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Abstract 

Emission of greenhouse gases is causing a shift in the global climate. As a consequence, organisms 

have altered their spatial and temporal distribution. For species temporally synchronized by biotic 

interactions, a shift in temporal distribution might lead to reduced synchrony. This is especially 

pertinent in terms of phenological events, as for example a herbivore needs to match its activity with 

the flowering of its host plant. In this paper, I specifically focus on temporally synchronized biotic 

interactions in insect host-herbivore-predator communities. The main objective is to investigate four 

questions: i) How temperature and precipitation affect the development of species; ii) How temporal 

asynchrony affects single biotic interactions between plants – herbivores and herbivores – predators 

iii) How temporal asynchrony affects more extensive, multitrophic-level communities; and iv) How 

biotic interactions will change in the future. A majority of the studies covered in this paper suggests 

that individual species will increase their development rate if temperature is increased. Moreover, 

temperature seems to have a more pronounced impact on development rate than humidity condition 

does. The rate of development increase could vary among species, indicating that temporal 

asynchrony among currently interacting species could become more common in the future. A major 

related issue is then to determine if species will be able to locally adapt to the new prevailing 

conditions, whether they will go extinct or whether they will start interacting more with other species. 

If selective pressure is hard and genetic variation sufficient, then species may stay synchronized. 

Furthermore, it is important to assess how temperature will increase in the future. More fluctuating 

and extreme temperatures might alter species responses. To address these questions we need more 

studies examining: i) synchrony in herbivore–predator interactions and across several trophic levels; 

ii) the capacity of synchronized species to adapt to new conditions; and iii) species responses to 

fluctuating and extreme temperatures. 
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1. Introduction 

The emission of greenhouse gases has already impacted the global climate. Global 

warming has resulted in temperature elevations, a rise of the global sea level and an acidification of 

the oceans (IPCC 2014). The warming experienced so far is minor relative to future scenarios, but an 

impact on wildlife is already apparent: species have rapidly evolved (Miller-Struttmann et al. 2015), 

the flowering season has shortened in the arctic (Schmidt et al 2016), plant phenology has shifted 

(Menzel et al. 2006) and both tree lines and plants have advanced in altitude (Grabherr et al. 1994; 

Harsch et al. 2009). If emissions of greenhouse gases continue, more difficulties can be expected in 

the future, such as extreme weather events, a further rise of the sea level and an increased frequency 

of flooding events (IPCC 2014). This could affect ecosystems (Sukumar et al. 1995; Wu et al. 2011) 

with outcomes such as habitat loss, increased amount of endangered species (Dirnbock et al. 2011; 

Thuiller et al. 2005) and alterations in biotic interactions (Zarnetske et al. 2012).  

In response to a changing climate, the lifecycle of organisms attuned to their 

environment might shift in time (Menzel et al. 2006; Schmidt et al. 2016) or space (Grabherr et al. 

1994). In this context, it is of particular interest to study how organisms synchronized with each other 

in terms of biotic interactions respond to temporal shifts caused by global warming. These 

synchronized biotic interactions are common in biological communities. For example, the timing of 

algal blooming is of great importance for survival of haddock larvae (Melanogrammus aeglefinus) 

(Platt et al. 2003); the timing of budburst in oak (Quercus robur) is of great importance to the survival 

of winter moth larvae (Operophtera brumata) (VanDongen et al. 1997) and the timing of peak ant 

activity is of key importance for dispersal of myrmechcochorous plant seeds (Guitian & Garrido 

2006). This raises a particularly interesting question: in response to climate change, will synchronized 

biotic interactions stay in synchrony, or slide out of phase and become desynchronized (Fig.1A)? 

Communities consisting of plants, herbivorous insects and their predators provides 

interesting opportunities to study synchronized biotic interactions (Fig.1A). In these communities, 

herbivore fitness and population dynamics depend on how well they match plant development 

(Forkner et al. 2008; Singer 1972; van Asch et al. 2007). For example, O. brumata development is 

timed with the budburst of Q. robur (VanDongen et al. 1997) and Q.robur is host to over 200 species 

of Lepidoptera. Furthermore, most of the insect biomass on oak in spring consists of Lepidoptera 

larvae (Southwood et al. 2004), indicating that spring phenology of Q.robur is important for 

lepidopteran performance.   

