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 Heterobasidion – Conifer Pathosystem: Heterologous array 
analysis and transcriptional shift from saprotrophic to 
necrotrophic growth 

Abstract 
In this thesis the Heterobasidion – conifer pathosystem is discussed in a symbiosis 
context. Heterobasidion annosum (Fr.)Bref. s.l. is a species complex with closely 
related species with partly overlapping host range. There are three European 
Heterobasidion species, H. annosum, H. abietinum and H. parviporum. In the first study 
it was shown that cDNA arrays printed for one species can be used to study gene 
expression in the other species.  

H. annosum can grow both as a saprotroph on dead wood or kill its conifer host as 
a necrotroph. This possibility to switch nutritional mode has impact on forest 
management as H.annosum can prevail in old wood for decades until infecting the 
next generation of trees. Gene expression patterns during the transition from 
saprotrophic to necrotrophic growth were studied in a nutrient limited microcosm 
system with dead and living Pinus sylvestris seedlings connected by a common 
mycelium. These results were compared with gene expression patterns of 
H. annosum, Phanerochaete chrysosporium (saprotroph) and Paxillus involutus (mutualist) 
growing in nutrient rich systems. In the nutrient rich comparison a higher 
correlation was found, than between the saprotrophic and necrotrophic growth of 
H. annosum where no differentially expressed genes were identified. However 
differences were found when the genes were annotated into functional categories by 
KOG groups. This suggests that differences between the two growth modes might 
depend on the magnitude of gene expression rather than distinct qualitative 
differences. 

The specificity of two mycorrhiza-associated Pinus genes (similar to Clavata 1 and 
MtN21) in comparison to known auxin-induced and defence genes through early 
signalling and ECM development with and without the auxin transport inhibitor 
TIBA was further investigated. The Clv-1-like gene seems to be associated with 
lateral root formation since expression was detected in root primordia during lateral 
root formation and in mycorrhizal roots. 
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1 Introduction 

Some 150 years ago Darwin published his ideas about evolution that have 
ever since provided a framework for researchers to explain their findings. 
Associations between plants and microorganisms were noted early in human 
history with observations already in ancient Greece that fungi were present 
on destroyed crops or on dying trees, but not until the late 19th century did 
the study of fungi become more formalized (Manion, 1981). In 1879 the 
father of plant pathology, German Antoine deBary, used the term symbiosis 
to describe “the living together of unlike organisms”. He used the term to 
describe a proof of evolution that lichens were both algae and fungi (Sapp, 
2004). The partners in symbiosis are called symbionts, or host and symbiont, 
in which case the symbiont is the microorganism and the host the macro 
organism. The nature of the symbiosis can be parasitism, mutualism or 
commensalism. In parasitism one symbiont benefits whilst the other is 
harmed. In mutualism both symbionts benefit and in commensalism one 
organism benefits and the other is unaffected. The connection between 
symbiosis and parasitism is strong not only in relation to scientific history 
but also in relation to their definition and evolutionary history. The 
question as to what factors determine the development into mutualist, 
pathogen or saprotrophs, which were formulated at the end of the 19th 
century is still puzzling researchers today even though the tools available to 
answer the questions have changed. 

The term symbiosis has been interpreted not only as the broad including 
definition of “living together of unlike organisms “ but also as a synonym 
for mutualism. When Frank in 1885 coined the term mycorrhiza for the 
fungus root structure he observed he claimed the symbiosis to be mutually 
beneficial, however his critics claimed that microbes were parasites only. 
Frank himself had, two years before deBary invented the term symbiotismus 
for coexisting organisms, a term neutral to the role the organisms had. 
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Nonetheless mutualism became a synonym for symbiosis for the general 
public (Sapp, 2004). Parasite is also a term with a double sense, meaning 
both pathogen and symbiont. For researchers working with mutualistic 
symbionts the term parasite to describe mycorrhiza is not commonly used. 

The GeneOntology GO genome annotation tool, which describes the 
function of genes by categorizing genes into defined groups defines 
symbiosis the way deBary did encompassing pathogens commensalists and 
mutualists with the symbiont being the smaller of the organisms in symbiosis 
and the larger organism the host (Soderlund, 2009; Torto-Alalibo et al., 
2009). 

 
mutualistic
symbiosis

parasitism pathogenesis

both symbionts
benefit

one symbiont
parasitises the other

one symbiont
kills the other

mycorrhizas
lichens

biotrophic
pathogens

necrotrophic
pathogens

 

Figure 1. The symbiosis continuum, out-come of the interaction and the associated 
nutritional mode.  

1.1  Nutritional modes of fungi in the boreal forest 

There are probably several million species of fungi and approximately 
100,000 have already been described (McLaughlin et al., 2009; Tunlid  & 
Talbot, 2002). Fungi inhabiting terrestrial ecosystems are heterotrophic and 
they acquire carbon by three major nutritional modes either as saprotrophs, 
necrotrophs or biotrophs (Koide et al., 2008). These categories are not 
mutually exclusive and there is a continuum of possible nutritional modes 
for fungi from saprotrophy to biotrophy determined both by genetical traits 
and environmental conditions, which may differ in different parts of the 
same mycelium (Fig1). In the forest the mycelia of fungi often cover large 
areas and connect several different resources with each other. Fungi that can 
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act as parasites may therefore do so in one part of the mycelium and grow as 
saprotrophs in another part of the mycelium.  

1.1.1  Saprotrophic fungi 

Most fungal species are saprotrophs, which implies that they can survive on 
dead organic matter. Many saprotrophs live on easily accessible compounds 
and soluble sugars but others have a more complex set of machinery to 
acquire nutrients. Several saprotrophic fungi have genes encoding enzymes 
for cellulose and lignin degradation and for phenol oxidation (Zabel & 
Morell, 1992; Eriksson et al., 1990), as well as those coding for pectinases. 
The decay capabilities of fungi cause devastating economical losses during 
storage of diverse products of crops and wood, due to fungi such as the dry 
rot fungus Serpula lacrymans that grows in timber in houses and Aspergillus 
flavus that produce toxin that renders peanuts hazardous to consume (Carlile 
et al., 1994). However, the unique ability of fungi to degrade various 
compounds is crucial for nutrient cycling in forest ecosystems (Rayner & 
Boddy, 1988). In boreal forests that are dominated by conifer trees, the soils 
are generally acidic and stratified into layers of litter at different stages of 
decomposition. These soils are poor in mineral nutrients and particularly in 
nitrogen (Berg & Tamm, 1991). The litter from the conifers is highly 
lignified and many fungi are capable of breaking down lignin (Osono & 
Takeda, 2002). The stratification creates different niches with species 
adapted to the nutrient content in each stratum. Saprotrophic litter 
decomposing fungi are more abundant in the upper layers than in the 
deeper layers (Lindahl et al., 2007).  

Mycelia of saprotrophic fungi can occupy large areas and persist for years 
(Smith et al., 1992) The saprotrophic fungi are often combative and have 
means of defending their resources by producing antimicrobial toxins, or by  
translocating them to another part of the mycelium (Boddy et al., 2009). 

1.1.2  Pathogenic fungal symbionts 

In nature, only around ten percent of all fungal species are phytopathogenic 
(Tunlid  & Talbot, 2002). The pathogenic fungi are parasites that obtain 
their carbon as pathogens by damaging or killing their host. Some are 
obligate parasites and need a host to complete their lifecycle whereas others 
are facultative parasites and have the option to switch nutritional modes. 
The parasites can also be classified as biotrophs that need a living host or 
necrotrophs that kill the host (Lewis, 1973). Hemibiotrophs are fungi that 
require a living host, but then switch to a necrotrophic mode (Oliver & 
Ipcho, 2004; Perfect & Green, 2001).  
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Biotrophs and hemibiotrophs have specialized feeding structures, haustoria 
to acquire nutrients whereas necrotrophs kill their host with toxins and lytic 
enzymes (Oliver & Ipcho, 2004). Both biotrophic fungal pathogens and 
necrotrophic fungal pathogens can infect their host with appressoria that 
penetrate the host surface by mechanical force. Entering via stomata or 
direct penetration by the hypha are also other options (Agrios, 1997). 

