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Tree retention at forest harvesting aims at promoting biodiversity by increasing 

structural diversity in managed forests. For this thesis, I have investigated the influence 

of tree retention on delivery of ecosystem services (wood production and carbon 

storage) and dead wood (as a proxy for biodiversity). Furthermore, habitat requirements 

of lichens dependent on dead wood were investigated. The investigation was conducted 

in 15 Scots pine forest stands with five tree retention levels, in which four categories of 

trees were retained at similar proportions: green living trees, girdled trees, high-cut 

stumps and cut trees left on the ground. Three control stands were left untouched. This 

thesis consists of three studies. In the first, we investigated how tree retention 

influences the amount and diversity of dead wood, logging productivity during harvest 

and both present and future income loss for the landowner (given as discounted 

opportunity costs). In the second, we simulated outputs of merchantable wood, dead 

wood and carbon stock during a 100-year forest rotation period at stand and landscape 

scales. At landscape scale, we simulated dead wood volumes and carbon stock under 

the constraint that landscape size and merchantable wood production were kept 

constant among scenarios, while retention level and area set aside for conservation 

varied. In the third study, we investigated how dead wood types (low stumps, snags, 

logs), wood hardness, wood age and occurrence of fire scars influence the occurrence 

of dead wood dependent lichens. We found that logging productivity and net incomes 

from harvest decreased with increasing retention levels, but also that volumes and 

diversity of dead wood and proportion of undamaged old dead wood increased. 

Furthermore, at the stand scale, increased retention level increased total carbon storage 

above and below ground. At the landscape scale, differences in carbon stock and dead 

wood input were generally small between the scenarios with varying retention levels 

and set-aside forest area. The lichen species composition differed significantly among 

the investigated substrates. Many species were highly associated with old and hard 

wood.  Such wood is formed in fire-affected pine forests, but is rare in managed forest. 

The findings of this thesis could be used to guide future forest management and 

conservation. 

Keywords: carbon; dead wood; habitat requirement; lichen; pine; species richness; tree 

growth; tree mortality 
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Impact of tree retention on wood production, biodiversity 
conservation and carbon stock changes in boreal pine forest 

Abstract 



 

 

Syftet med att lämna levande träd och att skapa död ved vid avverkning är gynna 

biologisk mångfald genom att öka den strukturella variationen i brukad skog. I den här 

avhandlingen har jag undersökt hur naturhänsyn vid avverkning påverkar 

ekosystemtjänster (lagring av kol och virkesproduktion) och död ved (som är en 

indikator på biologisk mångfald). Studien genomfördes i 15 tallbestånd med olika 

hänsynsnivåer och med fyra kategorier av träd lämnade i lika stora proportioner: 

levande träd, ringbarkade träd, högstubbar (dvs. träd kapade ca. 3 meter över marken) 

och fällda träd som lämnades på marken. Tre kontrollbestånd lämnades orörda. Denna 

avhandling består av tre studier. I den första undersökte vi hur naturhänsynen 

påverkade mängden och diversiteten av död ved, produktiviteten under avverkning 

samt intäktsförluster för markägaren nu och i framtiden. I den andra studien simulerade 

vi virkesproduktion (massaved och sågtimmer), död ved och kolförråd under en 

hundraårig omloppstid på både bestånds- och landskapsnivå. På landskapsnivå 

simulerade vi volymen av död ved och kolförråd där landskapets areal och volym 

producerat virke konstanta i alla scenarier, medan hänsynsnivå och areal skog avsatt för 

fri utveckling varierade. I den tredje studien undersökte vi hur typen av död ved 

(stubbar, torrakor, lågor), vedens hårdhet och ålder, samt eventuella spår av brand 

(vedytan förkolnad) påverkar förekomst av lavar. Vi fann att produktiviteten under 

avverkningen minskade och intäktsförlusten ökade med stigande hänsynsnivåer men 

samtidigt ökade volymen och diversiteten av död ved samt andelen oskadad äldre död 

ved. På beståndsnivå ökade kolförrådet (totalt ovan och under mark) med ökad 

hänsynsnivå vid avverkningen. På landskapsnivå, när virkesproduktion hölls konstant 

och andelen avsatt skog och hänsynsnivå varierades så var skillnaderna i kolförråd och 

dödvedsproduktion små mellan de olika scenarierna. Artsammansättningen bland lavar 

skilde sig signifikant mellan de undersökta substraten. Många arter var starkt 

associerade med gammal och hård ved som bildas i tallskogar som utsatts för brand, 

men som sällan bildas i dagens brukade skogar. Resultaten som presenteras i denna 

avhandling kan användas för att vägleda framtida skogsskötsel och naturvård. 

Nyckelord: artrikedom; död ved; habitatkrav; kol; lav; tall; trädtillväxt  
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The 4th of June 1732 Carl Linnaeus, visiting the parish forest of the 

Swedish village of Lycksele, stated: “The large forests are desolate and 

wasteful, because no-one needs the timber, which falls down and decays” 

(Agnoletti & Anderson, 2000). These types of forests are now rare in 

Swedish forest landscapes, which are instead dominated by even-aged 

stands used for wood production. As a consequence of the fragmentation of 

the old growth forests, many species dependent on natural forest attributes, 

such as old dead wood, have declined (Kouki et al., 2001). If forest 

management does not implement measures to promote natural dynamics, 

biodiversity will inevitably continue to decline (Kuuluvainen, 2009). This 

multidisciplinary thesis aims to fill some of the knowledge gaps relating to 

the sustainable management of boreal pine forest, focusing on the 

promotion of biodiversity by increasing structural diversity. 

1.1 Natural condition in boreal forest  

 

The boreal forest is one of the largest biomes on the planet, constituting 

22% of the global forested area (Keenan et al., 2015). It is characterized by 

a mosaic of coniferous and deciduous forests, dominated by cold-tolerant 

trees (Brandt, 2009).  

