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Data assimilation (DA) is a potentially interesting method for forestry if new stand 

level data about forest attributes are made available at short time intervals. DA is a 

method where an estimate is forecasted by a model and updated when a new 

measurement is made. A weighted average of the forecast and the measurement is 

obtained as the new current state, which increases the accuracy of the estimate.  

In areas like meteorology DA has been successfully applied for a long time. In this case 

the availability of very frequent satellite data makes it possible to update weather 

forecasts several times a day and obtain accurate forecasts.  

Forest inventories in the traditional way, by field campaigns, are expensive and thus 

provide new data only every 10-20 years. During this long time a lot of changes due to 

growth, management and disturbances might occur in the forest stands of interest. 

Thus, old data are discarded when new data are obtained from a new campaign, and the 

forecasts of the current state are only based on the last measurement. Since many types 

of remotely sensed data, e.g. from laser scanners, optical satellite sensors, and radars, 

have become available during recent years, there are now good opportunities to apply 

DA also in the context of forest inventory. In this thesis I focus on stand level forest 

inventories. 

A first theoretical study with simulated data showed that DA has a strong potential 

to be successfully applied in forestry and increase the accuracy of inventory estimates. 

However, the second study, the first with empirical data, pointed at problems to obtain 

equally good results in practice. In the third study, correlated prediction errors were 

identified as the plausible reason for this. The higher the correlations the less was found 

to be gained by applying DA. Despite several remaining challenges, the overall 

conclusion is that DA has a potential to make forest inventories more efficient in the 

future. 
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Dataassimilering (DA) är en intressant ny metod för skogsinventering, som kan 

användas när nya data erbjuds med korta intervall. DA innebär att en variabel skrivs 

fram med en framskrivningsmodell och när en ny mätning blir tillgänglig uppdateras 

det framskrivna värdet med mätningen genom att beräkna ett viktat genomsnitt. På så 

sätt kan noggrannheten i uppskattade värden förbättras. 

Inom andra områden, t.ex. meteorologi, används DA framgångsrikt sedan lång tid 

tillbaka. Väderdata från satelliter finns tillgängliga med bara några timmars mellanrum. 

Väderprognoser kan därför uppdateras flera gånger om dagen för att öka deras 

noggrannhet. 

Inventering av skogsbestånd har traditionellt sett gjorts genom fältinventeringar 

som av kostnadsskäl normalt endast genomförs vart tionde till tjugonde år. Under en så 

lång tid förändras skogstillståndet genom tillväxt och åtgärder, t.ex. 

föryngringsavverkning, gallring, eller genom stormskador. Därför uppdateras 

uppgifterna genom framskrivning baserad enbart på de senaste mätningarna. Som en 

följd av utvecklingen av nya effektiva fjärranalysmetoder erbjuds idag data från bl.a. 

laserskanning, och satelliter med optiska sensorer eller radar med allt kortare intervall. 

Noggrannheten vid skogsinventering bör därför kunna förbättras genom att tillämpa 

DA.  Mitt fokus i denna avhandling är skogsuppskattning på beståndsnivå. 

En första simuleringsstudie visade att det finns stor teoretisk potential för att 

effektivisera skogsinventering genom DA. Den andra studien baserades på empiriska 

data och visade på svårigheter att till fullo utnyttja DAs teoretiska potential i praktiken. 

I den tredje studien identifierades korrelerade prediktionsfel som en sannolikt 

bidragande orsak till detta och studien visade att felen i återkommande prediktioner 

baserade på flera typer av fjärranalysdata ofta är starkt korrelerade. Ju kraftigare 

korrelationerna är desto mindre effektiv blir DA. Trots kvarvarande utmaningar är 

slutsatsen från studierna att DA har en potential att i framtiden bidra till effektivare 

skogsinventeringar. 
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Forest inventories are conducted for several reasons. At national level they are 

important for the development and follow-up of forest and environmental 

policy (e.g., Tomppo et al. 2010; Fridman et al. 2014). Such inventories are 

conducted in a large number of countries globally and the interest is growing 

due to emerging requirements related to biodiversity and climate change (e.g., 

Cienciala et al. 2008). Also, national forest inventories are often aggregated to 

regional and global estimates of relevance for global agreements such as the 

conventions on biodiversity and climate change. At sub-national level forest 

inventories are typically conducted by forest owners as a means to provide data 

for deciding upon appropriate short- and long term sustainable management 

(e.g., Wikström et al. 2011). Such inventories sometimes use methods similar 

to those in national forest inventories, i.e. sparse samples of field plots 

allocated across the area of interest in order to derive statistical estimates of 

state and change of forest characteristics (e.g., Fridman et al. 2014). However, 

more often they are conducted as stand level inventories, with the ambition to 

provide information about all forest stands in a forest holding (e.g., Ståhl 

1992). Such inventories provide information needed for planning of forest 

operations, such as thinning, final felling, and regeneration (Thuresson et al. 

1996). 

Stand level inventories can be conducted using many different methods 

(e.g., Ståhl 1992). Since they need to cover large areas and be regularly 

updated to provide accurate information an important issue for practical 

forestry is to keep the costs of stand level inventories at moderate levels 

without sacrificing accuracy. Ideally, but seldom used in practice, cost-plus-

1 Introduction 
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loss analysis (e.g. Holmström et al. 2003) can be applied as a means to assess 

which inventory method leads to the lowest cost-plus-loss, i.e. the lowest sum 

of inventory costs plus expected losses due to non-optimal decisions made 

when using the data in planning forest management. 

A very accurate but also very expensive method for stand level inventory 

involves measuring all the trees in a forest stand. This type of method is 

seldom practiced due to the large labour costs required. Sample plot 

inventories (Lindgren 1984) are sometimes carried out, especially in case the 

requirements for appropriate and known accuracy are high. Normally a certain 

number of sample plots are allocated systematically across the stand of interest 

and all the trees are measured on the sample plots together with registrations of 

stand and site features, such as site quality. Instead of sample plots, relascope 

measurements may be carried out (Bitterlich 1984). In both cases, statistical 

principles are applied to estimate forest characteristics at stand level as well as 

the corresponding uncertainty, normally expressed as a standard error. 

However, to obtain precise estimates normally several plots are required and 

thus those types of methods also tend to be expensive for stand level 

inventories. 

A traditional method for stand level inventory is based on ocular 

assessments (Ståhl 1992). With such assessmenst the experience of surveyors 

is utilized and stand level characteristics are registered following visual 

inspection or following measurements at a few “typical” locations within a 

stand. A drawback with this type of inventory is that it is difficult to control the 

quality of the data, and ocular assessments are known to contain substantial 

systematic errors that vary between surveyors (ibid.). 

Following the introduction of aerial photographs in the 1920s, the field 

based methods have been complemented by methods utilizing remotely sensed 

(RS) data. For a long time, the main use of aerial photographs in connection 

with forest inventories was the delineation of stands. During the 20
th
 century a 

normal procedure for stand level inventory was to delineate stands from aerial 

photographs and assess forest characteristics within stands through ocular 

methods during field visits (Ståhl 1992). In the 1980s methods were developed 

whereby measurements of some core stand attributes were made in the aerial 

photographs, through manual interpretation (Åge 1987). Further, a major 
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development of methods for forest inventory based on RS started in the 1970s 

when multispectral satellite data from the Landsat satellites became available 

(e.g., Hill et al. 1999; Hansen et al. 2008; Tomppo et al. 2008). Similar optical 

satellites, such as the SPOT satellites, have been utilised extensively for forest 

inventories (e.g., Davi et al. 2006; Wolter et al. 2009). Thus, during the past 

four decades the development of new RS methods has been rapid, and the 

testing and implementation of new techniques in forest inventories has been 

intensive. Important examples of such RS methods are radar satellites 

(Fransson, 1999), Light Detection And Ranging (LiDAR) from airborne 

profilers and scanners (e.g., Nelson et al. 1988, 1997; Næsset 1997; Hyyppä 

and Inkinen 1999), and digital air photos which are becoming increasingly 

important due to novel uses of 3D point-cloud techniques (Leberl et al. 2010; 

Bohlin et al. 2012; Breidenbach and Astrup 2012). Data from most of these RS 

sources can be made available at short intervals and the accuracy of core forest 

attributes such as growing stock volume and height is steadily improving, not 

least due to the introduction of the LiDAR technique (e.g., Nelson et al. 1988, 

Næsset 1997; Hyyppä and Inkinen 1999; Hyyppä et al. 2008; Maltamo 2009; 

Næsset 2009, Lindgren 2017; Gobakken et al. 2012; Næsset et al. 2013). In the 

following some more details are provided for some important RS methods. 

