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Abstract

Syntrophaceticus schinkii is a mesophilic, anaerobic bacterium capable of oxidising acetate

to CO2 and H2 in intimate association with a methanogenic partner, a syntrophic relationship

which operates close to the energetic limits of microbial life. Syntrophaceticus schinkii has

been identified as a key organism in engineered methane-producing processes relying on

syntrophic acetate oxidation as the main methane-producing pathway. However, due to

strict cultivation requirements and difficulties in reconstituting the thermodynamically unfa-

vourable acetate oxidation, the physiology of this functional group is poorly understood.

Genome-guided and whole transcriptome analyses performed in the present study provide

new insights into habitat adaptation, syntrophic acetate oxidation and energy conservation.

The working draft genome of Syntrophaceticus schinkii indicates limited metabolic capaci-

ties, with lack of organic nutrient uptake systems, chemotactic machineries, carbon

catabolite repression and incomplete biosynthesis pathways. Ech hydrogenase, [FeFe]

hydrogenases, [NiFe] hydrogenases, F1F0-ATP synthase and membrane-bound and cyto-

plasmic formate dehydrogenases were found clearly expressed, whereas Rnf and a pre-

dicted oxidoreductase/heterodisulphide reductase complex, both found encoded in the

genome, were not expressed under syntrophic growth condition. A transporter sharing simi-

larities to the high-affinity acetate transporters of aceticlastic methanogens was also found

expressed, suggesting that Syntrophaceticus schinkii can potentially compete with metha-

nogens for acetate. Acetate oxidation seems to proceed via the Wood-Ljungdahl pathway

as all genes involved in this pathway were highly expressed. This study shows that Syntro-

phaceticus schinkii is a highly specialised, habitat-adapted organism relying on syntrophic

acetate oxidation rather than metabolic versatility. By expanding its complement of respira-

tory complexes, it might overcome limiting bioenergetic barriers, and drive efficient energy

conservation from reactions operating close to the thermodynamic equilibrium, which might

enable S. schinkii to occupy the same niche as the aceticlastic methanogens. The
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knowledge gained here will help specify process conditions supporting efficient and robust

biogas production and will help identify mechanisms important for the syntrophic lifestyle.

Introduction

Large-scale production of bio-methane through anaerobic degradation (AD) of organic matter

is an alternative sustainable energy source suitable for replacing fossil vehicle fuels and for

delivering heat and electricity. Many European countries envisage bio-methane as the means

to increase the amount of renewable energy in order to meet the European Union 20-20-20

goals (http://www.iea-biogas.net/country-reports.html).

In order to operate biogas plants economically and avoid competition with food and feed

production, interest in using alternatives to energy crops has grown dramatically. In particular,

protein-rich feedstocks such as slaughterhouse waste, distiller’s grain and organic food waste are

receiving great attention, since they have high methane yield potential and result in a biogas

digestion residue that is rich in plant-available ammonium. However, when proteinaceous

materials are used, ammonia is released continuously and this has a direct impact on the prevail-

ing methane production pathway, with consequences for process stability and efficiency [1–3].

Acetate, formate, H2 and CO2 are the main intermediate products of AD and the methano-

genic substrates [4]. Two mechanisms for acetate conversion to methane have been described:

Aceticlastic methanogenesis performed by members of the generaMethanosarcina andMetha-
nosaeta, which comprises direct cleavage of acetate to methane and CO2 [5, 6], and syntrophic

acetate oxidation (SAO), performed by intimate cooperation between acetate-oxidising bacte-

ria (SAOB) and H2/formate-consuming methanogens [7–9]. The direct consumption of H2 by

hydrogenotrophic methanogens drives the thermodynamically unfavourable acetate oxida-

tion:

CH3COO� þ Hþ þ 2H2O! 2CO2 þ 4H24Go‘ ¼ þ95 kJ per mol rct:

4H2 þ CO2 ! CH4 þ 2H2O 4Go‘ ¼ � 131 kJ per mol rct:

CH3COO� þ Hþþ ! CH4 þ CO24Go‘ ¼ � 35 kJ per mol rct:

Aceticlastic methanogenesis is thermodynamically more favourable [10], but is strongly

inhibited by high ammonia concentrations [11, 12], ceding the advantage to the less thermody-

namically favourable SAO [13–15]. Other factors such as dilution rate, acetate concentration,

methanogenic population and CO2 partial pressure have also been shown to influence the

methanogenic pathway from acetate [16–23].

Syntrophic acetate oxidation (SAO) has been identified in constructed biogas reactors [14,

15, 19, 24, 25], but also in a wide range of natural anaerobic environments such as rice paddy

soil, subtropical lake sediment, oil reservoirs and nutrient-enriched soils [21, 26–31]. This

emphasises the dual nature of this process as a controlled waste treatment contributing to

renewable ‘green’ energy production on the one hand, and as a potential driver of greenhouse

gas emissions from natural habitats on the other.

The phylogenetically diverse SAOB are poorly understood and strict cultivation require-

ments and difficulties in reconstituting the thermodynamically unfavourable SAO process

under laboratory conditions prevent comprehensive investigation of their metabolism. Only

two thermophilic (Pseudothermotoga lettingae, Thermacetogenium phaeum) and three meso-

philic representatives (Tepidanaerobacter acetatoxydans, Clostridium ultunense, Syntrophaceti-
cus schinkii) have been characterised [32–36], all isolated from engineered biogas processes.
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Heterotrophic cultivation experiments and enzyme activity studies affiliate the majority of the

SAOB to the physiological group of acetogens [37, 38], which have the Wood-Ljungdahl path-

way (WL) as a common metabolic feature. Two possible pathways have been suggested for

SAO: i) Enzyme activity studies using crude cell extract and genome analysis indicate involve-

ment of the reversed WL pathway in syntrophic acetate oxidation in the case of T. phaeum and

C. ultunense [37, 39, 40]. In the case of T. acetatoxydans, the genome harbours a truncated WL

pathway, organised in one operon, but the lack of ATP synthase does not favour the use of a

reversed WL pathway [41, 42]. ii) An alternative pathway is supposed to circumvent the car-

bonyl branch of the WL pathway by combining the glycine cleavage system with the methyl

branch of the WL pathway, as suggested for a terephthalate-degrading Mesotoga community,

and the thermophilic SAOB P. lettingae [43], however more experimental data are needed to

further support this route.