Unmanaged boreal forests are much affected by natural disturbances, such 

as windstorms, pest outbreaks and fire (Esseen et al., 1997), the extent of 

which ranges from minor events affecting individual trees to stand 

replacement (Angelstam & Kuuluvainen, 2004). Fire is considered to be the 

1 Introduction 
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most important natural disturbance in boreal forest (Johnson, 1992). Fire 

intensity varies greatly, from stand-replacing crown fires to slowly burning 

ground fires with low tree mortality. This, together with fire frequency, 

largely determined the structure of the primeval forest landscape with 

regard to the successional stages, age distribution and size of the forest 

stands (Niklasson & Granström, 2000). Boreal forests are often considered 

to be slow systems with long-lasting vegetational successions, which 

disturbances can quickly alter, thus promoting species adapted to early-

successional stages (Kuuluvainen, 2009). 

Fire intervals of 30-40 years have been documented in Scandinavian pine 

stands over the last few centuries, but during the last 100 years fire 

intervals have increased greatly due to the implementation of measures for 

fire suppression (Engelmark et al., 1994; Linder et al., 1997; Niklasson & 

Granström, 2000; Zackrisson, 1977, 1980).  Fire frequency nevertheless 

differs between forest types. The fire frequency of boreal pine forests is 

higher than that of boreal spruce forests (Larsen, 1997), mainly because 

pines typically grow on drier sites than spruce (Carleton & Maycock, 

1978). Pine is more resistant to fire than spruce and birch, due to a thicker 

bark and a deep root system (Gromtsev, 2002). Scots pine also tends to 

increase production of resin at fire scars, making it more resistant to 

pathogens and thus more long-lived (Engelmark, 1999). After a 

disturbance, the greater light availability initially promotes species 

favoured by sun-exposed conditions. Subsequently, forest-interior species 

may return. The stand dynamics post-disturbance are related to the so-

called external and internal “ecological memory” (Bengtsson et al., 2003). 

The external memory is the species pool in the surrounding area, which 

affects the recolonization of the disturbed site, while the internal memory is 

the source of surviving species and structural legacies remaining from the 

forest before the disturbance (Lundberg & Moberg, 2003).  
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1.2 Forest management 

 

In boreal forests, forest management for timber production is the 

predominant anthropogenic disturbance regime. Forestry has typically 

aimed at minimizing the effect of natural disturbances, since these cause 

trees to die that otherwise could have been harvested. However, more 

recently attempts have been made to emulate the natural disturbance 

regime, for example by retaining some living trees and dead wood on the 

clear-cuts (Franklin et al. 1997; Koivula et al. 2014). 

Before the late 19th century, the prevailing cutting method in European 

forests was selective cutting (Lowenthal, 1956). With increasing timber 

demand, clearfelling was introduced, being a more efficient management 

method (Lundmark et al., 2013). Today, in northern Europe, the most 

common management practice is based on the establishment of even-aged 

and homogeneous stands with a rotation period of ca. 100 years. After 

clearfelling, a new even-aged stand is regenerated by soil scarification and 

planting. Stands are thinned and sometimes fertilized. In Sweden today, 

most of the seedlings used are containerized and genetically enhanced 

through selection, with the main aim of increasing growth rate, although 

genetic variation, vitality, wood quality, resistance to damage, and 

adaptability to climate change are also considered (Frumerie, 1997; The 

Royal Swedish Academy of Agriculture and Forestry, 2015). Since 1923, 

when the first forest inventory in Sweden was conducted, the total standing 

volume has increased by more than 80% (3.1 billion m3), of which 39% 

presently consists of Scots pine, 42% Norway spruce and 12% birch 

(Swedish Forest Agency, 2014). On productive forest land, the average 

annual growth is 5.4 m3 per hectare. Total annual growth is 120 million m3, 

while annual felling is around 80 million m3 (Swedish Forest Agency, 

2014). 

Forest management is often supported by planning tools aimed at 

producing forecasts associated to alternative forest management strategies. 

Due to the increased demand for wood and other products and services, and 

to the concern about global changes and nature conservation, forest models 

able to simultaneously predict the response of different variables (for 

example wood production and biodiversity conservation) to specific 

treatments, are largely required (Kimmins et al., 1999). Some models 

predicting habitat availability (Felton et al., 2017a) and ecosystem services 

provisioning (Triviño et al., 2015) are already available. 
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1.3 Adaptation of forestry to natural conditions 

                                                                                                                    

Forests frequently affected by large-scale natural disturbances are often 

characterized by an uneven age distribution within the stands, and large 

amounts of dead wood (Kuuluvainen & Aakala, 2011). By contrast, 

forestry under clearfelling management generates even-aged stands, and 

small amounts of dead wood (Bergeron et al., 1999). During the past two 

decades, interest in developing forest management strategies aimed at 

emulating the natural disturbance dynamics has increased (Bergeron et al., 

2004). The type, frequency, spatial extent, and severity of natural 

disturbances can be emulated. This is done by controlled burning, creation 

of dead wood, and tree retention. 

1.3.1 Tree retention 

 

The primary aim of tree retention is to promote biodiversity by increasing 

structural diversity on the clear-cuts (Lindenmayer & Franklin, 2003) and 

in the future forest stands (Kruys et al., 2013). This is done by retaining 

living trees (green tree retention), either spatially aggregated or dispersed, 

and retaining and creating dead wood (Gustafsson et al., 2010). Other aims 

are the maintenance of forest productivity, nitrogen retention (Gustafsson et 

al., 2010), improving aesthetical value (Tönnes et al., 2004) and protecting 

the integrity of aquatic systems by retaining riparian buffer zones (Clinton, 

2011).   

