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Digital soil mapping (DSM) is currently carried out in 
many parts of the world and at different scales, including 
continental and global scales (e.g. Lagacherie and 
McBratney 2007; Grunwald 2009; Arrouays et al. 2014; 
Hengl et al. 2015; Minasny and McBratney 2016). In 
essence, DSM aims at determining soil variation in relation 
to the landscape by finding measurable proxy variables 
for the soil property of interest and developing quanti-
tative (spatial or non-spatial) models for prediction of 
the target property. Jenny (1941) identified five major 
soil-forming factors and formulated a mechanistic model 
for soil development. These so-called ‘clorpt’ factors are 
climate (cl), organisms (o), relief (r), parent material (p) 
and time (t). McBratney et al. (2003) proposed a generic 
framework for DSM, the so-called ‘scorpan’ factors (soil, 
climate, organisms, relief, parent material, age and 
spatial position), based on Jenny’s approach, but also 
taking spatial dependence into account. This general 
approach has been widely accepted in the area of DSM 
and pedometrics (Grunwald 2009). It is customary for DSM 
products to comprise various estimates of uncertainty, 
but it may be difficult for most potential users to judge 
how the resulting soil property maps can be implemented 
in practice and the scales at which they may be applied 
successfully. The often high spatial resolution gives the 
impression that the maps are appropriate to use directly at 
a rather local scale. For example, in global efforts such as 

the GlobalSoilMap initiative (Arrouays et al. 2014; Hengl et 
al. 2015), predictions are made for six soil layers down to 
2 m depth at 100 m × 100 m or even finer spatial resolu-
tion. However, as noted by Arrouays et al. (2014), the 
resolution of the cell is not a measure of uncertainty, but 
rather a geometric framework for storing the soil informa-
tion. This is a fact that may easily be overlooked or 
misunderstood by potential users. 

Development of global and continental soil databases will 
change the manner in which soil data can be included in, for 
example, the decision-making processes in society at large 
(Miller 2012). One question that may arise when decisions 
on new soil sampling surveys are being taken is whether it 
is really necessary to collect many soil samples if detailed 
maps can be downloaded free from the Internet. Using 
the example of Rwanda, this study assessed the choice 
between employing continental data sets, local samples or 
a combination of the two by comparing analytical data for a 
large number of soil samples from Rwanda and data from 
the newly available AfsoilGrids250 database. 

Soil organic carbon (SOC) content is one of the most 
important indicators of soil conditions (Koch et al. 2013; 
Musinguzi et al. 2013; O´Rourke et al. 2015). Soil pH is also 
a useful indicator property (Koch et al. 2013) and therefore 
the present analysis was limited to these two soil properties. 
Furthermore, SOC stocks are currently a much discussed 
topic in both science and politics across a multitude of 
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scales. O’Rourke et al. (2015) reviewed SOC stock science 
and policy and found that most scientific work is aimed at 
understanding the biophysical processes governing SOC 
content at small scales, from particles to landscapes, 
whereas policy work is predominantly aimed at larger (even 
global) scales. The authors concluded that attempts to 
characterise the greatest risks to SOC stocks require data 
spanning a number of scales and that science and policy 
need to be integrated across multiple scales. 

The overall aim of the present study was to assess 
the possibilities of utilising data from the continental 
AfsoilGrids250 database at two different levels of relevance 
in practical agricultural advisory work in Rwanda, namely 
point locations (representing smallholder farms) and 
administrative sector units. The specific aims of the study 
were to compare data on topsoil pH and SOC content 
obtained from AfsoilGrids250 with data obtained through 
actual soil analyses, and to test the possibility to adjust the 
continental data set using a limited quantity of local data. 