One of the most harmful and destructive forest pathogen in the boreal 
forest, Heterobasidion annosum (Fries 1821) Bref. was first described by Elias 
Fries as Polyporus annosus in 1821 and was later given the name Heterobasidion 
by Oscar Brefeld in 1888 because of its conidiophores that somewhat 
resemble basidia. However it was the forest pathologist Robert Hartig that 
adopted Moritz Willkomms ideas that H. annosum was a decay causing 
fungus and described it in “Important diseases of forest trees” from 1874, 
considered the birth of forest pathology (Huettermann & Woodward, 
1998).  

Several conifer species (Norway spruce, Scots pine, Douglas fir) serve as 
host to the three forms of H. annosum s.l., the S, P and F-types, 
respectively. In northern Europe there are two intersterility types of 
Heterobasidion annosum s.l.: The P-type and the S-type now called H. 
annosum s.s. and H. parviporum. The P-type, H. annosum s.s., attacks mostly 
pines such as Pinus sylvestris but it may also attack many other trees especially 
when they grow mixed with pine trees (Asiegbu et al., 2005). Picea abies, 
Juniperus communis, and even Betula pendula are particularly susceptible. The 
P-type H. annosum s.s. can be found all over Europe where there are pine 
trees. The S-type H. parviporum attacks spruce (Picea abies) even though it 
occasionally attacks pine, birch and exotics. It is common in northern and 
eastern Europe (Asiegbu et al., 2005). In southern Europe and especially in 
Italy a third intersterility group (F-type) H. abietinum attacks fir, mainly Abies 
alba. In North America there are P-types and S-types of H. annosum s.l. 
named H. irregularis and H. occidentalis which differ significantly from the 
European species (Otrosina & Garbelotto), H. occidentalis for example do not 
have the same narrow host range as the European variant. H. occidentalis is in 
the west and H. irregularis in the south-east (Korhonen et al., 1998).  

Heterobasidion has the capability of switching between saprotophic and 
pathogenic nutritional modes. The fact that these organisms are white-rot 
fungi (i.e. they degrade both lignin and cellulose components of wood), 
contributes to their action as strong parasites and saprotrophs, able to infect 
and destroy living conifer roots and stems of all ages, as well as dead trees 
(Daniel et al., 1998).  
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1.1.3  Commensalistic fungal symbionts 

Endophytic fungi live entirely within a host in roots, stems or leaves, not 
entering the rhizosphere seemingly without directly affecting it and can be 
viewed as commensalists. There are clavicipitaceous endophytes that 
colonize grasses and three classes of non-clavicipitaceous endophytes with a 
broad host range from grasses to conifers.  

Indirect beneficial effects for the host can be due to endophytes like with 
the grass endophyte which produces a toxin that renders the grass inedible 
for grazers, and is hence benign to the plant, or those that increase stress 
tolerance to abiotic factors such as drought and heat. It has been 
demonstrated that without grazers there is a cost associated with the 
endophytes (Rodriguez et al., 2009). Healthy spruces can have around 200 
fungal endophytes in the stem and branches (Muller & Hallaksela, 2000). 
Dark septate fungi, the fourth class of endophytes are very common in the 
boreal forest and Phialocephala sp. form mycorrhizal like structures on a wide 
range of trees hosts, but are also present inside decaying wood (Rodriguez et 
al., 2009; Menkis et al., 2004).  

1.1.4  Mutualistic symbionts 

At the other extreme of the pathogen–mutualist continuum are symbiotic 
mycorrhizal fungi that contribute to the vitality and vigor of their host 
plants. About 95% of all plant species are colonized by mycorrhizal fungi. 
These symbiotic fungi facilitate nutrient acquisition for their host plant and 
receive carbon in return. The fungal mycelium increases the surface area 
available for nutrient absorption compared to uncolonized roots and 
provides some physical protection against pathogens. The association needs 
to be controlled by the host, since the outcome can be close to reciprocal 
parasitism (Finlay, 2008; Francis & Read, 1995). 

 The association can be both intracellular- as with arbuscular and ericoid 
mycorrhizal fungi and extracellular as with ectomycorrhizal fungi. 
Arbuscular mycorrhiza form tree like structures inside the host cell for 
nutrient exchange, that like haustoria do not breach the cell membrane 
(Perfect & Green, 2001; Smith & Read, 1997). Ectomycorrhiza enclose the 
lateral roots of their hosts with a fungal sheet and host cortical cells with a 
reticulated hyphal structure, the Hartig net, which forms the interface for 
exchange of carbon and nutrients. Symbiotic ectomycorrhizal fungi colonize 
the vast majority of tree roots in boreal forests, forming the mutualistic 
associations which are necessary for successful nutrient acquisition and 
growth (Smith & Read, 1997). Formation of ectomycorrhizal roots involves 
both structural and metabolic integration of the symbionts and modification 
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of both plant and fungal gene expression. The development appears to be 
the result of highly coordinated molecular processes and governed by 
morphogenetic patterns, which may respond to pre-established programs in 
both partners (Martin, 2008; Le Quere et al., 2005; Podila et al., 2002). 
Usually, the plant shows a transient uncoordinated weak defence response 
early in the colonization process in both arbuscular mycorrhiza (AM) and 
ectomycorrhiza (ECM), during colonization (Liu et al., 2003; Harrison & 
Dixon, 1994). The responses have been shown to be weaker than towards a 
pathogen (Adomas et al., 2007; García-Garrido & Ocampo, 2002) (Jane 
Barker et al., 1998).  

1.2  Evolution of symbiosis 

Symbiotic relations of some sort exist in diverse organisms among the 
eukaryotes from lichens to humans. The microbial symbionts fix nitrogen, 
photosynthesize, metabolize sulphur and perform other physiological 
processes their plant hosts cannot do on their own (Sapp, 2004). The 
genetic program for symbiosis is thus fundamental for all land living 
organisms. The energy producing mitochondria in eukaryotic cells are a 
product of evolution of endosymbiotic bacteria (Gray et al., 1999), the 
chloroplasts of plants are ancient cyanobacteria (Bhattacharya et al., 2004; 
Yoon et al., 2004). Even the nucleus of the eukaryotic cell has been 
suggested to be a result of fusion between bacteria (Sapp, 2004). The 
mitochondria have transferred large parts of their genome to the host 
genome but the product of the genes transferred are often retargeted to the 
mitochondria (Pesaresi et al., 2007) (Kleine et al., 2009) .  

The entire concept of organisms has been discussed in relation to 
symbiosis.  Symbiome is a term used to describe the totality of an organism’s 
symbionts, from organelles to microbes and bacteria inside and outside of 
the organism (Sapp, 2004). The hologenome evolution theory states that the 
symbiome or holobiome is the important unit of evolution, not the 
organism alone. The importance of environmental factors in evolution is 
considered since they affect what microbes form symbiotic associations with 
the host (Zilber-Rosenberg & Rosenberg, 2008). Lamarckian theories of 
evolution by acquired traits can be relevant if symbionts that are transferred 
to the next generations are considered acquired traits. Such symbionts are 
for example organelles like mitochondria, but also plant seed transmitted 
fungi (Rosenberg et al., 2009).  