Retention increases the amount of dead wood in the forest in three principal 

ways. First, dead wood may be artificially created at forest cut. Second, the 

input of coarse dead wood from tree mortality becomes higher since living 

retained trees die (Lõhmus et al., 2013). Third, the destruction of old dead 

wood by machinery during logging is reduced (Hautala et al., 2004). 

Retention incurs income losses for landowners, due to reduction both of 

harvested timber volumes and of the land area available for future forest 

production (LeDoux & Whitman, 2006; Ranius et al., 2005). Jonsson et al. 

(2010) found that in Sweden it is more expensive to retain Scots pine trees 

than other boreal tree species due to their high timber value. The land area 

available for future forest production decreases due to the fact that retained 

trees hamper the growth of the new growing stand (Elfving & Jakobsson 

2006; Jakobsson & Elfving 2004; Zenner et al., 1998). In addition, 

retention increases harvesting time per unit volume, due to reduced number 
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of harvested trees per processing patch (Eliasson et al., 1999) and increased 

driving distances within stands because of obstruction by retained trees. 

However, the magnitude of such productivity losses relative to levels of 

tree retention and dead wood creation has not been evaluated. Hence one of 

the aims of this thesis is to assess economic costs and revenues associated 

with different tree retention levels, using field surveys. 

1.3.2 Land sharing/land sparing 

 

Land sharing and land sparing represent two alternative approaches to 

combine production with conservation. Land sparing means that production 

and conservation are separated into different stand types, which is 

consistent with traditional conservation in forests, where areas are set aside 

as reserves. Land sharing means reduced management intensity or setting 

aside some smaller unmanaged areas within the production area (Kremen, 

2015). Thus, tree retention can be considered as a kind of land sharing. The 

relative advantages and disadvantages of land sharing versus land sparing 

have mostly been discussed in relation to agricultural landscapes (e.g. 

Fischer et al., 2014; Phalan et al., 2011); but some consideration has been 

given to forests (see Edwards et al., 2014). In forest landscapes, a 

combination of both strategies is usually applied. In Sweden and Finland, 

land sharing plays a comparatively large role (Box 1). This has however 

changed over time; protection of forests started earlier than the introduction 

of retention forestry (Simonsson et al., 2015). One reason for this is that 

there are few large forest areas of high conservation quality to protect 

outside the existing reserves. This approach has been criticized, because if 

conservation efforts are evenly distributed over all forest land, there is a 

risk that for sensitive species there will be insufficient contiguous habitat 

anywhere. With a greater emphasis on land sparing, it is more likely that 

there will be a large enough habitat at least somewhere (Hanski, 2000). 

Thus, increased land sparing may promote the survival of threatened 

species (Ranius & Roberge, 2011).  
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Box 1. Biodiversity conservation in Swedish forest lands         

In Sweden, forest owners are responsible for biodiversity conservation 

efforts at small and medium scale, while the state is responsible for large-

scale efforts, such as establishing reserves. Currently, 3.6% of forest land is 

protected as national parks or nature reserves (Swedish Forestry Agency, 

2014). Due to their spatially fragmented occurrence and proportionally 

small area, reserves alone are not sufficient to support forest biodiversity 

(Lindenmayer & Franklin, 2002). To complement national parks and nature 

reserves, habitat protection areas (Svedlund & Löfgren, 2003) and 

woodland key-habitats have also been established. Land owners also 

voluntarily set aside land (4.7% of the productive forest land; Swedish 

Forest Agency, 2014) as part of certification agreements. Sweden was one 

of the first countries where certification agreements were introduced 

(Simonsson et al., 2015). Another way to conserve biodiversity is 

represented by Natura 2000 sites, which commonly consist of areas 

dedicated to the conservation of sites important for particular species (for 

example migratory birds). Furthermore, green tree retention is applied at 

almost all clear-cuts, as a result of environmental conservation policies, 

who find their foundation in the Swedish Forestry Act guidelines (SFS, 

1974; 1979; 1993) (Simonsson et al., 2015). Nowadays, according to the 

national Forest Stewardship Council (FSC) standard, the minimum number 

of living trees to be retained per hectare is ten (FSC, 2010). Moreover, logs 

and snags should be left and about three living trees per hectare should be 

high-cut or girdled.                                              

1.4 Study system 
 

This thesis is based on a field experiment that took place in 2013, in a 

boreal pine-dominated forest in Sweden.  The main aim has been to study 

the effects of varying tree retention level on biodiversity, wood production 

and climate change mitigation through carbon storage. Further information 

about the experiment can be found in chapter 3.1. 
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1.4.1 Scots pine 

 

The experiment was conducted in Scots pine forests. Scots pine (Pinus 

sylvestris L.) is, together with Norway spruce (Picea abies (L.), H. Karst), 

the predominant tree species in European boreal forests (Sundseth, 2006). 

In boreal pine forest, many species of lichens, fungi and insects are 

associated with burnt wood, or are favoured by the high volumes and 

diversity of sun-exposed dead and dying trees on burned areas (Esseen et 

al., 1997). Many such species are considered rare or threatened (Tikkanen 

et al., 2006). Cohort dynamics, defined as scattered surviving trees in new 

generation stands after fire, are naturally much more frequent in pine 

forests than in spruce forests (Kuuluvainen & Aakala, 2011). In today’s 

protected forests, fires are rare, and therefore even set-aside forests tend to 

diverge from the natural state (Hedwall & Mikusiński, 2015). However, 

through retention forestry management and prescribed burning (i.e. land 

sharing instead of land sparing), natural disturbances may be better 

emulated.  

Figure 1. Prescribed burning experiment. Effaråsen, Dalarna, Sweden. Photo: Line B. 