Materials and methods

Geography of Rwanda
Rwanda is located in central Africa (2.0° S, 30.0° E), on 
the eastern side of the western fork of the East African 
Rift Valley, and comprises an area of about 26 000 km2. 
It is one of the most densely populated countries in Africa 
(World Bank 2015). Almost the entire country has an 
altitude above 1 000 m above sea level (asl). A mountain 
range in the west, generally higher than 2 000 m asl, 
stretches from north to south (Figure 1a). The highest 
altitude (4 507 m) is attained in the Virunga volcano 
chain in the north. The eastern part of the country is less 
elevated, with savanna and numerous lakes. The climate is 
temperate to subtropical, with two rainy seasons and two 
dry seasons each year. The ‘long rains’ fall in March–May 
and the ‘short rains’ in September–December (Rwanda 
Meteorological Agency 2015). About 56% of the country 
(an area equivalent to 1.2 Mha) is classified as agricultural 
land according to the Global Land Cover Facility database 
(Shannan et al. 2014) (Figure 1b). Agriculture in Rwanda 
is based mainly on smallholder subsistence agriculture 
(Republic of Rwanda 2012). Crops grown include root 
crops such as potato, sweet potato and cassava; cereals 
such as maize and sorghum; pulses, especially beans; and 
bananas and other vegetables and fruit (National Institute 
of Statistics of Rwanda 2015). Coffee and tea are major 
export crops. In 2015, slightly less than 80% of the working 
population was occupied in agriculture, but agriculture was 
only responsible for one-third of gross domestic product. 
However, up to 70% of the country’s export income is 
generated by the agricultural sector (Rwanda Development 
Board 2015), although a relatively large quantity of agricul-
tural produce is still imported. Most of the agricultural area 
in Rwanda is dominated by Alisols, Acrisols, Cambisols 
and Ferralsols (Jones et al. 2013; IUSS Working Group 
WRB 2014). There are smaller areas of Andosols (the 
Virunga area in the north), while an area south-west of 
Kigali province, shown in Figure 1a (the Granitic Ridge; 
Verdoodt and van Ranst 2003), is dominated by Lixisols 
(Jones et al. 2013).

Soil samples and soil data sets
In 2015, the International Fertilizer Development Center 
(IFDC, East and Southern Africa Division, Nairobi, Kenya), 
in collaboration with the East African soil laboratory Crop 
Nutrition Laboratory Services (CropNuts), Nairobi, Kenya, 
conducted a national soil sampling campaign of agricul-
tural soils in Rwanda, collecting a total of 900 soil samples. 
These soil samples were distributed relatively uniformly 
over the country (Figure 1b). Each sample consisted of 
25–30 subsamples collected across a 0.5–1.0 ha farm 
that was judged to be representative of the area in terms 
of crops, topography and soils. The sampling locations 
(the middle of the subsampled area) were positioned using 
a Trimble Juno GPS (Sunnyvale, CA, USA) (positional 
accuracy ≤5 m). For the purposes of this study the analysis 
was limited to two important topsoil (0–20 cm depth) proper-
ties: pH(H20) and SOC content. The pH was measured with 
the potentiometric method at a soil:water ratio of 1:2. The 
SOC content was determined by the colorimetric method 
(Walkley and Black 1934), after wet oxidation by acidified 
potassium dichromate in the presence of sulphuric acid.

In the analysis, 800 of the total 900 soil samples were 
used as an ‘Exhaustive’ data set (denoted Exh800). This 
represented an average sampling density of one sample 
per 1 500 ha agricultural land. In order to compare how the 
number of samples affected the accuracy of adapted maps, 
the Exh800 data set was also divided randomly into three 
subsets consisting of 400, 200 and 100 samples (Exh400, 
Exh 200 and Exh100). The remaining 100 soil samples of 
the original 900 samples were used as an ‘Independent’ 
data set (Ind100). 