There are fossil evidence that supports the idea that land itself was 
colonized by plants in symbiotic association with ancestral arbuscular 
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mycorrhiza some 460 million years ago (Redecker et al., 2000; Remy et al., 
1994; Pirozynski & Malloch, 1975). 

Genetic programs governing symbiosis are therefore likely to be present 
to a varying degree within all fungi and plants as well. Even non-
mycorrhizal plants like Arabidopsis thaliana have been shown to have 
endophytic fungi and react to the presence of mycorrhizal fungi (Felten et 
al., 2009; Le Quere et al., 2004; Peskan-Berghofer et al., 2004). On the host 
side, there are common genetic programs for symbiosis, Güimil et al showed 
common patterns of expression in rice when colonized by an arbuscular 
mycorrhiza, a hemibiotroph and a necrotroph (Guimil et al., 2005).  

The ability to form ectomycorrhiza has evolved and disappeared several 
times through evolution but ectomycorrhizal fungi are thought to have 
evolved 180 million years ago. Fossils of ECM roots 50 million years old 
have been found (Hibbett & Matheny, 2009; LePage et al., 1997). There are 
three main hypothesises about the origin of ectomycorrhiza, 1) that they 
evolved from saprotrophs, 2) that they evolved from saprotrophs and some 
lineages reversed to saprotrophism and 3) that they had a common 
ectomycorrhizal ancestor but lost the ability to form mycorrhiza on 
numerous occasions (Matheny et al., 2006). The ECM are unlikely to a have 
evolved in the way the third theory states as the hosts are evolutionary 
younger than the fungi (Hibbett & Matheny, 2009). Whatever the origin 
they are not a monophyletic group, there are some examples among the 
ascomycetes and they are present in several different orders among the 
basidiomycetes. They are often close relatives to saprotrophic fungi as well 
as pathogenic fungi (Matheny et al., 2006; Miller et al., 2006)(Fig1).  

Phytopathogenic fungi are not common but widespread in the fungal 
kingdom (Soanes et al., 2007; James et al., 2006) and the phytopathogenic 
trait has evolved on several occasions (Cornell et al., 2007; Fitzpatrick et al., 
2006). Among the phytopatogenic ascomycetes, the sequenced genomes are 
different to such a degree that the evolutionary background and trait of 
phytopathogenicity has been clouded (Soanes et al., 2007). Some classes of 
genes have been suggested to be important for phytopathogenicity based on 
the frequency of their occurrence in genomes. There are only three cell 
surface receptors like G-protein coupled receptors linked to signal 
transduction pathways as MAPK in the saprotrophic yeast Saccharomyces 
cerevisiae but 61 in the rice pathogen Magnaporthe grisae and 84 in Fusarium 
graminearum. This enables the pathogens to respond to a variety of 
environmental conditions(Cuomo et al., 2007; Soanes et al., 2007; Dean et 
al., 2005). Biotrophic fungi seem to have few cellwall degrading enzymes. 
In ascomycete phytopathogenic fungi there are unknown secreted proteins 
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not present in saprotrophic fungi (Soanes et al., 2008) a similar 
basidiomycete analysis have to the authors knowledge not yet been done 

The ability to form ectomycorrhiza is likely to rely on a few unique 
genes that determines that functional category (Hibbet et al., 2000). This is 
illustrated by the mutualist Paxillus involutus as several other closely related 
species in the genus Paxillus are saprophytes (Le Quere et al., 2004). The 
remaining genes are probably the same genes that are present in a 
saprotroph. The sequencing of the ectomycorrhiza Laccaria bicolor has not yet 
solved the debated question whether ectomycorrhizas can be facultative 
free-living saprotrophs in nature (Baldrian, 2009; Cullings & Courty, 2009; 
Martin & Selosse, 2008; Taylor & Alexander, 2005). One example of genes 
possibly defining an ectomycorrhizal fungus is the glycosidases GH32 gene 
family which seems to be missing in mycorrhizal fungi (Parrent et al., 2009). 

 It is possible that the genetic control of pathogenesis in the necrotrophic 
pathogen H. annosum that kills its host and then prevail as a saprotroph also 
relies on a limited number of genes. Although obligate saprotrophs and 
mutualists are known to contain similar kinds of genes, the activity of 
certain key genes relevant in cell wall degradation such as lignin degrading 
enzymes is known to differ between mycorrhizal and pathogenic fungi 
(Martin et al., 2008). The basis for this difference may stem from the way in 
which such genes are regulated. Distinctions between saprotrophic fungi 
and pathogenic fungi have also been found in expansions in families of 
certain key genes that are potentially relevant in pathogenesis (Dean et al., 
2005). When EST from saprotrophic and pathogenic fungi were compared 
no significant difference was found between them (Soanes & Talbot, 2006). 
When protein clusters of 36 genomes of fungi and oomycetes were 
compared, no unique phytopathogenic protein cluster was found (Soanes 
2008). In the H. annosum pathosystem, little is however known about what 
kind of genes are under expansion nor have regulatory patterns of key 
potential pathogenicity genes been compared to those of non-pathogenic 
models such as obligate saprotrophs and mutualists.  

1.3  Microbe Associated Molecular Patterns  (MAMP) 

Parasites need to have a compatible host in order to complete colonization 
successfully. Plants lack the option of fleeing a potential threat and they do 
not have an adaptive immune system like animals. Instead they rely on, an 
innate immune system as means of recognizing the microbes in their 
surroundings in order to react appropriately. That immune system use 
transmembrane receptors that respond to slowly evolving microbe-
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associated molecular patterns (Jones & Dangl, 2006). The MAMP was first 
described as pathogen associated molecular pattern (PAMP) and is based 
upon recognition of conserved characteristics of microbes such as flagellin 
from bacteria and chitin from fungi (Bolton, 2009; Gohre & Robatzek, 
2008; Kaku et al., 2006; Gomez-Gomez & Boller, 2000) MAMP is the first 
line of defence of host plants and since it rests on the recognition of 
conserved microbial characteristics, it is also difficult for the microbe to 
avoid detection via MAMP (Fig2). 

 

 

Figure 2. In this scheme, the ultimate amplitude of disease resistance or susceptibility is 
proportional to [PTI-ETS+ETI]. In phase 1, plants detect microbial /pathogen-associated 
molecular patterns (MAMPs)/PAMPs, red diamonds) via PRRs to trigger PAMP-triggered 
immunity (PTI). In phase 2, successful pathoges deliver effectors that interfere with PTI, or 
othewisse enable pathogen nutrition and dispersal,resulting in effector-triggered susceptibility 
(ETS).In phase 3, one effector (indicated in red) is recognized by an NB-LRR protein, 
activating effector-triggered immunity (ETI), an anlified version of PTI that often passes a 
treshold for induction of hypersensitive cell death (HR), In phase 4, pathogen isolates are 
selected that have lost the red effector, and perhaps gained new effectors through horizontal 
gene flow (in blue)–these can help pathogens to suppress ETI. Selection favours new plant 
NB-LRR alleles that can recognize one of the newly acquired effectors, resulting again in 
ETI. From Jones and Dangl 2006. 