Djupström. 
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1.4.2 Tree retention studies  

 

Tree retention has been studied especially in Northern Europe and Northern 

America, but sometimes also in the Southern hemisphere (Gustafsson et al., 

2012). The effect of tree retention on biodiversity has mostly been studied 

at the stand level and over a short time scale (see Fedrowitz et al., 2014; 

Gustafsson et al., 2010, 2016; Rosenvald & Lõhmus, 2008).  

In Fennoscandia, Norway spruce and aspen have been the most investigated 

species, while there have been few studies on Scots pine. For example, in a 

review by Gustafsson et al. (2016), comparing retained dead wood on clear-

cuts with dead wood inside closed forests, not a single study among the 26 

reviewed papers on biodiversity had investigated pine forests. Independent 

on tree species, few analyses have been made on the effect of retention 

forestry on carbon fluxes, and these have mainly focused on short-term 

effects. Nunery & Keeton (2010) found that post-harvest retention 

positively affects carbon sequestration. Klockow et al. (2013) investigated 

the impact of slash and live-tree retention on biomass and nutrient cycles, 

and found that slash retention was the primary factor influencing the carbon 

stock. 

Since the 1990s, more than 40 experiments have been set up in North 

America and Europe to study how cutting can mimic natural disturbances 

e.g. by tree retention and prescribed burning (see Koivula et. al 2014). For 

instance, in the US, the DEMO (Demonstration of Ecosystem Management 

Options) experiment has assessed the effects of varying level of tree 

retention on flora, fauna, hydrology and social perception (Aubry et al., 

2009). Also in the EMEND (Ecosystem Management Emulating Natural 

Disturbance) experiment in Canada (Work et al., 2004), and in two Finnish 

projects, FIRE (Hämäläinen et al., 2014) and DISTDYN (Forest 

management inspired by natural disturbance dynamics) (Koivula et al., 

2014), the effects of tree retention and fire on flora and fauna have been 

studied.  
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1.5 Response variables 

 

Forests provide a wide range of functions. Those of benefit to human 

wellbeing are defined as ecosystem services. These can be divided in three 

main categories: provisioning services, such as timber; regulating services, 

such as global climate regulation; and cultural services, such as recreation 

(Carpenter et al., 2009). Some of these ecosystem services are relatively 

easy to measure and, like timber, often have a market price. On the 

contrary, biodiversity is more difficult both to measure and to price. 

(Stenger et al., 2009). 

In this thesis, I have studied a few key measures that are important 

indicators of biodiversity conservation, climate regulation and provisioning 

of merchantable wood. These are all fundamental aspects of 

multifunctional forests. The aim of multifunctional forest management is to 

achieve a balanced production of different goods and services (Gustafsson 

et al., 2012). The response variables used in this thesis are described below. 

1.5.1 Dead wood 

 

In forests, dead wood is a habitat for many species groups, such as lichens, 

bryophytes, fungi and insects (Harmon et al., 1986). In boreal forest, about 

25% of species are dependent on dead wood (Siitonen, 2001), and as result 

of the decrease in dead wood amounts, many dead wood dependent 

organisms are now threatened. Dead wood dependent species are not only 

dependent on the quantity but also the quality of dead wood (Lonsdale et 

al., 2008; Similä et al., 2003; Svensson et al., 2016). Created wood may 

have different characteristics in comparison to naturally occurring dead 

wood, but is nevertheless utilized by large numbers of species. For 

instance, artificially created high stumps (Lindhe et al., 2005) and burnt 

girdled trees (Toivanen & Kotiaho, 2010) have been found to harbour a 

species-rich fauna of beetles, and stumps are used by many dead wood 

dependent lichens (Svensson et al., 2016). 
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In old-growth boreal forests, dead wood is mainly created by self-thinning, 

pathogens and disturbances such as storms, fire, and insect outbreaks 

(Esseen et al., 1997; Niklasson & Granström, 2000; Stokland et al., 2012). 

Figure 2. Dead wood rich Scots pine dominated forest. Suobbatjaure nature reserve, 

Sweden. Photo: Francesca Santaniello. 
 

By contrast, in managed forests trees are typically harvested before natural 

processes creating larger quantities of dead wood take effect. Furthermore, 

since in today’s managed forest landscapes fire is usually suppressed and 

salvage logging carried out after large disturbances, the accumulation of 

dead wood is restricted. As a result, the volume of dead wood with a 

diameter > 10 cm in managed boreal forests has been estimated to be only 

2–10% of the amount in natural forests (Siitonen, 2001). However, during 

the last ten years, due to tree retention (Kruys et al., 2013) the amount of 

dead wood in Swedish production forests has doubled, from 4 to 8 m3 ha-1 

(Skogsdata, 2017). In pine-dominated old-growth forests in Fennoscandia, 

the volumes of CWD vary from 60 to 120 m3 ha-1 in the middle and 

southern zones to 20 m3 ha-1 in the northern zone (Siitonen, 2001).  

1.5.2 Carbon 

 

Since the industrial revolution, the emission of CO2 into the atmosphere 

caused by the combustion of fossil fuels and changes in land cover 

(Houghton et al., 2012) has increased (Canadell et al., 2007). This increase 

in CO2 contributes to global warming (Barnola et al., 1991). 
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Forests play a key role in the global carbon cycle (Pan et al., 2011), both by 

sequestrating CO2 from the atmosphere through photosynthesis and by 

releasing CO2 through decay of dead wood and soil respiration (Hadden, 

2017). The carbon pool of a forest depends on different factors, such as 

climatic conditions, stand age (Hyvönen et al., 2007), and forest 

management (Johnson, 1992; Schlamadinger & Marland, 1996). 

