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Risk assessment and mitigation of pesticides losses to surface waters is a major challenge 

due to spatial and temporal variation in the factors that influence underlying transport 

processes. This thesis examines effects of spatial and temporal variation in soil properties 

on such losses and the pathways along which the transport occurs. Spatial variation in 

pesticide concentrations in streamflow were monitored in a small Swedish agricultural 

catchment with a large variation in soil types. Temporal variability in the structural and 

hydraulic properties that largely control the partitioning between surface and subsurface 

runoff was examined through field measurements and laboratory experiments. 

Considerable changes in the volume, size distribution and connectivity of structural 

pores due to rainfall were observed in the harrowed layer after tillage, both in the field 

and the laboratory. In the field these changes were associated with decreases in near-

saturated hydraulic conductivities of around one order of magnitude. Effects of wetting 

and drying on total porosity and the pore size distribution (PSD) varied between soils of 

different texture and organic carbon content. Post-tillage changes in soil structural and 

hydraulic properties could be accounted for in mechanistic models as changes in total 

porosity and the PSD and functions relating soil properties to the magnitude of these 

changes should be useful for parameterization. The ability to predict pesticide losses 

through surface runoff could thus be expected to increase. 

At the catchment scale, consistently larger numbers of compounds at larger 

concentrations were found in a sub-catchment with a relatively large proportion of clay 

soils than in a sub-catchment with a smaller proportion of such soils. Only a few 

compounds at trace concentration were found in a third sub-catchment with 

coarser- textured soils. Temporal stability of this spatial pattern suggests that the relative 

risk of pesticide losses to surface waters is related to soil properties under Swedish agro-

environmental conditions. Soil texture maps could thus be used as a simple method for 

identification of high-risk areas. In the studied catchment, which is to a large extent 

subsurface drained and where surface connectivity between fields and the stream is 

limited, drainage was found to be a more likely dominant transport pathway than surface 

runoff. 
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DT50 

 

Degradation half-life of compound 

GUS 

 

Groundwater Ubiquity Score, index reflecting leaching potential 

of pesticide compounds (Gustafson, 1989) 

 

Koc 

 

Soil organic carbon partitioning coefficient 

Kfoc 

 

Freundlich organic carbon partitioning coefficient 

Ks 

 

Saturated hydraulic conductivity 

PPDB 

 

Pesticide Properties DataBase (Lewis et al., 2016) 

PSD 

 

Pore size distribution 

SOC 

 

Soil organic carbon  
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Pesticides are used in modern agriculture to alleviate problems caused by weeds, 

insects and plant pathogens and have contributed to increasing both yields and 

food security. However, unintended and undesirable effects on non-target 

organisms may occur. Although it usually only constitutes a very small fraction 

of the applied amounts, pesticides can be transported from the site of application 

in agricultural fields to other environmental compartments (Burgoa and 

Wauchope, 1995; Capel et al., 2001; Brown and van Beinum, 2009). Monitoring 

has revealed that pesticide residues frequently occur in surface waters 

(Lindström et al., 2015), and numerous studies have reported concentrations 

where effects on aquatic organisms or communities can be expected (e.g. 

Schafer et al., 2011; Ali et al., 2014; Stone et al., 2014; Knauer, 2016; Houbraken 

et al., 2017).  

The principal pathways along which this transport occurs are known. They 

include spray drift and atmospheric deposition, surface runoff, drainage and 

saturated subsurface flow, in addition to point source contamination (Holvoet et 

al., 2007; Reichenberger et al., 2007). Some previous research has shown that 

large diffuse losses of pesticides may be associated with locations in the 

landscape where the soil surface frequently becomes saturated, since this 

increases the risk of triggering rapid flow processes like surface runoff and 

macropore flow to drains (Leu et al., 2004b; Freitas et al., 2008) For example, 

Freitas et al. (2008) measured pesticide concentrations in surface water 

following controlled applications of different herbicides to a number of fields, 

as well as on the wettest part of one field (constituting 1% of the field area), in 

two small catchments in Switzerland. This study clearly demonstrated the effects 

of soil hydrology on pesticide losses to surface water. Losses of the compound 

applied to the wet patch were 24% of the applied amount as compared with 0.06 

to 1.08% for the herbicides applied to the other fields. Losses were also much 

larger from fields in one of the catchments, which had a larger proportion of soils 

susceptible to surface runoff due to shallow groundwater.  

1 Introduction 
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The finding that soils with similar texture and structure often have a similar 

hydrologic response to rainfall has stimulated the development of classification 

schemes where the properties of soils and profiles or certain influential horizons 

are used to predict the expected runoff response (Boorman et al., 1995; Scherrer 

and Naef, 2003; Schmocker-Fackel et al., 2007; Schneider et al., 2007). The 

potential usefulness of such concepts for locating the main areas contributing to 

pesticide contamination of surface waters was demonstrated by Blanchard and 

Lerch (2000) in a study at the regional scale in the USA. They found that stream 

pesticide concentrations were correlated with broad runoff classes derived from 

soil maps. However, the significance and relative importance of soil properties 

for pesticide losses through fast surface and subsurface transport pathways has 

not been investigated under Swedish agro-environmental conditions. The limited 

understanding of the spatial and temporal distributions of the factors controlling 

pesticide losses to surface waters in Sweden makes both risk assessment and 

implementation of mitigation measures at farm, catchment and regional scales a 

tremendous challenge. Currently, as a result of this uncertainty, many mitigation 

measures are implemented in an over-conservative way. For example, grassed 

buffer strips installed along waterways to prevent surface runoff and erosion 

remove large areas of agricultural land from production, but may only be 

effective at a few localities where runoff is both generated and reaches the 

stream. There is therefore a great need for a better understanding of the main 

drivers of spatial variations in pesticide transport to surface waters as well as the 

temporal stability of such patterns. More effective ways of identifying locations 

and situations that could lead to unacceptable effects on surface water quality 

could both lead to more cost-effective implementation of mitigation strategies 

and more reliable risk assessments.  

Models are widely used as decision-support tools in pesticide risk assessment 

and management. However, at present most such models rely on simplified 

empirical relationships, such as the USDA SCS curve number method, to predict 

the frequency and extent of surface runoff. More mechanistic modelling 

approaches could have some advantages, but their development is currently 

hampered by the difficulty of dealing with the temporal variability in soil 

structure and hydraulic properties that largely controls the partitioning of runoff 

between surface and subsurface pathways. An improved understanding of these 

processes is needed to support the development and parameterization of process-

based models that could help identify areas vulnerable to surface runoff losses 

of pesticides, where buffer strips would be most effective.  
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The overall objective of the work presented in this thesis was to add to the 

current knowledge base on how spatial and temporal variation in soil properties 

affect losses of pesticides to surface waters. The specific aims of this thesis were: 

 

 To quantify the post-tillage evolution of soil structural pore space and 

saturated and near-saturated hydraulic conductivity as well as the effect 

of soil properties such as particle size distribution and soil organic 

carbon content on the magnitude and direction of these changes (Papers 

I and II). 

 To assess whether spatial variation in pesticide losses at the catchment 

scale can be related to variation in soil properties and to determine the 

relative importance of different surface and sub-surface transport 

pathways for such losses under Swedish agro-environmental conditions 

(Paper III). 

 

In the following, I first give an overview of the current state of knowledge 

about pesticide occurrence in surface waters, the pathways along which the 

transport from agricultural fields to surface water occur, and the factors that 

influence their relative importance under different conditions. The three papers 

that support this thesis are then briefly summarized, followed by conclusions and 

a short discussion of future research needs and recommendations.  

  

2 Aims and objectives 
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Losses of pesticides to surface waters are of great concern as the occurrence of 

these xenobiotics in the aquatic environment may have harmful effects on 

individual species or entire ecosystems. They may also contribute to the 

contamination of drinking water resources. For example, Stone et al. (2014) 

concluded that one or more compounds were above chronic aquatic life 

benchmarks in 61% of monitored streams in agricultural catchments in the U.S. 

during 2002-2011. Lindström et al. (2015) summarized the results from the 

Swedish environmental monitoring program and found that 45% of all samples 

collected between 2002 and 2012 contained one or more compounds exceeding 

guideline values used to assess the environmental quality of surface waters. By 

compiling data from monitoring campaigns conducted in Swiss streams between 

2005 and 2012, Knauer (2016) found that 16 of 60 considered compounds were 

detected at least once at concentrations above regulatory limits based on 

ecotoxicological studies.  