The continental database used was AfsoilGrids250, 
produced by ISRIC – World Soil Information, Wageningen, 
The Netherlands, in collaboration with a number of 
international organisations (The Earth Institute, Columbia 
University; World Agroforestry Centre [ICRAF], Nairobi; 
and International Center for Tropical Agriculture [CIAT]). 
It includes predictions on SOC content and pH(H2O), but 
also on a great number of other soil properties: texture, 
bulk density, cation exchange capacity (CEC), total 
nitrogen, exchangeable acidity, aluminium (Al) content, 
and exchangeable bases (calcium [Ca], potassium [K], 
magnesium [Mg] and sodium [Na]). The data set covers the 
whole African continent at a 250 × 250 m2 spatial resolu-
tion (representing a support area of 6.25 ha) and at up 
to six soil depths (0–5, 5–15, 15–30, 30–60, 60–100 and 
100–200 cm) using three-dimensional regression kriging 
based on random forests (Hengl et al. 2015). The basis 
for the predictions is a set of about 28 000 soil observa-
tions distributed throughout the African continent, combined 
with a set of covariates (one of which is elevation, shown 
for Rwanda in Figure 1a). For the purposes of the present 
study, data for Rwanda from AfsoilGrids250 on pH and 
SOC content of the two uppermost soil layers (a predicted 
value at 0–5 cm depth and a prediction at 5–15 cm depth) 
were combined as a weighted average for the top 15 cm 
of the soil (denoted the Afsis data set) in order to resemble 
the depth of the actual soil samples used for comparison 
(0–20 cm) in the Exh800 and Ind100 data sets described 
above. A schematic overview of the data sets and their use 
is presented in Figure 2.
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AFRICA
Rwanda

1°30′ S

2°30′ S

30°30′ E30° E29°30′ E29° E

2° S
RWANDARWANDA

(a)

(b)

Figure 1: (a) Provinces and topography of Rwanda (from the Shuttle Radar Topography Mission [SRTM] 30 m database [USGS 2015]); 
(b) soil sample data sets (Exhaustive [Exh800] and Independent [Ind100]) and administrative sector units. The classification into agricultural 
or non-agricultural land is based on data from the Global Land Cover Facility (Shannan et al. 2014)
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Mapping and statistics
In order to investigate whether it was possible to apply a 
simple approach to locally adapt the continental data sets of 
Afsis with a number of available soil analyses, we used the 
principles of regionalised variable theory described by, for 
example, Burrough and McDonnell (1989), which assumes 
that a variable Z at location u can be written as:

  Z(u) = m(u) + R(u) + e′	 (1)

where m(u) denotes a general trend, R(u) denotes the 
locally varying deviation from m, i.e. a spatially correlated 
residual variation from the trend, and e′	 is	 a	 non-spatial	
error term. Regression kriging (RK) is one approach that 
tries to deal with the different parts of Equation 1 (e.g. Odeh 
et al. 1995). The first step involves regression between 
Z and one or more covariables. In this case we used the 
Afsis-predicted SOC content or soil pH, respectively, as the 
covariable and corresponding real soil analyses as target 
variable Z. Through this regression equation, m(u) was 
predicted for all 250 × 250 m2 raster cells. At all soil sample 
locations, the residuals (i.e. the differences between the 
regressed values and the analysed values of SOC content 
and pH) were computed. These residuals were then interpo-
lated by ordinary block kriging (OK). Kriging is essentially a 
weighted moving-average technique for estimation whereby 
weights are selected so that the estimation variance is 
minimised (Burrough and McDonnell 1989). This gives the 
most likely value of the attribute variable at a given point or 
area (block). Ordinary block kriging of the residuals in the 

present case produced estimates of R(u) with the same 
spatial coverage and spatial resolution as m(u). As the final 
step in RK, m(u) and R(u) were added together.

Maps of SOC and pH were also produced using OK of 
soil analyses in the Exhaustive data sets (Exh800, Exh400, 
Exh200 and Exh100).  