Once the microbe is detected a defence response is triggered consisting 
of build up of physical barriers like cell wall thickening, suberization, cork 
layer production, callose deposition, crosslinking of cell walls, formation of 
tyloses in xylem vessels and papillae, or biochemical responses such as 
production of ROS or signalling compounds as salicylic acid, jasmonic acid, 
abscisic acid and ethylene. In addition secondary metabolites for defence like 
phenolic compounds (phenylpropanoids, stilbenes, flavonoids, lignans, 
oleoresin and phytoalexins) can be produced locally or systemically in the 
host (Bolton, 2009; Asiegbu et al., 2005). The defence response might not 
be enough, to halt a pathogen / parasite and the plant will succumb to the 
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infection. In that case the intracellular defence system based on R-genes 
may be activated. R-genes recognize pathogen effectors (avr-genes) and 
activate defence responses accordingly. R-gene mediated resistance is 
primarily effective against biotrophic or hemibiotrophic pathogens, but not 
against necrotrophs (Jones & Dangl, 2006). 

 Induced defence is costly, energy consuming both in microbe and host, 
particularly since the host often tries all possible defences at once. During 
defence and attack, normal growth is often suspended, plant mutants 
constitutively expressing defence responses are small and have low ability to 
reproduce (Heil & Baldwin, 2002) Fungal effectors includes toxins with a 
broad definition of the effector concept. Heterobasidion annosum produces a 
dozen toxins, mostly benzofuran derivates such as fommannosin, 
fommanoxin, fommanoxin acid, oosponol and oospoglycol (Asiegbu et al., 
1998; Sonnenbichler et al., 1994; Sonnenbichler et al., 1989; Sonnenbichler 
et al., 1983; Bassett et al., 1967). Host specific toxins often display great 
degree of polymorphism and seem to recognize the same R-gene receptors 
that bind avr-genes, indicating that the relative abundance of biotrophic and 
necrotrophic pathogens determine the evolution of R-genes (Stukenbrock 
& McDonald, 2009) Necrotrophic fungi seem to have few avr-genes 
compared to biotrophic fungi, most likely because it does not require living 
host cells for infection (de Wit et al., 2009).  

Chitin is one of the best-known MAMPs with receptors identified in 
Arabidopsis and rice (de Wit et al., 2009). Fungal chitin can provoke a 
defence response in conifers versus for example H.annosum or Hebeloma 
crustiliniforme (Hietala et al., 2004). In the late 90’s it was hypothesized that 
these chitinous elicitors are degraded by plant chitinases during active 
mycorrhizal formation thereby limiting active host defence reactions (Salzer 
et al., 1997). Chitinases are induced during colonization of ECM in lateral 
roots (Frettinger et al., 2006).  

1.4  The role of auxin in symbiosis 

Plants have a number of different hormones, carrying out different functions 
in the organism. Plant growth regulators, regulating cell cycles and 
morphogenesis (auxin and cytokinins), flowering, senescence and stress (GA, 
ABA, ethylene) (Raven et al., 1998) Defence responses are mediated by 
brassinosteroids, salicylic acid (SA), jasmonic acid(JA). SA is mediating 
resistance against biotrophs while JA mediates resistances against necrotrophs 
(Kazan and Manners 2009). Secondary metabolites such as strigolactones 
play a crucial role in interactions with mutualists and pathogens (Akiyama & 
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Hayashi, 2006). Some plant growth regulators like auxin and ethylene have 
clear functions as regulators of defence responses in addition to their other 
functions. 

Auxin plays an important role in regulation of mutualistic interactions, 
for instance in the rhizobial symbiosis between Rhizobium spp. and legumes, 
the root auxin balance as a prerequisite for nodule formation (Mathesius, 
2008) and pathogenic interactions such as Crown gall disease (Spaepen et al., 
2007). Auxin transport and signalling has recently been connected to the 
plant defence, in common with the signalling pathways of the defence-
associated plant hormones SA and JA, auxin signalling affects resistance to 
different parasitic life styles differently. Furthermore it seems that the auxin 
and SA pathways acts in a mutually antagonistic manner during plant 
defence (Cuzick et al., 2009; Llorente et al., 2008), while auxin and JA 
signalling share regulatory steps (Kazan & Manners, 2009; Gray et al., 2003; 
Tiryaki & Staswick, 2002; Tor et al., 2002). SA is mediating resistance 
against biotrophs while JA mediates resistances against necrotrophs 

Auxin moves polar from the shoot towards the root via the vascular 
cambium and the phloem (Raven et al., 1998; Raven, 1975). Functioning 
auxin transportation and signalling is a prerequisite for lateral root formation 
(Fukaki et al., 2007; Bhalerao et al., 2002) which is a central step in ECM 
formation (Felten et al., 2009). Addition of the auxin IAA to pine roots 
mimics swellings and branching of roots obtained by application of culture 
media from the mycorrhizal fungus Boletus luteus (Barker & Tagu, 2000; 
Slankis, 1973a; Gruen, 1959). The nature of the signal that induces the 
Lateral root formation in ECM is not known, but Ectomycorrhizal fungi 
have been demonstrated to produce auxin (Gay, 1988; Ek et al., 1983). It 
has thus been suggested that it may be fungal auxin (Niemi et al., 2002; 
Karabaghli-Degron et al., 1998; Slankis, 1973b). The use of auxin transport 
inhibitors supports this hypothesis to some degree (Felten et al., 2009; 
Laajanen et al., 2007; Rincon et al., 2003; Rincon et al., 2001; Karabaghli-
Degron et al., 1998). However the exact role of auxin in mycorrhiza 
formation is still unclear.  
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2   Objectives 

Symbiotic, mycorrhizal associations and saprotrophic fungi play important 
and economically significant roles in the nutrition, growth and health of 
forest trees as well as in decomposition and nutrient cycling. Mycorrhizal 
and pathogenic interactions share some common features but they differ in 
distinct ways with respect to which the different types of interactions are 
induced and regulated. The primary objective of the studies described in this 
thesis was to elucidate the patterns of gene expression in Heterobasidion 
species during growth on their conifer tree host and in artificial media. The 
results were compared with similar studies using non-pathogen fungi. More 
specifically, we investigated:  

 
Paper I.  If the gene expression of three Heterobasidion species correlated in a 
subset of genes such that cDNA arrays of one can be used to study the 
other. 

 
Paper II.  The gene expression during transition from saprotrophic to 
necrotrophic growth stage in Heterobasidion annosum  
 
Paper III. The expression of of a novel Clavata1-like and a Nodulin 21-like 
gene during ectomycorrhizal development in Pinus sylvestris and in response 
to pathogenic, saprotrophic or symbiotic fungi  
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3  Materials and Methods 

3.1  Fungal material 

The Heterobasidion isolates used in this study were representatives from 
Europe and North America that have all been previously studied in earlier 
publications and the choice of the isolates was based on this fact. In the first 
study three European Heterobasidion species representing the different host 
preferences in the Heterobasidion species complex were choosen with 
Heterobasidion annosum s.s. isolate FP5 (Korhonen) H.parviporum FS6 and 
H.abietinum Faf4-6 (Karlsson & Stenlid, 1991; Stenlid & Karlsson, 1991). 
For H.parviporum a library of ESTs (Expressed Sequence Tags) were 
available (Abu et al., 2004). In the second study the north American P-type 
of H. annosum s.l. presently called H. irregularis TC-32-1 (Chase, 1985) a 
homokaryotic isolate which has been the model “lab rat” with EST 
resources and QTL map and now the whole genome available (Lind et al., 
2007; Lind et al., 2005; Karlsson et al., 2003; Chase, 1985), 
(http://genome.jgi-psf.org/Hetan1/Hetan1.home.html). The saprotroph 
Phanerochaete chrysosporium RP78 (Jill Gaskell) (Stewart et al., 2000) and the 
mutualist Paxillus involutus were included. In the third study H.parviporum, 
FS6 was used together with the saprotroph P. chrysosporium RP78 
(http://genome.jgi-psf.org/Phchr1/Phchr1.home.html). The mutualists 
Paxillus involutus MAJ and the sequenced Laccaria bicolor 
238A(http://genome.jgi-psf.org/Lacbi1/Lacbi1.home.html) were included 
in paper III 
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3.2  Plant material  

Pinus sylvestris (L.) Saleby FP45 seeds were surface sterilized in 33% 
hydrogen peroxide for 15 minutes under stirring and rinsed in excess 
sterilized water and grown on 1% water agar.  