Forest management (growth rate, rotation period, and amount of wood 

extracted) affects how much carbon is stored in soil and vegetation and 

how much is released into the atmosphere (Brown et al., 1996). After 

clearfelling and regeneration, the soil carbon pool decreases for a number 

of years until the new stand is established. Then both stand and soil carbon 

increases (Schulze et al., 2000). Management practices that enhance tree 

growth, like damage control, genetic improvement, rotations optimized for 

tree growth, and fertilization have a positive impact on carbon 

sequestration.  

To reduce the emissions of CO2 and other greenhouse gases to the 

atmosphere, three main forestry-related strategies are often considered. 

First, carbon can be stored in soil and vegetation (Lal, 2005). Second, 

carbon can be stored in long-lasting wood products, such as wooden houses 

(Pingoud et al., 2001). Finally, fossil-based energy and products can be 

replaced with bioenergy and bio-based products, such as wood (Marland & 

Schlamadinger, 1997). While the efficiency of the first two strategies is 

recognized, the efficiency of the latter is still under debate, because its 

magnitude depends on the use of the harvested wood (Lundmark et al., 

2014), and also because to substitute fossil fuels more bioenergy needs to 

be produced over the same land area (i.e. under spatial restrictions). 

1.5.3 Stand growth and merchantable wood production  

 

A forest stand is considered as a portion of land where vegetation of similar 

structure grows under similar site conditions (Oliver & Larson, 1990). 

Forest growth is affected by tree growth efficiency, which differs according 

to species, light interception capacity (Linder, 1987), site fertility, stand 

characteristics, and climate. 

After the establishment of a forest, the net primary production increases 

rapidly until the canopy closes (Ryan et al. 2004). Subsequently, 

competition between trees increases (Gadow et al., 2012) and some start to 
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die due to self-thinning (Yoda et al. 1963). Tree mortality is higher in dense 

stands than in stands with a lower tree density (Lloyd & Harms, 1986). The 

death of some trees increases structural diversity in the forest canopy, and 

consequently affects the microclimatic conditions that influence the net 

primary production (Vesala et al. 2005). 

Forest management tends to hamper the natural dynamics of the stands, 

since management typically aims at promoting the wood quality and the 

growth of the trees. Examples of such practices are thinning (Nilsson et al., 

2010), optimization of the rotation length (Newman, 2002), and 

fertilization (Pettersson & Högbom, 2004; Jacobson & Pettersson, 2010).  

Fertilization may increase growth over the short or the long term, 

influencing the merchantable wood production, whether it operates on 

seedling growth or on the growth of older trees (Nilsson & Allen, 2003). 

Increase in production can also be obtained through genetic improvement 

(Zobel & Talbert, 1984). The effect of green tree retention on the growth of 

new seedlings and consequently on the production of merchantable wood 

has been investigated in a few studies (see for example Elfving & 

Jakobsson, 2006), but poor is the knowledge about long-term observations 

covering the whole rotation period, due to the limited availability of 

empirical studies.  

1.5.4 Costs and revenues  

 

In forest economy, it is important to define the boundaries for the 

calculation of costs and revenues. Often (as in this thesis), only the costs 

and revenues at the stand level are considered, i.e. costs from seed to stump 

including harvest and forwarding to the forest roadside. In this context, 

costs include the amount of money that needs to be paid for silvicultural 

measures, i.e. scarification, regeneration, cleaning, thinning, fertilization 

and finally the logging, which also includes conservation measures (e.g. 

high cutting and girdling). Revenues are the price paid for the cut and 

forwarded pulpwood and timber at roadside before transport to the industry.  

In forest conservation and production, cost-efficiency is important 

(Eriksson, 2016), which means that costs should be minimized and 

conservation/production maximized under given restrictions. Maximizing 

production involves silvicultural regimes at the stand level as well as 

bucking of the individual trees as raw material, such as for paper or lumber. 

Since the late nineteenth century, economic costs have been calculated and 
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separated into, for example, labour costs and investment costs (e.g. 

Williams, 1908). More recently, other aspects have been taken into account 

such as the economic cost of conservation measures (Naidoo et al., 2006). 

The interest in reducing the impact of forest operations on biodiversity, soil 

erosion and water pollution has increased (Lämås, 1996). This has resulted 

in a multitude of studies aimed at optimizing the cost-efficiency while also 

considering environmental aspects (e.g. Mönkkönen et al., 2014; Ranius et 

al., 2005). 

Financial estimations of forestry investments are typically based on a 

collection of actual and future values associated with various aspects, 

which in some cases are not easy to evaluate (Duku-Kaakyire & Nanang, 

2004). Oscillations of the market price lists are good examples. Among the 

collection of valid financial estimates, net present value, land expectation 

value and opportunity cost are often used. The net present value is the 

economic value of a forest assuming a defined future management regime 

at a specific interest rate (in Swedish forestry often 2-4%, see Felton et al., 

2017b) and is calculated by subtracting total discounted costs from the 

discounted revenues. The net present value often includes the land 

expectation value, which is the discounted value of the land without trees 

subjected to an eternal sequence of identical forest rotations (Faustmann, 

1849). The opportunity cost in this context is the difference in net present 

values between two management regimes (Nghiem & Tran, 2016).  

1.5.5 Forest operations 

 

In Europe, logging is generally done using two machines: the single grip 

harvester that fells, delimbs and bucks the trees into logs, and the forwarder 

that transports the wood to the road side (Ringdahl, 2011). The 

predominant Nordic harvesting technique is the cut-to-length method where 

tree stems are cut into smaller logs at the harvesting site (Nurminen et al., 

2006). The productivity (time consumption per m3 of harvested or 

transported wood) of the machinery is influenced by several factors. 