All maps were projected into the WGS 84/UTM 36S 
projection. Administrative sector boundaries in Rwanda 
were derived from the National Institute of Statistics of 
Rwanda (2015). Averages for the administrative sector 
units were judged as being a suitable working level from an 
advisory service perspective and also a potentially realistic 
unit size for use of the Afsis data. Administrative sectors 
(Imirenge in the Kinyarwanda language) are the third level 
of administrative subdivision in Rwanda (Figure 1b). They 
differ in size, but on average cover about 50 km2. There 
are 392 sectors with areas classified as agricultural land in 
the land-cover database. When the different data sets are 
compared on the sector level their support is harmonised.

Comparisons between observations and predicted values 
were done to validate the different mapping methods. The 
coefficient of determination (r 2) and the mean absolute error 
(MAE), which is a measure of the magnitude of error on 
average, were used:

n
Zz∑ −

=
ˆ

MAE  
(2)

where ẑ is the predicted value, Z is the observation, and n is 
the number of observations. All validations were performed 

Sector averages of RK
(validated using Exh800)

Ind100
Soil samples (n = 100)

Ind100

Afsis
250 × 250 m2 raster

Exh800 and its subsets
Soil samples (n ≤ 800)

Exh800

Exh400

Exh200

Exh100

OK and RK at point
locations

Figure 2: Schematic overview of the Exhaustive (Exh800), Independent (Ind100) and Afsis data sets and their use in this study. A black 
arrow towards a data set indicates that it was used for validation, a grey arrow indicates that it was used for prediction. The spatial 
distribution of the Exh800 and Ind100 data sets is shown in Figure 1b. OK = ordinary kriging, RK = regression kriging
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against observations not included in the prediction models, 
as shown in Figure 2. The Ind100 data set was used for 
validation at point locations of SOC content and soil pH, for 
maps made by RK and OK from Afsis, Exh800, Exh400, 
Exh200 and Exh100. The Exh800 data set was used for 
estimations of ‘ground truth’ sector averages of SOC and 
pH, against which predictions with Afsis were validated, 
individually and by RK with Ind100. 

In agricultural advisory work, data are often further 
simplified into classes, that are generally accepted and 
easily understood, which form the basis for recommenda-
tions to farmers. In this case, we used the classification 
currently employed for SOC content and pH in this region 
by the CropNuts laboratory (Nairobi, Kenya). This classifica-
tion was applied to the sector estimates, and Cohen’s linear 
unweighted Kappa index (Cohen 1960) was used to assess 
the agreement between sector average predictions from 
the Exhaustive data set and predictions made directly from 
the Afsis data set and the combined RK predictions. The 
Kappa	 index	provides	a	coefficient	of	agreement	 (−1	 to	1)	
corrected for chance, where 0 indicates a random distribu-
tion of data and 1 is a perfect match.

Results

Summarising statistics on the point and grid data sets
Summary statistics on SOC content and pH in the Afsis, 
Exh800 and Ind100 data sets are presented in Table 1. 
For Afsis, only data for Rwanda are shown, as well as for 
the 800 pixels of the Afsis data set corresponding to the 
locations of the exhaustive Exh800 ground truth data set 
(denoted Afsis800). The average SOC content in agricul-
tural soils of Rwanda according to Afsis was found to be 
6 g kg−1 higher than that based on the Exh800 soil data 
set (31 compared with 25 g C kg−1). Afsis consists of 
a relatively large number of comparatively high SOC 
values, with almost 28% of the SOC values in Afsis being 
>40 g C kg−1, whereas only 3% of the soil samples in 
Exh800 had such a high SOC content. The overall basic 
statistics on SOC content according to the entire Afsis and 
Afsis800 data sets were very similar, as were the statis-
tics for the Exh800 and Ind100 data sets. To some extent, 
the values for soil pH were the opposite (Table 1). The 

mean and median pH values according to Afsis were lower 
than those based on soil sampling (5.3 in both cases for 
Afsis800, compared with 5.6 and 5.5, respectively, for 
the Exh800 data set). Only 1% of 800 sample locations 
included in Afsis800 had pH higher than 6.0, compared 
with 30% in the Exh800 data set.