Comprehensive assessment of the contamination status of surface water 

bodies and the associated risks of ecological effects is, however, a significant 

challenge. The very large number of potentially affected surface water bodies, 

as well as the large number of current and legacy compounds and generally 

limited funds forces researchers and public authorities in charge of 

environmental monitoring to prioritize their efforts. As a result, the occurrence 

of pesticides in the aquatic environment is generally only determined for a small 

proportion of relevant compounds (Moschet et al., 2014) and surface water 

bodies. A further complicating factor is that concentrations in streams can vary 

over several orders of magnitude over time, often with short-lived peaks that are 

easily missed with the infrequent sampling of many monitoring programs 

(Rabiet et al., 2010; Petersen et al., 2012; Stehle et al., 2013). Assessment of the 

risks associated with measured pesticide concentrations are also in many cases 

hampered by uncertain or limited ecotoxicological data (von der Ohe et al., 

2011). 

3 Pesticides in surface waters 
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The large variation in sampling methods and frequencies as well as the types 

and numbers of compounds and water bodies makes comparison of results from 

different studies difficult. Some general conclusions regarding pesticide 

occurrence in surface waters may however be drawn. Pesticide concentrations 

are generally larger in small catchments with predominantly agricultural land 

use than they are in larger catchments (e.g. Kreuger and Brink, 1988; Schulz, 

2004). Both within-stream processes such as transformation, 

sorption/sedimentation and volatilization (Capel et al., 2001) as well as dilution 

with water from non-agricultural areas can be expected to play a greater role at 

larger spatial scales. However, pesticides can still be the main toxic agents in 

large rivers (Schafer et al., 2011). Detection frequencies are highest during the 

main application season (Kreuger and Brink, 1988; Schafer et al., 2011) and 

generally the largest concentrations occur during rainfall-induced high-flow 

conditions (Neumann et al., 2002; Petersen et al., 2012). With the exception of 

some extreme events when more than 10% of the applied amount has been 

transported to surface waters, total losses are most often below 2% (Burgoa and 

Wauchope, 1995; Capel et al., 2001). Herbicides are generally more frequently 

detected and found in larger concentrations than fungicides and insecticides 

(Moschet et al., 2014; Stone et al., 2014; Lindström et al., 2015; Schreiner et al., 

2016), largely reflecting differences in total usage and relative mobility in the 

environment. Several studies have found total losses to be strongly correlated 

with the applied amount (Burgoa and Wauchope, 1995; Kreuger and Tornqvist, 

1998; Neumann et al., 2002). Another common finding, for pesticides as well as 

organic pollutants in general, is that only a few of the detected compounds are 

responsible for most of the total toxicity (Schafer et al., 2011; Lindström et al., 

2015; Knauer, 2016; Munz et al., 2017). 
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Pesticides reach surface waters along several pathways, either originating from 

point sources such as farmyard runoff or wastewater treatment plants, or as 

diffuse losses due to spray drift and atmospheric deposition, surface runoff and 

leaching to field drains or to shallow groundwater (Figure 1). Pesticide losses 

originating from point sources and contributions from spray drift and 

atmospheric deposition were not studied in the work presented in this thesis, and 

will therefore only be briefly presented in Sections 4.1 and 4.2 below. The 

remaining text will focus on transport occurring at the soil surface and through 

the soil profile (surface runoff, drainage and sub-surface saturated flow). These 

pathways, their effects on surface water quality and the factors affecting their 

occurrence and relative importance under different conditions are described in 

more detail. 

 
Figure 1. Schematic figure depicting the main transport pathways for pesticides from agricultural 

land to surface waters. 

4 Transport pathways of pesticides to 
surface waters 
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4.1 Point sources 

Point sources of pesticides entering surface waters include runoff from hard 

surfaces in farmyards due to faulty equipment, improper waste disposal and 

accidental spills or carelessness during filling and cleaning operations etc. 

(Kreuger, 1998) and wastewater treatment plants and sewage overflows (e.g. 

Gerecke et al., 2002; Neumann et al., 2002). In their review of studies from 

several European countries, Holvoet et al. (2007) found that point sources 

accounted for 20-80% of total pesticide loads to surface waters. Following a 

controlled herbicide application in a small Swiss catchment, Leu et al. (2004a) 

found that diffuse losses accounted for more than 80% of total herbicide losses, 

but that farmyard runoff caused the largest measured concentrations. Kreuger 

(1998) also measured large concentrations of a number of compounds in 

farmyard runoff, but found that the effect on pesticide concentrations in the 

stream was small, suggesting that this type of contribution was rare in the 

catchment as a whole. However, later work revealed that point sources might 

have been responsible for as much as 90% of the pesticide losses to the stream 

(Kreuger and Nilsson, 2001). Although pesticide concentrations in the effluent 

from wastewater treatment plants can generally be expected to be small due to 

extensive dilution (Neumann et al., 2002), elevated concentrations have been 

found downstream of such plants (Munz et al., 2017).  

Point sources can be minimized by implementing “best management 

practices” (as demonstrated by Kreuger and Nilsson, 2001). Cleaning the spray 

tank in the field instead of on hard surfaces on farmyards, regular checking and 

maintaining of spraying equipment and safe disposal of used pesticide containers 

are examples of good management practices that have great potential to reduce 

farmyard runoff (Reichenberger et al., 2007). Increasing the temporary storage 

capacity of sewage treatment plants to avoid overflows could also significantly 

reduce the negative impact on downstream water quality in some cases 

(Neumann et al., 2002). 

4.2 Spray drift and atmospheric deposition 

Spray drift occurs at the time of pesticide application in the field, where a part 

of the dose may be transported with wind and deposited on surface water. 

Pesticides can also be transported with wind after volatilization and deposited 

far away from the site of application. Although pesticides are frequently detected 

in rainwater (e.g. Sjöberg et al., 2011), the contribution from atmospheric 

deposition to pollution loads and concentrations in surface waters is, in most 

situations, small compared with other entry routes. I will therefore focus on 

losses through spray drift in the following. 
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The extent of spray drift is largely controlled by meteorological and technical 

factors. Drift has been found to increase with increasing wind speed, decreasing 

relative air humidity and increasing air temperature (Arvidsson et al., 2011). 

Spraying height, driving speed and the design and spacing of spraying nozzles 

also affect the extent of spray drift losses (Hilz and Vermeer, 2013). Arvidsson 

et al. (2011) measured average total drift losses of 5% of applied amounts for 

several different spray technologies and a range of meteorological conditions, of 

which about one quarter on average was deposited on the ground within 5 m 

from the end of the spraying boom in the downwind direction. Schulz (2001) 

showed that spray drift increased the concentrations of the two insecticides 

azinphos-methyl and endosulfan in a South-African catchment dominated by 

orchards, but found surface runoff to have a far greater effect on both peak 

concentrations and loads. In a small catchment in France dominated by 

vineyards, Lefrancq et al. (2014) found that the loads of fungicides transported 

in runoff increased due to spray drift deposition on roads where runoff 

coefficients are generally much larger.  

Various technological solutions as well as mitigation strategies to minimize 

these problems have been developed, including drift reducing nozzles and spray 

additives to coarsen the spray, as well as the installation of wind-breaks and no-

spray zones close to open water courses etc. (Reichenberger et al., 2007). 

4.3 Surface runoff 

Pesticides can be transported in surface runoff either dissolved in the aqueous 

phase, or adsorbed to eroded soil particles entrained in the flow. Surface runoff 

either results from infiltration-excess (Hortonian overland flow) or saturation-

excess (Dunne type overland flow; Dunne and Black, 1970). Saturation-excess 

overland flow occurs when shallow water tables reach the soil surface during 

extended periods of snowmelt or rainfall. This is most likely to develop at the 

foot of hillslopes close to streams. Dense, impermeable horizons or impermeable 

rock at shallow depth dramatically reduces the storage capacity of the soil and 

increases the risk of saturation-excess overland flow. Contrasting structure and 

hydraulic conductivity of different soil layers can also lead to rapid lateral 

subsurface runoff on sloping land (Haria et al., 1994; Peyrard et al., 2016). 