The development of forestry applications based on LiDAR acquisition 

began in the late 1970s. Solodukhin et al. (1976, 1977) used a profiling laser 

for the study of felled trees. Later, the technique was applied from aircrafts 

(Solodukhin et al. 1979, Kuliasov et al. 1979), but following these early 

applications the technique appears not to have been used so often for forest 

inventories, but Nelson (1984) and Maclean et al. (1986) made forest inventory 

tests with profiling LiDAR in the 1980s in the USA and Canada. Towards the 

end of the century the general development of the laser technique made it 

interesting for larger-scale forest survey studies (e.g. Nelson 1997), especially 

since it was found that LiDAR data were strongly correlated with forest 

biomass. While the first studies used profiling LiDAR, laser scanning (e.g. 

Hyppä and Inkinen 1999, Næsset 1997) made the LiDAR technique even more 

useful for forest surveys. The method by Næsset (2002) has become known as 

the area-based approach, which was a starting point for a rapid development of 

applied LiDAR-based forest inventories. Currently, there are several studies 
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conducted on developing forestry applications based on a fusion of LiDAR 

data with other types of RS data, such as data from multispectral satellite 

sensors, space-borne radars, etc. (e.g., Nelson et al. 2009; Næsset et al. 2013; 

Saarela et al. 2016). 

The Landsat missions for civilian use were initiated in the early 1970s.  

Landsat 1 was launched 1972. Since then, 8 missions have been launched, with 

one failure (Landsat 6). Data collected by Landsat 5 and 7 have been widely 

used in forestry applications, and some significant studies are those by Tomppo 

(1993, 2006), and Tomppo et al. (1999). Landsat 5 was launched in 1984 and 

decommissioned in January 2013. It carried the Multispectral Scanner System 

(MSS) and the Thematic Mapper (TM) instruments. The TM is an advanced, 

multispectral scanning sensor collecting data in seven spectral bands 

simultaneously, with approximately 30 m resolution. Another multispectral 

sensor which has provided data for forestry applications is SPOT (Satellite 

Pour l’Observation de la Terre, lit. "Satellite for observation of Earth"), a 

commercial high-resolution optical imaging Earth observation satellite system. 

The SPOT constellation has been supplying high-resolution, wide-area optical 

imagery since 1986. The SPOT-5 HRG instrument provided data with a spatial 

resolution of 2.5 to 5 meters in the panchromatic mode and 10 meters in the 

multispectral mode.  

The development of space-based radars, also referred to as space-borne 

Synthetic Aperture Radar (SAR), began in the late 1960s primary for military 

purposes. SAR is relatively insensitive to atmospheric disturbances and can 

acquire image data regardless of weather conditions. Nowadays, there is a 

number of commercial SAR satellites, the most popular is the Earth 

observation satellite TerraSAR-X, which was launched in 2007 and has been 

operational since January 2008. With its twin satellite TanDEM-X, launched in 

2010, TerraSAR-X acquires data for the World Digital Elevation Model 

(DEM). When the ground level is known it can be subtracted from the satellite 

data derived DEM to calculate an interferometric SAR height (ISH), correlated 

with vegetation height and density, and thus biomass. Additionally, the 

coherence (COH) obtained from the radar processing has been shown to be 

correlated with several forest variables. (e.g., Treuhaft and Siqueira, 2004; 
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Karjalainen et al. 2012; Persson and Fransson, 2016). Both ISH and COH 

become available after interferometric processing of two radar images. 

With the many RS methods that are nowadays available at low cost, 

practitioners question how to make best use of all the new information. Using 

only the last estimate may not be a good idea since it may stem from an RS 

method that is not very accurate. However, data assimilation (Asch et al. 2016) 

offers a framework for how new estimates can be continuously merged with 

existing, forecasted, estimates in an efficient manner. Note that, in this thesis, 

the terms estimation and prediction are used almost as synonyms. The 

conceptual difference is, however, that estimation refers to the assessment of a 

fixed parameter, the value of which is unknown, while prediction refers to the 

assessment of a random variable, as is typically the case in regression analysis 

where the dependent variable is treated as random (Chatterjee and Hadi 2015).  

Data assimilation has been used for a long time in areas like meteorology, 

climate and ocean modelling, and even in the search for oil and minerals (e.g.  

Gihl 1991, Dorigo et al. 2007). For example, it has been shown that good 

improvements of previously established methods for forecasting weather can 

be obtained by using DA (Rabier 2006). Weather forecasts can be improved by 

combining the measured data with mathematical forecast models, which 

contain a number of uncertainties just like the measurements. Nowadays, 

satellites provide data at short time intervals and getting new data every few 

hours allows for precise weather forecasts (ibid.).  

A new area where DA might be used is forestry, where the rapid 

development of new types of remote sensing methods provides a wealth of data 

about forest stands and landscapes. One of the keys for successful forest 

management planning is to have accurate information about the forest stands 

(Saad et al. 2017) and if DA can provide such data at low cost the method 

would be very useful in forestry. However, DA has only recently been 

suggested for application in this context (e.g., Paper I, Paper II), and it is not 

used in practice yet. The aim of applying DA would be to obtain better 

estimates of the current state and forecasts, of core forest attributes, preferably 

at stand level. 
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Using DA the old information is updated through forecasts and when new 

data is made available the old data is merged with the new to obtain a new, 

better, estimate of the current state. Thus, old data are not just discarded, as in 

traditional forest inventories. The availability of new data at short intervals is 

especially important in forestry since a lot may happen during longer intervals, 

like 10-20 years. Stands may be thinned, clear-cut, or damaged by storm.  

DA is not one method that fits to all problems but there are several 

approaches. To apply data assimilation, one has to decide which method is best 

applicable for the given problem. One way of classifying methods is to 

distinguish between sequential and non-sequential DA (e.g., Bouttier and 

Courtier. 1999), see Figure 1. Sequential assimilation makes use of the past 

observations until current time while non-sequential assimilation, also called 

retrospective assimilation, takes also observations into account that are made in 

the future seen from the time point of interest. This can be used in cases where 

reanalyses are done. Further, both the sequential DA and the non-sequential 

DA can be divided into intermittent and continuous (in time) methods (ibid.). 

This means that using an intermittent method the observations are available in 

small batches resulting in “steps” in the correction (as seen in Fig. 1) while 

using continuous methods observations are made continuously and the 

assimilated output will be smooth across time. In most problems where DA is 

used, sequential DA is applied, since observations from the future are not 

available. 

Another approach is to fit a new model to the observations. This can be 

done in cases where the observations are highly trusted and the existing 

forecast model needs to be improved. This is a case where non-sequential 

assimilation can be used. 
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Figure 1 Overview of DA concepts. The left panels show the sequential methods, on the 

right the non-sequential DA methods are shown. The method used in this thesis is 

intermittent sequential DA, see text for details. 

In case of forest management where one is interested in forecasting the 

estimates, intermittent sequential DA should be applied. 

Further, many different technical approaches can be applied in DA. A first 

division of methods in this context is to separate between methods adopting 

frequentist vs. Bayesian views. The first case is the traditional view of treating 

unknown quantities as fixed parameters which can be estimated. The famous 

Kalman filter (e.g. Kalman 1960, Welsh and Bishop 2006) is an important 

example of this kind. Among other things it assumes observations to be 

independent and normally distributed and forecasting models to be linear. With 

the extended Kalman filter (Welsh and Bishop 2006), forecasts with non-linear 

models can be handled. The Bayesian view (Wikle and Berliner 2007) lets the 

true parameter value follow a probability distribution, and in the assimilation 

step Bayes theorem is applied. Bayesian approaches may be very demanding, 

especially when the joint distribution of several variables of interest must be 

taken into account. To solve this and similar problems so called particle filters 

can be used as a straightforward way to approximate the needed distributions 
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by simulating and aggregating the development across time of individual 

“particles” (Arulampalan et al. 2002). 

1.1 Objectives 

The overall objective of this thesis was to make a first assessment of whether 

or not data assimilation has a potential to be successfully applied in stand-level 

forest inventories and to outline methods that may be applied in adapting DA 

to forest inventory applications. The specific objectives of the three papers 

were to: 

(i) Evaluate the potential usefulness of DA in forest inventories 

through a simulation study, and to compare a Bayesian 

assimilation method with the extended Kalman filter. 