Apart from plant-herbivore interactions, predators and parasitoids can regulate 

herbivore insects by top-down influences (Gomez & Zamora 1994) and indirectly enhance plant 

performance (Dyer et al. 2013). The potential of parasitoids to suppress herbivores has made them 

highly useful as biological control agents (Hawkins & Cornell 1994; Lee & Pemberton 2005; 

Neuenschwander 2001). Asynchrony in the herbivore-parasitoid interaction may result in a loss of this 

service. Conversely, a more closely synchronized interaction may result in low survival of herbivores, 

which in the next generation could result in parasitoid extinction due to insufficient host herbivores. 

These scenarios could be considered to be especially true for herbivores which have a few discrete 

generations per year and that are only susceptible to parasitoids during a short time window.  

Besides single biotic interactions between two trophic levels, an organism is also 

subjected to direct or indirect interactions from other trophic levels. For example, predators and 

parasitoids can often enhance the performance of plants via suppression of herbivores (Gomez & 

Zamora 1994; Schmitz et al. 2000). To study how a species respond to alterations in biotic and abiotic 
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variables, it is therefore important to assess the response of the whole community including the 

different trophic levels. Furthermore, the community often consists of a highly complex web of 

interactions (Fig.1B) and it is easy to imagine how alterations in one interaction could have cascading 

effects that alter the structure of the entire food web.  

 

 

Future climate change could alter the temporal activity period of species, which in the 

worst case would lead to asynchrony in biotic interactions. The asynchrony could impact local food 

web structure and lead to extinctions, trophic cascades and pest outbreaks. In this paper I aim to assess 

how global warming-induced alterations in temperature and precipitation affect plant-herbivore-

Fig. 1. A) Tritrophic food chain consisting of a plant, an herbivorous insect and its predator (a parasitoid). The food 

chain is characterized by direct (solid arrows) and indirect interactions (dashed arrow). The phenology of each 

trophic level is displayed in the graph for two different scenarios; where interactions between the three trophic levels 

are synchronized (blue normal distribution curves) and desynchronized (red normal distribution curves). B) 

Tritrophic food web consisting of plants, herbivore insects and their predators (parasitoids). Note that the food web is 

much more complex than the simplified food chain of (A), as it encompasses all of the interactions within the 

community. 

 

A) 

B) 
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predator communities. To explore these effects, I will divide this paper into three different parts and 

assess (Fig.2): i) How temperature and precipitation affect the development of species. I will do this 

by investigating budburst of plants, respectively development rate of insects and their emergence 

success. ii) How temporal asynchrony affects single biotic interactions between plants–herbivores and 

herbivores–predators. iii) How temporal asynchrony affects more extensive, multitrophic-level 

communities. iv) How biotic interactions will change in the future. 

 

2. The impact of temperature on the phenology of species at 

single trophic levels 

2.1 Direct effects of temperature and precipitation on plants 

 Future climatic scenarios predict a global increase in temperature and changes in 

precipitation (IPCC 2014), both important for insect and plant development. In plants, phenological 

events such as flowering, fruiting and leafing have started to occur earlier in the season (Menzel et al. 

2006). However, the response of plants to global warming differs among species. For example, in a 

climate chamber experiment with tree saplings, Fu et al. (2013) found that leaf unfolding was more 

sensitive to temperature changes in Q. robur compared to birch (Betula pendula) or beech (Fagus 

sylvatica). Interestingly, in the warmest treatment, the authors observed that the increase in leaf 

unfolding sensitivity was drastically reduced in both Q. robur and F. sylvatica, but not in B. pendula. 

The effect on plants differs according to life history strategy. The phenology of early-flowering plants 

and annuals appears to be most affected by warming, while early-flowering insect pollinated species 

are more strongly affected than wind pollinated species (Fitter & Fitter 2002). Temperature rather 

than water availability appears to be the major determinant of phenological patterns (Morin et al. 

Fig.1. The essay is divided into five parts, where parts 2,3 and 4 deal with synchrony between single- and multiple 

trophic levels. In the fifth and final part, I summarize how biotic interactions may change in the future. 
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2010; Studer et al. 2005), although precipitation could be of regional importance in currently arid 

areas (Studer et al. 2005). 