Infiltration-excess runoff occurs when the rainfall intensity exceeds the local 

infiltration capacity and depression storage capacity of the soil. Loss of particle-

bound pesticides in surface runoff can be expected to be larger on steeper and 

longer slopes, as soil erosion is generally more extensive under such conditions. 

However, slope angle should not influence the generation of surface runoff per 

se, although it can influence the probability of runoff reaching surface water 



17 

 

through increased flow velocity and effects on the connectivity of overland flow 

pathways to streams. High surface connectivity increases the area of the upslope 

land contributing to runoff and thus increases flow depth. Large or small scale 

topographic barriers may prevent flows generated at the soil surface from 

directly reaching the receiving surface water body. Several studies have shown 

that large parts of catchments may lack connectivity with the streams across the 

surface (as much as 66-96%; Richards and Brenner, 2004; Frey et al., 2009; 

Doppler et al., 2012). In these areas, surface runoff water will accumulate and 

infiltrate in topographic depressions. Infiltration under such ponded conditions, 

a process termed focused recharge, has been shown to increase leaching of 

pesticides to groundwater (Hancock et al., 2008) and in artificially subsurface 

drained areas the same effect could be expected on losses through drainage. 

Focused recharge is likely to occur commonly in landscapes shaped by the last 

glaciation, where the topography is often hummocky. Experimental studies have 

given contradictory results concerning the effects of slope on surface runoff (e.g. 

Chaplot and Le Bissonnais, 2003; Assouline and Ben-Hur, 2006). Surface runoff 

and associated losses of pesticides to surface water have been reported from 

relatively flat areas (Walton et al., 2000; Otto et al., 2012) that would be typical 

for a significant proportion of the Swedish agricultural landscape.  

Insufficient infiltration capacity often arises from poor soil structure resulting 

from compaction by, for example tractor wheels, or from aggregate breakdown, 

sealing and crusting. Especially silty soils with low clay and organic matter 

content are prone to structural degradation due to low aggregate stability and a 

propensity for soil surface sealing and crusting (Le Bissonnais et al., 1995; 

Gronsten and Borresen, 2009). Both clay content and soil organic matter, in 

addition to precipitated sesquioxides and carbonates, generally increase soil 

structural stability and thereby the degree of aggregation, although there is some 

variation induced by differences in clay mineralogy and the composition of soil 

organic matter (Bronick and Lal, 2005). Although some of the properties of the 

soil that determine the dominant form of runoff are relatively stable (e.g. soil 

texture), considerable temporal variations in soil structural and therefore 

hydraulic properties occur in agricultural fields (Mapa et al., 1986; Moret and 

Arrue, 2007; Alletto and Coquet, 2009; Schwen et al., 2011). Changes in soil 

structure at or close to the soil surface, and thus infiltration rates, surface 

roughness and detention storage, result from the interactions of a number of 

structure forming and degrading processes. Among such are tillage and traffic 

events, faunal and plant root activity, swelling and shrinkage arising from 

wetting and drying cycles as well as freezing and thawing in cold climates 

(Fiener et al., 2011). Soil sealing resulting from the breakdown of unstable soil 

aggregates due to rainfall usually only affects a thin layer at the surface, but can 
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significantly reduce the infiltration capacity (Assouline, 2004). These changes 

may dramatically change the partitioning of rainfall between surface runoff and 

infiltration. Better characterization and identification of the main drivers could 

help identify suitable ways of incorporating such processes in pesticide fate 

models.   

Pesticide losses in surface runoff are largest when heavy rainfall occurs 

within a few days after application, and concentrations usually decrease with 

time after the first few runoff events (Burgoa and Wauchope, 1995). With time, 

pesticides are degraded by soil microbes and leach below the shallow “mixing 

zone” close to the soil surface, whereby they become less available for transport 

in overland flow. Otto et al.  (2012) found that about 99% of the total herbicide 

load transported with surface runoff from a gently sloping field over three 

growing seasons was attributable to two extreme rainfall events with high 

intensities and in one case also long duration. In both cases, these were the first 

rainfall events that occurred after pesticide application. 

Surface runoff has often been assumed to dominate pesticide transport to 

surface waters, or to cause the most critical events in terms of risk to aquatic 

ecosystems (e.g. Capel et al., 2001; Schriever and Liess, 2007). Burgoa and 

Wauchope (1995) reviewed studies on pesticide losses in surface runoff and 

concluded that in most cases total losses are below 0.5% of the total applied 

mass, but that much larger losses (up to 48%) can occur in extreme cases. Capel 

et al. (2001) collated results from similar studies and found 90th percentile losses 

from individual fields ranging between 0.47 and 23% of applied amounts. The 

authors however cautioned that the unrealistically high simulated rainfall rates 

often applied in irrigated plot-scale studies may overestimate losses under 

natural conditions in the field. 

4.4 Drainage 

Artificially improving the internal drainage in soil is a commonly adopted 

agronomic practice in many parts of the world where excess water causes 

problems with soil trafficability, root respiration or surface runoff and erosion. 

Common forms of artificial drainage include subsurface systems such as 

permanently installed pipes or periodically regenerated mole drains and surface 

systems such as drainage ditches and surface inlet wells. Artificial drainage 

systems are installed to reduce problems associated with excessive soil moisture, 

and thus, if functioning properly, can be expected to reduce losses of pesticides 

through surface runoff (Brown et al., 1995a; Kladivko et al., 2001), although 

losses through drainage would increase. The drainage intensity, partly 

determined by the spacing of drains and the efficiency of the system in rapidly 
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conducting collected drainage to the ditch or stream may have a great influence 

on the magnitude of losses (Kladivko et al., 1991; Jones et al., 2000).  

Pesticide leaching to drains in fine-textured soils is dominated by preferential 

transport through soil macropores (cracks, earthworm burrows and root 

channels; Jarvis, 2007) as demonstrated in several field-scale studies (Haria et 

al., 1994; Brown et al., 1995b; Johnson et al., 1996). Brown and van Beinum 

(2009) also found that both the concentration and total losses of pesticides 

through drainage were positively correlated with soil clay content in their review 

of studies from a number of European countries. However, preferential transport 

to drains also occurs in lighter-textured loamy soils (Kladivko et al., 1991; Zehe 

and Fluhler, 2001; Riise et al., 2004). The effects of preferential flow and 

transport occurring in macropores are dependent on the profile-scale 

connectivity of such “highways”. By blowing smoke into drainage pipes, 

Shipitalo and Gibbs (2000) demonstrated that only macropores located right 

above or in close vicinity of the pipes were directly connected with the drainage 

system and were therefore expected to contribute to rapid transport. The strength 

of preferential flow has also been demonstrated to increase when such paths are 

mainly connected in the direction of flow (i.e. downwards in the unsaturated 

zone) and exchange in the horizontal direction (i.e. with the less permeable 

matrix) is limited (Jarvis et al., 2016). Such anisotropic structure is presumably 

much more common in subsoils than in topsoil, but may also occur in more 

shallow soil horizons due to poor structural development or, for example, 

compaction by heavy machinery.  

 Both field studies (e.g. Jones et al., 2000; Brown and van Beinum, 2009) and 

numerical model simulations (Nolan et al., 2008; Lewan et al., 2009) 

demonstrate that concentrations and loads transported in drainage are sensitive 

to the time elapsed between application and the first rainfall event that triggers 

drainage. As for surface runoff, the largest concentrations and the majority of 

the total pesticide transport in drainage generally occur during the first 

significant discharge events following application and then decline with time 

(Kladivko et al., 2001). Longer timespans allow more degradation to occur and 

increase the probability that pesticides move into the soil matrix, thereby 

becoming less available for transport through macropores to subsurface drains. 

Experiments on soil blocks conducted by Shipitalo et al. (1990) demonstrated 

that a small, low-intensity rainfall preceding heavier storms can substantially 

reduce the transport of surface-applied compounds through macropores. 

