cultivation techniques have con-
strained the detection and characterisation of novel SAOB.
Approaches based on targeting functional genes hold promise for
identification of key players in SAO and assessment of the link
between function and microbiology. The majority of the charac-
terised SAOB have been positioned in the physiological group of
homoacetogens, which is defined by use of the Wood-Ljungdahl
pathway during growth on autotrophic and/or heterotrophic sub-
strates and production of mainly acetate [62,63]. In this acetogenic
pathway, formyl tetrahydrofolate synthetase (FTHFS) is a key
enzyme catalysing the ATP-dependent activation of formate
(Fig. 1).

For syntrophic functioning, SAOB have been postulated to
reverse the Wood-Ljungdahl pathway for oxidation of acetate
[62,63]. However, the SAOB P. lettingae does not use the Wood-
Ljungdahl pathway [45] and recently an additional pathway for
acetate oxidation, combining the methyl branch of the Wood-
Ljungdahl pathway with a glycine cleavage system, have been sug-
gested [65]. However, irrespective of pathway, all SAOB have been
shown to access at least one and sometimes two FTHFS genes,
implying that fhs (gene encoding FTHFS) profiling is suitable for
delineation of populations expressing SAOB capabilities. Profiling
of acetogenic communities in anaerobic digesters has revealed
shifts in the acetogenic community, concurrently with ammonia-
induced introduction of SAO in mesophilic anaerobic digesters
[66] and has identified potential acetate-oxidising syntrophs in
thermophilic SAO cultures [67]. Recently designed primers,
expanding the recovery of fhs genes and including targeting of
known syntrophic acetate oxidisers [63,68], retrieved fhs gene
sequences from various biogas digesters that formed distinct phy-
logenetic clusters. Only a few genotypes were shared with previous
findings in other anaerobic environments (e.g. rumen, termite gut,
horse manure) [16,68,69]. Correlation between high abundance of
fhs genes with members of the order Clostridiales and Thermoanaer-
obacterales and ammonia-induced SAO dominance further rein-
forced the importance of the acetogenic bacteria represented and
promotes their position as potential acetate-oxidising syntrophs
[68]. Through a metagenome sequencing approach and identifica-
tion of genes encoding enzymes involved in the Wood-Ljungdahl
pathway, Zakrzewski and co-authors [70] suggested a syntrophic
association between an unknown Thermacetogenium species and
Methanothermobacter thermautotrophicus. Sequences assigned to
the phylum Thermotogae and the genus Clostridium were also
found in the study and suggested to be involved in SAO. In another
recent study, genes encoding enzymes involved in the Wood-
Ljungdahl pathway were analysed in mesophilic digesters with
gradually increased contribution of SAO from 5% to 25% [15].
Nucleic acid-based stable carbon isotopic probing (DNA-SIP) of
enrichment cultures from the digesters was another approach used
in that study to reveal distinctive bacterial communities for this
syntrophic function. However, appearance of keystone bacterial
populations responsible for SAO was not detected, leading the
authors to question whether syntrophic acetate oxidation is the
work of a defined species and suggest that a diverse array of bac-
terial taxa within dynamic heterogeneous communities may
instead be responsible for the syntrophic reaction.

Acetate utilisation by Synergistes group 4 has been demon-
strated by the microautoradiography-fluorescence in situ hybridi-
sation (MAR-FISH) technique with 14C-acetate. This Synergistes
group was suggested to mediate acetate conversion through SAO
and was shown to have competitive advantages over Methanosaeta
at high acetate concentrations (2.5–10 mM) [71]. By incubating a
sample from a full-scale biogas plant with [U-13C]acetate, followed
by mapping of expressed and labelled proteins onto a binned
metagenome Mosbaek et al. [72] recently suggested that Methano-
sarcina, Methanoculleus and five subspecies of Clostridia were
actively involved in SAO. Other studies have proposed possible
new SAOB due to changed abundances in response to altered envi-
ronmental conditions in enrichment cultivations. Yamada and co-
authors [73] observed dominance of bacteria with high identity
to Tepidanaerobacter syntrophicus and Coprothermobacter prote-
olyticus in thermophilic acetate enrichments. The cultures had
been supplemented with conductive iron oxide particles with the
prospect of facilitating electric syntrophy in the methanogenesis
of acetate. In another study, stable carbon isotopic analysis com-
bined with pyrosequencing indicated that Coprothermobacter spp.
was the main acetate degrader in syntrophic association with
hydrogenotrophic Methanothermobacter in a high-rate (HRT of 2–
4 days) and high temperature (65 �C) anaerobic digester [74].
Increased abundance of Spirochaetes has been observed in
acetate-fed batch cultivations and it is suggested as a potential
SAOB candidate [75]. Bassani and co-authors [76] recently con-
ducted a study of a two-stage system where external H2 was added
to the second digester in order to increase the proportion of
methane in the biogas. An increase in hydrogenotrophic methano-
gens within the Methanoculleus genus was noted in the hydrogen-
supplemented digester, concurrently with a rise in Thermoanaer-
obacteraceae, which were therefore proposed to be involved in
SAO.