2.2 Direct effects of temperature and humidity on insect development  

Irrespective of plants, temperature also affects the development rate of insects. For 

example, development time of the lepidopteran Polygonia c-album has been found to be strongly 

dependent on temperature. For this species, an increase from 17 to 23 degrees almost halved the 

development time (Nylin 1992). This pattern has also been observed in other studies of Lepidoptera 

(e.g. Bryant et al. (1999)). de Pedro et al. (2016) found that high and low temperatures (15 and 30 

degrees, respectively) significantly affected the development and survival rate of the parasitoid 

Aganaspis daci. Furthermore Arakawa and Namura (2002) reared three parasitoid species (Trissolcus 

spp.) at different temperatures. They found that only a few of the individuals exposed to 15 degrees 

emerged successfully. However warmer temperatures, up to 27.5 degrees, increased the development 

rate.  

 Development rate of insects can likewise be affected by humidity. At low humidity, 

Gross (1988) found fewer emerged adults of the parasitoid Trichogramma pretiosum per host egg. By 

contrast, Duale (2005) found a strong effect of temperature but no effect of humidity on the 

development of the parasitoid Pediobius furvus. Relative humidity within the range of 60-90% 

appears to be beneficial for insects (Gross 1988; Orr et al. 1985). Hagstrum and Milliken (1988) 

compiled literature published on different species of Coleoptera and suggested that temperature is 

more important than moisture for determining the rate of their development. However, moisture is not 

irrelevant and must also be taken in to account when determining the development rate.  

Since development rates of species do not respond in a uniform way, it is likely that 

species might respond differently to global warming. Bale et al. (2002) argued that developmental 

response to higher temperatures is likely to increase faster for univoltine species than for species with 

a longer generation span. Moreover, an increase in temperature could affect the relative frequency of 

generations and produce an additional annual generation (Altermatt 2010; Pollard & Yates 1993; 

Poyry et al. 2011). As a result, this might alter the temporal distribution of species, which in turn 

could affect with which other species they interact.  

2.3 Effects of temperature on the overall phenology of different taxa and trophic 

levels 

A wealth of studies have explored the effects of temperature on the phenology of 

organisms (Crick et al. 1997; Forrest 2016; Meineke et al. 2014; Menzel et al. 2006; Parmesan 2007; 

Thackeray et al. 2016). The general trend is that phenological events advance in time as the climate 

gets warmer. However, the specific rate of advance varies among species. Thackeray et al. (2016) 

analyzed several long term data sets covering the phenology of a wide range of different taxa. They 

created three different climate sensitivity profiles (CSP) to which they matched the different 

phenological time series. The CSP most consistent with species phenology was characterized by two 

periods of climate sensitivity; one early season period (far away from the phenological event) and one 

late season period (close to the phenological event). Warming in early season caused a delay in the 

phenological event, while warming in late season hastened the phenological event. According to the 

study, early season warming had the greatest impact on mammals and freshwater phytoplankton. It 

has also been shown that early season temperature (or winter temperature) has an effect on insects. 
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For example, poor emergence success was observed for the butterfly Anthocharis cardamines if it was 

exposed to an insufficient number of chilling days. Subsequently, few chilling days increased 

variation in emergence dates, while a longer chilling period increased emergence synchrony 

(Stalhandske et al. 2015). In addition, Thackeray et al. (2016) demonstrated that among the species in 

their data set, the phenology of primary consumers advances more rapidly than that of primary 

producers and secondary consumers. This implies that synchrony between different trophic levels 

might be disrupted by changing temperatures. 

3. The impact of temperature on synchronized biotic 

interactions between different trophic levels  

3.1 Synchrony in plant-herbivore interactions 

 A wealth of plants and herbivores are synchronized through biotic interactions. For 

some herbivore species, host plants are only available as a food source during a short time window 

(Ivashov et al. 2002; Singer 1972). In the context of Q. robur, leaf texture and chemical composition 

vary over the vegetation season. The leaves become less nutritious and develops a tougher surface as 

the plant develops, making it less beneficial for larvae to feed on older leaves (Feeny 1970; Ivashov et 

al. 2002; Salminen et al. 2004). For a herbivore, this implies that it needs to be active within a critical 

time window, after the leaf has started to flush and before the leaf loses most of its nutrients or 

becomes too tough. An alteration in synchrony of these interactions could affect insect performance 

and is potentially of great importance (Mopper & Simberloff 1995; Tikkanen & Julkunen-Tiitto 

2003). Forkner et al. (2008) found that spring-feeding Lepidoptera associated with Quercus alba and 

Quercus velutina were characterized by higher population variability than were summer-feeding 

species, implying that synchrony with budburst is of great importance for population dynamics.   