In their review of European studies of pesticide transport to surface water 

through drainage, Brown and van Beinum (2009) found seasonal losses of 

pesticides ranging from not detectable to above 10% of the applied dose, which 

is similar to results reported in American studies reviewed earlier by Kladivko 
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et al. (2001). Although several studies, predominantly conducted at the plot and 

field scale, have found larger pesticide concentrations and/or loads transported 

in surface runoff than in drainage (e.g. Buttle and Harris, 1991; Haria et al., 

1994; Brown et al., 1995a; Chretien et al., 2017), other studies have 

demonstrated the opposite. Riise et al. (2004) measured similar or slightly larger 

peak concentrations of propiconazole and bentazone in drainage than in surface 

runoff from two field sites in Norway (silty clay loam and silty loam soils), and 

also found that the total amounts transported through drainage were larger. The 

rapid breakthrough of the two pesticides and a bromide tracer applied at the same 

time were attributed to transport through soil macropores. Similar findings were 

reported by Johnson et al. (1996) on a mole-drained cracking clay soil in the UK. 

Flows initiated as surface runoff may also reach recipient surface water bodies 

predominantly as subsurface drainage via surface drain inlets or as focused 

recharge from surface depressions to shallow groundwater, as observed by 

Doppler et al. (2012) in a small Swiss catchment. 

4.5 Saturated subsurface flow (base-flow) 

Between storm events the water flowing through streams is delivered through 

intrusion of shallow groundwater. Although there are studies that have 

documented pesticide occurrence in streams during these base-flow conditions 

(e.g. Squillace et al., 1993; Petersen et al., 2012) as well as in groundwater 

aquifers with potential exchange with streams (Kolpin et al., 2001), few attempts 

at comparing contributions from this pathway to those from others appear to 

have been made. The general view, however, seems to be that contributions from 

base flow and groundwater are mostly small, and that pollution of surface waters 

with pesticide mainly occurs as isolated events associated with increased runoff 

due to heavy rainfall or as the result of point-source pollution. However, 

although stream concentrations of pesticides can be expected to be smaller under 

base-flow conditions (e.g. Petersen et al., 2012), intrusion of contaminated 

groundwater may cause chronic low-dose exposures that can be harmful to 

aquatic ecosystems. Also, as recently suggested by McKnight et al. (2015), 

groundwater may be an important contributor of legacy pesticides, some of 

which may be toxic to aquatic organisms at small concentrations. The latter 

authors found a large number of banned or discontinued compounds in Danish 

streams during base-flow conditions, in some cases at concentrations that were 

larger than during rainfall-induced runoff events.   
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Agronomic practices including the types of crops and cropping systems, tillage 

systems, artificial drainage and the type and amounts of pesticides applied at 

different times affect the risks of losses of pesticides to surface waters. Different 

crops develop at different rates and cover the ground to variable extents at 

different times, which affects the risk of soil sealing and thereby surface runoff 

(Fiener et al., 2011). Temporal variation in the amount of water removed from 

the soil through evapotranspiration furthermore affects soil wetness. Pesticide 

usage also varies greatly between different crops due to differences in sensitivity 

to various insect pests and diseases, relative competitiveness with weeds, the 

balance between pesticide prices and return on produce etc. This results in 

variable spatio-temporal patterns of pesticide applications which determine the 

amount of pesticides that are available for transport during rainfall events. The 

intrinsic properties of a compound, such as its vapour pressure, persistence in 

soil, adsorption to organic carbon and mineral surfaces and water solubility, 

strongly affect its fate and behaviour in the environment. The risk of off-site 

transport of more rapidly degraded and/or more strongly adsorbing compounds 

is generally expected to be smaller than that for more persistent and mobile ones. 

Brown and van Beinum (2009) found correlations between pesticide 

concentrations and total losses in drainage and both dissipation half-life in soil 

(DT50) and the organic carbon partitioning coefficient (Koc). Compound 

properties may also influence susceptibility to transport in fast surface and 

subsurface flow pathways. For example, mobile weakly adsorbing compounds 

may diffuse into aggregates more quickly and to a greater extent than more 

strongly adsorbing ones. Such “protection” in small intra-aggregate pores makes 

more mobile compounds less susceptible to transport with surface runoff 

(Burgoa and Wauchope, 1995) and macropore flow to drainage systems 

(Larsson and Jarvis, 1999). Strongly adsorbing compounds, i.e. those that have 

5 Effects of agronomic practices on 
pesticide transport to surface waters 
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Koc values larger than about 1000, are predominantly transported bound to 

eroded soil particles. Such transport is expected to mainly occur as a result of 

surface runoff due to the greater shear stress and carrying capacity of rapidly 

flowing water. However, colloidal transport in macropores may also contribute 

to losses of strongly adsorbing pesticides through drainage (Petersen et al., 2002; 

Gjettermann et al., 2009; Kjaer et al., 2011).  

Alletto et al. (2010) reviewed the literature on tillage effects on pesticide fate 

in soils. The effects of tillage on losses along both surface and subsurface 

pathways were found to be very sensitive to soil moisture and weather 

conditions. They also concluded that conservation tillage or no-till systems have 

generally proven effective in reducing pesticide losses through surface runoff 

owing to increased surface roughness and greater aggregate stability resulting 

from crop residues left on the soil surface. Losses to drains through macropores 

may however increase when their connectivity is not disrupted by tillage (Larsbo 

et al., 2009). The structure of tilled soils and thus the partitioning of runoff 

between surface and subsurface pathways is very variable in space and time. 

Strudley et al. (2008) concluded that the effects of tillage events on soil structure 

generally lead to an increase in saturated and near-saturated infiltration capacity, 

but that these effects rapidly diminished with time as the soil re-consolidates. In-

field traffic during management operations, such as application of fertilizers and 

pesticides, can cause soil compaction and reduced infiltration rates in wheel-

tracks, creating connected flow paths for surface runoff (Buttle and Harris, 1991; 

Larsbo et al., 2016). 
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Soil structure varies considerably with time in agricultural soils, as a result of 

complex interactions between soil management (e.g. tillage and traffic) and site-

specific environmental factors. The resulting temporal variations in soil 

hydraulic properties significantly affect the soil water balance (e.g. partitioning 

between infiltration and runoff), but are still poorly understood. For example, 

post-tillage decreases in saturated and near-saturated hydraulic conductivities 

have been frequently observed (e.g. Mapa et al., 1986; Cameira et al., 2003; 

Alletto and Coquet, 2009; Schwen et al., 2011), although the underlying changes 

in the properties of the structural pore-space have not been studied. A lack of 

direct measurements of post-tillage changes occurring in the structural pore 

system currently hampers the development, evaluation and parameterization of 

models capable of accounting for temporal variation in soil infiltration and thus 

the risk of generating surface runoff.  

The work presented in Papers I and II aimed at quantifying the post-tillage 

changes occurring in the properties of structural pores and saturated and near-

saturated hydraulic conductivities, as well as to determine the effects of soil 

properties such as soil texture and soil organic carbon (SOC) content on these 

changes. 

In Paper I, the temporal evolution of soil structural pore networks and 

saturated and near-saturated hydraulic conductivities following tillage were 

studied in the field, where the soil is subjected to naturally occurring climatic 

influences and biological processes as well as management operations. The 

investigated field is about 0.42 ha and it is located approximately 15 km south 

of Uppsala. The soil is a clay loam according to the USDA soil classification 

system and has an organic carbon content of 1.3%. Intact soil cores were 

sampled using 100 mm high PVC cylinders with an inner diameter of 68 mm. 

One sample was collected from each of four locations along a transect of the 

6 Temporal variations in soil structure and 
hydraulic properties (Papers I and II) 
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field, approximately 20 m apart, on each of five sampling occasions during the 

growing season 2013: 23rd May, 18th June, 28th June, 11th July and 15th August. 

X-ray tomography with a final resolution of 120 μm was used to image the 

structural pore systems in these soil cores. After scanning, samples were slowly 

pre-wetted from below before saturated hydraulic conductivities (Ks) were 

measured using the constant head method. At the time of sampling, near-

saturated hydraulic conductivities were also measured in the field with tension 

disc infiltrometers at pressure heads of -1 and -6 cm close to where the soil cores 

were sampled. From the third sampling occasion on 28th June and throughout the 

rest of the study, four additional soil cores were collected from within wheel 

tracks that formed following pesticide spraying. Measurements of near-saturated 

hydraulic conductivity were also made in these wheel-tracks. 