To conclude, the limited number of isolates characterised
restricts research about syntrophic communities and their interac-
tion with the ambient microbial society and responses to environ-
mental parameters. In addition to further isolations, a prerequisite
for increased knowledge is the detection of novel SAOB in the com-
plex digester environment. We believe that approaches targeting
the fhs gene or DNA-SIP are promising techniques in this regard.
4. Influence of digester conditions and operating parameters on
SAO

4.1. Ammonia threshold and microbial adaptation

Ammonia-induced perturbation of anaerobic laboratory-scale
digesters often appears concurrently with increased loading of
ammonia-rich organic substrate, which complicates the distinction
between overload and ammonia as the cause of digester upset.
However, disturbance of anaerobic degradation at equivalent
ammonia levels, irrespective of the organic loading rate, was
recently demonstrated [69]. Thus, here we consider the ammonia
level as the main cause of digester instability, neglecting the
impact of disparity of applied organic loads between the studies
reviewed.

Digester disturbance, reflected by increased VFA concentrations
and reduced gas production rate and methane yield, has been
observed at levels exceeding 0.08–0.2 g NH3-N/L at 25–30 �C
(4.1–5.7 g NH4

+-N/L, pH 7.5–7.8) [77,78], and 0.2–0.4 g NH3-N/L at
35–38 �C (3.0–5.2 g NH4

+-N/L, pH 7.6–7.9) [10,12,79,80]. At ele-
vated temperature (51–64 �C, pH 7.4–7.9), digester inhibition has
been concluded to commence at 0.6–1.5 g NH3-N/L (2.5–11 g
NH4

+-N/L) [4,81] (calculations of ammonia or total ammonia were
performed using Eq. (1) when required). However, digesters with
ammonia-adapted microbial communities can still maintain oper-
ation at high ammonia concentrations. This adaptation has long
been attributed to the methanogenic community, substantiated
by observations of internal changes in dominant species and com-
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munity shifts correlated to increased ammonia levels [4]. However,
the numerous recent examinations of ammonia-stressed micro-
biomes highlighted in the previous section indicate that microbial
ammonia adaptation should be complemented with development
of a microbial community directing acetate conversion to methane
through SAO. Our hypothesis is that a period of adaptation permits
growth and establishment of the ammonia-tolerant SAOB and
hydrogenotrophic methanogens able to remain active even under
the high-ammonia conditions preceding the threshold for inhibi-
tion. Microbial community analyses of mesophilic processes, com-
bined with determination of methane production pathway,
indicate that the digester disturbance at ammonia levels exceeding
0.15 g NH3-N/L can be a response to an ammonia-induced shift
from acetoclastic methanogenesis to SAO and increased abundance
of SAOB [11,12,68]. These studies, along with many others
[13,16,18,25,35,82–84] have also shown dominance of the hydro-
genotrophic pathway and/or high levels of hydrogenotrophic
methanogens in correlation to high ammonia levels. Based on the
results from several of these studies, the threshold for develop-
ment of SAO as the dominant pathway for acetate conversion
would probably be around 0.14–0.28 g NH3-N/L at 37–38 �C (3.0–
3.3 g NH4

+-N/L, pH 7.5–8). To our knowledge, the actual threshold
for a shift in pathway for acetate conversion in thermophilic
methanogenic digesters has not yet been determined. However,
in a defined thermophilic culture the shift from acetoclastic
methanogenesis to SAO occurred at 0.03–0.05 g NH3-N/L (0.7–
1.4 g NH4

+-N/L, pH 7.0, 55 �C) [48]. Screening analyses of industrial
biogas processes have revealed similar ammonia levels (>0.14 g
NH3-N/L) for dominance of the SAO pathway at mesophilic tem-
peratures, whereas in thermophilic conditions SAO is the main
mechanism for acetate conversion at P0.24 g NH3-N/L (P2.0 g
NH4

+-N/L) [2,13].
Within this context, the issue regarding eventual existence of an

upper ammonia threshold for the functioning of an already
ammonia-adapted process should be addressed. Several studies
have reported a severe decrease in digester function and subse-
quent process failure of ammonia-adapted digesters at levels
above 0.5–1.1 g NH3-N/L (9.2–11.1 g NH4

+-N/L, pH 7.1–7.8, 37–
38 �C) [4,12,69,80]. Similarly to the first appearance of ammonia-
induced digester disruption, this wide span most likely arises from
differences in substrate composition, digester design and operating
parameters, such as HRT and temperature [4]. As with the ammo-
nia levels speculated to induce SAO, the diverse ammonia thresh-
olds for severe inhibition could have a biological cause and could
depend on the possibility for acclimatisation of the prevailing
microbial community, or on the inoculum composition. However,
the frequent dominance of SAO in digesters operating at and
around the ammonia thresholds considered here clearly demon-
strates the high ammonia tolerance of the syntrophic species and
further indicates the importance of the activity of SAO populations
and their interaction with the remaining anaerobic community for
the functioning of the high-ammonia process.