 In response to climate change, synchronous interactions between plant and herbivore 

(and also between the herbivore and parasitoid) could shift through three scenarios: synchrony is 

maintained, species become more synchronized or species become desynchronized (Fig.3). 

Maintaining synchrony will essentially maintain the status quo, with no implications for population 

dynamics. In contrast, an increase in synchrony could have a significant impact, since this is likely to 

increase the fitness of the consumer (Tikkanen & Julkunen-Tiitto 2003; van Asch et al. 2007). This 

could result in a pest outbreak with an increased herbivore population and heavily defoliated host 

plants. The final scenario is that species become desynchronized, which would result in the extinction 

of species specialized on each other. For polyphagous species, asynchrony with the main plant may 

result in a switch to other host plants (Liu et al. 2011; Uelmen et al. 2016).  This in turn might reduce 

the fitness of the local population, in case the alternative host plants are of lower quality than the 

primary host (Tikkanen et al. 2000).  

It is important to remember that even species synchronized with each other are not 

necessarily in perfect synchrony. In fact, they could be slightly desynchronized in the natural state. 

Singer (1972) found that 23 of 30 egg-masses laid by the butterfly Euphydryas editha hatched after 

the host plant had gone through senescence, resulting in no larvae from these clutches reaching the 

third instar. Furthermore van Asch and Visser (2007) found that eggs of the winter moth O. brumata 

have for several years been hatching before the budburst of its host plant. In response to climate 

change, such populations might be particularly sensitive to additional asynchrony.  
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Different studies have yielded somewhat disparate results in terms of how climate 

change affects synchronized biotic interactions between plants and herbivores. Thackeray et al. (2016) 

suggested that under likely climatic scenarios, insects are in general more likely to advance their 

phenology than many other taxa. In a meta-analysis covering the northern hemisphere that included 

time series ranging over at least 10 years between the years 1951-2001, Parmesan (2007) showed that 

butterfly emergence had advanced three times faster than the first flowering of herbs. Accordingly, 

Visser and Holleman (2001) suggested that O. brumata is advancing faster than its host plant Q. robur 

in response to warmer climate. However, Buse and Good (1996) suggested that these species maintain 

synchrony in a warmer climate.  

Contrary to these results, Schwartzberg et al. (2014) examined synchrony between the 

tent caterpillar Malacosoma disstria and its respective host plant under experimental warming. They 

found that both caterpillars and plants advanced in phenology under warming, but that plants 

advanced more than caterpillars. This experiment resulted in a more synchronized interaction between 

plant and caterpillar. In a similar study of the same species, Uelmen et al. (2016) found that plant 

phenology advanced more than caterpillar phenology but the interaction did not become more 

synchronized. In a study conducted by Liu et al. (2011), experimental warming delayed the 

emergence and increased the density of the herbivore Melanchra pisi, while its host plants advanced 

in phenology. However, these studies were only short-term experiments and provide no information 

on long-term effects within these study systems. Nevertheless it is a concern that the phenology of 

plants and herbivores might switch at different rates. This concern would be even greater if the same 

pattern were to be observed across other interactions, for example between herbivores and predators.    

3.2 Synchrony in herbivore – predator interactions 

In accordance with shifts observed in plant-herbivore interaction, it is likely that 

herbivore-predator interaction could become desynchronized as a response to warmer climate. For 

example, one study explored the larvae of the Glanville fritillary butterfly (Melitaea cinxia), which 

can accelerate their development in spring by locating sunny spots on cold days (i.e. basking 

behavior). In contrast, its parasitoid Cotesia melitaearum is in an immobile pupal stage during spring. 

This allows M. cinxia to find temporal refuge by speeding up its development in cold springs, 

Fig. 3. Three scenarios for changes in phenological timing of a resource (bold line) and its consumer (dashed line) under 

climate change; species become more synchronized, synchrony is maintained, or species become desynchronized. 
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reaching an instar not vulnerable to parasitism. In warm springs, basking behavior is less beneficial, 

leading to higher synchronization between the larvae and the parasitoid (Van Nouhuys & Lei 2004). 