In the case of S. schinkii very less is known about the metabolic machinery employed for

syntrophic acetate oxidation. A previous genetic study revealed the presence and expression of

the formyltetrahydrofolate synthetase gene, however this is a key enzyme of both suggested

SAO pathways [44]. However, very recently a draft genome sequence of S. schinkii became

available [45]. Therefore, the aim of the present study was to reveal metabolic features related

to SAO, energy conservation and syntrophic interactions of the mesophilic SAOB S. schinkii,
the most abundant and enduring SAOB found in high-ammonia and also low-ammonia meso-

philic large-scale and laboratory-scale biogas processes [15, 25, 46] by performing genome-

guided analysis of physiological and metabolic traits and transcriptome profiling of SAO co-

cultures using next-generation sequencing (RNA seq).

Materials and Methods

Genome sequencing, annotation and analysis of physiological and

metabolic capacities

Cell growth conditions and isolation of total DNA were as described by [35]. The genome of S.

schinkii was sequenced at the SciLifeLab Uppsala, Sweden, using Ion Torrent PM systems with

a mean length of 206 bp, longest read length 392 bp and a total of final library reads of

2,985,963 for single end reads. Information about genome sequencing and assembly, genome

annotation and genome properties such as number of contigs and scaffolds, sequencing cover-

age, and gap closing information are described in detail in [45]. All CDSs predicted by avail-

able tools in the Magnifying Genome (MaGe) pipeline were translated and used to search the

National Center for Biotechnology Information (NCBI) non-redundant database and the Uni-

Prot, TIGRFam, Pfam, PRIAM, KEGG, COG and InterPro databases using the Basic Local

Alignment Search Tool for Proteins (BLASTP). Manual searches and annotation were per-

formed using the same tools in MaGe [47]. The transporter database (TCDB;http://www.tcdb.

org) [48] was used to identify all transporters in the genome of S. schinkii. Twin-arginine trans-

port signal sequences were predicted by the TatP server at http://www.cbs.dtu.dk/services/

TatP [49]. Identification numbers given in the text for individual genes are MaGe locus tag

numbers, which can be used to search for genes on the MaGe website. Comparative analysis of

S. schinkii Sp3 and T. phaeum was performed using a set of tools available in EDGAR (Efficient

Database framework for comparative Genome Analyses using BLAST score Ratios) [50].

Transcriptomic analysis

mRNA was purified from three acetate-oxidising co-cultures including S. schinkii Sp3 and

Methanoculleus bourgensis MAB1, after 30 to 50% of the initially added 100 mM acetate was
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consumed. Medium preparation and cultivation conditions were as described by [8, 42]. 3g/L

ammonium chloride were added. At first, total RNA was purified using the ZR Soil/Fecal RNA

Kit from Zymo Research (Irvine, CA, USA) according the manufacturer’s instructions with

the following modifications: The lysis buffer was replaced by 1 mL TRizol1 reagent (Ambion,

Thermo Fisher Scientific, Waltham, MA, USA) and 0.2 mL chloroform. The respective centri-

fugation step was extended to 10 min at 4˚C. Depletion of ribosomal RNA was conducted

using Ribo-Zero rRNA Removal Kit for bacteria (Illumina, San Diego, CA, USA) following the

manufacturer’s manual. Quantity and quality of total RNA and depleted RNA samples were

assessed using a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). Single-end

sequencing was performed by Uppsala Genome Center (Uppsala, Sweden) using Ion Proton

technology in duplicates. Raw 85-bp (mean read length) RNA-seq reads were mapped to the

working draft genome of S. schinkii strain Sp3 (CDRZ01000000) using STAR 2.5 [51]. Each

mapped read was associated with an ENSEMBL gene. htseq-count script was used to count

the number of reads mapped to each gene/feature [52]. After raw data quality control and pre-

processing, the total number of reads from triplicated co-cultures and technical duplications

were 2,4364,534, 9,280,101, 32,281,907, 23,596,991, 23,588,408, and 22,665,529, respectively.

Thereof 7,294,53 (2.99%), 1,515,15 (1.63%), 17,218,75 (5.33%), 13,966,61 (5.92%), 2,838,00

(1.20%), 3,354,74 (1.48%) number of reads could be mapped against S. schinkii genome. Gene

counts were length normalized and the FPKM values (fragments per kilobase of transcript per

million mapped reads, log2 expression) relatively to a housekeeping (HK) gene (gyrA) were

calculated. FPKM values are represented as mean values with standard deviation. The sequenc-

ing data obtained were submitted to ArrayExpress and have been affiliated to accession num-

ber E-MTAB-4310.

Results and Discussion

Phenotypic features of Syntrophaceticus schinkii

Sporulation, oxidative stress response, motility and chemotaxis mediate flexibility to changing

environmental conditions, oxygen traces and nutrient depletion. S. schinkii might have the

ability to tolerate small amounts of oxygen, since besides manganese catalase and rubrerythrin

encoding genes [45] the genome harbours a superoxide dismutase gene (SSCH_220034). It has

also been shown to survive starvation and environmental stress by forming endospores [35]. A

total of 38 genes were assigned to sporulation-specific functions (S1 Table) including the mas-

ter regulator Spo0A, and the sporulation-specific sigma factors SigE, K and F [45]. In contrast

to other SAOB, S. schinkii appears to be restricted in chemotactic manoeuvres due to lack of

any flagellum-related genes and the basic chemotaxis machinery CheA/CheY [reviewed in