It is conceivable that the actual ammonia level also affects SAO
community structure. Ammonia-induced introduction of SAO and
a concurrent shift in putative acetogenic community has namely
been shown to be succeeded by a second alteration in community
structure after a continuing rise in ammonia during anaerobic
degradation [66,68]. Hypothetically, these dynamics could reflect
microbial adaptations allowing SAO populations with higher
ammonia tolerance to become dominant and thereby continue
processing organic material despite the high ammonia levels.

4.2. Temperature and acetate concentration

Theoretically, SAO becomes energetically favourable at elevated
temperature and acetate concentration [85]. Accordingly, SAO has
appeared as the dominant pathway in a large number of ther-
mophilic methanogenic systems (Table 1), supporting the hypoth-
esis that higher temperature directly enhances the
competitiveness of SAO relative to the acetoclastic pathway. In
addition, temperature has a strong influence on the hydrogeno-
trophic methanogenic community structure [6,16,25,86–89],
which in turn could affect the conditions for SAO. Another impact
factor could of course be the temperature-induced increase in the
NH3 ratio, causing the level to exceed the ammonia threshold for
increased contribution of the syntrophic pathway.

Dominance of SAO and presence of known SAOB in high-
ammonia digesters operating within the mesophilic regime are fre-
quently associated with elevated levels of acetate and propionate
[10–13,27,57,106]. A possible source is direct ammonia inhibition
of acetate- and propionate-degrading microorganisms, although
to our knowledge the impact of ammonia specifically on syn-
trophic propionate communities has not been investigated to date.
Another aspect is conceivably lower acetate conversion efficiency
by SAO communities compared with the acetoclastic methanogens
[45,106]. Accumulation of acetate could subsequently result in
potential decreased propionate conversion rates [107], since the
degradation of propionate follows the route of formation of acet-
ate, carbon dioxide and hydrogen.

There is conflicting information about the influence of acetate
concentration on the dominance of acetoclastic methanogenesis
relative to the SAO pathway in complex microbial communities.
Here, several different factors such as presence and structure of
other acetate-degrading populations, the strains participating in
SAO and the prevailing operating conditions, other than acetate,
probably have a strong influence. Furthermore, SAO communities
might employ a similar strategy to acetoclastic methanogens as
regards acetate levels, i.e. with different types of microorganisms
occupying unique niches based on diversified substrate affinity
and growth rate. This theory is supported by genome-based analy-
ses of T. acetatoxydans indicating a passive rather than an active
acetate uptake system [108]. This species would consequently be
favoured by high acetate concentrations, whereas the SAOB S.
schinkii and T. phaeum, which most likely have active acetate
uptake [109,110], could maintain activity at lower acetate concen-
trations. Increasing acetate concentrations has indeed been shown
to stimulate growth (methane formation rate) in laboratory culti-
vation of defined syntrophic acetate-oxidising cultures at 30–
46 �C. A requirement for a relatively high concentration of acetate
(>25 mM) for methane formation has also been observed in
defined microbial populations in a controlled environment [111].

In thermophilic continuous anaerobic digesters or in batch
assays, SAO has been proposed as the predominant acetate degra-
dation pathway at low acetate levels (0.2–1 mM) [94,112–114].
However favouring of SAO by high acetate concentrations (4–
100 mM) has also been suggested [96,98,101]. In another batch
study at thermophilic conditions, the syntrophic pathway was
shown to dominate during incubation with initial acetate concen-
tration of 250 mM and 6–7 g NH4

+-N/L (0.09–2.67 g NH3-N/L at
55 �C and pH 6.6–8.2), whereas the degradation was directed
through acetoclastic methanogenesis at lower initial acetate levels
(50 mM) [14]. The same research group also reported dominance of
acetoclastic methanogenesis at acetate >1 mM and SAO at lower
acetate levels [115]. The impact of acetate concentration on the
conversion pathway in mesophilic temperature conditions has
been less well examined. However, in long-term acetate-fed che-
mostats (ammonia level not specified) SAO dominated when
0.2 mM acetate was added, whereas acetoclastic conversion was
detected when the digester was fed with 4 mM acetate [90]. Nev-
ertheless, SAO has been proven to be the determinative metabolic
pathway in semi-continuous mesophilic (37–44 �C) digesters with
acetate concentrations ranging from >0.1 to 100 mM [10,12,16,57].



Table 1
Operating conditions and molecular investigations of anaerobic digesters (laboratory- or industrial-scale) and batch/enrichment cultures dominated by syntrophic acetate
oxidation (SAO), verified by labelling experiments.a

Biological
systemb

Ammonia
g NH3-N/L
(g NH4

+-N/L)c

Operating
parameters/experimental set-upd

Microbial community
investigatione

Mesophilic
LS-CF n/a 37 �C, pH 7

Acet: 0.01 g/L
Dilution rate: 0.025/day

Quantitative RT-PCR of mcrA transcripts [90]

IS-CF 4-5.6 g N/L 37–38 �C, pH n/a
VFA: 1.8–2.7 g/L
HRT: 20–25 days

FISH analyses of methanogens [91]

LS-CF 0.6–1.0
(5.5–6.9)