Processing and analyses of the tomography images were performed using the 

Fiji distribution (Schindelin et al., 2012) of the open access software ImageJ 

(Abramoff et al., 2004) and the GeoDict software (Math2Market GmbH, 

http://www.geodict.com). The imaged porosity was determined for the whole 

sample, as well as in the uppermost 5 mm of the soil surface and for a small 

cylindrical sub-volume located at the center of the soil core, between 2.5 and 5.0 

cm below the average depth of the soil surface. This smaller subset of the sample 

was assumed to be free from sampling artifacts which might have been present 

close to the cylinder walls and was used to determine temporal changes 

occurring in the properties of the structural pore networks. The entire sample 

volume was analyzed in order to relate structural properties to measured Ks. The 

size (thickness) distribution of structural pores between the three pore size 

classes <0.5 mm, 0.5-3.0 mm and >3.0 mm, as well as measures reflecting their 

shape and connectivity were also calculated. Details of the procedures are 

described in section 2.2.2 in Paper I. Mixed-effects ANOVA was used to 

determine the effects of time and wheel traffic on the measures of porosity and 

pore morphology as well as near-saturated and saturated hydraulic conductivity. 

Correlation analyses using the non-parametric Spearman rank test were also 

performed for spore space measures and hydraulic properties. All statistical 

analyses were performed with the open access software R (R CoreTeam, 2014).  

Between the first sampling occasion one week after harrowing (23rd May) 

and the second sampling around three weeks later (18th June) a number of rainfall 

events occurred with a maximum of 15 mm falling in one day. The imaged 

porosity both at the soil surface and in the small sub-volume decreased between 

these dates (Figure 2), but the difference was only significant for the soil surface 

(p = 0.003).  
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Figure 2. Temporal evolution of imaged porosity in a) the uppermost 5 mm of the soil surface and 

b) the cylindrical sub-volume (2.5-5.0 cm depth) at the center of the sampled soil core following 

harrowing for uncompacted soil and from within wheel tracks. Different letters indicate statistically 

significant differences between means over four replicates (p < 0.05) and the shaded area shows 

the range of measured values. 

The decrease in porosity at 2.5-5.0 cm depth occurred mainly through a loss 

of pores larger than 0.5 mm (Figure 4 in Paper I), although as for total imaged 

porosity at this depth, this difference was not significant (p = 0.069). The loss of 

porosity also appeared to have affected the connectivity of the pores. The 

percolating porosity, which is defined as the porosity constituted by continuous 

pore clusters that connect the top and the bottom of the sample, decreased 

(Figure 5a in Paper I). The change was, however, not significant.  

No significant temporal changes were found in Ks measured on the samples in 

the laboratory, which was characterized by a large spatial variability. In contrast, 

unsaturated hydraulic conductivity at pressure heads of -1 and -6 cm measured 

in the field decreased by around one order of magnitude (p = 0.039 and 0.016, 

respectively; Figure 3). 
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Figure 3. Temporal evolution of a) saturated hydraulic conductivity measured on the imaged soil 

cores in the laboratory and near-saturated hydraulic conductivity measured with tension-

infiltrometers in the field at supply pressures of b) -1 cm and c) -6 cm. Different letters indicate 

statistically significant differences between means over four replicates (p < 0.05) and the shaded 

area shows the range of measured values. 

The most striking and somewhat surprising effect of traffic on soil structure 

and hydraulic properties was that both soil surface porosity (Figure 2a) and near-
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saturated hydraulic conductivity at both pressure heads (Figures 3 b and c) were 

larger in wheel tracks than in uncompacted soil on the sampling occasion 

immediately following the traffic event. The likely explanation for these results 

is that a soil crust formed following the rainfall events between 23rd May and 

18th June, which was broken up by the tractor wheels. This suggests that 

structural changes resulting from natural processes occurring in the field may 

sometimes have a greater effect on infiltration rates at the soil surface than 

changes induced by agricultural practices. However, Larsbo et al. (2016) 

measured runoff of pesticides in the same field in the three consecutive years 

between 2012 and 2014. In this study, surface runoff only occurred during the 

growing season in 2012 and was then only generated in wheel tracks. Inter-

annual variation in precipitation patterns as well as the soil water content at the 

time of traffic events can thus be expected to have a strong influence on the 

effects of both surface sealing and traffic-induced compaction on soil 

infiltration. 

Ks was most strongly correlated (ρ = 0.5, p = 0.035) with a measure of pore 

connectivity – the connectivity probability Γ – which is defined as the likelihood 

that any two imaged pore voxels belong to the same cluster, i.e. that they are 

connected. It is calculated as: 

Γ =
1

𝑛𝑝
2
∑𝑛𝑖

2

𝑁

𝑖=1

 (1.) 

where N is the number of pore clusters in the sample, np is the total pore volume 

in the sample (expressed as the number of voxels), and ni is the volume (in 

voxels) of pore cluster i. This measure was also strongly correlated with total 

imaged porosity of the sample (ρ = 0.85, p <<0.001). Strong correlation between 

total porosity and pore space connectivity have also been found by 

Schäffer et al.  (2007) and Jarvis et al. (2017). Despite the correlation between 

Ks and Γ and the strong correlation between Γ and imaged porosity, no 

correlation was found between total imaged porosity and Ks (Figure 8 in 

Paper I). In contrast, several other studies have found imaged porosity to be a 

good predictor of Ks (Udawatta et al., 2008; Kim et al., 2010; Luo et al., 2010). 

The lack of correlation between Ks and any of the measures reflecting the largest 

pores, as well as the lack of temporal changes in Ks despite the observed changes 

in the volume and size distribution of structural pores, may have resulted from 

experimental artifacts introduced during pre-wetting of the samples at the 

laboratory. Recently harrowed soil can be expected to be structurally unstable 

upon wetting, and it is thus possible that structural changes occurred in the 

samples between X-ray scanning and conductivity measurements. It is also 
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possible that entrapped air blocked the larger passages through the pore system 

(Dohnal et al., 2013; Snehota et al., 2015), thereby obscuring the expected 

relationship between Ks and structural porosity. In addition to the connectivity 

probability Γ, Ks was also moderately correlated with the critical pore diameter 

(ρ = 0.40, p = 0.049), which is defined as the thickness of the largest sphere that 

can fit into a continuous pore connecting the top and bottom of the sample, and 

also with the porosity <0.5 mm (ρ = 0.39, p = 0.005; Figure 8 in Paper I). The 

critical pore diameter was small on all sampling dates (figure 5b in Paper I), 

indicating that the connectivity of pores larger than 0.5 mm were generally 

limited. Since temporal changes were only observed in the two larger pore size 

classes, this may, in addition to the mentioned experimental artifacts, explain the 

lack of significant temporal changes in Ks. 

The changes that occurred in the porosity between 2.5 and 5.0 cm depth 

(Figure 2b) and in the percolating porosity (Figure 5a in Paper I) following the 

first rainfall events were not statistically significant even though they were quite 

large with barely overlapping ranges. Large spatial variation, in combination 

with the small number of replicate samples dictated by the time-consuming 

nature of image processing and analyses, hampered the ability to quantify 

temporal changes in soil structural porosity in the field. 

 Thus, to limit spatial variation, in Paper II, experiments were undertaken in 

the laboratory, where repeated measurements were made on the same samples 

during a sequence of wetting and drying cycles in order to study post-tillage soil 

consolidation and surface sealing. Measurements were made on nine different 

soils with contrasting particle size distribution and soil organic carbon content 

in order to determine the effects of soil properties on post tillage structural 

changes. 