[53]]. However, we found evidence in the genome that S. schinkii is potentially able to move by

gliding using fimbrial structures, since the genome encodes a type IV pilus apparatus consist-

ing of PilC/T/B/D/M and FimT (SSCH_700002–19; S1 Table). Type IV pili mediate twitching

and gliding motilities (reviewed in [54]) by generating a retractable force performed by the

ATPase PilT, which enables the cells to move [55, 56]. Type IV pilus retraction is also indis-

pensable for biofilm formation and transformation and is related to phage sensitivity. The

PilB/PilC operon (SSCH_700018–19) encoding the inner membrane core protein and the

assembly ATPase was found to be clearly expressed under SAO conditions (S1 Fig). A putative

second cluster including a PilT homologue (SSCH_60043–51; S1 Table) was predicted else-

where in the genome, which genes were partly expressed too (S1 Fig). It has also been shown

that pili have a direct role in electron transfer for Geobacter species by forming microbial

nanowires from a protein subunit that has high homology to the type IV protein, pilA [57]. In

S. schinkii, two ORFs have been predicted as putative type IV pilin PilA family proteins with
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the conserved amino-terminal amino acid characteristics of type IV pilins (SSCH_1170015,

SSCH_700017). The identities of these ORFs to the Geobacter homologs are below 30%, but

they also share less sequence coverage and identity to pilin related proteins in general as it is

the case for Geobacter pilA homologs (Blastp, [58]).

A further unique trait, which has not been reported for other SAOB, is the potential

ability to perform quorum sensing (QS) using a LuxI/LuxR-type QS circuit that expresses

and monitors acylated homoserine lactones, also called autoinducer 1, which is usually

found in Gram-negative bacteria (reviewed in [59]). Acyl-homoserine-lactone synthase LuxI

(SSCH_1110008), at least three LuxR-related transcriptional regulator (SSCH_1220017,

SSCH_170030, SSCH_170036) and two acyl-carrier proteins (SSCH_1110009, SSCH_190038),

which deliver acyl groups to the synthase, were found encoded in the genome. Bacteria use QS

to track changes in their cell numbers and collectively alter gene expression, which enables

cooperative behaviour correlated to virulence, biosynthesis of secondary metabolites and bio-

film formation [59]. S. schinkii might use this trait to coordinate activities that are beneficial

when performed together, such as attracting the methanogenic partner, forming flocs and/or

biofilms and synchronising metabolism in order to initiate syntrophy. Two of the putative

LuxR-related transcriptional regulators (SSCH_170030, SSCH_170036) as well as both of the

acyl-carrier proteins (SSCH_1110009, SSCH_190038) were found to be expressed (S1 Fig). A

weak expression was found for the acyl-homoserine-lactone synthase LuxI (SSCH_1110008,

S1 Fig).

Corresponding to the moderate growth temperatures (between 25 and 40˚C), the genome

encodes the heat shock proteins Hsp20 (SSCH_540016, SSCH_1060017), GrpE (SSCH_170005),

GroEL and GroES (SSCH_160020/21; SSCH_1380009/10/11) and a Clp protease (SSCH_80029/

30). T. acetatoxydans, which can cope with temperatures up to 55˚C, and T. phaeum, which

grows between 40 and 65˚C, have with seven [40] and eight [42] different Hsp genes (GroL,

GroS, GroEL, DnaJ, DnaK, ClpB, GrpE and Hsp20), respectively, a comparatively higher num-

ber. Heat shock proteins Hsp20 (SSCH_1060017), GroES (SSCH_160020/21; SSCH_1380009/

10/11), GroEL (SSCH_160020/21), and the Clp protease (SSCH_80029/30) were found to be

part of the stress response under syntrophic growth conditions at 37˚C (S2 Fig).

Another characteristic of the SAOB is their extremely high tolerance to ammonia [38, 46].

This ammonia resistance has been suggested to be the most selective factor for establishing

SAO, due to the intrinsic osmosensitivity of aceticlastic methanogens to ammonia [11, 12]. S.

schinkii, T. acetatoxydans and C. ultunense have even been shown recently to tolerate free

ammonia concentrations up to 1 g/L in a gradually adapted laboratory-scale reactor [60]. A

previous genome-scale analysis predicted five potential mechanisms preventing NH4
+/NH3-

induced osmotic stress in the case of T. acetatoxydans [42]. These included I) a common adap-

tive response as known for Gram-positive bacteria [61] involving rapid potassium uptake

through potassium channels followed by II) accumulation of a compatible solute such as beta-

ine, proline or glutamate, III) individual characteristics such as the lack of ammonium trans-

porters and IV) the lack of the high affinity GS/GOGAT (glutamine synthetase/glutamate

synthase) machinery for ammonium assimilation and V) the presence of potential Na+/H

+ antiporters and V-type ATPases. A similar genotype was found for S. schinkii: Genes coding

for two putative potassium uptake proteins (SSCH_1280005–6; SSCH_1770011–12; S2 Table),

and two betaine/carnitine/cholin transporters (SSCH_450002; SSCH_450006) and one beta-

ine/glycine ABC transport system (SSCH_560019–23; S2 Table) might enable an adaptive

response. However, none of these uptake proteins was found expressed under the conditions

analysed (Fig 1). Instead, four transporters sharing identities with a MFS (major facility super-

family) transporter (SSCH_1440003), a Ca2+/cation antiporter (SSCH_870015), a Na+ pyro-

phosphate energised pump (SSCH_1440001) and an unclassified ABC transport system
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(SSCH_1220014–15) were expressed and might play a role in osmotic stress response (Fig 1).