37 �C, pH 7.9–8.0
VFA: 18–30 g/L
HRT: 30 days
OLR: 3 g VS/(L day)

qPCR analyses of methanogens and characterised SAOB, T-RFLP and
clone library analyses of acetogenic communities (fhs gene), illumina
amplicon sequencing of bacterial 16S rRNA genes

[11,68]

Batch n/a 37 �C, pH 7.2–7.4
HRT: 30 days
OLR 1.5 g COD/(L day)

MAR-FISH with 14C-acetate, RNA-SIP with 13C6-glucose and 13C3-
propionate to identify and quantify acetate-utilising communities

[71]

LS-CF 0.07–0.5
(1.5–11)

37 �C, pH 6.5–7.8
Acet: <0.1–16 g/L, prop: <0.1–10
HRT: 26–57 days
OLR: 0.8–3.6 g VS/(L day)

qPCR analyses of methanogens and characterised SAOB [12]

LS-CF with/without TE 0.3–0.5 (3.6) 37 �C, pH 7.9–8.1
Acet: 0.6–3.5 g/L, prop: 0.1–2.2 g/L
HRT: 30 days
OLR: 1.8–2.5 g VS/(L day)

qPCR analyses of methanogens and characterised SAOB [57]

Batch n/a 38 �C, pH 8.1
Acetate: 0.7 g/L

[92]

IS-CF 0.2–0.5
(3.3–4.9)

36–40 �C, pH 7.6–8.0
VFA: 3–13 g/L

qPCR analyses of methanogens and characterised SAOB [13]

IS-CF 0.3–0.4
(2.9-4.6)

37–38 �C, pH 7.9
VFA: 0.6–0.8 g/L

FISH analyses of methanogens [2]

LS-CF 0.2–0.3
(4.2–5.2)

35 �C, pH 7.5
VFA: 1 g/L
OLR 2.2 g VS/(L day)
16–25% SAO contribution

Shotgun sequencing, DNA-SIP with 13C-acetate and FISH-NanoSIMS
analyses of bacterial communities

[15]

LS-CF with/
without TE

0.4–1.5
(5.4–5.8)

37–42 �C, pH 7.9–8.1
Acet: <0.1–3.4 g/L, prop: <0.1–6.3 g/L
HRT: 30 days
sOLR: 2.3 g VS/(L day)

qPCR analyses of methanogens and characterised SAOB, T-RFLP and/or
clone library analyses of bacterial (16S rRNA), acetogenic (fhs gene)
and methanogenic (mcrA gene) communities

[16]

IS-CF 0.4–1.5
(2.4–4.2)

37–40 �C, pH 7.7–8.2
Acet: 0.3–0.5 g/L, prop: 0.005–0.02 g/L
HRT: 21–32 days

Illumina amplicon sequencing of bacterial and archaeal 16S rRNA
genes

[18]

Thermophilic
Acetate enrichment n/a 60 �C, pH 6.5–6.8

Acet: 3 g/L
[93]

Acetate chemostat 60 �C, pH 6.5–6.8
Acet: 0.6 g/L

Microscopic examinations [94]

IS-CF 2.2–2.6 g
N/L

52–55 �C, pH n/a
VFA: 0.2–0.8 g/L
HRT: 15–25 days

FISH analyses of methanogens [91]

Batch n/a 55 �C, pH � 7 [95]
Batch n/a 55 �C, pH 6.8–7.8

Acet: 6 g/L BM
[96]

LS-CF n/a 55 �C, pH 7.2
Acet: 0.1 g/L, prop: 0.07 g/L
HRT: 4 days
OLR 6.25 gCODcr/(L day)

Clone libraries and sequencing of bacterial and archaeal 16S rRNA
genes

[50]

Batch n/a 55 �C, initial pH 5.5
Acet: 6 g/L BM

qPCR analyses of methanogenic (16S rRNA) and acetogenic (acsB and
fhs genes) communities

[97]

Batch n/a 55 �C, pH > 7.5
Acet: 9–12 g/L BM

ARISA of archaeal and bacterial communities; qPCR analyses of
acetogens (acsB and fhs genes)

[98]

LS-CF 0.7–1.0 55 �C, pH 6.7–7.0
Acet: 0.07–0.30 g/L COD,
prop: 0.01–0.14 g/L COD
HRT: 2–4 days

FISH analyses and 16S rRNA gene pyrosequencing of bacterial and
methanogenic communities

[99]

Batch 0.06 (1) 53 �C, pH 7.3
Acet: 1 g/L BM

FISH analyses of archaeal community [100]

Batch 0.09–2.7
(6–7)

55 �C, pH 6.6–8.2
Acet: 15 g/L

qPCR analyses of methanogens [14]

IS-CF 0.2–0.8
(2.0–3.2)

48–55 �C, pH 7.7–8.1
VFA: 1.9–3.8 g/L
HRT: 20–101 days
OLR: 2.5–3.5 g VS/(L day)

qPCR analyses of methanogens and characterised SAOB [13]

(continued on next page)
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Table 1 (continued)