(ii) Assess to what extent the theoretical results could be reproduced 

in a study using empirical data, using the extended Kalman filter. 

(iii) Evaluate to what extent prediction errors using different types of 

remotely sensed data are correlated and assess the effects of such 

correlations in DA compared to using independent predictions. 
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2.1 A study with simulated data (Paper I) 

The first study was a theoretical comparison of two different DA approaches, 

the extended Kalman filter and a Bayesian approach. Both approaches are 

intermittent sequential assimilation approaches. The proposed stand level DA 

application was based on the following steps: 

(1) An initial estimate of the current state of the attribute of interest, in 

this case growing stock volume, as well as the corresponding 

uncertainty of the estimate is assumed. 

(2) A forecasting model gives a prediction of the estimate until current 

time as well as a prediction of the uncertainty of the forecast. 

(3) A new measurement is available in current time, together with the 

prediction from the forecasting model. 

(4) The actual DA step where the estimate (from step 2) is weighted with 

the new measurement (step 3) to obtain a new best estimate as well as 

the corresponding uncertainty. 

(5) This cycle (1)-(4) will then be repeated a certain number of times 

depending on the number of new measurements. 

In addition to these five steps it might be necessary to check if any major 

disturbances occur during the period of interest in the stand. If so, the 

assimilation procedure might need to be restarted. However, in the 

simulation study no such disturbances were assumed. 

 

2 Materials and methods 
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For the measurements a linear model was assumed where 𝑍𝑡 is the estimator of 

true state, 𝑥𝑡, at time t. The estimator is assumed to be unbiased so that 

𝑍𝑡 = 𝑥𝑡 + 𝑉𝑡 , (1) 

where 𝐸(𝑉𝑡) = 0 and the variance is 𝑉(𝑍𝑡) = 𝑉(𝑉𝑡) = 𝑟𝑡
2. 

2.1.1 First approach: The Extended Kalman filter 

The forecasting (growth) model applied was based on regression analysis using 

data from permanent sample plots of the Swedish National Forest Inventory 

(NFI). The model was non-linear, which required the use of the extended 

Kalman filter (EKF) since the ordinary Kalman filter requires linear functions. 

The EKF is similar to the Kalman filter but uses Taylor linearization in the 

estimation of variances due to the forecast (Welch and Bishop, 2006) 

Using the EKF involves two main steps (Figure 2), the forecast step and the 

measurement and assimilation step, which are repeated the desired number of 

time steps. In the first step, the forecast is updated to obtain an estimate in 

current time. 

Let �̂�0 be the initial estimate with a variance denoted by 𝑝0
2; then the 

forecast (Eq. 2) and its variance (Eq. 3) can be written as 

�̃�𝑡 = 𝑓(�̂�𝑡−1, 0, 𝑡 − 1) =  �̂�𝑡−1 + 𝑔(�̂�𝑡−1, 𝑡 − 1) + 𝑊𝑡 (2) 

and 

�̃�𝑡
2 = 𝑎𝑡

2𝑝𝑡−1
2 + 𝑞𝑡

2, 
(3) 

where  

𝑎𝑡 =
𝑑

𝑑𝑥
𝑓(�̂�𝑡−1, 0, 𝑡 − 1). (4) 

The random term 𝑊𝑡 is assumed to be normally distributed with zero mean and 

variance 𝑞𝑡
2. The forecasted estimate is then weighted with the new estimate in 

the measurement and assimilation step. This results in a new estimate (Eq. 5) 

and its corresponding variance (Eq. 6) given by 

�̂�𝑡 = (1 − 𝐾𝑡)�̃�𝑡 + 𝐾𝑡�̃�𝑡 (5) 

and 

𝑝𝑡
2 = (1 − 𝐾𝑡)�̃�𝑡

2, (6) 
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where �̃�𝑡is the measurement and K is the so called Kalman gain, i.e. the weight 

assigned to the new measurement, given by 𝐾𝑡 =
𝑝𝑡

2

𝑝𝑡
2+𝑟𝑡

2. Note that this 

weighting corresponds to assigning weights inversely proportional to the 

variance of the estimators involved. Most weight is thus assigned to the more 

reliable estimate. A Kalman gain near one lays almost all weight on the new 

measurement while a gain near zero implies that the measurement (almost) 

does not contribute to the assimilation. 

 
Figure 2 The cycle of forecast and measurement updates in DA using a Kalman filter. 

2.1.2 Second approach: The Bayesian method 

As noted in the introduction the Bayesian approach assumes that the true value 

of the parameter of interest has a probability distribution. Thus, the probability 

distribution in this case is forecasted across time and the assimilation step 

involves applying Bayes theorem (Hoff 2009). With this method there is no 

need to approximate the growth model through linearization and the method 

works without specific distributional assumptions, since in our case we 

estimated an empirical distribution at each time point. The same growth 

function as in the case of EKF was applied. Also in this approach, a forecasting 
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and updating step was performed in each time step. As an initial distribution 

we assumed a normal distribution. The mean of the posterior (forecasted and 

updated) distribution is the new point estimate of the current state. The 

posterior is projected in time and becomes the new prior distribution which is 

then updated by a new measurement and the new posterior is obtained, as 

according to the principles of Bayes theorem (Figure 3). 

 
Figure 3 The figure shows the principle of the updating and measurement steps of the whole 

distribution using the Bayesian approach. The green line is the prior distribution at time t 

which is updated with the measurement distribution, the red line on the left, and weighted to 

obtain the posterior distribution, the blue line on the left. At time t+1 the prior distribution is 

represented by the blue line, the measurement by the red line and the resulting posterior 

distribution by the yellow line. 

Figure 3 shows the principle of updating the whole distribution. The green 

distribution represents the prior distribution at time t (which is the forecasted 

posterior from time t-1) and the measurement distribution at time t is shown in 

red colour (left panel). A posterior distribution (blue colour) is obtained using 

Bayes’ theorem. It can be seen that the variance of the posterior distribution is 

less than both the variance of the measurement and the variance of the prior, 

which means a gain in precision. In the next cycle, the forecast of the posterior 

distribution at time t is the new prior distribution at t+1, represented by the 

blue distribution, the red distribution represents the new measurement at t+1 

and the yellow distribution is the resulting posterior distribution.  
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To investigate the potential usefulness of DA in forestry applications, case 

studies based on simulated data were conducted. Growing stock volume was 

the variable handled through DA, while other stand characteristics of interest 

were assumed to be known. The starting age was set to 20 years, the site index 

was assumed to be 20, the tree species composition was assumed to be 60% 

spruce, 10% pine, and 30% broad-leaved trees. The starting volume was 

assumed to be normally distributed with an expectation of 40𝑚3/ℎ𝑎 and a 

standard deviation of 30% of the expected value. A time interval of five years 

was assumed in most cases, but for a few cases a two years interval was 

evaluated. The measurement (prediction) errors were set to 30% (standard 

deviation of the mean), as would be realistic for predictions based on spectral 

satellite data (Magnusson and Fransson 2004) or 10%, which would be realistic 

for predictions based on laser data (Naesset et al. 2004). The forecasting errors 

were set to 60% (standard deviation of the mean) as a realistic case and 30%, 

to study the effect of having better growth models. For simplicity we assumed 

that the observed measurement coincided with the forecasted estimate.  

For this study, our hypothesis was that we would obtain different results 

from the EKF compared to the Bayesian approach, since the EKF is based on 

an approximation of variances through Taylor linearization. Further, it was of 

interest to assess the consequences of the different assumptions of error 

magnitudes on the DA results. 

 

2.2 A study with empirical data (Paper II) 

The empirical data used in Paper II were obtained from the study site 

Remningstorp in Southern Sweden (Lat. 58°30’ N, Long. 13°40’) (Figure 4). 

The forests in the study area are dominated by Norway spruce and Scots pine. 

It is a quite flat area with only limited elevations.  
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Figure 4 Overview of the study area in southern Sweden (Lat. 58°30’ N, Long. 13°40’). The 

location of the 10m radius sample plots which were used in the study are marked with black 

triangles. ©Swedish National Land Survey I2014/00764.From Paper III. 