As in T. acetatoxydans, the genome of S. schinkii lacks glutamine synthetase and putative

ammonium transporters (BlastP search using reference sequences of the Amt/MEP/Rh ammo-

nium transporter family [62]). The absence of glutamine synthetase gene might prevent a

depletion of ATP, as expression of the low NH4
+ affinity glutamate dehydrogenase, that is

present in the genome of both T. acetatoxydans and S. schinkii (SSCH_1640002) does not

Fig 1. Bar graph showing the FPKM values of genes related to transport systems. SST, solute sodium transporter; FNT, formate/nitrite

transporter; MIT, metal ion transporter; MFS, major facility superfamily transporter; CaCA, Ca2+/cation antiporter; Na+PPase, Na+ pyrophosphate

energised pump; ABC, ATP-binding cassette transporters.

doi:10.1371/journal.pone.0166520.g001
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function of the expense of ATP [42]. It has also speculated for T. acetatoxydans that the depen-

dence on amino acid rich environments, might support a glutamate dehydrogenase function

in detoxification rather than in ammonium assimilation [42]. The absence of ammonium

transporters might protect the cells from redundant ammonium influx and might also explain

why S. schinkii likewise to T. acetatoxydans has not been detected in ammonium–limited envi-

ronments. A similar genotype has been described for the methanogenic partner organism

Methanoculleus bourgensis MAB1 and for the type strainM. bourgensis MS2, whose genomes

also lack genes related to ammonium transporter, but encode diverse potassium and osmolyte

uptake systems [63, 64]. V-type ATPases suggested to support T. acetatoxydans in maintaining

pH homeostasis [42] were not found in the genome of S. schinkii.

Metabolic features of Syntrophaceticus schinkii

S. schinkii obviously lacks active organic nutrient uptake systems, which could explain the

extremely narrow substrate spectrum observed [38] and also indicates a very specialised

metabolism (Fig 2).

Altogether, the genome contains 123 genes affiliated to 65 potential transport systems (S2

Table). A noteworthy finding was that apart from a few ion/solute transporters, only ATP

binding cassette (ABC) transport systems are predicted to shuffle solutes across the membrane.

S. schinkii does not harbour genes related to tripartite ATP-independent transporter (TRAP)

or to the sugar phosphoenolpyruvate:phosphotransferase system (PTS), although both have

been found in the SAOB T. acetatoxydans in high numbers [42]. The ABC transport systems

are predicted to mainly transport trace elements such as Ni, Co, Mn, Zn, Mo and Fe, as well as

amino acids (Fig 2, S2 Table). Only three of these are potential carbohydrate uptake systems.

The predicted Ni/Co ABC transporter (SSCH_38008–10) and a putative metal ion transporter

(MIT family, SSCH_1320004) were found expressed in the syntrophic co-culture (Fig 1) and

might be involved in providing metal ions as cofactor to hydrogenases and carbon monooxide

dehydrogenase.

S. schinkii strain Sp3 has been isolated as a heterotrophic organism utilising fermentation

end products such as ethanol, lactate and betaine by forming acetate [38]. The genome har-

bours all enzymes needed for a functional WL pathway (see also detailed description in the

section “Acetate oxidation”). Therefore, ethanol, betaine and lactate fermentation to acetate

can potentially be linked to CO2 reduction via the WL pathway, as has been observed for the

acetogens Clostridium formicoaceticum and Acetobacterium woodii when utilising lactate

and ethanol, respectively [65, 66]. However, S. schinkii needs several months for doubling

the cell number [38], whereas the reported doubling time for C. formicoaceticum on lactate

and for A. woodii on ethanol is 5 h and 10 h, respectively. Ethanol degradation most likely pro-

ceeds via acetaldehyde using NAD+-dependent acetaldehyde and ethanol dehydrogenases

(SSCH_320003, SSCH_1440007, SSCH_410009, SSCH_1120010) producing acetyl-CoA (Fig

2). Lactate degradation seems not to proceed via lactate dehydrogenase activity, since no ORF

was predicted to encode this function. Pyruvate synthase (product of SSCH_330012–14,

SSCH_480001–3) and pyruvate:formate lyase (product of SSCH_870024–25) for converting

pyruvate to acetyl CoA and CO2 are present. One of the two clusters coding for the putative

selenocysteine-containing glycine/betaine reductases [45] was found expressed (S3 Fig). These

enzymes are probably responsible for uptake and conversion of betaine to acetylphosphate,

thioredoxin disulphide and trimethylamine (TMA), when growing on betaine. The odorous,

harmful TMA is a prominent by-product in the manufacture of fishmeal and has been sug-

gested to be a product of microorganisms utilising choline, betaine and TMA N-oxide [67].

Since S. schinkii has been isolated from an anaerobic filter treating wastewater from a fishmeal
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factory [35], it might actively contribute to TMA formation. On the other hand, we found

numerous genes and gene clusters dispersed in the genome related to TMA degradation, as

described previously forMethanosarcina species [68, 69]. These include genes coding for tri-

methylamine: corrinoid and dimethylamine:corrinoid methyltransferases, corrinoid-binding

proteins and methyltransferases (S3 Table). Encoding of the methyltransferase genes ofM. bar-
keri require the synthesis and incorporation of pyrrolysine. The genome of S. schinkii harbours

a putative pylS gene (SSCH_980007) that codes for pyrrolysyl-tRNA synthetase and putative

pyrrolysine synthesis genes pylBCD (SSCH_980006–10) (S1 Table). These gene sets might allow

TMA degradation and/or the formation of compatible solute such as betaine through a link by

corrinoid-binding proteins to enzymes belonging to the WL pathway. None of the methyltrans-

ferases or corrinoid-binding proteins appears to be involved in the SAO pathway (S3 Fig).

The sugar utilisation capacities found in the genome might be employed in anabolic path-

ways providing precursors for biosynthesis, rather than being used for ATP generation.

Although the genome encodes all the enzymes needed for expression of the Embden-Meyer-

hof-Parnas pathway, organised in three clusters (S4 Table), no growth has been reported on

glucose or any other sugar or sugar derivative [38]. This can probably be explained by the lack

of sugar PTS and the restricted number of predicted carbohydrate ABC transport systems, as

mentioned above, as well as the lack of genes related to the Entner-Doudoroff pathway and the

oxidative branch of the pentose phosphate pathway. As a further adaptation to the specialist

syntrophic lifestyle, the genome of S. schinkii and that of T. phaeum both seem to lack genes

related to carbon catabolite repression (CCR), such as catabolite gene-activator protein (CAP),

adenylate cyclase and histidine protein (HPr), which usually confer competiveness in natural

environments. In contrast, T. acetatoxydans harbours all genes needed for CCR, but also has a

slightly broader substrate spectrum [42]. All genes needed for gluconeogenic enzyme activities,

such as SSCH_630024 (pyruvate carboxylase), SSCH_180001 (pyruvate-phosphate dikinase),

and SSCH_790022 (fructose-1,6 bisphosphatase), were expressed in S. schinkii (S3 Fig).