Biological
systemb

Ammonia
g NH3-N/L
(g NH4

+-N/L)c

Operating
parameters/experimental set-upd

Microbial community
investigatione

IS-CF 0.5 (2.0–2.4) 52–55 �C, pH 7.9–8.0
VFA: 0.9–1.8 g/L

FISH analyses of methanogens [2]

LS-CF 0.7–1.0 g NH4
+/L 55–65 �C, pH 6.7–7.1

Acet: 0.06–2.1 g COD/L,
prop: 0.04–0.6 g COD/L
HRT: 2–4 days

454 pyrosequencing of bacterial and archaeal 16S rRNA genes [74]

Batch TAN 1.8 g/L 52 �C, pH 7.7
Acetate: 0.2–6 g/L

Proteome analyses [101]

IS-CF 2.2–3.4 (0.7–1.5) 50–53 �C, pH 8.0–8.4
Acet: 0.05–1.6 g/L,
prop: 0.01–0.2 g/L
HRT: 3–15 days

Illumina amplicon sequencing of bacterial and archaeal 16S rRNA
genes

[18]

n/a indicates not available.
a The following articles also proposed SAO as likely acetate degradation pathway but did not confirm dominance with labelling experiments [3,6,25,27–

35,37,38,72,86,102–105].
b LS-CF laboratory-scale (semi) continuously fed digesters; IS-CF industrial-scale continuously fed digesters; TE addition of trace element mixture including iron.
c TAN total ammoniacal nitrogen.
d Acet – Acetate; VFA – volatile fatty acids; HRT – hydraulic retention time; OLR – organic loading rate; VS – volatile solid; COD – chemical oxygen demand; prop –

propionate; BM – incubation in basal medium containing trace elements and vitamins.
e RT-PCR – reverse transcription PCR;mcrA – methyl coenzyme-M reductase; FISH – fluorescence in situ hybridization; qPCR – quantitative PCR; SAOB – syntrophic acetate

oxidising bacteria; T-RFLP – terminal restriction fragment length polymorphism; fhs – gene encoding formyltetrahydrofolate synthetase; MAR-FISH – microautoradiography
FISH; DNA-SIP – DNA stable carbon isotopic probing; NanoSIMS – nanometer scale secondary-ion mass spectrometry; acsB – gene encoding acetyl-CoA synthase; ARISA –
automated ribosomal intergenic spacer analysis.
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These results contradict acetate concentration as a determinative
factor for SAO dominance in continuous anaerobic digesters. A
mutual operating mode for the digesters studied was instead high
ammonia level (>0.3 g NH3-N/L), emphasising the strong influence
of this parameter on the development of SAO. However, with
regard to the influence of acetate concentration, it is important
to bear in mind that even during nonappearance of acetate accu-
mulation, the acetate formation rate can still be high within the
anaerobic degradation process, as long as it does not exceed the
consumption rate.

4.3. Influence of the methanogenic community structure

Syntrophic microorganisms strictly depend on the structure and
activity of the methanogenic community and its efficiency in
removal of hydrogen and/or formate [23]. Another potentially cru-
cial impact factor is the competition for acetate exerted by the ace-
toclastic methanogens. Consequently, since parameters such as
ammonia inhibition, temperature and acetate concentration
strongly influence the methanogenic community structure, there
is potentially an additional indirect effect on SAOB.

4.3.1. Acetoclastic methanogens
Methanosarcina generally exhibits higher growth rate but

requires acetate concentrations above 1 mM, whereas Methano-
saeta species typically dominate below that range, due to their
higher affinity for acetate [116,117].Methanosaeta sp. have low tol-
erance to specific inhibitors such as fluoroacetate and methyl fluo-
ride, but also to free ammonia and high pH, possibly due to their
restricted metabolic capability to use only the acetoclastic path-
way [116]. Consequently, inhibitors for the acetoclastic methano-
gens most likely induce replacement of Methanosaeta with SAOB
as the main acetate consumers in methanogenic systems. A further
indication of this is that the level of Methanosaeta has been shown
to be negatively correlated to high ammonia concentrations and
dominance of SAO in biogas digesters [13,91].

The link betweenMethanosarcina and SAO is somewhat compli-
cated. This methanogenic group can possibly act as a hydrogen
scavenger [116] and their presence has been frequently reported
at relatively high levels in investigations of several SAO-
dominated processes and occasionally at relatively high ammonia
levels [6,11,12,16,29,50,57,73,91,96]. In thermophilic batch culti-
vations Methanosarcina has actually been demonstrated to be able
to catalyse acetoclastic methanogenesis even under high ammonia
stress [115]. However, possible acetoclastic activity in long-term,
continuously operating systems requires further research. In
large-scale industrial digesters, the abundance of Methanosarci-
naceae has been found to be negatively correlated with total
ammonia concentration [22] and SAO dominance [13]. Another
theory explaining the high abundance of Methanosarcina species
in SAO-dominated systems is that they are able to mediate the
entire process, i.e. both acetate oxidation and subsequent
methanogenesis [57,91].