According to Eliasson (1998) these factors can be divided into three main 

groups: 1) stand-related (e.g. terrain conditions, stem density, tree size); 2) 

work-related (e.g. machine type and worker experience); and 3) policy 

related (e.g. legislation and environmental policies). Both the harvester and 

the forwarder productivity is influenced by terrain and climatic 

characteristics (Samset, 1990), type of harvesting (i.e. final harvesting or 
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thinning; Axelsson & Eriksson, 1986; Eriksson & Lindroos, 2014) and 

machinery characteristics (such as size and motor type). Among tree-

related factors, harvester productivity is mainly influenced by the mean 

harvested stem volume at final felling (Brunberg, 2007; Eriksson & 

Lindroos, 2014) and by a combination of number of harvested stems, 

number of retained stems, and mean stem volume at thinning (Brunberg, 

1997; Eliasson, 1998). Forwarder productivity is mostly influenced by the 

mean extraction distance to roadside both at final felling and thinning, but 

also by load capacity and mean stem volume (Brunberg, 2004; Eriksson & 

Lindroos, 2014). Given the multiplicity of factors influencing logging 

productivity, it is essential that factors other than those of specific interest 

(in this thesis number of retained trees) are controlled for, e.g. by using the 

same drivers and same machines across the study sites.  

1.5.6 Dead wood dependent lichens 

 

In boreal forest, lichens are a species rich group, being found on bark 

(corticolous lichens), soil (terricolous lichens), rocks (saxicolous lichens), 

and decorticated dead wood (lignicolous lichens) (Boch et al., 2013). In 

forest research, lichens are one of the most commonly used biomonitors, 

since many of them are long-lived and have a high habitat specificity 

(Nimis et al., 2002) and thus are sensitive to habitat changes (McCune, 

2000).  

In Fennoscandia, about 400 lichen species may occur on wood (Spribille et 

al., 2008). Out of these, about 100 are found only on dead wood, and are 

therefore called “obligately lignicolous” (Spribille et al., 2008). Forestry is 

considered to be the most serious threat to this group of lichens (Thor, 

1997), owing to the fact that the amount of old living and dead trees 

decreased as modern forestry methods developed during the 20th century 

(Berg et al., 1994). Some species of dead wood dependent lichens occur in 

high abundances on stumps, snags, and to some extent logs, while dead 

branches are colonized by only a few species (Svensson et al., 2016). The 

decay stage of dead wood also affects lichen species richness and 

composition (Botting & DeLong, 2009; Caruso & Rudolphi, 2009; 

Nascimbene et al., 2008; Svensson et al., 2013).  
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The general aim of this thesis is to increase knowledge about the impact of 

different levels of tree retention on production of merchantable wood, costs 

and revenues, dead wood amounts and qualities and carbon stock; and to 

investigate the habitat requirements of dead wood dependent lichens. Due 

to the short time interval between the forest cut and the lichen inventory, it 

was not possible to investigate the specific effect of tree retention on lichen 

diversity. Therefore, the focus was on the identification of the substrates 

they utilized, the availability of which can be promoted through the 

creation and conservation of dead wood. My experimental approach was to 

vary the level of green trees and dead wood retained, including levels far 

higher than those typical in Fennoscandia today. This enabled the 

evaluation of different response variables along a tree retention gradient. 

2.1 Aims of the papers 

I      To assess economic costs, revenues and structural diversity (i.e. dead 

wood amount and diversity) in relation to different tree retention levels 

using field surveys.  

 

II   To compare the production of merchantable wood, amount of dead 

wood input and carbon storage over the whole rotation period in stands 

with different tree retention levels.  

 

III  To compare the composition and density of dead wood dependent 

lichen on different substrates. 

2 Aims 
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The data were collected in an area around Effaråsen (60º 58’29’’ N, 14º 01’ 

55’’ E), located in the province of Dalarna, in the southern boreal 

vegetation zone (Ahti et al., 1968) of Sweden. The study area comprised 

140 ha of relatively homogenous forest dominated by Scots pine with an 

age range of 120-140 years, but including some much older trees. Other 

tree species present in the area are Norway spruce and birch. The ground 

vegetation is dominated by dwarf shrubs (Vaccinium vitis-idaea L. and 

Vaccinium myrtillus L.) and lichens (among fruticose species, mainly 

Cladonia spp.). The stands were naturally regenerated after a large forest 

fire in 1888 and have been managed for wood production, including 

thinning during the second half of the 1900s and fertilization in the 1990s.  

Figure 3. Location of the study area. Effaråsen forest, Dalarna. 

3 Study area 
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3.1 Experimental design 

 

Fifteen stands, with a mean area of 5 ha, were randomly allotted to different 

levels of partial cutting (from very low to total tree retention). In each 

stand, we retained four categories of trees: 1) green trees, 2) girdled trees 3) 

high-cut stumps and 4) cut trees left on the ground, so that each category 

represented about 25% of the total number of retained trees in each stand. 

However, within our study plots, the numbers differ between the categories 

due to the random location of the plots within the stands (see chapter 4 for 

further information). In three stands, all trees were retained, and treated as 

described above. Three additional stands (control stands) were left 

untouched. Prior to harvest, single trees and outer boundaries of tree groups 

(typically including 15–20 trees) were marked, to prevent their cutting. The 

spaces between tree groups varied between stands in accordance with the 

allotted cutting regimes. If possible, tree groups were selected in patches 

containing old living trees or large diameter logs, indicating high 

conservation value. In each of these groups, half of the trees were left intact 

and half were girdled. Corresponding numbers of cut trees left on the 

ground and high-cut stumps were created outside the groups’ boundaries by 

cutting trees at ca. 3 m above ground. Cut trees left on the ground were 

often moved into the retention patches to reduce destruction by logging 

machines. 