Acetate oxidation

In our recent genome-scale analysis of the mesophilic SAOB T. acetatoxydans [42], we

expressed doubts regarding the use of the reverse WL pathway, based on the lack of key

enzymes such as formate dehydrogenase and F1F0-ATP synthase. As the only potential ace-

tate-oxidising pathway generating net ATP, we identified a potential oxidative tricarboxylic

acid cycle, as suggested for the sulphate-reducing bacteria Desulfobacter postgatei and Desulfo-
bacter hydrogenophilus [70, 71]. This pathway can be excluded in the case of S. schinkii due to

the lack of key enzymes such as succinyl-CoA transferase or citrate lyase. However, S. schinkii
can potentially use both the oxidative direction of the WL pathway and the alternative route

consisting of a combination of glycine cleavage pathway and WL pathway, as suggested by

Nobu et al. [43], since the genome encodes all enzymes and proteins needed (Fig 3, S5 Table).

Fig 2. Overview of the predicted metabolism of S. schinkii. Bold shaped metabolic features were found

expressed under acetate oxidising growth condition. CODH, carbon monoxide dehydrogenases; FDH,

formate dehydrogenase; Rnf, H+/Na+? ferredoxin-NAD:oxidoreductase; Ech, energy-conserving

hydrogenase; QS, quorum sensing; Ack, acetate kinase; Pta, phosphoacetyl transferase; Pas, predicted

acetyl-CoA synthase (ADP-forming); ADH, alcohol dehydrogenase; ALDH, acetaldehyde dehydrogenase;

CUT1/CUT2, carbohydrate uptake transporters; TauT, taurine uptake transporter family; NitT, nitrate/nitrite/

cyanate2 uptake transporter family; PO4
3-, phosphate uptake system; CaCa, Ca2+:cation antiporter family;

Na+, sodium transporter; Na+/PPase, Na+ pyrophosphate energised pump; K+, potassium transporter family;

PAAT, HAAT, amino acide uptake 1 transporter family; QAT, quaternary amine 1 uptake transporter family;?,

Unclassified ABC-type transporter; MFS, major facility superfamily; MIT, metal ion transporter; BCCT,

betaine/carnitine/choline transporter family; ABC transport systems for trace elements (Ni, Co, Mn, Mo, Fe).

doi:10.1371/journal.pone.0166520.g002
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Most of the genes of the WL pathway are encoded once, except for formate dehydrogenases

(FDH) and carbon monoxide dehydrogenases (CODH), which were found encoded at two

loci (S5 Table). One fdh gene cluster (SSCH_1520002–1520003) was found to be flanked by

genes coding for a putative molybdenum ABC transport system (S2 Table). A second locus

(SSCH_1490003–1490006) includes a potentially associated cytochrome b subunit gene

Fig 3. Oxidative Wood-Ljungdahl pathway of S. schinkii strain Sp3. THF (tetrahydrofolate), Co(III)/Co(I)-

CP (corrinoid protein).

doi:10.1371/journal.pone.0166520.g003
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(SSCH_1490004) and most likely encodes a membrane-associated FDH. It shares the highest

identities (56–74%) with the FDH of sulphate reducers and the syntrophic fatty acid oxidiser

Syntrophomonas wolfei [72]. For both the presence of two or more FDH has been reported,

whereas the individual expression depends on the trophic level occupied and is strongly regu-

lated by an antagonistic effect of Mo and W [73, 74]. The thermodynamically unfavourable

fatty acid oxidation strongly relies on interspecies H2 transfer but also a major involvement of

formate has been proposed [75]. If electron-conducting pili are involved (section “Phenotypic

features of S. schinkii) still needs to be addressed.

One of the CODHs is part of the bifunctional CODH/acetyl-CoA synthase complex

(SSCH_600040–600041), forming acetyl-CoA from a carbonyl group, a methyl group and

CoA. The putative operon (SSCH_600031–600042; S4 Fig, S5 Table) also contains a

5,10-methylene-tetrahydrofolate (THF) reductase (SSCH_600032) and two genes resembling

heterodisulphide reductase-like genes (SSCH_600031,600034). The second CODH

(SSCH_180012) is located separately and shows 67% and 68% identity to the proton-translo-

cating CODHs ofMethanosarcina barkeri andMethanosarcina mazei, respectively. Both of the

CODH as well as the heterodisulphide reductase-like genes were expressed, indicating impor-

tance in electron transport and proton translocation (Fig 4).

Except for 5,10-methylene-THF reductase, genes belonging to the methyl branch of the WL

pathway were found elsewhere in the genome, away from the operon described above (S5

Table), including formyl-THF synthetase (SSCH_370012), methylene-THF dehydrogenase/

methenyl-THF cyclohydrolase (SSCH_630016/17), a second methyl transferase

(SSCH_1000016) and FDH as described above. The existence of only one formyltetrahydrofo-

late synthetase gene [44] was confirmed, whereas T. phaeum and T. acetatoxydans both har-

bour two fhs genes [40, 42]. The gene structure of the operon designated acs is identical to that

found in the thermophilic SAOB T. phaeum, but different from that found in T. acetatoxydans
(S4 Fig). All genes associated with the WL pathway were clearly expressed, whereas genes cod-

ing for functions employed by the alternative pathway, such as the glycine cleavage system

(SSCH_1050014-19, SSCH_1050027, SSCH_290017, SSCH_240016), and serine ammonium

lyase (SSCH_2660002), were not expressed (Fig 4). It still needs to be investigated whether the

prevailing acetate concentration has a regulatory impact on the SAO pathway expressed.