With an increase in synchrony, C. melitaearum could diminish populations or even cause the local 

extinction of M. cinxia (Lei & Hanski 1997). Conversely, Van Nouhuys and Lei (2004) found M. 

cinxia populations to be little affected by the population size of C. melitaearum. In another study, 

Klapwijk et al. (2010) investigated the interaction between the parasitoid Cotesia bignellii and its host 

herbivore Euphydryas aurinia. Here, C. bignellii development time varied widely and was not 

affected by increased temperature. Although the development time of E. aurinia was affected by 

temperature, the two species still maintained synchrony. Another study from North America has 

investigated the synchrony between the pest beetle Oulema melanopus and its parasitoid Tetrastichus 

julis. In cool springs, the beetle population sustained a higher proportion of parasitism. But in warmer 

springs, larvae emerged later in relation to the parasitoid, resulting in asynchrony between host and 

parasite and thus a lower parasitism rate (Evans et al. 2013). In concordance with Van Nouhuys and 

Lei (2004), Evans et al (2013) thus suggest that differential impacts of environmental conditions on 

the host (which is sensitive to aboveground conditions) and the parasitoid (which is sensitive to soil 

conditions) might set the stage for asynchrony.  

A modelling exercise by Godfray et al. (1994) suggested that constant temporal 

asynchrony between years acts as a stabilizing factor on herbivore-parasitoid interaction. However, 

large yearly fluctuations could destabilize the interaction and lead to extinction of one of the two 

species, especially when parasitoids that usually emerge late suddenly occur early in a particular year. 

For those interactions that will shift their relative timing in response to climate change, a key question 

is whether interacting species can find a new stable equilibrium. If not, it is likely that one of them 

will become extinct. 

In urban areas, Meineke et al. (2014) observed a phenological mismatch between the 

herbivore scale insect Parthenolecanium quercifex and a part of its parasitoid community. P. 

quercifex was able to oviposit at an earlier date in warmer parts of the city, an ability not matched by 

the parasitoids. Furthermore, in warmer areas parasitized individuals produced twice as many eggs as 

unparasitized individuals. However, the parasitism rate did not differ between the warm and cold 

sites.  

  For birds, it is critical to match the timing of spring egg clutches with peak food 

availability (see Perrins (1991) for an example). Visser et al. (1998) compared egg-laying date of 

great tits Parus major and caterpillar peak date in a dataset ranging between the years 1973-1995. 

They found an advance in caterpillar peak date, but not in P. major egg laying date. This has led to 

asynchrony between the two species, which might result in lower numbers of surviving fledglings. 

4. The impact of temperature on synchrony in plant-herbivore-

predator interactions 

Since organisms are members of larger communities, bipartite interactions between 

specific plants and herbivores, or between herbivores and their predators, are but a subset of all 

interactions in the community. Adding a third trophic level increases complexity, because the 

abundance of the consumer is not only affected by the availability of resources (bottom-up force) but 

also on the predation rate (top-down force). Both et al. (2009) investigated phenological changes in a 

community consisting of four trophic levels (trees, caterpillars, passerines, avian predator). In this 

context, all three predator-prey interactions became less synchronous over time. No such reduced 
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synchrony was observed between the plant  and the herbivore, but this has previously been shown to 

occur (VanDongen et al. 1997). The decrease in synchrony might result from constraints in adapting 

to the new phenology for the predator, but may also arise as an adaptation for the prey to escape from 

predation. In a closed experiment inside incubators, Dyer et al. (2013) studied the impact of increased 

temperature in a tritrophic food web. Interestingly, in this system parasitoids had a negative effect on 

the biomass of the host plant of their target herbivores. This was explained by a temporal decoupling 

of the herbivore-parasitoid interaction, resulting in herbivore pupation before the parasitoids were able 

to eclose. Furthermore, this led to a higher consumption rate among parasitized herbivores, but with 

no associated herbivore mortality. Higher consumption rate among parasitized herbivores coincide 

with other studies in plant-herbivore-parasitoid interactions, e.g. higher seed predation as observed by 

Xi et al. (2015), thus contradicting the belief that predators and parasitoids via indirect interactions 

facilitate plant performance (Gomez & Zamora 1994; Schmitz et al. 2000). 

In a warming experiment, de Sassi and Tylianakis (2012) discovered that warming 

increased herbivore biomass significantly more than plant or parasitoid biomass. When nitrogen was 

added to the warming treatment, both plant and herbivore biomass had a similar and higher increase 

compared to parasitoid biomass. Their results suggest that herbivores will benefit most from a warmer 

and nitrogen-rich environment.  