To develop models for estimating the state of the desired characteristics 

(volume (V), basal area (BA) and Lorey’s mean height (HL)), field data from 

the Swedish National Forest Inventory (NFI) from sample plots from two 

different field campaigns were used. To obtain the estimates for V, HL and BA 

as well as the corresponding variances RS data from aerial image matching 

were applied. For validating the results of the DA and the two commonly used 

methods applied in practice, i.e. either using the last estimate only or making a 

forecast from the first estimate, field plot validation data were applied. These 

plots were 314 m
2
 large, located within homogenous stands without any major 

influences from cuttings or other disturbances during the study period. 

Making use of aerial image matching data the following models (Eqs. 7-9) 

for the mean height, volume, and basal area were estimated through regression 

analysis to 

𝐻𝐿 = 𝛽0 + 𝛽1𝑃95 + 𝛽2𝐷 + 휀, (7) 

𝑉 = exp(𝛽3 + 𝛽4𝑃95 + 𝛽5 ln(𝑝95)) + 휀, (8) 

and 

𝐵𝐴 = exp(𝛽6 + 𝛽7𝑃30 + 𝛽8 ln(𝑝95)) + 휀, 
(9) 
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respectively, where P30 and P95 are the 30
th
 and 95th percentiles of the height 

distribution of image matching points at each plot, respectively, D is the ratio 

of matched points with heights larger than 2m above ground to all matched 

points at each plot, and the ε:s are residual terms with zero expectation. 

Like in Paper I the EKF was applied for the data assimilation. Also like 

Paper I, the variables site index (SI), tree species composition, and age were 

assumed to be measured without error. The forecasting and assimilation steps 

were the same as in Paper I, described above, but with the important difference 

that in Paper II empirical data were applied. 

To assess the performance of  the three methods: DA, most recent estimate, 

and forecast from the first measurement, deviations between predicted values 

and field measurements for the validation plots at the last time point were 

calculated. The root mean square error (RMSE; Eq. 10) and the mean deviation 

(MD; Eq. 11) were calculated as 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑖

2

𝑛

𝑖=1

 (10) 

and 

𝑀𝐷 =
1

𝑛
∑ 𝑒𝑖 .

𝑛

𝑖=1

 
(11) 

In these formulas, ei is the observed deviation for the i:th validation plot. 

 

2.3 A study of correlated prediction errors (Paper III) 

The data used for Paper III were obtained from the study site Remningstorp, 

i.e. the same study site as in Paper II, see Figure 4. Three different remote 

sensing data sources were used for the investigation of correlated errors in 

predictions of forest attributes through regression analysis. These were laser 

scanning data, TanDEM-X InSAR radar data, and multispectral data from the 

SPOT 5 satellite.  
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To assess the correlation between the prediction errors it was assumed that 

the residual deviations from the regression models consist of two components: 

one random plot effect that remains the same over at least a short period of 

time and one component of white noise, i.e. a random term that is independent 

of the plot random effect and across predictions. 

Thus, the assumed model was  

𝑋𝑠𝑖𝑡 =  𝑆𝑖𝑡 + 𝑏𝑠𝑖 +  𝛿𝑠𝑖𝑡 , 
(12) 

where Xsit is the regression analysis-based prediction of a forest characteristic 

using RS sensor type s on plot i at time point t, Sit is the corresponding true 

value, bsi is the plot random effect, specific to sensor type s, and δsit is white 

noise. The expectation values of b and δ are zero and their variances depend on 

the type of RS data used and the general plot conditions. The prediction error, 

rsit is 

𝑟𝑠𝑖𝑡 =  𝑏𝑠𝑖 + 𝛿𝑠𝑖𝑡 . (13) 

With this model assumption, the b-term will make the prediction errors 

correlated across time on a given plot (assuming the time period is fairly short, 

so that the general plot conditions do not change). The correlation between the 

prediction errors from two subsequent predictions with the same sensor type 

will be (assuming 𝑣𝑎𝑟(𝛿) remaining the same at both time points) 

𝑐𝑜𝑟𝑟(𝑟𝑠𝑖1, 𝑟𝑠𝑖2) =
𝑐𝑜𝑣( 𝑟𝑠𝑖1,𝑟𝑠𝑖2 )

√𝑣𝑎𝑟(𝑟𝑠𝑖1) 𝑣𝑎𝑟(𝑟𝑠𝑖2)  
=

𝑣𝑎𝑟(𝑏𝑠𝑖)

𝑣𝑎𝑟(𝑏𝑠𝑖)+𝑣𝑎𝑟(𝛿𝑠𝑖)
. (14) 

This model should be reasonable when plot level predictions are based on 

regression analysis, using RS data as predictor variables, with characteristics of 

interest from plot level field measurements as dependent variables (cf. Ståhl 

1992).  

To estimate the correlations, pairs of plot level prediction errors across the 

117 plots in Remningstorp were selected. Assuming the variance of the plot 

level random effect as well as the variance of the white noise being the same 

for all plots, the correlation was estimated according to the standard formula 

𝑐𝑜𝑟�̂�(�̂�𝑠1, �̂�𝑠2) =
𝑐𝑜�̂�(�̂�𝑠1,�̂�𝑠2)

√𝑣𝑎�̂�(�̂�𝑠1) 𝑣𝑎�̂�(�̂�𝑠2)  
. (15) 

The caps indicate that the quantities are estimated following the regression 

analysis, e.g. �̂�𝑠1 is the notation for residuals obtained from the regression 
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analysis based on data at time point 1 from the sensor s. Since three pairs of 

data were available for a given sensor and nine pairs for a given combination 

of two sensors, the average correlation across all pairs was computed using 

average covariances and variances across all three or nine pairs.  

2.3.1 Demonstrating the effect of correlations in DA 

To demonstrate the importance of assessing and accounting for correlations 

between subsequent RS-based estimates, it was shown how the precision of 

DA-based predictions develop when correlations were assumed to be zero, and 

when correlations were appropriately accounted for.  

Denoting two predictions X1 and X2, we form the weighted average XDA as 

𝑋𝐷𝐴 =  𝑎𝑋1 + (1 − 𝑎)𝑋2. (16) 

The weight, a, is chosen so that the variance of XDA is minimized. This 

variance is 

𝑣𝑎𝑟(𝑋𝐷𝐴) =  𝑎2𝑣𝑎𝑟(𝑋1) + (1 − 𝑎)2𝑣𝑎𝑟(𝑋2) 

+2𝑎(1 − 𝑎)𝑐𝑜𝑣(𝑋1, 𝑋2). 
(17) 

The minimization is easily achieved using standard optimization and the result 

is 

𝑎 =  
𝑣𝑎𝑟 (𝑋2) − 𝑐𝑜𝑣 (𝑋1, 𝑋2)

𝑣𝑎𝑟 (𝑋1) + 𝑣𝑎𝑟 (𝑋2) − 2𝑐𝑜𝑣 (𝑋1, 𝑋2)
. (18) 

where a corresponds to the Kalman gain, i.e. the weight allocated to the new 

prediction (X1 in this case). From this formula it is clear that not only the 

variances matter but also the covariances (or the correlations) between the 

predictions in the computation of weights. Thus, assuming independent 

predictions in case they are not will lead to non-optimal weighting. 

The consequences of correlated prediction errors for different cases were 

investigated using simulated data. In this thesis summary we present results 

from three different simulated series corresponding to 10-RS based predictions 

using the same sensor within a short period of time. The correlations between 

prediction errors were assumed to be 0, 0.4 and 0.8. The standard deviations of 

the DA predictions as well as the weights were calculated. 
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3.1 A study with simulated data (Paper I) 

The results of the simulations in Paper I clearly indicated that DA has a 

potential to be successfully implemented in forestry. 

Looking at the gain of applying DA in forest inventory we could see that 

the variances could be decreased by 9 to 64% after an assimilation period of 

ten years, i.e. a substantially higher precision was obtained. The best 

improvements of the precision of individual predictions were obtained for the 

case when a precise growth model was applied in combination with imprecise 

inventories. Least improvements were obtained when an imprecise growth 

model was applied in combination with precise inventories. 

In Figure 5 four different cases are shown, based on simulated stand 

developments from 20 to 70 years with inventories every five years. The cases 

are separated by different assumptions regarding the precision of inventories 

and growth forecasts. The reason for increasing magnitudes of errors over time 

despite using DA is that both inventory and growth errors are relative, i.e. their 

standard deviations are larger when the volume is large. 