Samples were collected in spring 2015 from the recently harrowed layer of 

nine fine- and medium-textured Swedish soils at five different sites (one of them 

being the site studied in paper I). These soils comprised three clay soils, four 

clay loam soils and two silt loam soils with SOC contents varying between 1.2 

and 4.0%. More information about the sites and soils is presented in Table 1, 

where soils are listed according to clay content. Three replicate samples were 

prepared for each soil by filling PVC cylinders (68 mm inner diameter, 100 mm 

high) sealed at the bottom by polyamide mesh and gently shaking them to make 

the soil settle. These samples were then first slowly pre-wetted through capillary 

rise for five days before equilibration of the water content at a pressure head of 

-30 cm on a sand bed. Samples were scanned by X-ray tomography, as in Paper I, 

both before wetting and after equilibration. They were then subjected to three 

cycles consisting of one irrigation with simulated rainfall at an intensity of 5 mm 

h-1 for 4 hours followed by equilibration at -30 cm on a sand bed for five days  
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Table 1. Properties of the nine soils investigated in Paper II 

Soil Sampling 

location 

Coordinates Soil type 

(USDA) 

Clay 

content 

(%) 

Silt 

content 

(%)* 

Sand 

content 

(%) 

SOC 

 

(%) 

S3 Säby 59°50'24"N; 

17°42'7"E 

Clay 57.3 38.5 

(28.7) 

4.2 2.4 

U3 Ultuna 59°49'33"N; 

17°39'34"E 

Clay 54 26.1 

(21.4) 

19.9 1.5 

U2 Ultuna 59°48'46"N; 

17°39'9"E 

Clay 50.7 37.6 

(27.6) 

11.7 1.2 

S2 Säby 59°50'1"N; 

17°42'8"E 

Silty clay 

loam 

35.1 58.8 

(27.1) 

6.1 3.3 

K Krusenberg 59°43’60”N; 

17°41’21”E 

Clay loam 33.7 32.4 

(19.4) 

33.9 1.4 

S1 Säby 59°50'14"N; 

17°42'35"E 

Silty clay 

loam 

32.2 58.2 

(21.8) 

9.6 2.5 

U1 Ultuna 59°49'24"N; 

17°38'42"E 

Sandy clay 

loam 

23.2 17.5 

(11.7) 

59.3 1.2 

Å Ålbo 59°55'49"N; 

16°18'33"E 

Silt loam 21.5 66.6 

(52.8) 

11.9 1.6 

R Röbäcksdalen 63°48'27"N; 

20°14'21"E 

Silt loam 7.1 74.7 

(25.8) 

18.2 4 

*% fine silt (2-20 μm) given within parenthesis. 

 

and then scanning.Image processing and analyses were performed using ImageJ 

and R. The porosities of the whole sample and the uppermost millimeter closest 

to the soil surface were calculated, as well as the size distribution of pores in 

four classes (<60, 60-600, 600-1200 and >1200) and two measures of the 

connectivity of the imaged pore space (the connectivity probability and the 

percolating fraction). The measured pore size distributions (PSD) were fitted by 

least-squares regression to a power law model with two parameters, the 

maximum pore size, dmax, and an exponent, λ, that reflects the spread or 

distribution of pore sizes: 

 

V𝑓 = (
𝑑

𝑑𝑚𝑎𝑥
)
𝜆

 (2.) 

 

where d is pore diameter (thickness) and Vf is the fraction of the pore volume 

that has a thickness smaller than d. This model is equivalent to Campbell’s 

(1974) equation for the water retention curve.  
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Repeated-measures ANOVA was used to test the statistical significance of 

differences between the means of measured variables at different stages of the 

experiment. Pearson correlation coefficients for linear relationships between 

relative changes in sample and soil surface porosities, soil particle size classes 

and SOC were calculated to investigate the effect of soil properties on the 

magnitude of changes occurring over the course of the experiment.  

Structural changes occurred in all soils in response to the wetting and drying 

cycles that they were exposed to, but the effects on total and surface porosity, 

PSD and connectivity of larger structural pores varied greatly between soils. 

Total porosity decreased in all soils except for the two clay soils U3, where total 

porosity increased by about 3%, and soil U2 where it remained unchanged (see 

Figure 2 in Paper II). In the remaining soils, total porosity decreased by 2-24%, 

with the largest change occurring in the silty soil with low SOC (1.6%; soil Å).  

Large changes in the PSD occurred in the two clay soils U3 and U2 as well 

as in the three clay loams S2, K and S1. In these soils, there were pronounced 

shifts towards a larger proportion of smaller pores. A smaller change in the same 

direction also occurred in one of the silty soils (soil R). The power law model 

fitted to the PSD (Figure 4) generally described the data quite well, with R2 

values ranging from 0.86 to more than 0.99, with a median value of 0.99. The 

exponent λ describing the slope of the curve decreased significantly after the 

initial wetting in the two clay soils U3 and U2 (by 0.077 and 0.098, respectively) 

as well as in the three clay loams S2, K and S1 (by 0.054, 0.091 and 0.077, 

respectively), reflecting a shift in pore thicknesses from larger to smaller pores.  

The largest relative changes in both total porosity and the PSD occurred after 

the initial wetting and equilibration, but the cumulative change in total porosity 

after all three irrigation events were generally of similar magnitude or even 

larger (Figure 3 in Paper II). Decreases in total porosity and especially the 

volumes of larger structural pores also led to decreases in the connectivity of 

imaged porosity in the clay soil U3 and the clay loam soils S2, K and S1 (Figure 

6 in Paper II). Connectivity remained high, however, in all soils, and even 

increased in the silty soil Å and the sandy clay loam soil U1 due to crack 

formation upon drying. 

Large decreases in soil surface porosity occurred in the two silty soils Å and 

R (Figure 7 in Paper II). At the end of the experiment, surface porosity had 

decreased by 75 and 73% to 0.11 and 0.12 cm3 cm-3, respectively, which was 

smaller than in any of the other soils, which had final surface porosities of 0.17-

0.24 cm3 cm-3. In Å, large decreases occurred both during wetting and 

equilibration and during the first irrigation event (relative decreases of 55 and 

45%, respectively), whereas surface porosity only decreased during the first 

irrigation event in R. This difference in temporal dynamics likely reflects the  
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Figure 4. Equation 2 fitted to the pore size distributions of each soil before wetting, after wetting 

and equilibration and after three four hour irrigations. Solid vertical lines indicate the measured 

maximum pore thickness (mean of three replicates) and dashed vertical lines mark the estimated 

maximum pore thickness. 

difference in SOC content between these two silty soils (1.6 and 4.0%, 

respectively), resulting in weaker aggregates in Å and reduced stability during 

wetting (LeBissonnais, 1996; Gronsten and Borresen, 2009). In addition to 

increasing aggregate strength, SOC induces hydrophobicity which reduces the 

wetting rate and thus decreases the risk of slaking, i.e. aggregate disruption due 

to pressurized air entrapped during fast wetting (Bronick and Lal, 2005; Blanco-

Canqui and Benjamin, 2013).  

The changes occurring in soil surface porosity (Δεsurf (w+ir)) were strongly and 

negatively correlated with soil silt content (r = -0.81, R2 = 0.65, p = 0.009; 

Figure 5). This result is in line with the large propensity for soil surface sealing 

and crusting, surface runoff and erosion that is associated with primarily silty  
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Figure 5. Relationships and linear 

correlations between the changes that 

occurred in soil surface porosity over the 

course of the entire experiment 

(Δεsurf (w+ir)), and total porosity after the 

initial wetting and equilibration 

(Δεtotal (w)) and after the three 4 hour 

irrigations (Δεtotal (ir)) and soil texture and 

SOC variables that were found to be 

significant at p <0.1. 

 

soils due to their low structural 

stability (Le Bissonnais et al., 1995; 

Barthes and Roose, 2002; Gronsten 

and Borresen, 2009). Weak 

correlations (at p < 0.1) were found 

between the changes in total 

porosity after the initial wetting 

(Δεtotal (w)) and the ratio of silt to 

SOC content (silt:SOC; ρ = -0.64, 

R2 = 0.41, p = 0.064) and the 

changes in total porosity after 

irrigation (Δεtotal (ir)) and clay 

content (ρ = 0.59, R2 = 0.35, 

p = 0.093). In contrast, the changes 

in λ were very strongly positively 

correlated with its initial value 

(r = 0.82, R2 = 0.90, p <0.001). The 

PSD in the harrowed layer, and in 

particular the volume and size 

distribution of large inter-aggregate 

pores, can be expected to be largely 

determined by the aggregate size 

distribution, which in turn is 

strongly affected by other site-

specific factors like soil 

management history, tillage 

practices and the soil water content 

at the time of tillage (Dexter, 1979). 

Despite weak or lacking correlation 

between soil texture and the 

changes in total porosity and the 

PSD, responses to the experimental 

wetting and drying cycles were 

broadly similar within the broad 

soil texture groups (clay soils, clay 

loam soils and silty soils). 

Measurements performed on a 

larger number of soils would allow 

development of stronger statistical 

relationships between structural 

changes, soil texture and SOC. 
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A number of different processes contribute to post-tillage structural  changes. 