Interestingly, Methanosaeta and Methanosarcina have recently
been demonstrated to accept electrons via direct interspecies elec-
tron transfer (DIET) in reduction of carbon dioxide to methane
[118,119], which raises the possibility that SAO does not exclu-
sively proceed via diffusion of electron carriers (hydrogen and for-
mate) and that Methanosaeta could also be involved in SAO.

4.3.2. Hydrogenotrophic methanogens
A critical trait of a partner methanogen is the ability to maintain

a sufficiently low hydrogen or formate concentration to make bac-
terial acetate oxidation thermodynamically feasible. The hydrogen
partial pressure is thereby restrained within a low, narrow range
[85], which has been and experimentally determined to range
between 10–50 Pa [120,121] and 1.6–6.8 Pa [122] in thermophilic
and mesophilic conditions, respectively. The acceptance of higher
H2 partial pressure for the implementation of SAO under ther-
mophilic temperatures hypothetically includes Methanosarcina
species as possible hydrogenotrophic partners at these higher tem-
peratures. Certain species belonging to the mixotrophic Methano-
sarcina are able to reduce the H2 partial pressure to >10 Pa.
Methanogens more specifically specialised to use H2 and CO2 for
growth cease oxidation of H2 at slightly lower partial pressures,
around 1–10 Pa [123], which is required for SAO at lower temper-
atures. Under pure culture conditions the methanogenic partners
identified for SAO in thermophilic conditions have so far included
Methanobacterium sp. and M. thermautotrophicus [39,40,121]. In
thermophilic SAO digesters, Methanomicrobiales and Methanobac-
teriales (Methanothermobacter) are reported to be the dominant
hydrogenotrophic methanogens [2,50,74,98]. Methanomicrobiales
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and Methanobacteriales are likewise highly abundant in mesophilic
SAO-dominated digesters [2,15]. In particular, Methanoculleus spe-
cies [27,90] and Methanoculleus bourgensis have been emphasised
as possible methanogenic partners in mesophilic SAO digesters
[12,16,69,106]. M. bourgensis is reported to be the partner metha-
nogen in SAO under pure co-cultivation in mesophilic conditions
[42–44]. Adequate ammonia tolerance combined with high affinity
for hydrogen may be the cause of M. bourgensis dominance in such
conditions [124].
5. Deliberate operating strategies for SAO-mediated processes

The following section present examples of studies examining
the impact of operating parameters, such as retention time, tem-
perature, addition of trace elements and bioaugmentation, on syn-
trophic community structure and on the performance of SAO-
mediated anaerobic digestion. The objective is to promote process
optimisation through considering the activity and growth of this
key microbial community.
5.1. Retention time, support material and organic loading

To avoid washout of the consortium, the operating solid reten-
tion time is recommended to exceed the microbial doubling time,
which is worth considering in processes where methane formation
is directed through SAO. The doubling time of acetoclastic metha-
nogens, experimentally determined to be about 8–36 h and 1–
9 days for Methanosarcina and Methanosaeta, respectively [125],
can be compared with the 28 days obtained in cultivation of
defined syntrophic acetate oxidising co-culture at 37 �C (initial
acetate concentration 50 mM) [122]. Thermophilic SAO cultures
have, however, displayed shorter doubling times of around 1.3–
3 days (55–60 �C; initial acetate concentration 40–80 mM) [45],
which indicates that the growth rate of certain SAO cultures could
exceed the growth rate of Methanosaeta.

Increased HRT and immobilisation of microorganisms are pro-
posed preventative actions against ammonia inhibition [3,4].
Accordingly, the relatively slow growth of the syntrophic co-
cultures indicates that, in certain conditions, this would probably
increase the prospects for establishment of the syntrophic
microbes. However, there is a wide disparity in HRT in digesters
in which SAOB have been detected. Species taxonomically related
to S. schinkii have been observed in continuous biogas digesters
operating at HRT ranging from 17 to 130 days, whereas C. ultu-
nense, T. acetatoxydans and P. lettingae have been detected at HRT
between 24–64, 24–101 and 40–60 days, respectively [6,11–13,1
6,17,51,55,57]. Bacteria related to C. ultunense, T. phaeum and S.
schinkii have also been detected in the methane-producing digester
of a two-stage system operating with a retention time of 8 days
[29]. In thermophilic conditions (55 �C) and at low ammonia levels,
successful operation of a SAO-dominated process may even be
achievable at HRT down to 3 days [99]. Inclusion of support mate-
rial or the formation of granular sludge, flocks or biofilms most
likely support SAOB, since they can survive in the digester despite
slow growth, but also since the distance between the bacteria and
the hydrogen-consuming methanogen is reduced, which facilitates
interspecies hydrogen transfer [108] or possibly DIET [126].
Accordingly, T. phaeum has been identified in a thermophilic
upflow anaerobic filter reactor and biofilms with HRT of 1.6–
21 days [49,53]. Overall, however, although HRT may be a decisive
factor for development of SAO, other operating parameters such as
digester configuration (e.g. recycling of digester sludge, presence of
support material) and environmental conditions (e.g. ammonia
concentrations and temperature) probably also have an influence.
The organic loading rate (OLR) is another important operating
parameter in this context. OLR is known to impact on acetoclastic
methanogenic structure [6,15,27,69,116], which possibly alters the
conditions for SAO. OLR has also been revealed to influence the
acetogenic community structure and population abundances,
including that of potential SAOB, in biogas digesters operating
under high ammonia and mesophilic conditions [69]. This suggests
that operating parameters such as OLR influence the ability of dif-
ferent populations to grow and remain active within the anaerobic
system. Consequently, promotion of highly efficient SAO popula-
tions could enable management to optimise biogas production
(such as increased loading rate) even in high-ammonia digesters.
5.2. Addition of trace elements and iron oxides