If parasitoids are not able to eclose before pupation, this could lead to poor recruitment 

of parasitoids in the next generation, resulting in local parasitoid extinction.  In such a scenario, top 

down control by the parasitoid will be reduced, thus emphasizing the importance of studying the 

outcome in the plant-herbivore interaction.  

5. Temporal synchronized biotic interactions in a changing 

climate – where are we heading? 

This literature survey suggests that elevated temperatures reduce the development time 

of both plants and insects. Furthermore, it reveals that humidity is an important determinant of 

development rate – although not as important as temperature. The overall consequence of climate 

change is that the majority of taxa has become active earlier in the season. Regarding the synchrony 

among trophic levels, most studies show changes in synchrony in response to warmer temperatures, 

both between plants and herbivores and herbivores and predators. It is therefore of great importance to 

understand how species will react; will they locally adapt to the new prevailing conditions, go extinct, 

or start interacting more with other species and alter local community structure? 

5.1 Local adaptation and adaptive mismatch 

Under rapid climate change, phenotypic plasticity may not suffice for species to adjust 

to a new set of climatic conditions. According to Visser (2008), it is thus important to examine how 

quickly species are able to genetically adapt. Local adaptation to the new climate is essential because 

cues that accurately predict present conditions might be misleading in the future climate. Moreover, it 

has been argued that populations from warmer locations do not need to adapt to a warmer 

temperature. These populations will simply migrate to a colder climate when the local climate 

becomes warmer. This is not completely true, although temperature conditions are suitable migrating 

species will need to adapt to local conditions beyond merely temperature (see more in Visser (2008)).  
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So what determines whether species will be able to adapt to the new conditions and 

stay synchronized? If a species is characterized by a lot of genetic variation and subject to selection 

pressure, it is more likely to adapt to the new phenology of its host (van Asch et al. 2007). By using a 

quantitative genetic model and comparing it to a long term data set and by conducting experiments, 

van Asch et al. (2013) suggested that O. brumata has genetically adapted to match the phenology of 

its host plant Q. robur. Few studies have demonstrated this kind of rapid adaptation, but genetic 

change in response to climate change has been previously shown in the mosquito Wyeomyia smithii 

(Bradshaw & Holzapfel 2001).  

Even though species are able to adapt to the new climate, the synchronized interaction 

might not stay intact. Hence, adaptive mismatches have been suggested to occur in a predator-prey 

community. Visser et al. (2012) reviewed several studies of shifts in synchrony between a bird and its 

food resource (one article referred to the host as not being a food resource). Most of the bird species 

were able to maintain interaction synchrony when their individual phenologies were shifted. 

Nevertheless, a few of the bird-prey interactions were not able to maintain synchrony. The authors 

suggested that the reason for this could either be that species respond differently to different cues, 

such as spring temperatures (cue hypothesis), or that other factors reduce the total fitness of the bird if 

it remains synchronized with the food source (constraint hypothesis). If the latter hypothesis is 

correct, then the interactions might have adapted to a temporal mismatch. In other words, other 

constraints reduce the fitness of species if they stay synchronized. An illustrative example of this is 

the timing of bird egg laying and peak density of insects. If the peak density of insects starts to occur 

earlier, then birds will have to lay their eggs earlier in spring. However, due to temperature or other 

constraints, an early clutch might reduce the survival rate of offspring. This could make it more 

beneficial to become somewhat desynchronized with the peak density of insects and continue to lay 

eggs at a later stage. Subsequently, the temporal overlap between the predator and prey will be 

decreased and the top down pressure on the herbivore relaxed, possibly resulting in higher numbers of 

herbivores.  

Adaptive mismatches may also occur in the insect community. As an example thereof, 

Doi et al. (2008) showed that the butterfly Pieris rapae and some of its host plants among Prunus spp. 

responded to temperature cues occurring within different time periods. The timing of flower unfolding 

in Prunus spp. responded to temperature 30-40 days prior to this event, whereas the emergence of P. 

rapae responded to temperature only 15 days previously. Since temperatures at this location showed a 

significant increase only 30-40 days prior to flower unfolding but not 15 days prior to butterfly 

emergence, this led to reduced synchrony between the two species. Hence for the butterfly to maintain 

synchrony with its host plant, it will need to adapt to the new conditions and emerge during an earlier, 

and probably colder, part of the spring. This kind of heterogeneous increase in temperature during 

different parts of the spring could be accentuated in the future. For example, in Sweden climate 

change is expected to increase temperatures differently across seasons (Kjellström et al. 2014). If this 

is true at a smaller temporal scale, some periods in spring might increase more in temperature than 

other. If the spring phenology of species at different trophic levels respond to temperature within 

different time periods, then future climate change might induce an adaptive mismatch, resulting in 

shifts in synchrony between species. 