Genes of the methyl branch are separately located in the genome (FTHFS, product of

SSCH_370012; methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohy-

drolase, product of SSCH_630016, SSCH_630017) and could therefore be employed by the

alternative route when substrate limitation occurs. However, the formation of serine from

pyruvate by the activity of serine ammonium lyase is highly endergonic (+44 kJ/mol), what

makes an involvement of this enzyme in the assumed direction questionable.

Energy-conservation during acetate oxidation

S. schinkii appears to be very well equipped with energy-conserving systems, including e.g. Rnf

complex and an Ech hydrogenase (Fig 2, S6 Table).

The six subunits of the respiratory Rnf complex are encoded by the putative operon

rnfCDGEAB (SSCH_420047–420053), which utilises the redox span between ferredoxin (E0‘=

-400 mV) and NADH (E0‘= -320 mV) to form an ion gradient [76]. RnfA, D, and E were pre-

dicted as integral membrane proteins and subunits C and B have two ferredoxin domains with

[4Fe-4S] clusters. The single steps are mechanistically reversible. In Clostridium kluyveri, A.

woodii and C. ljungdahlii, the Rnf complex has been shown to play an important role in energy

metabolism by coupling electron flow from reduced ferredoxin to NAD+ to proton transloca-

tion [77–79]. Interestingly, the Rnf complex appears to have no such role in energy
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conservation in S. schinkii, as the transcription level was very low under acetate oxidizing con-

ditions (Fig 5). This agrees with the lack of Rnf-related genes in the genome of the closest rela-

tive, the thermophilic acetate oxidizing T. phaeum [40].

It is striking to note the high number of hydrogenases encoded by the genome. A total of

four potential [Fe-Fe] hydrogenase gene clusters (SSCH_90017–19, SSCH_60009–11,

SSCH_1120014–15, SSCH_210008–10; Fig 6 and S5 Fig, S6 Table) were predicted (see refer-

ence [80] for classification of hydrogenases). Cluster SSCH_21008–10 includes genes homolog

Fig 4. Bar graph showing the FPKM values of genes related to predicted SAO pathways. Pta, phosphoacetyl transferase; AK, acetate

kinase.

doi:10.1371/journal.pone.0166520.g004
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to the characterised electron-bifurcating ferredoxin- and NAD+-dependent [Fe-Fe] hydroge-

nases gene clusters ofM. thermoacetica, A. woodii and Thermotoga maritima [81, 82] with the

same synteny as found in S. schinkii (Fig 6). This hydrogenase couples the favourable H2 pro-

duction from reduced ferredoxin to the less favourable H2 production from NADH. Several

ferredoxin-encoding genes were found dispersed in the genome of S. schinkii (SSCH _100042,

SSCH_450007, SSCH_530010, SSCH_760007, SSCH_1120013) and one putative rubredoxin

gene (SSCH_180038).

Fig 5. Bar graph showing the FPKM values of genes related to energy conservation.

doi:10.1371/journal.pone.0166520.g005

The Syntrophic Life Style of Syntrophaceticus schinkii

PLOS ONE | DOI:10.1371/journal.pone.0166520 November 16, 2016 13 / 24



Potential bifurcating hydrogenases have also been predicted for S. wolfei, another syn-

trophic metaboliser producing high molar ratios of H2 [83], and for the SAOB T. acetatoxy-
dans [42] and T. phaeum [40]. It has been assumed for T. phaeum that the bifurcating

hydrogenase can connect, directly or indirectly via menaquinone to the oxidation of methy-

lene tetrahydrofolate. For S. schinkii, the transcriptome revealed that two of the [FeFe] hydrog-

enases, including the predicted bifurcating [FeFe] hydrogenase, and three of the ferredoxins

were expressed under acetate oxidising conditions (Fig 5). Therefore, a potential proton

motive force could be generated by cytoplasmatic proton consumption.

In addition, the genome encodes an energy-conserving hydrogenase (Ech), a membrane-

integral [Ni-Fe] hydrogenases, with the same synteny as found and described forM. barkeri
[84], the sulphate reducer Desulfovibrio gigas [85], and the thermophilic SAOB T. phaeum [40]

(S6 Table, S5 Fig), and which appears to be of importance for energy conservation in S. schinkii
as all subunits were expressed under syntrophic growth conditions (Fig 5). The Ech hydroge-

nase might contribute to the proton motive force by coupling proton translocation across the

membrane to the oxidation of reduced ferredoxin and H2 formation [84], forming a proton

motive force. The ATP synthase operon (SSCH_240003–240010), which is needed for convert-

ing the electrochemical gradient into ATP, was expressed (Fig 5).

Another cluster was predicted to encode genes for a periplasmic [NiSeFe] hydrogenase (S6

Table), which is usually associated with H2 oxidation and potentially allows the cells to link H2

oxidation to anaerobic respiration using CO2 as the electron acceptor [86]. It consists of a

small subunit (SSCH_30031), a large subunit (SSCH_33032) and a third cytochrome b-like

subunit (SSCH_33033). The N-terminus of the small subunit contains a twin arginine

motive recognised by the twin-arginine translocation (TAT) translocase (SSCH_170020,

SSCH_360036). The cluster showed synteny to a [NiSeFe] hydrogenase cluster found in T.

phaeum, in Carboxidothermus hydrogenoformans and in Desulfosporosinus orientis, with

descending similarity (S6 Fig). The maturation proteins (SSCH_60028–30) are encoded else-

where in the genome. In the sulphate reducer Desulfovibrio vulgaris the expression of the [NiF-

eSe] hydrogenase is strongly associated with the oxidation of H2 [87]. In case of S. schinkii the

transcriptome revealed expression under H2 producing conditions (Fig 5). A second putative

Fig 6. Comparison of the NADH-dependent [Fe-Fe] hydrogenase gene cluster (SSCH_210008–10) predicted for S. schinkii strain