These differences were also apparent in the maps 
(Figure 3). The variation in SOC in Afsis was considerable 
(Figure 3a), with visually strong agreement between this 
map and the elevation map shown in Figure 1a. The map 
of SOC content produced by OK of 800 soil observations in 
Figure 3b contains much less variation. The maps appear to 
be most similar for the provinces of Kigali, East and South. 
In the West and North provinces, the SOC content is much 
higher in the Afsis map than in the map of interpolated soil 
observations (Figure 3). For pH, there is a zone with low 
pH values along the mountainous region in the West, South 
and North provinces (cf. Figures 1a, 3c and d). In the map 
in Figure 3d, which shows the interpolated pH values of the 
Exh800 data set, this zone is much narrower and displays 
distinct gradients towards areas with much higher soil pH in 
the east and north.

Ordinary kriging and regression kriging validated at 
point locations
The r 2 and MAE values for maps made through OK (using 
the Exhaustive data set and its subsets: Exh800, Exh400, 
Exh200 and Exh100 and validated by Ind100; Figure 2) 
are shown in Figure 4. Values for maps produced through 
RK are also shown, but in that case the maps from the 
Afsis data set were combined with the soil observations 
in the Exhaustive data set and its subsets. Comparisons 
between the soil analysis data for the independent valida-
tion samples (Ind100) and these maps revealed that Afsis 
maps of both SOC content and pH were poorly correlated 
to the data in the validation data set, bearing in mind the 
slight difference in support between the Afsis data set and 
the individual samples (Figure 4; for SOC content: r 2 = 0.05; 
MAE = 13 g C kg−1; for pH: r 2 = 0.11; MAE = 0.7) (MAE is 
shown above the bars in Figure 4). For SOC, interpolation 
(OK in Figure 4) using as few as 100 samples (Exh100) 
yielded an MAE that was half as great (6.5 g C kg−1). 
However, by applying the RK approach and combining 

Data set N Mean Median p10 p25 p75 p90 SD
SOC_Afsisa 191 929 31 31 19 23 42 52 11.9
SOC_Afsis800b 800 34 31 19 24 41 53 13.7
SOC_Exh800c 800 25 24 16 20 29 35 7.0
SOC_Ind100d 100 25 25 14 18 31 36 7.9
pH_Afsisa 191 929 5.3 5.7 4.9 5.2 6.2 6.5 0.28
pH_Afsisl800b 800 5.3 5.3 4.9 5.1 5.4 5.7 0.29
pH_Exh800c 800 5.6 5.5 4.6 5.0 6.2 6.7 0.85
pH_Ind100d 100 5.6 5.7 4.5 4.8 6.2 6.6 0.91
a Afsis refers to data in the raster cells in the continental database AfsoilGrids250
b Afsis800 is the AfsoilGrids250 raster cells that correspond to the location of the c exhaustive data set of 800 samples (Exh800) from IFDC
d Ind100 is an independent data set of 100 soil samples from IFDC

Table 1: Mean, median, different percentiles and standard deviation (SD) of soil organic carbon (SOC) content (expressed in g C kg–1 
soil) and pH(H2O) in agricultural topsoil in Rwanda according to the AfsoilGrids250 continental soil database and the Exh800 and Ind100 
soil sample sets. The spatial distribution of the latter is shown in Figure 1b. Maps of SOC content and pH according to Afsis are shown in 
Figure 3a and 3c, respectively
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Söderström, Piikki and Cordingley6

those 100 samples with the Afsis data, we achieved an 
even lower MAE (6.1 g C kg−1) and a substantially higher r 2 
(r 2 = 0.16 for RK of 100 samples with Afsis; r 2 = 0.05 for OK 
of 100 samples alone). Using more samples in OK or in RK 
with Afsis data further reduced MAE and elevated r 2, but for 
400 to 800 samples the differences were small. The same 
pattern was obvious for pH (Figure 4b), but in that case RK 
did not improve the outcome compared with interpolating 
the analyses directly. Nevertheless, the Afsis map of pH was 
improved with RK when only 100 samples were used (lower 
MAE and higher r 2; Figure 4b). With 200 local pH analyses 
available, almost as good predictions for the Ind100 valida-
tion points could be made with OK as if 800 samples had 
been used, indicating a stable spatial pattern of soil pH. 