  

3 Results 
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Figure 5 Variance versus age. In case A and B a forecast error (relative standard deviation) 

of 30% is assumed, while the inventory errors are 30% in case A and 10% in case B. In 

cases C and D the forecast error is 60% and the inventory error 30% in case C and 10% in 

case D. The triangles represent the DA based variances and the quadrats the measurement 

based variances. From Paper I. 

By assuming shorter time intervals, i.e. getting new data every second year 

compared to every fifth year, the variances could be decreased even more, i.e. 

the gain of applying DA was higher, because more data were available. 

Looking at the distributions (in the Bayesian approach) after several 

measurements and updating steps (see Figure 4 in paper I), it was seen that the 

variances get larger (according to our assumption of relative errors) but the 

distributions remain almost normally distributed. The higher the measurement 

error the less weight the measurement gets in the final distribution, i.e. poor 

inventories combined with good forecasts results in domination of the forecast 

part in the final distribution. 

Comparing the Bayesian approach with the EKF approach, is must be 

noticed that the results of the EKF do not give distributions but the mean 

predicted value as well as the corresponding estimated variance. The 

comparison showed that the mean values of the predictions were almost the 

same using both methods but the estimated variances were always lower using 

EKF compared to the Bayesian method (Figure 6). 

 

Case A ▲DA 
             ■ measurement 

Case B ▲DA 
             ■ measurement 

Case C ▲DA 
             ■ measurement 

Case D ▲DA 
              ■ measurement 
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Figure 6 Comparison of estimated variances with the Bayesian method and the EKF for 

cases A-D. From Paper I. 

3.2 A study with empirical data (Paper II) 

Receiving promising results using simulated data made it interesting to 

investigate the performance of DA using empirical data. In Paper II, empirical 

data from the Remningstorp test site and the EKF were applied. The results 

were expressed in terms of RMSE and mean deviation from comparing the DA 

results with measurements on large plots.  

We obtained the result (Table 1) that the RMSEs were mostly smaller using 

DA than applying the two established methods, i.e. taking the most recent 

estimate or forecasting the estimates from the first estimate in the time series, 

which shows that DA increased the accuracy of the estimates. However, the 

improvements due to DA in comparison with the two other methods were 

rather modest. 
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Table 1 Comparison of the RMSEs of the three different methods: DA, the most recent 

estimate, forecasting from the first estimate. 

Target variable DA Most recent estimate Forecasted 

Volume 1.7 (8.5%) 1.6 (8.0%) 2.0 (9.9%) 

Basal area 3.1 (9.5%) 3.5 (10.8%) 4.7 (14.5%) 

Height 41.0 (13.3%) 44.1 (14.3%) 63.5 (20.6%) 

Table 2 shows that the DA-based predictions had very small mean deviations 

while the two other methods in some cases had larger mean deviations. 

Table 2 Mean deviation (MD) from the field measurement in 2011. A positive MD means 

that the value is on average overestimated compared to the field measurements. In 

parentheses is the relative MD. 

Target variable DA Most recent estimate Forecasted 

Volume 0.73 (0.3%) -10.0 (-3.4%) 35.7 (12.0%) 

Basal area -0.89 (-2.8%) -2.12 (-6.7%) 1.47 (4.7%) 

Height 0.19 (1.0%) 0.12 (0.6%) 0.27 (1.4%) 

Comparing the results of Paper I and Paper II indicated problems to reach 

the full theoretical potential of applying DA in practice. 

 

3.3 A study of correlated prediction errors (Paper III) 

In Paper III we investigated to what extent the residual errors of RS-based 

predictions based on different sensors were correlated, and the influence of 

correlated errors on the gain of using DA. 

The correlation between estimates obtained from pairs of datasets from the 

same sensor and across sensors is shown in Tables 3 and 4, for the attributes 

growing stock volume and mean height. 

Table 3 Average correlation for the prediction error of Lorey’s mean height. 

Sensor ALS SPOT 5 TanDEM-X 

ALS 0.57 - - 

SPOT 5 0.21 0.84 - 

TanDEM-X 0.36 0.37 0.60 
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Table 4 Average correlations for the prediction error of the volume per hectare. 

Sensor ALS SPOT 5 TanDEM-X 

ALS 0.75 - - 

SPOT 5 0.49 0.91 - 

TanDEM-X 0.63 0.65 0.84 

Summarizing the results, we can say that we obtained strong correlations 

using the same sensor for all predictions and sensors except for the height 

measured by ALS and TanDEM-X. The average correlations between different 

types of sensors in general were weaker, especially in case of height 

measurements. 

In Figure 7 it can be seen that the effect of DA decreases a lot when errors 

are correlated, even if a moderate correlation of 0.4 is assumed. The decrease is 

higher the higher the error correlations are. After ten assimilation steps the 

standard deviation of the prediction could be decreased to 32% of the original 

standard deviation when prediction errors are not correlated. With a correlation 

of 0.4 the standard deviation can be decreased to 68% of the original standard 

deviation and a strong correlation of 0.8 leads to a decrease to only 91% of the 

original standard deviation. 
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Figure 7 The relative standard deviations of the DA based prediction after ten assimilated 

predictions from the same type of RS sensor, if the error correlations are ignored. In the 

upper left case zero correlation is assumed, in the upper right case a correlation of 0.4 is 

assumed, in the lower left a correlation of 0.8 is assumed.The lower right shows the weight 

allocated to the new prediction in all cases.(From paper III.) 

The weight that is allocated to the new prediction decreases during the ten 

assimilation steps from 1, i.e. all weight on the new RS-based prediction, to 

0.1. When the same sensor was used in all assimilation steps, the same optimal 

weighting scheme is obtained when errors are correlated and when they are 

uncorrelated. But as shown in Paper III this is not the case when data from 

different sensor types are mixed in the DA. 
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Overall, the studies point at both possibilities and problems for implementing 

DA to improve stand-level forest inventories.  On the positive side there is a 

wealth of remotely sensed data which are strongly correlated with forest 

attributes like height, biomass, and volume, and which are possible to acquire 

at short intervals at relatively low cost (Nyström 2015). However, predictions 

based on such data were found to have correlated errors, which to some extent 

limit the usefulness of DA (cf. Stewart et al. 2008). Further, abrupt changes in 

forest state due to management and other disturbances need to be taken into 

account through appropriate change detection methods (e.g. Olsson 1994). This 

issue was not addressed in the thesis.  

Considering the individual studies the simulation study with independent 

measurements (Paper I) led to substantial improvements of the DA-based 

predictions compared to using only the last measurement. 

In some of the simulated cases, the variances decreased a lot, the most in 

cases with a relatively high measurement error combined with very good 

forecasts, the least for cases with low measurement errors and less precise 

forecasts. One of the more realistic cases is probably case D (see Paper I), 

where we assumed a forecast error of 60% (relative standard deviation) and a 

measurement error of 10 %, which resembles the case of using accurate sensors 

like ALS (Naesset et al. 2004) together with a crude growth model. However, 

in this case the decrease of variance was the least from applying DA. On the 

other hand, less precise RS-based predictions typically are cheaper and can be 

obtained at shorter intervals, e.g. from spectral satellites. Thus, more 

observations might be included in the assimilation, and in such cases (Paper I) 

4 Discussion 
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the improvement of DA compared to using the last measurement was found to 

be substantial.  

The longer the time period of applying DA the stronger was the effect of 

decreasing the variances. But in practice we have to expect disturbances, like 

clear-cutting or thinning, which will limit the length of the undisturbed periods 

in which DA is effective. Once a major change has occurred in a stand there is 

probably a need to restart or adapt the assimilation process.  

In Paper II it was found that the empirical results were not as promising as 

those obtained with simulated data in Paper I. The results of taking the most 

recent estimate in general were almost as good as using DA. However, DA 

gave better results than using forecasts based on the initial state of the time 

series. A means to further increase the accuracy of the DA framework in 

practice could be to combine initial high quality data from, for example, field 

visits with new RS information instead of replacing the older information. In 

Sweden, the option to do this is currently very interesting due to the 

availability of almost wall-to-wall forest information from the recent national 

level LiDAR survey which would have a potential to be updated using DA. 