5.2 Alterations in community structure 

A worrying consequence of shifting phenologies is that species might change with 

whom they interact, or alter the strength of an interaction. Moreover, species previously isolated in 
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time might now come into contact. This could have major consequences in food webs encompassing 

complex interactions. For example, Stålhandske et al. (2016) studied host plant preferences of the 

butterfly Anthocharis cardamines originating across several different geographical regions. 

Interestingly, female butterflies exhibited no consistent preference in terms of host plant species. 

What they did choose was the phenological stage (and height) of the host plant. Likewise, a warming 

experiment conducted by Liu et al. (2011) revealed a host switch by the herbivore Melanchra pisi to a 

host plant which it had rarely exploited before. This drastically reduced the reproductive capacity of 

the new host plant. Similar observations were made by Uelmen et al. (2016), who noticed that the 

phenology of Malacosoma disstria was not advancing at the same pace as that of its host plants. 

Furthermore the authors suggested that in the future this could lead to a host substitution, with the 

herbivore switching to later developing and synchronous plants.  

5.3 Extreme weather events and sub-additive effects  

In the future, more extreme and fluctuating temperatures could exert impacts on insect 

responses different from those caused by changes in average temperature. For example, species and 

sexes might differ in their tolerances to extreme low and high temperatures (Le Lann et al. 2011). This 

implies that extreme temperatures might benefit certain species more than others. Ma et al. (2015) 

found that extreme temperatures can affect community structure and benefit the relative abundance of 

certain aphid herbivores. Moreover, an increase in the severity and frequency of extreme temperatures 

negatively affected demographic measures such as lifespan of and survival in the aphids. A shorter 

lifespan might result in a reduction in the temporal overlap between interacting species, leading to a 

greater chance of asynchrony. Moreover, skews in sex ratio could be disadvantageous by reducing the 

chances of the more abundant sex to find mates.  

Climate change will not only alter  temperature, but also other variables such as CO2 

concentrations and precipitation regimes (IPCC 2014). To date, many studies have focused 

exclusively on responses to single variables, e.g. temperature (Liu et al. 2011; Schwartzberg et al. 

2014; Uelmen et al. 2016). Thus focus should be increasingly directed towards the effect of several 

drivers in combination. For example, Romo and Tylianakis (2013) studied an herbivore-parasitoid 

interaction under three environmental regimes: elevated temperature, drought and the combination of 

both. Interestingly, they found that elevated temperature and drought separately increased parasitism 

rates in herbivores. However the combination of these drivers led to a sub-additive effect and 

parasitoids were not able to control herbivore population when the drivers were combined. 

Consequently, it can be concluded that the effect of climate change on species interactions might 

differ depending on how many drivers that are affected, and the interplay between them. 

5.4 Conclusions 

Several studies indicate that organisms will change their temporal activity in response 

to climate change. While the main driver of these shifts will be temperature, it is important to take all 

drivers of climate change into consideration – in particular since the combined effect of several 

drivers might differ from the additive effect of single drivers. For species communities bound by 

biotic interactions, it is hard to predict the outcome of climate change. But studies indicate that both 

different taxa and trophic levels might respond dissimilarly to increased temperature, thus setting the 

stage for temporal decoupling. However, more studies are needed that investigate synchrony in host - 

herbivore – predator interactions. With increasing temperatures, it becomes essential for organisms to 

genetically adapt to the new climate. If selective pressure is high and genetic variation sufficient, then 
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species may stay synchronized. Nonetheless, future interactions might still be threatened by adaptive 

mismatches. Species that cannot adapt might drift apart, go extinct or shift towards interacting with 

new species, thereby resulting in a shift in local community structure. Finally, it is important to assess 

how both the mean and the variance in temperatures will increase in the future, since they may have 

different impacts on species and their interactions.  
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