Validation of sector average values obtained by 
regression kriging
Directly estimating SOC content for different administra-
tive sectors using Afsis did not work very well (r 2 = 0.05, 
MAE = 11.3 g C kg−1; Figure 6). The corresponding values 
for pH were r 2 = 0.33 and MAE = 0.4. Using RK based 
on the 100 analyses in the Independent data set and the 
Afsis map reduced the errors and augmented the correla-
tion to the sector estimates made from the Exhaustive 
data set (Figure 6). In that case, the SOC content had 
r 2 = 0.33 and MAE = 4.5 g C kg−1, whereas pH had 
r 2 = 0.64 and MAE = 0.2. Maps of sector averages of SOC 
content and pH based on Afsis and the modification of 
Afsis achieved through RK are shown in Figure 5c–f.

(a) (b)

(c) (d)

Figure 3: Soil organic carbon (SOC) content and pH in the topsoil of agricultural land in Rwanda. (a) SOC content according to Afsis (the 
AfsoilGrids250 data set), (b) SOC content based on ordinary kriging of the full exhaustive data set (Exh800), (c) pH(H2O) according to Afsis 
(the AfsoilGrids250 data set) and (d) pH(H2O) based on ordinary kriging of the full exhaustive data set (Exh800)
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Validation of agronomic class values for sectors
In advisory work, the values of individual soil properties 
are often aggregated into classes to allow formulation of 
clear recommendations. Table 2 shows cross-tables for 
soil pH classes between sector average pH estimated 
from the Exhaustive data set (Exh800) and the Afsis data 
set (Table 2a), as well as the Afsis modified by regression 
kriging (RK100 – regression kriging of Afsis with the Ind100 
data set) (Table 2b). Cohen’s Kappa was 0.16 for the Afsis 
data set, but increased to 0.42 for the RK100 data set. The 
number of sectors classified into similar classes as when 
the Exhaustive data set was used increased from 41% with 
Afsis to 57% with RK100. A similar test of agreement was 
made for SOC content. However, it was not possible to 
estimate the Kappa value for Afsis  because the agreement 
was not better than by chance. The Kappa value for SOC 
content using RK100 was 0.10. 

Discussion

Digital soil mapping has revolutionised the manner in 
which detailed maps of soil properties can be produced. 
By combining soil reference data with detailed data sets 
of auxiliary information in predictive modelling, maps of 
soil properties covering vast areas can be generated. At 
present there are two detailed soil property maps covering 
the African continent (Hengl et al. 2015; Vågen et al. 2016). 
This kind of new full-coverage information is an invaluable 
resource, describing the spatial variation in structural, 
mechanical and chemical properties of the soil across 
continents. It is a goldmine for biophysical modelling and 
land-use planning and forms the basis for a multitude 
of other applications (e.g. Miller 2012). In this study we 
examined the suitability of these continental maps for use 
at local or regional scale, and tested how maps describing 
general patterns can be adapted to a finer scale by use of 
local samples.