In addition to high ammonia concentrations, the degradation of
protein-rich substrates can also result in prevalence of high sul-
phide levels, which cause formation of metal-sulphide precipitates
and thereby decrease the bioavailability of essential trace elements
[7]. Addition of trace elements may therefore be considered excep-
tionally beneficial in the anaerobic degradation of protein-rich
materials. Inclusion of iron in the trace element additive may also
enhance the positive effects, since sulphide precipitation of trace
metals is constrained, due to the primary removal of sulphide by
the iron [3,7]. Furthermore, presence of conductive iron oxides
(e.g. magnetite and hematite) has been shown to accelerate syn-
trophic oxidation of acetate and propionate to methane in metha-
nogenic sludge [73,127,128]. This suggests that supplementation
with iron particles may be an interesting approach for possible
acceleration of VFA degradation and performance improvements
in high-ammonia digesters.

Addition of trace elements to high-ammonia mesophilic diges-
ters (>3.0 g NH4

+-N/L; 0.14 g NH3-N/L at 35–37 �C), dominated
[16,57], or indicatively dominated [19] by the SAO pathway has
been shown to substantially increase methane yield and restrict
VFA accumulation. The level and composition of the trace element
additive required for process optimisation depend on substrate and
operating conditions. However, in high-ammonia, and therefore
most likely SAO-dominated, industrial commercial biogas produc-
tion systems, sufficient bioavailability of cobalt (0.5 mg/L) and
nickel (0.2 mg/L) has been proven to be highly important for good
performance of the processes [129]. Ortner et al. [130] suggested
considerably higher levels of bioavailable cobalt (15.7 mg/L) and
nickel (7.1 mg/L), combined with molybdenum (3.2 mg/L) for opti-
mum process performance. However, using such high levels would
obstruct the use of the digestion residue as a fertiliser on arable
land.

Surprisingly, quantitative analyses have demonstrated compa-
rable [57] or lower abundance [16] of known SAOB in digesters
with a trace element additive, despite persistent dominance of
SAO. In Karlsson et al. [57], Methanosarcinales was found to be
the methanogenic group most favoured by trace element addition.
Banks et al. [19] observed high abundance ofMethanomicrobiales in
high-ammonia digesters whether trace element was added or not.
In Westerholm et al. [16], a methanogenic community charac-
terised by a high proportion of M. bourgensis, with high population
richness, was suggested as a resilient promoter for the enhanced
performance of the digester receiving a trace element additive.
The high hydrogen affinity of M. bourgensis have been mentioned
previously in this review and comparable lower hydrogen partial
pressure was also revealed in the high-performing trace element
supplemented digester [16]. Interestingly, the response within
the M. bourgensis structure has been shown to differ depending
on the composition of the trace element additive [131]. Since low
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hydrogen level is of particular importance in SAO-mediated anaer-
obic degradation, a change in hydrogen-utilising community struc-
ture, and thereby the prevailed hydrogen partial pressure, could
possibly have a major impact in such systems.

5.3. Temperature

Elevated temperature extends the window of opportunity of
SAO, meaning that the level of hydrogen or formate does not need
to be reduced as much as is required at lower temperature. Conse-
quently, methanogenic communities that remove hydrogen/for-
mate less efficiently can act as SAO methanogenic partner.
Hypothetically, such communities could exhibit higher growth
rates and consequently allow operation at shorter HRT without
digester disturbance compared with the methanogenic communi-
ties prevailing in mesophilic systems. Nevertheless, since higher
temperature increases the proportion of NH3, thermophilic diges-
ters commonly allow operation at lower loads of nitrogen-
containing materials, compared with mesophilic digesters. For that
reason, several Swedish commercial biogas plants have reduced
the operating temperature from 55 to 52 �C in order to enable
functional operation (Malmros P., Uppsala Vatten AB and Moest-
edt, J., Tekniska Verken AB, personal communications).

Within the thermophilic spectrum, increasing the temperature
from 55 �C to 65 �C has been shown to increase the contribution
of methane generation via SAO from 60% to 100% [74]. Digester
operation at somewhat enhanced mesophilic temperature of
around 42–44 �C, with the aim of accelerating acetate conversion
without excessively enhancing the ammonia ratio, suggests poten-
tial for improved functionality of SAO-dominated processes. This
has proven to be a management strategy with a positive impact
on high-ammonia digester performance (12% increased methane
yield) during degradation of sulphur- and nitrogen-rich thin stil-
lage [6]. In contrast, processing household waste in co-digestion
with albumin at high ammonia at 42 �C instead of 37 �C had no,
or even a negative, impact on performance of SAO digesters, oper-
ating with or without trace element addition [16].