Sp3 to the characterised electron-bifurcating NADH ferredoxin-dependent [Fe-Fe] hydrogenase gene cluster found in T. maritima

and the model acetogens M. thermoacetica and A. woodii. Percentage identity numbers of amino acid sequence are given.

doi:10.1371/journal.pone.0166520.g006
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[NiFe] hydrogenase is very likely cytoplasmic, since it lacks any signal peptides (SSCH_370002–

6) and which was likewise expressed (Fig 5, S6 Table). Representatives of this [Ni-Fe] hydroge-

nase group are reported to function as intracellular H2 sensors triggering reaction cascades con-

nected to energy-transducing reactions [86]. The presence of an adjacent predicted response

regulator receiver gene (SSCH_370001) might point to a similar function in S. schinkii.
The genome further encodes a NAD(P)-binding oxidoreductase/heterodisulphide reduc-

tase complex (SSCH_160001–8; S7 Fig, S6 Table), which is in synteny to that found in S. wolfei
[83] and in other syntrophic bacteria such as Syntrophorhabdus aromaticivorans [88, 89]. It

consists of the heterodisulphide reductase subunits A, B and C, three Fe-S proteins and a NAD

(P) binding oxidoreductase, and is postulated to be involved in reverse electron transport [88].

The redox pair remains unknown. The presence of Rnf complex and Fd:NADH oxidoreduc-

tase/heterodisulphide reductase encoding genes within the same genome appears to be unique

to S. schinkii, since this combination has been reported to be untypical for organisms capable

of syntrophic metabolism [43]. However, as described above the Rnf complex does not seem

to be of importance for energy conservation of this organism when oxidising acetate, whereas

the latter might do as indicated by the transcriptome (Fig 5).

Acetate uptake and activation

Syntrophaceticus schinkii has been found at high abundance in both low- and high-ammonia

conditions, suggesting that this species has a strong competitive ability [15, 25, 46, 60]. How-

ever, the poor metabolic capacities uncovered here and the slow heterotrophic growth rates

demonstrated cannot explain its competitiveness in biogas processes. The genome harbours

an ORF (SSCH_800020), predicted to encode a transporter, which were found expressed in

the syntrophic co-cultures (Fig 1). It shows 35–41% identity to a potential acetate transporter

predicted for threeMethanosaeta genomes (Fig 7, S2 Table) [90].

Within the methanogenic Archaea, Methanosaeta species can utilise acetate concentrations

from as low as 7 to 70 μM. In contrast, Methanosarcina species have a minimum acetate con-

centration threshold between 0.2 to 1.2 mM. Thus, S. schinkii might have the ability to compete

for acetate withMethanosaeta species, which dominate the methanogenic community at low

ammonia levels, andMethanosarcina species, which are prominent under SAO conditions

[19], and might exclusively rely on the continuously produced key intermediate acetate.

Under non-acetate limiting conditions as applied in the present study, acetate appears to be

activated by the activities of phosphotransacetylase and acetate kinase, of which both were

found expressed (Fig 6), consuming one ATP. However, S. schinkii might increase its competi-

tiveness by employing an archaeal-like ADP-forming acetyl-CoA synthase (product of

SSCH_480004; S8 Fig) for acetate activation, when acetate concentration becomes crucial. The

archaeal ADP-forming acetyl-CoA synthase has a much lower km for acetate (340–660 μM)

[91–93] than the archaeal or bacterial acetate kinases (7–22 mM) [94, 95].

Moreover, S. schinkii harbours three genes (SSCH_1190010, SSCH_330008,

SSCH_1000017; S2 Table) predicted to belong to the sodium:solute symporter (TC 2.A.21)

family and sharing 24, 24 and 22% identity with MctC, MctP and ActP, respectively. These

genes have been identified as acetate transporters in Corynebacterium glutamicum [96],

Rhizobium leguminosarum [97] and E. coli [98], respectively. A transporter belonging to the

same family has recently been predicted for the SAOB T. acetatoxydans [42]. In addition, S.

schinkii contains a gene encoding a potential formate/nitrite transporter (FNT, product of

SSCH_150019; S2 Table), similar to that predicted in T. acetatoxydans, which might play a role

in acetate transport [42]. However, none of these gene products was expressed under the

growth conditions investigated (Fig 1).
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Conclusions

The lack of flagella, chemotactic behaviour and limited metabolic capacities imply inability of

S. schinkii to adapt to rapidly changing conditions. This can be considered an adaptation to the

AD environment, which is nutrient-rich and where precursors become continuously available.

Based on the genomic traits predicted, it is likely that S. schinkii cells employ type IV pili and

quorum sensing for synchronising activities and communication with the methanogenic part-

ner, in order to initiate and stabilise intimate syntrophy, a prerequisite for occupying a similar

niche as the non-syntrophically living aceticlastic methanogens. Natural and artificial carriers

might be supportive for establishing SAO, since S. schinkii appears to be motile through glid-

ing. Furthermore, surface attachment attributes reduce the risk of washout during process

operation, while quorum sensing maintains communication.

S. schinkii is a highly specialised, habitat-adapted organism. It appears to be on the verge of

being an obligate syntrophic organism, which relies on SAO rather than on metabolic versatil-

ity, occupying a similar niche as the aceticlastic methanogens. By expanding its complement of

respiratory protein complexes, it overcomes limiting bioenergetics barriers, enabling efficient

energy conservation from reactions operating close to thermodynamic equilibrium and driv-

ing thermodynamically unfavourable reactions. Syntrophaceticus schinkii has great potential to

serve as a model organism for studying syntrophic relationships and SAO-related issues in

future -omics approaches aiming to specify process conditions supporting efficient and robust

bio-hydrogen and bio-methane production.
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76. Biegel E, Schmidt S, González JM, Müller V. Biochemistry, evolution and physiological function of the

Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cellular and molecular life

sciences: CMLS. 2011; 68(4):613–34. doi: 10.1007/s00018-010-0555-8 PMID: 21072677