3.3  Infection systems and culture conditions 

To study fungi, pure cultures of fungi isolated from the environment are 
essential. With fungi isolated in pure cultures from plants with disease 
symptoms Koch’s postulate can be tested, by determining whether diseases 
can be induced by inoculation of healthy plants with the isolated fungi. 
There is a multitude of different media that have been developed to suit the 
requirements of various symbionts, however many fungi such as obligate 
parasites are still impossible to grow in pure culture. The balance of 
nutrients in the medium is crucial and deviation from what the fungus 
encounter in its natural habitat may induce physiological abnormalities and 
misinterpretations of the biology of the fungus. Typically the natural 
conditions may be altered with having too much exogenous carbon 
available, even the host range may get changed (Langer et al., 2008; 
Duddridge, 1986). Nitrogen starvation has been used as a mean of 
mimicking the growth of pathogens in planta and study virulence genes in 
vitro (Bolton & Thomma, 2008; Coleman et al., 1997). The balance of C:N 
ratio in a substrate is important for the efficiency of decomposer fungi to 
break down the substrate (Boberg, 2009).  

We used an axenic model system with juvenile seedlings to represent the 
hosts of our fungi. The use of juvenile seedlings instead of full grown trees 
has its pro’s and con’s as it facilitates easy handling and allows a sterile 
controlled environment, however since the seedlings lack several of the 
features of adult trees they do not in all aspects reflects the full grown trees, 
i.e. suberin and bark. However, even mature trees have root tips of a similar 
age to the roots of seedling plants used in the present study. Studies with 
seedlings have been used in previous studies (Olson & Stenlid, 2001; 
Asiegbu et al., 1999; Asiegbu et al., 1994).  

In paper II the infection systems was constructed to mimic the nutrient 
limited environment that a boreal forest consists of, with intact mycelia to 
connect the inhabited resource with the uncolonized substrate. The 
colonized dead seedling was the only nutrient sources until inoculation with 
a new living seedling. The experimental system was constructed to 
minimize the difference between the nutrient sources such that there was no 
other major difference other than the host being alive or dead. Pinus 
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sylvestris seedlings of two weeks age were grown on 1% water agar and dried 
for a week at 60 °C. The dried Scots pine seedlings were then transferred to 
Hagem agar medium (Stenlid, 1985) Petri dishes inoculated with the H. 
irregularis TC32 and left for colonization. The dead colonized pine was 
transferred to water agar plate containing cellophane membrane and left 
until the mycelium had almost covered the plate.  A new living seedling was 
then applied to the mycelial front 5cm from the dead seedling. The living 
seedling was removed after 1, 6 and 15 days post infection and the 
mycelium from a 1cm border of the living seedling as well as a 1cm strip of 
mycelium from the dead colonized seedling was harvested. The mycelium 
was shock frozen in liquid nitrogen and stored at -80°C until used for RNA 
extraction. 

The hydroponic box system in paper 3 was constructed as a way to 
produce samples with many seedlings all subjected to the same treatment. 
Each box contained almost hundred seedlings in a 300 ml liquid solution of 
modified Melin Norkrans medium (Marx, 1969). There is one box per a 
sample. The seedlings had been grown for 14 days on water agar when 
transferred under sterile condition to the box system. Inoculation of the P. 
sylvestris seedlings was done directly into the medium by adding the 
treatment solutions. The treatments were; Auxin indole-3-butyric acid 
(IBA) 100uM, Laccaria bicolor mixture C alone or in combination with the 
auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) 10uM. The 
seedlings were cultured in a 16h photo period at 21 °C. After 1, 5, 15 and 
30 days the seedlings were harvested in liquid nitrogen or in the RNA 
stabilizing solution RNA later™ for the spatial distribution samples. 

3.4  Macroarray hybridization and analysis 

In study I (Heterologous array analysis) and II (Saprotrophic-Pathogenic 
Switch) we use an array hybridization technique, in which the affinity of 
nucleotides to bind to complementary sequences is used. There are several 
automated ways of making the hybridizations usually called microarrays. In 
micro-arrays, nucleotides either amplified DNA or cDNA or synthetically 
designed probes are bound to a glass slide in spots. The microarrays can 
contain a small custom-made set of nucleotides representing genes of 
interest or entire genomes, depending on the printing capacity of the 
automated system and the request of the researcher. The glass slides are 
either single or two-channelled, in single channelled microarrays there is 
only one representative of each DNA fragment per printgroup since the 
RNA to be hybridized on the array only contains one fluorescent colour. In 
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two channelled microarrays two different RNA sources are compared by 
marking them with a red or a green fluorescent colour and then measuring 
the difference between the colour ratio, one spot of printed DNA fragment 
is used per colour. However, macroarrays used in this study are single 
channel arrays printed on a membrane.  

In macroarrays clones with known or unknown sequences are bound to a 
membrane and in a buffer they are heated together with the RNA or 
cDNA that was harvested during the experiment, this causes the 
experimental RNA to bind to the clones on the paper. Then the RNA 
from the experiment is washed away unless it binds strongly, which it does 
when the same sequence is in the clone as in the experimental RNA. The 
temperature can be altered to increase or lower the stringency of both the 
hybridization and the washing in such a way that an increased temperature 
requires a better match between the nucleotides on the array and the 
experimental RNA. As the experimental RNA is marked with either a 
radioactive label or a chemifluorescent dye, pictures can be taken of the 
macroarray and an estimate of the gene expression of the clones present on 
the array in the experimental RNA can be made. 

 In order to estimate gene expression there are several necessary steps to 
analyze the pictures taken. Firstly, the digital image processing of each spot on 
the array is examined for characters such as shape, signal intensity and 
background signal intensity. There is a multitude of software (Agilent, 
Genepix, Imagene, Spot, etc.) that analyze the fluorescence of arrays, usually 
in concurence with the hybridization and in standardized output formats, but 
it is also possible to examine the fluorescence using separate image analysis 
software not tailor made for array analysis such as Quantity One™. 

For estimation of signal intensity there are commonly control samples on 
the array with known amounts per spot either positive samples in dilutions 
or negative controls with samples unrelated to the experimental RNA. The 
background intensity is either determined locally around every spot or globally 
as an estimate of the representative background intensities based on either a 
model like Lowess smoothing or calculations of the mean background  

The signal intensity is bound to the false background intensity but there 
are many methods to determine how. The simplest methods are either to 
ignore the existence of background or to use direct subtraction, but there are 
many drawbacks of both methods (as background may be due to leakage of 
correctly hybridized but non stringently removed or just non biological 
relevant noise). Several versions of the subtraction methods exist dealing 
with the normalization step in appropriate possible negative values (ex 
Minimum, Half, Camberra, Edwards etc)(Smyth, 2005). There are also 
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methods that treat the background as a part to be added to the signal 
intensity, the RMA algorithm and the more recent Normexp method are 
variants where the signal intensity is a model where the normal distribution of 
the local background is added to the signal intensity (Silver et al., 2009; 
Ritchie et al., 2007).  

Normalization of the arrays is the next step and once again there are 
several alternatives available but they all aim to reduce differences in order 
to make it possible to compare genes within the arrays with each other as 
well as to compare different arrays.  