Aggregate coalescence (plastic deformation) due to capillary forces induced by 

drying was likely the dominant process leading to the decreases in total leading 

to the decreases in total porosity and shifts of the PSD towards smaller pore sizes 

that were observed in the three clay loam soils S2, K and S1. A mechanistic 

model describing such changes has been presented by (Ghezzehei and Or, 2000; 

Or and Ghezzehei, 2002). Accounting for swelling (and shrinking) as well, 

which likely occurred in the two clay soils U3 and U2 where the PSD shifted 

towards larger proportions of smaller pores while total porosity increased 

slightly or remained unchanged, would make such models more generally 

applicable. Post-tillage structural evolution could also be modelled as changes 

in total porosity and the PSD, as suggested by (Or et al., 2000). The advantage 

of this simpler approach is that the underlying processes resulting in structural 

changes do not need to be specifically known and modelled. The exponential 

model fitted to the PSD of the nine soils that were studied in Paper II described 

the data rather well, suggesting that it would be feasible to model post-tillage 

changes as changes in the pore size distribution index λ, the maximum pore size 

and total porosity.  
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At the larger spatial scales which are most relevant for risk assessment and 

mitigation, the application of detailed simulation models may not be feasible due 

to limited information on the spatial and temporal variation of important input 

parameters. Under these circumstances simpler, yet robust, methods for 

assessment of the relative risks of pesticide losses to surface waters are an 

attractive option. Siber et al. (2009) and Schneider et al. (2007) have shown that 

soil properties can be expected to be good predictors of catchment hydrology 

and the frequency by which fast runoff processes are triggered. Maps of soil 

texture are generally relatively easily obtained, and they could potentially 

provide farmers and extension officers with a simple “proxy” method for 

identification of vulnerable areas and suitable mitigation measures. 

To assess whether spatial differences in pesticide losses at the catchment 

scale can be related to variation in basic soil properties like texture and organic 

matter a monitoring study was undertaken in a small Swedish agricultural 

catchment, catchment E21, with a large variation in soil types. Three small sub-

catchments were selected within this area that differ with regard to the proportion 

of different soil types (Figure 6). Soil type was determined based on digital soil 

maps of topsoil and subsoil texture and topsoil organic matter content with a 

10x10 m resolution. These maps were developed by combining proximal sensing 

methods with soil sampling (details are given in Section 2.1 in Paper III and in 

Piikki et al., 2015). A simplified version of the FOOTPRINT soil classification 

system (Centofanti et al., 2008; Steffens et al., 2015) was used to assign each 

10x10 m grid cell to one of 22 different soil classes based on topsoil and subsoil 

texture and topsoil organic matter content. 

One of the sub-catchments (118 ha) has a relatively large proportion of soils 

with high clay contents (SCclay). The second sub-catchment (88 ha) has a larger 

7 Spatial variation in pesticide losses to an 
agricultural stream as affected by 
variation in soil properties (Paper III) 
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proportion of coarser-textured sandy soils and no clay soils (SCsand), whereas the 

third (242 ha) comprises a mix of soil types (SCmixed) and thus constitutes an 

intermediate between the two other sub-catchments. Agricultural land 

constitutes between 87 and 92% of the area of each sub-catchment. Data on 

cropping patterns and pesticide usage (see Figure 2 and Table 1 in Paper III) 

were obtained from the Swedish national environmental monitoring program 

data records. Within this program annual interviews are conducted with the 

farmers in the catchment E21. Pesticides are predominantly applied during the 

growing season between April and September. Annual pesticide use is less 

intensive in SCmixed than in SCclay and SCsand even though roughly the same 

number of compounds is applied: on average for the period 2009-2015, 0.48 kg 

active ingredient (a.i.) ha-1 year-1 was applied in SCmixed compared with 1.08 and 

0.99 kg a.i. ha-1 year-1 in SCclay and SCsand, respectively.  

 
Figure 6. The catchment E21 where monitoring of pesticide concentrations in stream water, 

drainage and surface runoff was conducted in three selected sub-catchments SCclay, SCmixed and 

SCsand during May and June in 2013-2015. The map and bar chart show the distributions of soil 

types, determined based on the classification scheme described in Steffens et al. (2015) in each sub-

catchment. The code for soil type comprises two digits for the texture class, the first for topsoil and 

the second for subsoil (1=coarse soils >60% sand and <18% clay, 2=medium soils <35% clay and 

not coarse, and 4=fine textured soils >35% clay) and one letter for the organic matter content class 

(u=low <3%, n=medium 3-5%, and h=high >5%). Texture class 6 and organic matter class t denotes 

organic or peaty soil. 

Sampling of stream water was performed at the outlet of each sub-catchment 

and samples were also collected from drainpipes discharging into the stream and 

from within-field surface runoff at two field sites in SCclay and SCmixed between 

May and June 2013-2015. Stream water and surface runoff were sampled during 
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main runoff events using ‘event-activated’ passive samplers, whereas drains 

were sampled manually one or in some cases two or more days later. Details on 

sampling protocols are presented in Sections 2.2.1 through 2.2.3 in Paper III. All 

samples were analyzed for 99 of the most common polar and semi-polar 

pesticides used in Swedish agriculture using accredited methods described in 

Jansson and Kreuger (2010).  

Clear and consistent differences in pesticide occurrence in the stream were 

found between the three sub-catchments. Both the number of detected 

compounds and the concentrations were generally larger in SCclay than in SCmixed 

(detections made in stream water samples in the three sub-catchments on each 

sampling occasion are summarized in Table 2 in Paper III). Only one or two 

compounds were found in the stream in SCsand on any given sampling occasion, 

and then only in trace concentrations close to the detection limit (0.001-0.003 

μg l-1).  

Larger proportions of applied compounds were detected in the stream in 

SCclay than in SCmixed (Figure 7). Only two of the 39 compounds that had been 

applied in SCsand between 2009 and 2015 were detected in the stream. The spatial 

pattern of pesticide occurrence in streamflow strongly suggests that transport of 

pesticides to the stream in catchment E21 occurs almost exclusively along the 

faster transport pathways that can be expected to be more common in SCclay and 

SCmixed than in SCsand. It also indicates that more uniform infiltration and 

leaching through the topsoil, which is presumably the dominant hydrological 

process in SCsand, allowed more adsorption and degradation to occur, resulting 

in minimal pesticide losses to the stream. The apparent temporal stability of the 

observed spatial pattern suggests that soil texture maps of sufficient spatial 

resolution could be a useful tool for farm- and catchment-scale planning of 

mitigation strategies.  

Figure 7 also indicates that more strongly adsorbing and/or rapidly degrading 

compounds were detected in stream water in SCclay than in SCmixed. This can be 

illustrated by the Groundwater Ubiquity Score (GUS), which is an index 

calculated based on DT50 and Koc that reflects the leaching potential of a 

compound (Gustafson, 1989). Compounds with a GUS value smaller than 1 

(very low leaching potential) were detected more frequently in the former sub-

catchment: 19 detections of 7 different compounds as compared to one 

compound (florasulam, GUS = 0.72), which was detected on three occasions in 

SCmixed. This indicates that transport processes may have been more rapid and 

potentially erosive in SCclay. Fine-textured soils with high clay contents, which 

are more common in SCclay than in SCmixed, are particularly prone to preferential 

flow and transport through soil macropores (Jarvis, 2007). Although particle 

bound transport of strongly adsorbing compounds is generally associated with  
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Figure 7. Compounds applied in SCclay, SCmixed and SCsand during three different time periods: 

the same year as sampling, the year before sampling and between 2009 and the year before 

sampling. Compounds are plotted according to their degradation half-life in soil (DT50) and 

Freundlich organic carbon partitioning coefficient (Kfoc). Pesticide properties are obtained from 

the Pesticide Properties DataBase (PPDB; Lewis et al., 2016). The Groundwater Ubiquity Score 

(GUS; Gustafson, 1989) is used to assess the leaching potential of pesticides. A GUS index value 

smaller than one indicates very low leaching potential. The size of symbols show the area that had 

been treated with each compound during the considered time period. For the period 2009 to two 

years before sampling the average area treated annually is considered. Gold and blue symbols 

indicate whether the compound was detected in the stream or not. 

erosion due to surface runoff, colloidal transport to subsurface drainage systems 

may be another loss pathway for such compounds (Petersen et al., 2002; 

Gjettermann et al., 2009; Kjaer et al., 2011). Colloid-mediated transport has been 
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found to be larger in soils with more ubiquitous macropores (de Jonge et al., 

2000). The differences in pesticide occurrence in the stream between SCsand and 

the two other sub-catchments were also reflected in samples from the drains. The 

only compound that was detected in drain samples from SCsand was metalaxyl, a 

fungicide applied on potatoes. It was found on six out of nine sampling occasions 

in trace amounts (0.001 – 0.002 μg l-1). Between 3 and 18 compounds were 

detected in samples from SCclay and SCmixed on any given sampling occasion. 