77. Herrmann G, Jayamani E, Mai G, Buckel W. Energy Conservation via Electron-Transferring Flavopro-

tein in Anaerobic Bacteria. Journal of Bacteriology. 2008; 190(3):784–91. doi: 10.1128/JB.01422-07

PMID: 18039764

The Syntrophic Life Style of Syntrophaceticus schinkii

PLOS ONE | DOI:10.1371/journal.pone.0166520 November 16, 2016 22 / 24

http://dx.doi.org/10.1038/nature03661
http://dx.doi.org/10.1038/nature03661
http://www.ncbi.nlm.nih.gov/pubmed/15973408
http://dx.doi.org/10.1101/cshperspect.a012427
http://www.ncbi.nlm.nih.gov/pubmed/23125205
http://www.ncbi.nlm.nih.gov/pubmed/9818351
http://dx.doi.org/10.1007/s00424-005-1511-6
http://www.ncbi.nlm.nih.gov/pubmed/16273393
http://dx.doi.org/10.1016/j.jbiotec.2014.11.020
http://www.ncbi.nlm.nih.gov/pubmed/25455016
http://dx.doi.org/10.1186/s40793-016-0199-x
http://www.ncbi.nlm.nih.gov/pubmed/16347978
http://www.ncbi.nlm.nih.gov/pubmed/16347325
http://dx.doi.org/10.1016/j.wasman.2005.07.015
http://www.ncbi.nlm.nih.gov/pubmed/16140515
http://www.ncbi.nlm.nih.gov/pubmed/10762254
http://dx.doi.org/10.1007/BF00414812
http://dx.doi.org/10.1007/BF00414812
http://dx.doi.org/10.1007/BF00414815
http://dx.doi.org/10.1016/j.syapm.2006.12.001
http://www.ncbi.nlm.nih.gov/pubmed/17223300
http://dx.doi.org/10.1128/JB.00042-11
http://www.ncbi.nlm.nih.gov/pubmed/21498650
http://dx.doi.org/10.1007/s00203-008-0428-9
http://www.ncbi.nlm.nih.gov/pubmed/18795263
http://www.ncbi.nlm.nih.gov/pubmed/16347526
http://dx.doi.org/10.1007/s00018-010-0555-8
http://www.ncbi.nlm.nih.gov/pubmed/21072677
http://dx.doi.org/10.1128/JB.01422-07
http://www.ncbi.nlm.nih.gov/pubmed/18039764


78. Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, et al. The genome of Clos-

tridium kluyveri, a strict anaerobe with unique metabolic features. Aug 3. 2008; 105(6):2128–33. doi: 10.

1073/pnas.0711093105 PMID: 18218779

79. Schuchmann K, Muller V. Autotrophy at the thermodynamic limit of life: a model for energy conservation

in acetogenic bacteria. Nat Rev Microbiol. 2014; 12(12):809–21. Epub 2014/11/11. doi: 10.1038/

nrmicro3365 PMID: 25383604.

80. Vignais PM, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview.

Chem Rev. 2007; 107(10):4206–72. doi: 10.1021/cr050196r PMID: 17927159

81. Schuchmann K, Müller V. A bacterial electron-bifurcating hydrogenase. The Journal of Biological

Chemistry. 2012; 287(37):31165–71. doi: 10.1074/jbc.M112.395038 PMID: 22810230

82. Wang S, Huang H, Kahnt J, Thauer RK. A reversible electron-bifurcating ferredoxin- and NAD-depen-

dent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica. Journal of Bacteriology. 2013; 195

(6):1267–75. doi: 10.1128/JB.02158-12 PMID: 23316038

83. Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, et al. The genome of Syntrophomonas wol-

fei: new insights into syntrophic metabolism and biohydrogen production. Environ Microbiol. 2010; 12

(8):2289–301. doi: 10.1111/j.1462-2920.2010.02237.x PMID: 21966920

84. Thauer RK, Kaster A-K, Goenrich M, Schick M, Hiromoto T, Shima S. Hydrogenases from methano-

genic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem. 2010; 79:507–36. doi: 10.

1146/annurev.biochem.030508.152103 PMID: 20235826

85. Morais-Silva FO, Santos CI, Rodrigues R, Pereira IAC, Rodrigues-Pousada C. Roles of HynAB and

Ech, the only two hydrogenases found in the model sulfate reducer Desulfovibrio gigas. Journal of Bac-

teriology. 2013; 195(20):4753–60. doi: 10.1128/JB.00411-13 PMID: 23974026

86. Vignais PM, Colbeau A. Molecular biology of microbial hydrogenases. Curr Issues Mol Biol. 2004; 6

(2):159–88. PMID: 15119826

87. Caffrey SM, Park HS, Voordouw JK, He Z, Zhou J, Voordouw G. Function of Periplasmic Hydrogenases

in the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol. 2007; 189

(17):6159–67. doi: 10.1128/jb.00747-07 PMID: 17601789; PubMed Central PMCID:

PMCPMC1951932.

88. Nobu MK, Narihiro T, Hideyuki T, Qiu Y-L, Sekiguchi Y, Woyke T, et al. The genome of Syntrophorhab-

dus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and

electron flow. Environ Microbiol. 2014. doi: 10.1111/1462-2920.12444 PMID: 24589017

89. Nobu MK, Narihiro T, Tamaki H, Qiu Y-L, Sekiguchi Y, Woyke T, et al. Draft Genome Sequence of Syn-

trophorhabdus aromaticivorans Strain UI, a Mesophilic Aromatic Compound-Degrading Syntroph.

Genome Announc. 2014; 2(1). doi: 10.1128/genomeA.01064-13 PMID: 24503990

90. Zhu J, Zheng H, Ai G, Zhang G, Liu D, Liu X, et al. The Genome Characteristics and Predicted Function

of Methyl-Group Oxidation Pathway in the Obligate Aceticlastic Methanogens, Methanosaeta spp.

PLoS ONE. 2012; 7(5):e36756. doi: 10.1371/journal.pone.0036756 PMID: 22590603
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