In paper II all RS data were of the same type, in this case point cloud data 

from digital air photos. Although this type of data was not evaluated in Paper 

III, there is reason to believe that the correlations of prediction errors between 

subsequent predictions are strong. When this is the case the efficiency of DA 

decreases considerably, as shown in Paper III. This is a plausible explanation 

why DA did not perform much better than discarding old data and only using 

the newest estimate. In our study (Paper II) the assimilation period was rather 

short, 8 years only, compared to the rotation period of perhaps 80-100 years in 

Nordic forests. In our study raster cells of 18x18m size were used but maybe 

assimilation at stand-level would lead to better results. This is an issue that 

requires further attention. Since the modelling units for the growth forecast and 

the RS-based prediction preferably should correspond, a further evaluation of 

the appropriate area unit for DA must take into account both the RS-based 

inventories and the growth modelling. Due to this, raster based approaches to 

DA seem to be more straightforward than stand-based approaches (Nyström 

2015). However, in summing up from raster cells to stands there is a need to 

know the correlations also between the prediction errors of spatially adjacent 
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raster cells. This is another type of study involving error correlations that needs 

further attention in the development of cost-efficient stand-level DA 

approaches, and if the spatial autocorrelation of plot level prediction errors 

within stands is weak, DA has a potential to be more efficient at stand level 

than at plot level. 

Paper III showed that the correlation between prediction errors at plot level 

was strong for all RS data sources investigated in our study, when predicting 

growing stock volume and mean height. So applying the standard Kalman filter 

which assumes the predictions to be independent might not be the best 

approach, but a non-standard filter approach might give better results (cf. 

Stewart et al. 2008). Error correlations otherwise cause severe misjudgements 

of the precision of the DA-based predictions, which can cause unfavourable 

decisions in the forest management (Saad et al. 2017), since the data quality is 

misjudged.  

Since the provision of data about forest stands is likely to be frequent in the 

future, a mix of different types of data might improve the results from DA. 

Paper III showed that error correlations across sensors were smaller, which 

gives an indication that mixing different RS-sources would be a more efficient 

DA strategy than sticking to one single source of data. New types of field data 

may also become available, such as data from harvesters and ground based 

laser scanners (Holmgren et al. 2012). Even if some source of data would not 

be sufficient when used alone it may effectively contribute with information to 

the DA process. Using different types of RS data in the DA process, the error 

correlations will cause the weights to be incorrect (if a standard Kalman filter 

is used) and the estimated variances of the DA-based predictions will be 

incorrect as well. However, if the correlations are not too strong and the 

differences in standard deviations between the different sources of data are 

small, slightly incorrect weights will only slightly affect the (true) standard 

deviation of the DA-based predictions. But if the differences are larger it 

becomes necessary to handle the error correlations correctly.  

By using different RS data sources the accuracy of the DA-based 

predictions might be increased. If the correlations between the different RS 

sources are weak and their accuracy is similar, the predictions will gain 

accuracy by the other source compared to using only one RS data source 
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repeatedly. That means assuming several prediction of one RS data source will 

have lower accuracy than assuming one prediction less of the first RS source 

followed by a prediction by another RS source. To what extent the accuracy of 

the other RS source can be worth and still result in better DA predictions has to 

be investigated in further studies. It is, for example, not probable that a 

prediction based on the SPOT 5 satellite can increase the predictions of the 

mean height obtained by ALS since the accuracy of the mean height 

measurement by the satellite is much worse than the accuracy of the mean 

height by ALS, where the RSME is only 4-7% (e.g., Naesset et al. 2004). 

In cases where the estimates have high accuracy the need and possibility to 

apply DA is not as strong as for cases where the accuracy is low. So, further 

research should concentrate on how to increase the accuracy also in those 

cases.  

In our studies the assimilations were done for one variable at a time so 

further studies need to investigate the possibility of assimilating multiple 

variables simultaneously. Furthermore, it would be useful to implement a 

method (cf. Olsson 1994) to identify major disturbances and to break and 

restart the assimilation process accordingly. 

The results of our studies are important first steps towards an operational 

DA system for forest variables. Such systems are important for the future to 

make best use of RS data for making forest inventories cost-efficient. 



39 

 

Arulampalam, S., Maskell, S., Gordon, N. and Clapp, T. (2002). A Tutorial on 

Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. 

IEEE transactions on signal processing: 50 (2):174-188. 

Asch, M., Bocquet, M., and Nodet, M. (2016). Basic methods and algorithms 

for data assimilation. Data Assimilation: Methods, Algorithms, and 

Applications. Siam. pp 3-23 

Åge, P. (1987). Skogsvärdering: teori – metoder. Statens Lantmäteriverk. 

Svensk Lantmäteritidskrift 1987, 79(3): 29-38. (In Swedish.) 

Bitterlich, W. (1984). The relascope idea. Relative measurements in forestry. 

Commonwealth Agricultural Bureaux. 

Bohlin, J., Wallerman, J. and Fransson, J. E. S. (2012). Forest variable 

estimation using photogrammetric matching of digital aerial images in 

combination with a high-resolution DEM. Scandinavian Journal of Forest 

Research 27: 692–699. 

Bouttier, F. and Courtier, P. (1999). Data assimilation concepts and methods. 

Meteorological Training Course Lecture Series (Printed 9 January 2001). 

European Centre for Medium Range Weather Forecasts. 

Breidenbach, J. and Astrup, R. (2012). Small area estimation of forest 

attributes in the Norwegian National Forest Inventory. European Journal of 

Forest Research 131: 1255-1267. 

Chatterjee, S. and Hadi, A. S. (2015). Regression analysis by example. John 

Wiley & Sons, New York. 

Cienciala, E., Tomppo, E., Snorrason, A., Broadmeadow, M., Colin, A., 

Dunger, K., Exnerova, Z., Lasserre, B., Petersson, H., Priwitzer, T., 

Sanchez, G., and Ståhl, G. (2008). Preparing emission reporting from 

References 



40 

 

forests: use of National Forest Inventories in European countries. Silva 

Fennica 42: 73–88. 

Davi, H., Soudani, K., Deckx, T., Dufrene, E., Le Dantec, V. and Francois, C. 

(2006). Estimation of forest leaf area index from SPOT imagery using 

NDVI distribution over forest stands. International Journal of Remote 

Sensing 27: 885-902. 

Dorigo, W., Zurita-Milla, R., de Witt, A.,Brazile, J.,Singh, R. and  Schaepman, 

M. (2007). A review on reflective remote sensing and data assimilation 

techniques for enhanced agroecosystem modeling. International Journal of 

Applied Earth Observation and Geoinformation, 9: 165-193. 

https://doi.org/10.1016/j.jag.2006.05.003 

Fransson, J. (1999). Analysis of Synthetic Aperture Radar Images for Forestry 

Applications. Dissertation, Swedish University of Agricultural Sciences.  

Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A. H. and Ståhl, G. 

(2014). Adapting National Forest Inventories to changing requirements – 

the case of the Swedish National Forest Inventory at the turn of the 20th 

century. Silva Fennica 48 (3), article id 1095. 

http://dx.doi.org/10.14214/sf.1095 

Gobakken T., Næsset E., Nelson R., Bollandsås O. M., Gregoire T. G., Ståhl 

G., Holm S., Ørka H.O. and Astrup R. (2012). Estimating biomass in 

Hedmark County, Norway using national forest inventory field plots and 

airborne laser scanning. Remote Sensing of Environment 123: 443-456. 

http://dx.doi.org/10.1016/j.rse.2012.01.025 

Gihl M. (1991). Data Assimilation in Meteorology and Oceanography. 

Advances in Geophysics. Vol 33, Elsevier. pp. 141-266. 

https://doi.org/10.1016/S0065-2687(08)60442-2 

Hansen M. C., Stehman S. V., Potapov P. V., Loveland T. R., Townshend J. 

R., DeFries R. S., Pittman K. W., Arunarwati B., Stolle F., Steininger M. 

K., Carroll M. and DiMiceli C. (2008). Humid tropical forest clearing from 

2000 to 2005 quantified by using multitemporal and multiresolution 

remotely sensed data. Proceedings of the National Academy of Sciences, 

105: 9439-9444. http://dx.doi.org/10.1073/pnas.0804042105 

Hill J., Diemer C., Stöver O. and Udelhoven T. (1999). A local correlation 

approach for the fusion of remote sensing data with different spatial 

resolutions in forestry applications. International Archives of 

Photogrammetry and Remote Sensing 32: 4-3.  