The number of detected compounds were somewhat larger in SCclay (on average 

8.4 as compared to 4.7), whereas the largest concentration of a single compound 

was found in SCmixed (20 as compared to 0.51 μg l-1).  

Within-field surface runoff occurred on at least one occasion in one or both 

of the two sub-catchments SCclay and SCmixed during each sampling season. 

Between 4 and 13 compounds with a maximum concentration of 11 μg l-1 were 

found in samples from the field in SCclay and 8-21 compounds with a maximum 

concentration of 19 μg l-1in SCmixed.  

A comparison of concentrations of the same compounds detected in both 

surface runoff and drainage in the same discharge event (Figure 8) shows that 

concentrations were larger in surface runoff. However, since the drains were 

sampled after the peak in discharge and likely also the peak in pesticide 

concentrations, the concentration difference between drainage and surface 

runoff during the main discharge event may have been smaller.  

The extent to which surface runoff occurred and contributed to pesticide 

concentrations in the stream is uncertain. However, connectivity to the stream 

across the soil surface is very limited in this catchment (Villa et al., 2015), which 

has a quite hummocky topography. Furthermore, with the exception of one 

occasion on the 4th May 2015 (Figure 8), a consistent lack of visual signs of 

extensive surface runoff and erosion was noted. On this one occasion when 

within-field surface runoff was observed in a field in SCmixed, surface water 

accumulated in a small depression in the field from where it re-infiltrated. 

Surface flows may, however, have reached the stream through surface drains 

connected to the sub-surface drainage systems (Doppler et al., 2012). Surface 

inlets are common in both SCclay and SCmixed. It does, however, appear as though 

macropore flow to subsurface drainage systems was the main transport pathway 

for pesticides to the stream in the studied catchment. 

On all sampling occasions, a number of compounds were detected in samples 

from the stream in SCclay and SCmixed, as well as from the drains, that had last 

been applied in the year before sampling or even earlier. On any given sampling 

occasion such compounds constituted between 44 and 88% of all compounds 

detected in stream samples. Although some of these detections may have result- 



39 

 

 
Figure 8. Concentrations in drainage and surface runoff/ponding water for concentrations that were 

detected in both sample types following the same discharge event. Black solid line shows 1:1 ratio 

and dashed lines a deviation of one order of magnitude. Photographs of within-field surface runoff 

observed in a field in SCmixed on 4th May 2015. Water accumulated and infiltrated in a small 

depression in the field. 

ed from unreported applications, the large number of such findings suggest that 

– despite the importance of fast transport pathways for pesticide losses in this 

catchment – the transport times from field to stream were often quite long. The 

likely explanation for this is that only the first part of the transport, whereby 

pesticides are rapidly leached below the topsoil through macropores, is fast. 

Slower transport to the drains then occurs, resulting either from a lack of 

macropore connectivity with the drains (Shipitalo and Gibbs, 2000) or 

insufficient duration of rainfall events to sustain macropore flow all the way to 

the pipes. This means that pesticides can be stored along the flow pathway, 

presumably in the less biologically active subsoil, for relatively long time 

periods before they are delivered to the stream either through drainage or 

saturated subsurface flows. Occurrence of compounds in streams with no recent 

application history have also been reported by e.g. McKnight et al. (2015) and 

Petersen et al. (2012). 
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Significant changes occur in the structural pore system of soils (total and surface 

porosities, the PSD and the connectivity of structural pores) following tillage as 

a result of natural rainfall or irrigation. The magnitude and direction of such 

changes vary between soils with different texture and SOC, with similar 

responses to repeated wetting and drying within broad groups of soils (i.e. clay 

soils, clay loam soils and silty soils). The propensity for surface sealing due to 

slaking and raindrop impact is dependent on the silt content of the soil, with soils 

that have high clay and SOC contents being less vulnerable. The largest 

structural changes appear to occur soon after tillage and then gradually decrease 

in magnitude as the soil approaches a more stable fully-consolidated state.  

Incorporation of algorithms that account for post-tillage changes in soil 

structural and hydraulic properties in mechanistic models of water and solute 

transport in soils could be expected to lead to a greatly improved ability of such 

models to predict the frequency and magnitude of pesticide losses through 

surface runoff. This could be done by means of the changes in the total porosity, 

the maximum pore diameter and the slope of the PSD curve. This relatively 

simple approach has the advantage over more mechanistic descriptions in that 

the processes driving the structural changes do not need to be explicitly known 

and modelled. However, whether these changes are best expressed as a function 

of the accumulative amount of rainfall (or kinetic energy) or soil moisture 

variations (wetting and drying cycles) needs further investigation. The shift in 

the PSD is easily translated into changes in the soil water retention curve, which 

can in turn be related to changes in the hydraulic conductivity function, 

providing that the effect on Ks is known. Reliable measurement of Ks on recently 

harrowed structurally unstable soils using standard laboratory procedures like 

the constant head method is difficult, as evidenced by the pronounced structural 

alterations that were observed following capillary wetting in Paper II. The lack 

8 Conclusions, recommendations and 
future research 
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of temporal effects on Ks despite large decreases in surface and total porosity 

that were observed in Paper I were likely the result of experimental artefacts 

introduced during the measurements. Estimation of Ks from basic soil properties 

with existing pedotransfer functions is also fraught with uncertainty (Jarvis et 

al., 2016). X-ray measurements of soil pore structure and pore-scale modelling 

of water fluxes on such tomography images obtained during different stages of 

soil consolidation may offer a resolution to this challenge.  

The results presented in Paper II suggest that continuous or class pedotransfer 

functions based on basic soil properties like texture and SOC could be used to 

parameterize models of post-tillage consolidation and surface sealing. However, 

subsequent changes in the PSD appear to be very sensitive to the structure 

created by tillage, which is also strongly influenced by management factors and 

the soil moisture content at the time of tillage. Measurements would also need 

to be made on a larger number of soils than the nine investigated in this study in 

order to develop more reliable statistical relationships between soil properties 

and post-tillage structural changes.  

Paper III showed that at the catchment scale, losses of pesticides to the stream 

can vary considerably between different areas. These losses appear to be 

associated mostly with fine-textured soils where rapid runoff processes are 

triggered more frequently, primarily macropore flow to subsurface drainage 

systems. In the small catchment that was studied in this thesis, the spatial pattern 

of pesticide occurrence in the stream appeared to be stable over time. The 

characteristics of individual rain storms, although likely influencing the 

magnitude of losses, thus seem to have had a smaller influence on where losses 

occurred than did the intrinsic properties of the sub-catchments. This suggests 

that soil maps, which are readily available, could be used to locate areas that are 

likely to be susceptible to rapid runoff and thereby significant pesticide losses to 

surface water. At a national level, the importance of surface runoff relative to 

losses in drainage remains uncertain. Even so, soil maps should also prove useful 

to identify areas susceptible to surface runoff (i.e. silty soils, low in SOC). It 

should therefore be feasible to provide farmers and extension officers with maps 

delineating areas where the risk of pesticide losses along either of these pathways 

is particularly high, and where mitigation measures like restricted pesticide 

usage or vegetated buffer strips would be the most effective.  

However, the extent to which it is possible to distinguish between high- and 

low risk areas using a simple risk index or proxy method based on soil type 

should be further tested under variable climate and topographical conditions, as 

the effects of these factors may be larger at larger spatial scales (i.e. the regional 

or national scale). The influence of soil properties on runoff may be weaker in 

catchments characterized by more pronounced topography and precipitation 
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patterns with highly variable intensities (Schneider et al., 2007). Although this 

should mainly apply to southern Europe and is presumably much less relevant 

for most of the agricultural area in Sweden, such conditions could still occur 

locally. 
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