Our results confirm the claim by Arrouays et al. (2014) 
that the cell size of a raster map does not reflect its 

uncertainty. Even when used for estimates of average 
statistics for agricultural land in the entire country of 
Rwanda, there was a clear discrepancy between SOC 
content estimated from the AfsoilGrids250 data and SOC 
estimated from the observations in the Exhaustive data set 
(Table 1). The SOC content was clearly over-predicted by 
Afsis in comparison with the observed data. Afsis had a 
rather large number of high SOC content values that were 
not present in the Exhaustive data set. On the other hand, 
country-wide statistics for soil pH were fairly similar for 
the Afsis and the Exhaustive data sets. There was a small 
difference between the soil depths considered (0–20 cm in 
the soil samples; 0–15 cm in the predictions from Afsis). 
Although this may be part of the reason for the observed 
discrepancies, it is probably not the main cause. Successful 
modelling in DSM is largely dependent upon the covariables 
included – they must be adequately related to the soil 
properties under study – but clearly there must be enough 
reference samples for data mining methods to produce 
correctly functioning prediction models. 

At the detailed scale, our case study showed that 
SOC content and soil pH according to the continental 
AfsoilGrids250 database were not well correlated with soil 
observations (Figure 4). Moreover, the spatial pattern in 
maps produced from a large number of soil samples was 
not particularly similar to that in the Afsis maps (Figure 3). 
Soil pH was somewhat better correlated with soil data than 
was SOC content (Figures 3 and 4). 

The intention for AfsoilGrids250 (Hengl et al. 2015) is 
that as additional soil observations become available, the 
models can be recalibrated and the maps can be improved. 
Local users may be tempted to use the maps immedi-
ately, but care must be taken when judging the given 
validation measures, as they are derived based on data 
from the entire continent. However, by taking soil samples 
to first validate and then adapt the map (here through 
RK), we found that it was possible to improve the correla-
tion to real soil observations (Figure 4). In the estimation 
of administrative sector averages, which is obviously a 
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Figure 4: Comparisons (r 2) between the different maps and data sets and the 100 independent validation samples. (a) Soil organic carbon 
content and (b) soil pH(H20). Numbers above the bars are the corresponding mean absolute error. Afsis is the AfsoilGrids250 data set, 
whereas 800, 400, 200 and 100 refer to the number of soil samples in the Exhaustive data set and its subsets. Maps were made by ordinary 
kriging (OK) or regression kriging (RK)
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Figure 5: Soil organic carbon (SOC) content and pH in agricultural land in different administrative sectors of Rwanda. Sector averages of 
SOC content (a) and soil pH (b) were calculated by ordinary kriging of the 800 soil samples in the Exhaustive data set. Afsis sector averages 
of SOC content (c) and soil pH (d) values are according to the AfsoilGrids250 continental database. RK100 sector averages of SOC content 
(e) and soil pH (f) were derived by regression kriging of 100 (RK100) soil analyses (the Ind100 data set) with the Afsis data
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more reasonable application of a continental soil property 
database than comparisons with point locations (although 
in this case every point sample represented 0.5–1.0 ha), 
the improvement obtained by applying RK was even more 
pronounced. The effect of RK is apparent in Figures 5 and 
6. Through the use of only 100 soil analyses for the whole 
of Rwanda, the maps in Figure 5c and d were transformed 
into the maps in Figure 5e and f, which are noticeably more 
similar to the maps produced from the Exhaustive data set 
(Figure 5a and b). The effect is also evident from the valida-
tion statistics displayed in Figure 6.

While it might not be the map producer’s intention for a 
global or continental soil database to be used for acquisition 
of soil properties at a single point location, with the develop-
ment of, for example, smartphone applications that can 
present information for the user’s location, this use of the 
data is inevitable. As concluded by Minasny and McBratney 
(2016), the field of DSM is no longer an area exclusive to 
researchers and has now been taken into operational use. 
This means the involvement of other stakeholders with 
different needs for metadata and ancillary information. 
From a non-experienced user’s perspective, or indeed from 
the perspective of any user who does not penetrate the 
technical reports of the soil databases available, it may be 
reasonable to believe that information derived by renowned 
universities and research organisations can be trusted and 
applied locally.  