Hoff, P.D. (2009). A first course in Bayesian statistical methods. Springer, 

New York. ISBN 978-0-387-92299-7. 

https://doi.org/10.1016/j.jag.2006.05.003
http://www.silvafennica.fi/article/1095/author/3379
http://www.silvafennica.fi/article/1095/author/3380
http://www.silvafennica.fi/article/1095/author/3381
http://www.silvafennica.fi/article/1095/author/3382
http://www.silvafennica.fi/article/1095/author/3383
http://www.silvafennica.fi/article/1095/author/3384
http://www.silvafennica.fi/
http://www.silvafennica.fi/issue/volume/48
http://www.silvafennica.fi/issue/issue/84
http://www.silvafennica.fi/article/1095
http://dx.doi.org/10.14214/sf.1095
http://dx.doi.org/10.1016/j.rse.2012.01.025
https://doi.org/10.1016/S0065-2687(08)60442-2
http://dx.doi.org/10.1073/pnas.0804042105


41 

 

Holmgren J., Barth A., Larsson H., Olsson H. (2012). Prediction of stem attri-

butes by combining airborne laser scanning and measurements from 

harvesters. Silva Fennica vol. 46 no. 2 article id. 56. 

https://doi.org/10.14214/sf.56 

Holmström, H., Kallur, H. and Ståhl, G. (2003). Cost-plus-loss analyses of 

forest inventory strategies based on kNN-assigned reference sample plot 

data. Silva Fennica 37: 381-398. 

Hyyppä J. and Inkinen M. (1999). Detecting and estimating attributes for 

single trees using laser scanner. The Photogrammetric Journal of Finland, 

16(2): 27-42. 

Hyyppä J., Hyyppä H., Leckie D., Gougeon F., Yu X. and Maltamo M. (2008). 

Review of methods of small-footprint airborne laser scanning for extracting 

forest inventory data in boreal forests. International Journal of Remote 

Sensing, 29(5): 1339-1366. http://dx.doi.org/10.1080/01431160701736489 

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction 

Problems. Transactions of the ASME – Journal of Basic Engineering 82: 

35–45. 

Karjalainen, M., Kankare, V., Vastaranta, M., Holopainen, M. and Hyyppä, J. 

(2012). Prediction of plot-level forest variables using TerraSAR-X stereo 

SAR data. Remote Sensing of Environment 117: 338-347. 

Kuliasov, A.G., Marasin, L.E., Popov, IU.V., Sokolov, S.A., Solodukhin, V.I., 

Mazhugin, I.N., Zhokov, I.A. and Narkevich, V.I. (1979). Registratsiya 

rel’epha mestnosti s pomoshchyu  lazernogo aviaprofilo-grapha (Recording 

the contour of a region with an airborne laser profilograph). Geodeziia I 

Kartografiia, Vol. (1979): 40-42. (in Russian). 

Leberl, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz,S. and 

Wiechert, A. (2010). Point Clouds: Lidar versus 3D Vision. 

Photogrammetric Engineering & Remote Sensing. October 2010, pp 1123-

1134. 

Lindgren, O. (1984). A study on circular plot sampling of Swedish forest 

stands. Swedish University of Agricultural Sciences, Section of Forest 

Mensuration and Management, Umeå. Report 11. 153 p. 

Lindgren, N., Persson, H.J., Nyström, M., Nyström, K., Grafström, A., Muszta, 

A., Willén, E., Fransson. J.E.S., Ståhl, G. and Olsson, H. (2017). Improved 

estimation of forest variables using data assimilation of interferometric 

synthetic aperture radar data. Canadian Journal of Remote Sensing (in 

review). 

https://www.silvafennica.fi/article/56/author/166
https://www.silvafennica.fi/article/56/author/167
https://www.silvafennica.fi/article/56/author/168
https://www.silvafennica.fi/article/56/author/169
https://www.silvafennica.fi/
https://www.silvafennica.fi/issue/sf/volume/46
https://www.silvafennica.fi/issue/sf/issue/16
https://www.silvafennica.fi/article/56
https://doi.org/10.14214/sf.56
http://dx.doi.org/10.1080/01431160701736489


42 

 

Maclean, G.A. and Krabill, W.B. (1986). Gross-merchantable timber volume 

estimation using an airborne lidar system. Canadian Journal of Remote 

Sensing 12:7-18. 

Magnusson, M. and Fransson, J.E.S. (2004). Combining airborne CARABASII 

VHF SAR data and optical SPOT-4 satellite data for estimation of forest 

stem volume. Canadian Journal of Remote Sensing 30: 661-670. 

Maltamo M., Packalen P., Suvanto A., Korhonen K. T., Mehtätalo L. and 

Hyvönen P. (2009). Combining ALS and NFI training data for forest 

management planning: a case study in Kuortane, Western Finland. 

European Journal of Forest Research 128(3): 305-317. 

http://dx.doi.org/10.1007/s10342-009-0266-6 

Næsset E. (1997). Estimating timber volume of forest stands using airborne 

laser scanner data. Remote Sensing of Environment, 61(2): 246-253. 

http://dx.doi.org/10.1016/S0034-4257(97)00041-2 

Næsset E. (2002). Predicting forest stand characteristics with airborne scanning 

laser using a practical two-stage procedure and field data. Remote Sensing 

of Environment, 80(1): 88-99.  

Næsset E. (2009). Effects of different sensors, flying altitudes, and pulse 

repetition frequencies on forest canopy metrics and biophysical stand 

properties derived from small-footprint airborne laser data. Remote Sensing 

of Environment 113(1): 148-159. 

http://dx.doi.org/10.1016/j.rse.2008.09.001 

Næsset E. (2011). Estimating above-ground biomass in young forests with 

airborne laser scanning. International Journal of Remote Sensing 32(2), 

473-501. http://dx.doi.org/10.1080/01431160903474970 

Næsset, E., Gobakken, T., Holmgren, J., Hyyppä, H., Hyyppä, J., Maltamo, 

M., Nilsson, M., Olsson, H., Persson, Å. and Söderman, U. (2004). Laser 

scanning of forest resources: the Nordic experience. Scandinavian Journal 

of Forest Research 19(6): 482-499. 

Næsset E., Gobakken T., Solberg S., Gregoire T. G., Nelson R., Ståhl G. and 

Weydahl D. (2011). Model-assisted regional forest biomass estimation 

using LiDAR and InSAR as auxiliary data: A case study from a boreal 

forest area. Remote Sensing of Environment 115:  3599-3614. 

http://dx.doi.org/10.1016/j.rse.2011.08.021 

Næsset E., Bollandsås O. M., Gobakken T., Gregoire T. G. and Ståhl G. 

(2013). Model-assisted estimation of change in forest biomass over an 

11year period in a sample survey supported by airborne LiDAR: A case 

http://dx.doi.org/10.1007/s10342-009-0266-6
http://dx.doi.org/10.1016/S0034-4257(97)00041-2
http://dx.doi.org/10.1016/j.rse.2008.09.001
http://dx.doi.org/10.1080/01431160903474970
http://dx.doi.org/10.1016/j.rse.2011.08.021


43 

 

study with post-stratification to provide "activity data". Remote Sensing of 

Environment 128: 299-314.  

Nelson, R. (1984): Determining forest canopy characteristics with airborne 

laser data. Remote Sensing of Environment 15:201-212. 

Nelson, R. (1997). Modeling forest canopy heights: the effects of canopy 

shape. Remote Sensing of Environment 60:327-334. 

http://dx.doi.org/10.1016/S0034-4257(96)00214-3 

Nelson R., Krabill W. and Tonelli J. (1988). Estimating forest biomass and 

volume using airborne laser data. Remote Sensing of Environment, 24(2): 

247-267. http://dx.doi.org/10.1016/0034-4257(88)90028-4 

Nelson R., Oderwald R. and Gregoire T. G. (1997). Separating the ground and 

airborne laser sampling phases to estimate tropical forest basal area, 

volume, and biomass. Remote Sensing of Environment 60(3): 311-326. 

http://dx.doi.org/10.1016/S0034-4257(96)00213-1 

Nelson R., Boudreau J., Gregoire T. G., Margolis H., Næsset E., Gobakken T. 

and Ståhl G. (2009). Estimating Quebec provincial forest resources using 

ICESat/GLAS. Canadian Journal of Forest Research 39(4): 862-881. 

http://dx.doi.org/10.1139/X09-002 

Nyström, M., Lindgren, N., Wallerman, J., Grafström, A., Muszta, A., 

Nyström, K., Bohlin, J., Fransson, J. E.S., Ehlers, S., Olsson, H. and Ståhl, 

G (2015). Data assimilation in forest inventory: first empirical results. 