Figure 4. Tree retention experiment, Effaråsen forest. Green living trees, girdled trees, 

high-cut stumps and cut trees left on the ground. Photo: Francesca Santaniello, July 

2013. 
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Figure 5. Stand types and retention categories in Effaråsen forest. Examples of: 1) 

control stand, where the forest has been left intact; 2) retention treatments, with various 

proportions of retained green trees and dead wood, from total retention to very low 

retention (the light grey represents the area dedicated to merchantable wood 

production); 3) the four tree retention categories. The number of trees retained per ha 

varied from 5 in the lowest retention stand, to 714 in the denser control stand. The 

volume of retained dead wood varied from 1.6 m3 ha-1 in the lowest retention stand, to 

40.9 m3 ha-1 in the denser high retention stand. Illustration: Francesca Santaniello. 

2 

1 

3 
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4.1 Green trees and dead wood  

 

During the summers of 2013 and 2014, green trees and dead wood were 

inventoried along one transect consisting of ten 100 m2 circular plots in 

each of 12 retention stands (from very low to high retention, figures 5 and 

7, table 1); and in 1-ha square plots within these 12 stands, plus 3 control 

stands. In the circular plots, we inventoried all green trees of >10 cm 

diameter at breast height and dead wood of >1 cm diameter (paper I). In the 

1-ha square plots the minimum diameter of deadwood was 10 cm. We 

divided deadwood items into categories according to tree species, diameter, 

position (standing or lying), bark cover, age, and decomposition stage. 

These characteristics have been identified as important predictors for the 

occurrence of species confined to dead wood (Berglund et al., 2011; Ranius 

et al., 2015). We also collected qualitative data on vegetation and soil type. 

The total number of retained standing trees in each stand was counted and 

their canopy projection area was estimated using aerial photos taken from a 

camera drone 

 

 

 

Figure 6. Forest stand with the 1-ha square plot and the transect with ten 100 m2 

circular plots, each randomly positioned in the stand. Illustration: Francesca 

Santaniello.                                       

4 Data collection 
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4.2 Harvesting operations  

 

Logging productivity was measured as time consumption per unit cut and 

forwarded timber volume in 8 stands ranging from very low to high 

retention. (paper I). We used the on-board computers of the harvester and 

the forwarder to collect information on logging times and volumes. For 

each stand, data on harvester processing times and driving times, forwarder 

total times, forwarder mean driving distances (while empty or fully loaded), 

and harvested stem numbers and volumes were extracted. For the time 

estimates, we used “G15 time”, which includes machine stops shorter than 

15 minutes (Anon., 1987). Since harvester processing time is sensitive to 

variations in stem volume, the processing performance was normalized to a 

mean stem volume of 0.2 m3 sub per stand, according to functions by 

Brunberg (2007). Since forwarding performance is sensitive to variations in 

forwarding distance, we used only terminal/landing times, calculated by 

subtracting the modelled time for transport at full and empty loads (derived 

from Brunberg, 2004) from the total time.   

Figure 7. Effaråsen stands. VL= very low retention stands; L= low retention stands: 

M= mid retention stands; H= high retention stands; T= total retention stands; C=control 

stands. The unmarked stands belong to the experiment, but they were not included in 

this study. 
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5.1 Data analysis 

 

In paper I and II, I tested the effect of retention levels on a range of 

response variables, while in paper III I tested the effect of dead wood types 

on dead wood dependent lichens (table 1).  

Table 1. Focus of the studies and type of stands investigated. ❊= Dead wood 

dependent lichens were inventoried in the same stands used in the retention experiment, 

but tree retention gradient was not considered for the purposes of this study.  

Studies   I II III 

F
o

cu
s 

o
f 

  
  

  
  

  
  

  
  
  

  
  

  
  
  

  
 

th
e 

st
u
d

ie
s 

 

Merchantable wood ✓ ✓ 
 

Costs and revenues ✓ 
  

Dead wood ✓ ✓ 
 

Carbon stock 
 

✓ 
 

Dead wood dependent lichens 
  

✓ 

In
v

es
ti

g
at

ed
 

st
an

d
s 

From very low to high retention ✓ ✓ ❊ 

Total retention 
  

❊ 

Control 
 

✓ 
 

In
v

en
to

ry
  
  

  
  

  

ty
p

e 

Circular plots ✓ 
 

✓ 

Square plots ✓ ✓ 
 

Stands ✓ ✓ 
 

5 Data analysis 
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5.2 Forest model - Heureka  

 

The forest development over the following 100 years was predicted in 15 

study stands (from very low to high retention stands and control stands; 

figures 5 and 7) using Heureka (paper II). Heureka is a decision support 

system for forest managers in Sweden (Wikström et al., 2011). Except for 

the various levels of tree retention, all harvested stands were assumed to be 

exposed to the same management regime, consistent with conventional pine 

management in Sweden. The following setting was assumed: 2300 

containerized seedlings (improved with 10% gain in growth) planted per 

hectare after soil scarification; cleaning at year 25 (leaving 2000 stems/ha 

with 90% pine and 10% birch); thinning at year 55 (with a thinning grade 

of 40% and leaving small trees (diameter <10 cm) intact; and final felling 

(clear cut) at year 100. The productive areas and the retention areas were 

simulated separately in Heureka for every stand. Both these areas were 

assumed to be covered by even-aged growing forest. The area occupied by 

retention trees and designated as a competition zone was estimated 

assuming a radius of 4 m from the central point of single trees and trees in 

small groups. This is because height growth of young trees of Scots pine 

has been found to be reduced within a zone of 8 m radius around single 

retention trees (Elfving & Jakobsson, 2006) and Erefur (2010) found 

competition zones that reached 7-8 m into a logged gap from a forest edge. 