For single channel arrays, the between array methods are appropriate. The 
Quantile normalization method, in which the expression of each array is 
centred to a common quantile, is common.  

The open source statistical analysis software R contains several packages 
aimed at analyzing microarrays, both single channel and two-channel microarrays. 
(The single channel software is almost exclusively aimed at the well defined 
Affymetrix platform which hinders the use of non-conventional arrays as 
macroarrays. Instead adaptions of the two-colour software are necessary too 
squeeze in the single channel format of macroarrays into the two channel 
analysis. There is one dominant software; Limma in R, that deals with 
processing of microarrays, including background subtraction, normalization 
and gene expression (Smyth, 2005). The data are read into the software as 
matrices, which can be created from sources other than the standard output 
files from the automatic hybridization, all data are log transformed to obtain 
normal distribution. The gene expression in Limma is mostly based on 
Bayesian statistics via the function eBayes (Smyth, 2004) which calculates 
likeliness of differential expression for gene matrices with expression data 
fitted to linear models and compared in contrast models. 

3.5  Amplification of RNA 

When the polymerase chain reaction PCR was automated it revolutionized 
molecular biology since it became possible to obtain high quantities of DNA 
via amplification of the initial material. The PCR has made it possible to 
circumvent the need to culture hard cultured organisms, by sequencing of 
DNA, taxonomy has become based on DNA instead of morphological 
characters, etc, basically all aspects of biology can now be studied with the 
aid of PCR (Peay et al., 2008). For array studies, amplification of the initial 
material is often necessary, but since the researcher is interested in the initial 
quantity of different RNA transcripts in the cell or at least their relative 
abundance direct PCR amplification of the cDNA is not sufficient.  The 
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problem is that the relative abundance of transcript can be altered after PCR 
amplification. There are however alternative methods such as the T7 
eberwine method where amplification is linear (Vangelder et al., 1990).  

3.6  Q-PCR 

Quantitative PCR is the other technique widely used in the work described 
in this thesis. QPCR or Quantitative Real Time PCR is a way to follow 
the build up of a PCR product in a PCR reaction cycle by cycle and thus 
quantify the amount of the targeted transcript. This is realized by signal 
intensity measurement of fluorescence markers incorporated into the PCR 
product.  The number of cycles it takes to amplify so much of the desired 
PCR product (amplicon) that the reaction is unlimited by deficient 
quantities of DNA or unused enzyme and nucleotides is determined by 
setting a cycle threshold where the signal raises above the background noise 
(Nolan et al., 2006; Bustin, 2000).   

The quantification can essentially be done in two ways:  absolute 
quantification or relative quantification. In absolute quantification, a known 
amount of transcripts is analyzed with QPCR in a dilution series so that the 
cycle threshold (Ct) for each dilution is known and used to derive the 
amount of transcripts in the unknown samples. The result is expressed as an 
exact number of molecules or moles of nucleic acid. The more commonly 
used technique is relative quantification, it is concerned with relative 
changes between samples or genes and not amounts of transcripts. Ct value 
for a test sample is compared to the Ct of a calibrator sample, the difference 
is the deltaCt. The fold change is then two to the power of deltaCt. The 
gene expression in cycle threshold values must be normalized with a 
reference gene to correct for sample to sample variation therefore more 
refined methods of relative quantification have been developed. The 
deltadelta Ct is such a method where the test sample and the calibrator are 
both compared to a reference gene for normalization, thus providing 
deltaCtsample-reference gene and delta Ctcalibrator-reference gene. The 
two normalized deltaCt values, sample and calibrator, are then compared to 
obtain the deltadeltaCt value. Lately the dominating normalization methods 
are Vandesompele’s (Vandesompele et al., 2002) which requires two 
reference genes for normalization or the method by Pfaffl, which uses one 
reference gene (Pfaffl, 2001).  

Ideally the expression of the reference gene should be evaluated so that 
they are not differentially expressed in the samples examined, but there are 
several standard genes so called house-keeping genes commonly used for 
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normalization in QPCR experiments (Brunner et al., 2004). QPCR is 
commonly used in conjunction with array experiments to validate the 
expression of the array. There are however often dissimilarities between the 
gene expression determined by the array and by QPCR and the gene 
expression from QPCR is often higher than that measured by the array. 
The correlation between the two methods differs, mostly depending on the 
method used for the array analyses.  When compared with other methods 
the RMA algorithm has proven to be the best choice (Millenaar et al., 
2006).  
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4  Results and discussion  

4.1  Paper I.   Heterologous array analysis in Heterobasidion: 
Hybridisation of cDNA arrays with probe from mycelium of 
S, P or F-types  

The creation of some genetic resources like clone libraries with EST from 
Heterobasidion (Abu et al., 2004; Karlsson et al., 2003) has allowed us to draw 
conclusions about gene expression under different biological conditions such 
as interaction with seedlings (Karlsson et al., 2003) and spore germination 
(Abu et al., 2004). The genomes of related species have evolved by 
mutations involving insertions, substitutions and deletions of single 
nucleotides and rearrangements of the genomes, but also share a common 
ancestry and are similar in many features. There has been interest in using 
established resources from well-known model organisms to study related 
organisms. One such example is the Pinus taeda arrays, which have been 
used to perform gene expression studies in other pine species (Adomas et al., 
2008; Brinker et al., 2004; van Zyl et al., 2002).  

In the first study, we investigated the gene expression in the three 
different European Heterobasidion species with different host preferences on a 
non-species specific medium to see whether or not the gene expression 
differed. We also evaluated whether it was possible to study gene expression 
in one species with the cDNA arrays of another related species. We 
concluded that although some differences were observed they were not due 
to hybridization differences or to differences in sequences, but rather to 
actual differences in gene expression patterns. The most striking observation 
was that the pattern of gene expression in all three species was similar on a 
non-selective medium.  
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The results further showed that labelled cDNA from the two 
Heterobasidion species (P and F-group) hybridized to the H. parviporum (S-
group) cDNA arrays with comparable efficiency. This is to be expected in 
view of the high sequence similarity of the very few genes that have been 
sequenced in both H. annosum and H. parviporum. Pairwise comparison was 
then used to assess variations in gene expression patterns of the three 
intersterility groups. The result revealed a Pearson correlation of 0.81 for 
gene expression in P versus S, which was much higher than a value of 0.49 
obtained for S versus F. The result further confirms that S and F are both 
genetically and physiologically distinct. The result is along the lines of earlier 
studies that demonstrate that the F and S intersterility group separated early 
from each other. Technically, some of the observed variations in the gene 
expression pattern among the isolates could be due to differences in the 
degree of cross hybridisation among genes belonging to a gene family. 
Other authors have also explained that the hybridisation degree might be 
influenced by cross hybridisation of genes belonging to the same gene 
family. An additional conclusion from this study was that a cDNA array 
made for one intersterility group (S, P, F) of H. annosum could be used for 
gene expression studies in the other intersterility groups.  

4.2  Paper II Analysis of gene expression during transition from 
saprotrophic to necrotrophic growth stage in 
Heterobasidion annosum  

Heterobasidion as a necrotroph lives by killing its host and as a saprotroph it 
survives on dead wood by breaking down lignin and cellulose. The fungus 
spreads from the dead or dying host by means of spores or by direct contact 
with a new host tree via root contact. The spread via spores has been 
recognized as the major means of starting new infection foci(Redfern & 
Stenlid, 1998)(Fig.4). 
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Figure 4. Heterobasidion annosum (Ha) (in gray) spread by root contact (circle). Transect of 
stem above the stump, the host protects the living sapwood by compartmentalizing the 
fungus to the dead heartwood by a reaction zone, where it activates its defences (dark gray).  