Forests 6:4540-4557. 

Olsson, H. (1994). Changes in satellite-measured reflectances caused by 

thinning cuttings in boreal forest. Remote Sensing of Environment 50: 221-

230.  

Persson, H. J. and Fransson, J. E. S. (2016). Comparison between TanDEM-X 

and ALS based estimation of above ground biomass and tree height in 

boreal forests. Scandinavian Journal of Forest Research, Issue August. 1-

14:306-319. 

Rabier, F. (2006). Overview of global data assimilation developments in 

numerical weather-prediction centres. Quarterly Journal of the Royal 

Meteorological Society 131: 3215-3233. DOI: 10.1256/qj.05.129  

Saad, R., Eyvindson, K., Gong, P., Lämås, T. and Ståhl, G. (2017). Potential of 

using data assimilation to support forest planning. Canadian Journal of 

Forest Research 47: 690-695. http://dx.doi.org/10.1139/cjfr-2016-0439 

Saarela, S., Holm, S., Grafström, A., Schnell, S., Næsset, E., Gregoire, T.G., 

Nelson, R.F. and Ståhl, G. (2016). Hierarchical model-based inference for 

http://dx.doi.org/10.1016/S0034-4257(96)00214-3
http://dx.doi.org/10.1016/0034-4257(88)90028-4
http://dx.doi.org/10.1016/S0034-4257(96)00213-1
http://dx.doi.org/10.1139/X09-002
http://onlinelibrary.wiley.com/doi/10.1256/qj.05.129/pdf
http://dx.doi.org/10.1139/cjfr-2016-0439


44 

 

forest inventory utilizing three sources of information. Annals of Forest 

Science 73(4): 895-910. http://dx.doi.org/10.1007/s13595-016-0590-1 

Solodukhin, V.I., Zhukov, A.Ya., Mazhugin, I.N., & Narkevich, V.I. (1976). 

Metody Izuchenija Vertikal’nyh Sechenij Drevostoev (Method of study of 

vertical sections of forest stands). Leningrad Scientific Research Institute of 

Forestry, Leningrad, USSR. 55 pp. (in Russian). 

Solodukhin, V.I., Kulyasov, A.G., Utenkov, B.I., Zhukov, A.Ya., Mazhugin, 

I.N., Emel’yanov, V.P., and Korolev, I.A. (1977). S’’emka profilya krony 

dereva s pomoshch’yu lazernogo dal’nomera (Drawing the crown profile of 

a tree with the aid of a laser). Lesnoe Khozyaistvo, 2: 71-73. (in Russian). 

Solodukhin, V.I., Mazhugin, I.N., Zhukov, A.Ya. Narkevich, V.I., Popov, 

Yu.V., Kulyasov, A.G., Marasin, L.E., and Sokolov, S.A. (1979). 

Lazernaya aeros’’emka profilei lesa (Laser aerial profiling of forest). 

Lesnoe Khozyaistvo VolRege. 10: 43-45. (in Russian). 

Ståhl, G. (1992). A study on the quality of compartmentwise forest data 

acquired by subjective inventory methods (in Swedish). SLU, Department 

of biometry and forest management planning. Report 24. 

Stewart, L.M., Dance, S.L. and Nichols, N.K. (2008). Correlated observation 

errors in data assimilation. International journal for numerical methods in 

fluids 56:1521–1527. 

Thuresson, T., Näsholm, B., Holm, S. and Hagner, O. (1996). Using digital 

image projections to visualize forest landscape changes due to management 

activities and forest growth. Environmental Management 20(1): 35-40. 

Tomppo, E.O. (1993). Multi-source national forest inventory of Finland. 

International Archives of Photogrammetry and Remote Sensing 29: 671-

671. 

Tomppo, E. (2006). The Finnish Multi-Source National Forest Inventory-small 

area estimationand map production. In Forest Inventory. Springer 

Netherlands: 195-224.  

Tomppo, E., Goulding, C. and Katila, M. (1999). Adapting Finnish multi-

source forest inventory techniques to the New Zealand preharvest 

inventory. Scandinavian Journal of Forest Research 14(2): 182-192. 

Tomppo E., Haakana M., Katila M. and Peräsaari J. (2008). Multi-source 

National Forest Inventory: Methods and Applications. Springer New York 

vol 18. 

http://dx.doi.org/10.1007/s13595-016-0590-1


45 

 

Tomppo, E., Gschwantner, T., Lawrence, M. And McRoberts, R.E. 

(eds)(2010). National Forest Inventories. Pathways for Common Reporting. 

Springer, New York. 

Treuhaft, R. N. and Siqueira, P. R. (2004). The calculated performance of 

forest structure and biomass estimates from interferometric radar. Waves in 

Random Media 14: 345-358. 

Welch, G. and Bishop, G. (2006). An introduction to the Kalman filter. 

University of North Carolina, Dep. of Computer sciences. Technical Report 

95-041. 

Wikle, C.K., and Berliner, L.M. 2007. A Bayesian tutorial for data 

assimilation. Physica D: Nonlinear Phenomena 230:1–16. 

doi:10.1016/j.physd.2006.09.017 

Wikström, P.,Edenius, L., Elfving, B., Eriksson, L.O., Lämås, T., Sonesson, 

J.,Öhman, K., Wallerman, J., Waller, C. and Klintebäck, F. (2011). The 

Heureka forestry decision support system: an overview. International 

journal of mathematical and computational forestry & natural-resource 

sciences 3: 87-95. 

Wolter, P. T., Townsend, P. A. and Sturtevant, B. R. (2009). Estimation of 

forest structural parameters using 5 and 10 meter SPOT-5 satellite data. 

Remote Sensing of Environment 113(9): 2019-2036. 

 

 

  



46 

 

 

 



47 

 

Good knowledge about forest stands is important for forest owners to manage 

the stand as effective as possible. To know the characteristics of the forest 

stand, e.g. the tree species, the number of trees, their heights or volumes, is 

important when it comes to decisions about management actions like fellings 

or thinnings. The traditional way to obtain the characteristics of a stand is to 

make field campaigns where the desired parameters are measured. Since this is 

quite expensive and time intensive, it is usually only done only every ten to 

twenty years. But a lot will happen under such a long time, e.g. management 

actions or damage by storms, so the old data from the last campaign is 

discarded when new data is acquired. If you are interested in what the forest 

will look like in a few years, the measured estimates can be forecasted by using 

functions that will predict how much the forest will grow. Since the growth 

functions are approximations of the real growth, the prediction will have errors 

(just like the measured values have). This results in predictions which can have 

quite large errors. But for a long time this was the best you could do. 

In areas like meteorology similar problems could be solved by applying 

data assimilation because remotely sensed data from satellites are available 

several times per day so that the weather forecasts can be updated every few 

hours and became very accurate. 

During the last decades remote sensing methods for forestry, e.g. using 

satellites, have been developed and nowadays forest characteristics can be 

obtained at short intervals and at low costs. So, now a possibility to update the 

measurements with short intervals turned up and offered a means to increase 

the accuracy of the predictions. One method to further increase the accuracy is 

Popular science summary 
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to apply data assimilation. When a new measurement becomes available the 

old prediction is updated with the new measurement and a weighted average is 

obtained, i.e. the old data are not discarded. To combine the old data with the 

new measurements is the principal idea of data assimilation. Since by this no 

information is discarded a lot of data are available to obtain the new best 

estimates. Depending on the quality of the measured data, i.e. how large the 

error is, and how good the prediction is, they will contribute a lot or almost 

nothing to the new best estimates. If the measurement is very accurate, while 

the forecasting model is not so good, most of the weight of the final estimates 

will come from the measurements and not from the forecast. If the forecast is 

quite accurate but the measurement has large errors, you will trust the forecast 

more and the weight comes mostly from the forecast. In theory, data 

assimilation has the potential to increase the predictions in forestry which was 

shown in a study with simulated data. Using real data pointed out problems to 

reach the potential in practice. DA could only slightly increase the accuracy of 

the estimates, but no big gain was achieved, especially not for the predictions 

of the mean height. The mean height measured by laser scanning is very 

accurate so that no big gain is possible. Further studies that investigated the 

correlations of the prediction errors showed that the correlations have to be 

taken into account since correlated errors decrease the gain of data 

assimilation. Using the same remote sensing data source for several subsequent 

predictions results in correlated errors which implies that using different data 

sources with similar accuracies can increase the accuracy of the predictions. 
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