This is why future digital soil mappers will have to provide 
the information needed for any user to easily assess the 
map product. Grunwald (2009) reported that more than 
one-third of 90 DSM studies included in that review were 
not validated at all. Although not common, there are some 
good examples of how to communicate uncertainty. For 
example, Hengl (2003) overlaid the map with a varyingly 
transparent white layer, where the degree of transparency 
was inversely proportional to the uncertainty of the map, 

and Odgers et al. (2015) presented maps of the uncertain-
ties. SoilGrids1km, the predecessor of AfsoilGrids250m, 
was provided together with percentile maps of the predic-
tions, as a means to communicate the uncertainty (Hengl 
et al. 2014). However, these reported uncertainties 
also depend on the manner in which the validations are 
performed. 

Defourny et al. (2012) reported that in many global 
land-cover applications, the quality and accuracy of the 
land-cover maps used are not considered. Instead, it is up to 
the potential user to assess whether the map is appropriate 
for the application. For presumptive users of digital soil maps, 
we present some basic guidelines for map assessment in 
Box 1. We argue that in the current situation with multiple 
sources of global/continental soil information, it is important 
to provide users with adequate information so that map 
products can be assessed for each specific application. 

Conclusions

Continental data sets produced through DSM should not be 
applied for regional or local estimates without any reference 
samples with which to compare. High spatial resolution 
in a continental data set can be misleading; it is normally 
only the framework upon which the predictions are made, 
rather than the resolution of potential applications. In order 
to promote accurate use (or rather prevent inadvertent 
misuse) of published soil data, the DSM community must 
help users assess whether the map data are appropriate 
for their intended use. If a large-extent map is found to 
be too coarse for a specific application (e.g. regional 
fertiliser recommendations), it may be possible to improve 
it by, for example, regression kriging, if a number of local 
soil observations are available. In this study, the MAE for 
sector averages of SOC in Rwanda were reduced from 

Table 2: Cross-tables showing the agreement between pH classes 
of sectors created from 800 soil samples in the Exhaustive data set 
(Exh800) and maps produced by (a) Afsis and (b) regression kriging 
of Afsis data with the 100 samples in the Ind100 data set (RK100)

(a) pH sector
average (Exh800)

Sector average (Afsis)
1 2 3 4 5

1 (≤5.0) 17 41
2 (5.0–5.5) 13 108 4
3 (5.5–6.0) 3 71 35 1
4 (6.0–7.0)  2 58 38 1
5 (>7.0)
Cohen’s Kappa: 0.16
Similarly classified sectors: 41% (161/392)

(b) pH sector
average (Exh800)

Sector average (RK100)
1 2 3 4  5

1 (≤5.0) 46 12  
2 (5.0–5.5) 27 83 15  
3 (5.5–6.0) 2 33 54 21
4 (6.0–7.0)   8 50 41
5 (>7.0)
Cohen’s Kappa: 0.42
Similarly classified sectors: 57% (224/392)
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Figure 6: Coefficient of determination (r 2) and mean absolute error 
(the numbers shown above the bars) of SOC content (g C kg−1) and 
pH estimated for different administrative sectors of Rwanda with 
Afsis data and RK100, i.e. Afsis recalculated with regression kriging 
(RK) using 100 soil analyses in the Ind100 data set. Comparisons 
were made with sector averages estimated by ordinary kriging of 
the Exhaustive data set (800 soil analyses). Maps are shown in 
Figure 5a–f
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11.3 g C kg−1 if only the continental data set was used, to 
4.5 g C kg−1 when only 100 national soil observations were 
combined with the continental data set by regression kriging 
(corresponding figures for pH: 0.4 which were reduced 
to 0.2). We recommend further studies on approaches for 
local improvement of global and continental data sets and 
call for innovative ideas on how map uncertainties can be 
made accessible and understandable to general users.
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Learn more! References to in-depth reading are given in square brackets above: 1 = Arrourays et al. (2014); 2 = Hengl (2006); 
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