Modern forest management facilitates the spread of the fungus by 
creating stumps with their nutrient rich and unprotected surfaces, which acts 
as entry points for the fungus to the root system. Some chemical and 
biological treatments to protect the stump surface have been developed. 
Application of urea changes the pH of the stump surface outside the pH 
range within which Heterobasidion survives (Johansson et al., 2002). A 
biocontrol agent “Rotstop” is a commercial product based on spore 
solutions of a saprotroph (Phlebiopsis gigantea) that is applied directly after the 
felling of the tree. Rotstop occupies the surface of the stump surface before 
any other fungus does. However it has been shown that the effect of 
Rotstop is best in afforested former agricultural land where Heterobasidion is 
not previously present (Stenlid & Redfern, 1998). Old stumps and colonized 
debris are a potential risk for surrounding trees as they may act as an 
alternative nutrient sources for Heterobasidion. Inside the host when 
Heterobasidion kills its host, it consumes the deadwood as a saprotroph and 
the still living host as a necrotroph so the two nutritional modes are 
constantly present. The pathogen genes expressed under these different 
nutritional modes are interesting as they can reveal how the fungus deals 
with the stress posed by the host defenses. In paper II, we wanted to study 
whether or not the same set of genes was active during saprotrophic as well 
as for pathogenic growth, in nutrient rich and nutrient poor conditions. 
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Consequently, the switch from saprotrophic to pathogenic growth was 
studied by gene expression studies of the growth of H. annosum on dead and 
living P. sylvestris seedlings. The experimental system was constructed to 
minimize the difference between the nutrient sources such that there was no 
other major difference than the host being alive or dead. The study 
consisted of one 384 clone macroarray which was analyzed with RNA 
harvested at one and six days post inoculation (dpi). An extra timepoint of 
15dpi was studied with QPCR. The result showed that in the set of genes 
that we included in the study only a handful differed between the 
saprotrophic and pathogenic growth. The genes that do differ have 
functions related to detoxification and energy production (e,g. transcript 
antisense to ribosomal RNA Tar1p homologue). 

The experimental set up allowed us to investigate the transitional shift in 
gene expression from saprotrophic to pathogenic growth in a nutrient 
limited environment. A dead pine seedling was the nutrient source in a 
mycelium connected to a living pine seedling. Our hypothesis was that the 
genes required for basic metabolic processes differ from those responsible for 
the pathogenicity of the fungus. There was a statistically significant switch in 
gene expression in the pathogenic and saprotrophic growth stage compared 
to the nutrient rich control. Between the pathogenic and saprotrophic mode 
of growth no clear significant shift in gene expression was found between 
the saprotrophic samples and the pathogenic samples. However, several 
trends were detected that suggests interesting differences in gene expression 
between the pathogenic and the saprotrophic stage.  

The data can be interpreted as a reflection of the struggle for and the 
exploitation of a new resource. The expression pattern of GST homolog 
and CoQ5 is likely to be high during the interaction and to decrease when 
the host’s defences are overcome. The high expression pattern of GST 
homolog and CoQ5 during the saprotrophic stage compared to pathogenic 
stage at 6dpi was however contrary to our expectation. The decreases in the 
transcript levels recorded at 15 dpi probably reflect a depletion of the 
inductive nutrient source. GST is a gene which was expected to be up-
regulated during active colonization and host defence reactions (Adomas et 
al., 2007). Although it was up-regulated during the colonization of the 
living host it never reached the levels seen under growth on the dead pine 
seedling. GSTs have multiple functions in fungi (McGoldrick et al., 2005) 
including detoxification of xenobiotics, transport and protection against 
oxidative stress. CoQ5 on the other hand is part of the electron transfer 
system in the mitochondria important for the energy system. There is a high 
demand for energy during pathogenicity, infection and the genetical 
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composition of the mitochondria has been implicated as virulence factor in 
H. annosum (Olson & Stenlid, 2001). However, in the present study, 
significant increases were recorded only during saprotrophic growth. It is 
possible that the primary function of CoQ5 is to protect the pathogen from 
its own radicals or ROS produced by the host during the infection. Finally, 
although no genes could be identified as belonging uniquely to either 
saprotrophic or pathogenic stages, our results suggests that differences 
between the two stages might hinge on the magnitude of gene expression 
during the various growth conditions. 

4.3  Paper III Response of Pinus sylvestris to pathogenic, 
saprotrophic or symbiotic fungi: analysis of novel Clavata1-
like and Nodulin 21-like genes.  

The ecology and physiology of ECM symbiosis with conifer trees are well 
documented, however very little is however known about the molecular 
regulation of these associations. Similarly, the study of the genomics of the 
response of conifer tree tissues to pathogenic challenge is still in its infancy. 
The initiation, development and maintenance of ectomycorrhizas involve 
signal exchange and coordinated changes in gene expression from both 
partners (Le Quere et al., 2005; Podila et al., 2002; Voiblet et al., 2001; 
Slankis, 1973b). Studies describing transcriptome changes during 
ectomycorrhiza formation have indicated that the number of mycorrhiza-
specific genes in both partners may be relatively small (Duplessis et al., 2005; 
Le Quere et al., 2005; Wright et al., 2005; Podila et al., 2002; Voiblet et al., 
2001; Slankis, 1973b) and to date little is known about the mechanisms by 
which the fungus and the plant communicate during ectomycorrhizal 
formation. (Reddy et al., 2006; Reddy et al., 2003; Charvet-Candela et al., 
2002a; Charvet-Candela et al., 2002b). Recent reports have revealed three 
ESTs which are involved in early stages of ectomycorrhizal development in 
Pinus sylvestris with Laccaria bicolor (Heller et al., 2008) that also show 
similarity to Clavata 1 RLK gene of Arabidopsis (Clv1-like) and to a MtN21 
nodulin-like gene of Medicago truncatula (two clones MtN21-like-a and 
MtN21-like-b).  

In paper III, the primary objectives were to investigate the specificity of 
response of these tree mycorrhiza-associated ESTs to either saprotrophic 
(Phanerochaete chrysosporium), mutualistic (Paxillus involutus and L. bicolor) or 
pathogenic (Heterobasidion annosum) fungi and to follow the expression of 
these genes during rhizogenesis and ECM development. We also 
characterized the expression patterns of the auxin homeostasis gene GH3 
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and a auxin regulated iaa88-like gene together with the mycorrhiza-
associated EST after treatment with the auxin indole-3-butyric acid (IBA). 
The transcription of these genes was also followed in a time course 
experiment during ectomycorrhizal interaction with L. bicolor with and 
without the co-inoculation of the auxin transport inhibitor 2,3,5-
triiodobenzoic acid (TIBA).  

Generally, all four fungal species with diverse nutritional life styles 
provoked induction of host defence genes. This was in line with the result 
of our earlier study, although such increases in transcript levels were 
attenuated after prolonged infection with the non-pathogenic fungi 
(Adomas et al., 2008). The results also confirm our earlier observation that 
conifer tree tissues, even at immature stages, possess the right set of gene 
machinery for rapid response to extraneous factors (Asiegbu et al., 1999). 
The up-regulation of the auxin homeostasis gene GH3 in P. sylvestris in the 
presence of IBA and the early up-regulation and consequent down 
regulation during colonization by L. bicolor is in line with the findings in 
Pinus pinaster where the transcript levels of Pp-GH3.16 decreased gradually 
in the presence of the ECM fungus Hebeloma cylindrosporum but increased in 
auxin treatments (Reddy et al., 2006). These results indicate that the 
expression of plant genes associated with ectomycorrhizal formation is 
similar between closely related plant species and not necessarily specifically 
dependent on the colonizing fungal partner, also supporting the concept of a 
general “mycorrhiza” associated transcription program in ectomycorrhiza. 
This is further underlined by the observation of the expression of iaa88-like 
genes during ECM colonization. The Pp-iaa88 gene is reported to be highly 
expressed during fungal sheath formation (Charvet-Candela et al., 2002a). 
The P. sylvestris iaa88-like sequence is most highly expressed at 15 dpi which 
also coincides with fungal sheath formation (Heller et al., 2008). The 
expression patterns of the GH3- and iaa88-like genes in P. sylvestris 
underline the similarities of the regulation in the P. sylvestris/L. bicolor system 
to the transcriptional regulation in other symbiotic interactions with the 
genus Pinus. 