5.4. Bioaugmentation

Continuous bioaugmentation of a natural mesophilic biogas-
producing consortium by a defined SAO culture, comprising C. ultu-
nense, S. schinkii and T. acetatoxydans and the hydrogenotrophic M.
bourgensis sp. MAB1 has been assessed as a possible method to
accelerate the adaptation period to gradually increasing ammonia
levels [12]. Bioaugmentation had no significant effect on the abun-
dance of S. schinkii, whereas elevated levels of C. ultunense and T.
acetatoxydans were observed. However, the endogenous SAOB
community rapidly increased in abundance in association with a
shift from acetoclastic to acetate-oxidation (at >0.2 g NH3-N/L), in
the control digesters without bioaugmentation. Consequently,
under the conditions studied, the abundance of SAOB did not
appear intermediate for development of SAO as the dominant
pathway for methane formation. Instead, this result indicates
strong dependence on certain operating condition(s), most likely
high ammonia concentration, high acetate concentration and/or
the methanogenic community structure, for the dynamic transition
to SAO, with concurrent increased abundance of the microorgan-
isms involved [12]. In another study, bioaugmentation with C.
ultunense and M. bourgensis sp. MAB1 was reported to have no
observable impact on the microbial community or the function of
a mesophilic, high-ammonia upflow anaerobic sludge blanket
(UASB) reactor [132]. Instead, addition of a pure methanogenic cul-
ture (M. bourgensis, strain MS2T) has been proposed to successfully
enhance methane yield and increase the abundance of this species
in an ammonia-stressed continuous biogas digester [133]. This
provides additional evidence of the importance of M. bourgensis
(discussed in the previous section) for optimised performance of
SAO-dominated mesophilic processes.

6. Conclusions

The current intense discussion about global warming empha-
sises the need for efficient production of renewable energy. The
formation of biogas from protein-rich biological material is advan-
tageous in several regards, but the issues related to ammonia inhi-
bition demand deliberated process operating strategies. High
ammonia level directs the methanisation of acetate through the
SAO pathway and ammonia-induced adaption of the biogas-
producing consortium has been shown to involve dynamically
changing microbial communities (including SAOB, acetogens and
methanogens). A well-adapted process can cope with substantially
higher ammonia levels than an unadapted process, an effect most
likely associated with the capacity for development of an
ammonia-tolerant microbial community that efficiently degrades
acetate through the syntrophic pathway. Besides high ammonia
level, acetate concentration, temperature and methanogenic com-
munity structure are also factors believed to shape and influence
SAO-mediated microbial ecosystems.

Commercial biogas production may sometimes be on the border
of economic feasibility and improved biogas yield, stabilisation of
digester operation and increased value of the residual product
would considerably increase interest in construction of commer-
cial biogas plants. HRT, addition of trace elements, temperature
and bioaugmentation are operating parameters that have been
researched as strategies to improve the SAO process. Acetate con-
version, mainly directed via SAO, has been demonstrated in diges-
ters operating under a wide range of HRT. To our knowledge, no
published study has so far considered HRT as a sole factor, which
obstructs analyses of its influence on the syntrophic pathway.
However, microorganisms involved in SAO are clearly able to
remain active and competitive at a wide range of HRT. Recent
high-ammonia studies regarding the impact by OLR and addition
of trace elements indicate the potential to direct, create and man-
age microbial communities to optimise process performance. In
line with this, both OLR and addition of trace elements have been
shown to influence methanogenic and acetogenic community
structures, including potential SAOB. Operation at higher tempera-
ture increases the probability of SAO development, possibly due to
thermodynamic favouring of SAO by the higher temperature, and
increased NH3 ratio and successive inhibition of the acetoclastic
methanogens competing for acetate. Bioaugmentation with syn-
trophic co-cultures does not facilitate the dynamic transition from
acetoclastic methanogenesis to SAO, whereas addition of M. bour-
gensis improves adaptation to gradually increased ammonia in
mesophilic conditions.

Considering the functional importance of syntrophic bacteria in
methanogenic systems, increased knowledge of these populations
is essential for forecasting process failures and for devising strate-
gies for process optimisation. Next-generation sequencing tech-
nologies enable characterisation of complex microbial
communities and, considering the rapid development within this
area, the potential for targeting low-abundance populations, such
as syntrophic communities, will increase. This area thereby holds
great potential to expand knowledge of the influence of factors
such as availability of nutrients, temperature and ammonia level,
and consequently allow for more perceptive predictions of their
behaviour in ecosystems. However, just as in interpretation and
description in all microbial ecology, the challenge is of course to
correlate the genetic data with functional traits. Analyses of the
recently published genomes of C. ultunense, T. phaeum, S. schinkii
and T. acetatoxydans could provide insights into functional genes
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that can be related to the metabolic commitment, and enable infer-
ence of syntrophic entities present and their function within the
community.
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