The MtN21-like a/b gene represented by two ESTs is up-regulated during 
ECM formation. They are likely to originate from the same gene and, just 
like the P. taeda gene 5NG4 (Busov et al., 2004), they share homology with 
the nodulin 21 from Medicago truncatula (Gamas et al., 1996), a gene with 
unknown function. In our system, the P. sylvestris homologs 5NG4 and 
MtN21-like-a /b did not respond similarly either to auxin or to treatment 
with fungi. Expression of MtN21-like-a/b was not influenced by IBA 
treatment, whereas co-cultivation with L. bicolor led to a transient increase in 
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gene activity at 5 dpi. Treatment with an auxin inhibitor (TIBA) did not 
influence the response of MtN21-like-a/b to L. bicolor colonization. The 
application of auxin transport inhibitors results in a local increase in auxin 
concentration in plant tissues through a blockage of the PIN1 
cycling(Geldner et al., 2001). It has been shown that polar auxin transport is 
necessary for lateral root formation in the early L.bicolor-plant interaction; 
Inoculation with L. bicolor induces lateral root formation in P. tremula x P. 
tremuloides and A. thaliana even without physical contact, this induction can 
be completely inhibited by the addition an auxin transport inhibitor (Felten 
et al., 2009). We also observed an almost complete inhibition of L. bicolor-
induced lateral root formation in our material after treatment with TIBA. It 
is tempting to speculate on the basis of our results that the response of the 
MtN21-like-a/b gene in ectomycorrhizal formation is, at least partially, 
independent of auxin, and that the gene could be specifically associated with 
ectomycorrhiza formation between Pinus and L. bicolor. Treatment with 
L.bicolor also generated the strongest response in the study on co-cultivation 
with established fungal colonies, while H.annosum did not induce any 
response. Irrespective of the regulatory mechanisms of the MtN21-like-a/b 
gene, it is an interesting candidate for more detailed studies. 

The Clv1-like EST falls into the LRR-XI superfamily (Shiu & Bleecker, 
2001) of RLKs. There are at least 38 contigs with similarity to the LRR-XI 
superfamily in the Pine EST databases out of which the expression pattern 
has been described for only one gene up to now (Avila et al., 2006). The 
Clv1-like gene seem to be associated with the formation of lateral roots as 
expression can be detected in root primordias and during the formation of 
mycorrhizal roots. The Clv1-like transcript accumulates in response to to L. 
bicolor and to  auxin treatment. The association between Clv1-like gene 
expression and lateral root initiation is supported by the absence of Clv1-like 
expression in the co-cultivation study as the roots had no lateral roots and 
root primordias could not be formed within the harvesting period, 
otherwise one could have expected P. involutus to induce Clv1-like gene 
expression in P. sylvestris. 





 41 

5  Conclusions 

The thesis relies on the central dogma (Crick, 1970) i.e. that the DNA 
encodes RNA and that the RNA encodes the proteins produced and 
therefore reflect the activity of the organism studied. This based on the fact 
that we have used RNA to construct cDNA and interpret the activity of the 
organisms studied instead of studying enzyme activity. 

In global gene expression analysis, a first step in studying the basis for 
fungal diversity was to investigate whether cDNA arrays printed for one 
species give useful information from hybridization with labelled cDNA from 
other related species with the aid of macroarray hybridization techniques. 
Due to the high level of correlation, in the gene expression observed among 
the European Heterobasidion species, we concluded that the cDNA array of 
one specie can be used to study gene expression in the others. Furthermore, 
the gene expression data also supported the recent separation of the 
intersterility groups into the three separate species, Heterobasidion parviporum, 
Heterobasidion annosum, Heterobasidion abietinum representing the European S, 
P and F groups respectively.  

Additionally, the present thesis has further confirmed sequence 
conservation amongst the investigated basidiomycetes. It also showed that 
no genes could be identified as uniquely belonging to either saprotrophic or 
pathogenic stages of H.annosum, which suggests that differences between the 
two stages might hinge on the magnitude of gene expression rather than 
distinct qualitative differences. In the near future the entire genome of H. 
annosum will be available which will allow for more complete expression 
studies using whole genome arrays as well as detailed studies on the 
promoter regions of the genes. 

Furthermore, we investigated two symbiosis regulated genes and one 
gene homologous to the Medicago truncatula nodulin MtN21, and a homolog 
to the receptor like kinase Clavata1 like gene in interactions between Laccaria 
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bicolor and Pinus sylvestris (Scots pine), all belonging to gene families with 
members that can be regulated by auxin. Our results have revealed a 
different role played by the different nodulin homologs found in P. sylvestris 
and a possible role of Clv1-like in lateral root initiation during 
ectomycorrhizal development. 
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6 Future perspectives  

This is an interesting time for everyone with a fascination for molecular 
biology as large genome sequencing projects are underway. No doubt, to 
intervene in disease and understand the basis of biological control or 
symbiotic relationships, a concerted and co-ordinated genomic analysis of 
fungi is essential. With the advent of such large-scale sequencing and novel 
functional genomics tools, there is an ample opportunity to understand the 
nature of beneficial and pathogenic fungus – tree interactions at levels of 
resolution never before possible. Since the first fungal genome was 
sequenced in 1996 the combined database of sequencing information has 
grown and the hope is that the resulting databases will allow for a 
comprehensive analysis of developmental processes that are characteristic of 
fungi. Such information will contribute to basic understanding of not only 
the mechanics of infection, symbiosis or saprotrophism but also of the 
evolution of pathogenicity and mutualism. To date there are around 100 
fungal genomes sequenced (Stajich, 2009) and with the forthcoming 
sequencing of H. annosum and closely related species among the Russulales 
such as the ectomycorrhizal fungus Lactarius quietus and the mainly 
saprotrophic Phlebiopsis gigantea, new comparisons can be made which will 
further our knowledge of symbiosis in general and Heterobasidion biology in 
particular.  

With development of novel molecular biological tools as well as efficient 
DNA transformation techniques for Heterobasidion functional 
characterization of genes important for key developmental or biological 
processes can be made via knockouts or RNA silencing. The regulation can 
then be studied in further detail by fusing promoters to GFP.  

The availability of the genome sequence for Populus has no doubt 
facilitated basic studies in host–microbe interactions relevant for angiosperm 
tree ecology. The sequencing of parts of the symbiome of Populus with the 
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mutualistic Laccaria bicolor, Glomus intraradices and the pathogen Melampsora 
larici as well as the sequencing of the human gut is a likely indicator of what 
will come in the future, when sequencing costs are reduced and the 
bioinformatic tools are available the effects on host fitness of the organisms 
in its symbiome can be studied with possible commercial applications for 
agriculture and forestry. Additionally, the ongoing sequencing projects in 
Picea abies (Norway spruce) as well as Pinus taeda (loblolly pine) will also 
enable functional studies with the use of yeast two hybrid systems to identify 
relevant host and pathogen proteins acting as receptors and effectors 
respectively.  
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