We assumed that the closest 4 m was completely affected by competition 

while there was no effect over the following 4 m. This is a simplification in 

comparison to the above cited field studies that revealed a successively 

decreasing effect of competition within 8 m. Within the competition zone, 

natural ingrowth but no further planted seedlings was assumed. Outside this 

zone, regeneration of both planted and natural seedlings was assumed, 

along with management for wood production. The area dedicated to the 

growth of new seedlings is the whole area not occupied by tree retention, 

and was measured using ArcMap 10.3.1. Site productivity varied among 

stands; half of them had a site index of 19 (dominant height at 100 years of 

age), and the other half a site index of 21. 

In paper II, the total volume of merchantable wood was simulated every 5 

years for a total period of 100 years, using growth functions described and 

validated by Fahlvik et al. (2014). The growth functions as well as 

functions for tree mortality, biomass and dead wood were all based on 

empirical data from the Swedish National Forest Inventory. The tree 

growth was species-specific and determined by tree, stand and site 
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characteristics. The total wood provisioning resulted from tree growth, tree 

mortality, and from the planned cleaning and thinning. 

5.3 Merchantable wood production, cost and revenues 

 

In paper I, operation costs for the 2012 harvest were calculated based on 

harvesting, and transportation times for 1 m3 of wood under bark. A two-

sided t-test was applied to test the differences in logging operation time of 

stands subjected to the low and high retention level treatments. The cost of 

retention was calculated as the opportunity cost, defined as the difference 

between the net present value (sum of harvest net income and soil 

expectation value) before harvesting with retention or harvesting by 

clearfelling (Zhang & Pearse, 2011). The silvicultural regime was set and 

the future harvested volumes calculated by consulting the work package 

“INGVAR” (www.skogskunskap.se). Soil expectation values were 

calculated using the work package “Beståndsval” (www.skogskunskap.se) 

according to Faustmann (1849), assuming a 2% interest rate. Revenues 

were calculated on the base of the average value of merchantable wood 

(saw logs and pulpwood) according to the Bergvik Skog AB price list of 

2012. Future costs included costs for regeneration and pre-commercial 

thinning according to Brunberg (2012). Costs and revenues were adjusted 

for each stand in accordance with to the retained area (i.e. the tree canopy 

projection area), which was assumed to be set aside in perpetuity. 

Harvested wood volume was calculated using data from the harvester and 

forwarder machines (year 0), and by calculated harvested volumes at 

thinning (in year 58) and final felling (year 103). 

5.4 Dead wood 
  

In paper I, the diversity of dead wood and dying trees was estimated using 

the Shannon diversity index (Magurran & McGill, 2013; Shannon, 1949). 

The Shannon diversity index indicates the species diversity in a system 

according to number of species (in our case, types of dead wood) present, 

and their frequency. Finally, to evaluate the effect of retention level on the 

conservation of old dead wood (age >120 years), we estimated the damage 

caused by the logging machines on dead wood (% of wood surface 
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damaged) and related the proportion of undamaged wood objects to 

retention level.  

In paper II, the dead wood input was simulated using Heureka, employing 

the mortality model of Elfving (2014). The Elfving model is deterministic 

and based on a single-tree model, that has higher resolution than previous 

models and is consequently able to provide a more realistic output. The 

volume of dead wood artificially created (high-cut stumps, logs and low 

stumps) at year zero was also assessed, using field data from the square 

plots.  

In paper III, the area of dead wood available for lichen colonization (i.e., 

lacking mosses and bark) was calculated for every circular plot, using the 

data collected during the dead wood inventory (paper I). Dead wood was 

divided into categories reflecting its quality as a potential substrate for 

lichens. 

5.5 Carbon stock 

 

In paper II, the amount of carbon stored in green trees, dead wood, and soil 

was simulated in the retention and control stands. When estimating the 

carbon stock, dead wood decomposition was simulated using the function 

by Harmon et al. (2000) that follows a negative exponential decay rate, and 

decreases with increasing deadwood diameter (Ortiz et al., 2016). The soil 

carbon was calculated using a model (Q-model, Rolff & Ågren, 1999) that 

simulates the decomposition of soil organic matter and is based on the 

continuous quality theory (Ågren & Bosatta, 1996). According to this 

theory, soil organic matter (including both naturally created litter and the 

litter originating from thinning and harvesting) is assumed to change 

continuously over time due to the activity of decomposers. Two advantages 

with the Q-model are that it creates a continuum of litter through time and 

that it is sensitive to different climatic conditions. However, the model 

provides biomass fractions on the basis of basal areas, while other 

characteristics of the substrate or the stand are not taken into consideration. 

For example, long-term effects of changes in soil chemistry (such as 

nitrogen deposition, which influences decomposers) are not considered. 

Carbon in living trees was calculated using the biomass functions of 

Marklund (1988), applicable for stem, bark, branches and needles. 



38 

 

Functions by Petersson and Ståhl (2006) were used to calculate the carbon 

present in stumps and roots. 

 

 

Figure 8. Simplistic diagram of the carbon stored and leaving the system (in the form 

of carbon dioxide, CO2, and in harvested wood), according to the Heureka system. Fine 

woody debris = <10 cm diameter; Coarse woody debris = >10 cm diameter. 

Illustration: Francesca Santaniello. 

5.6 Landscape scenarios 

 

Outputs from the stand-level modelling were used to model different 

landscape scenarios (paper II). Twelve landscape scenarios were 

constructed, which were assumed to be located in the same geographical 

region and thus exposed to the same climatic conditions. Each landscape 

scenario consisted of a combination of two stand management options in a 

100-ha forest area: either cutting with a defined level of retention or leaving 

as set-aside. In all scenarios, the cut of merchantable wood during the 

following rotation was fixed to 19000 m3 sub per 100 hectares over 100 

years, while the areas harvested and set-aside varied. The volume of 19000 

m3 sub resulted from the maximum harvest that can be obtained with the 

highest tree retention level (165 trees retained per ha) over 100 years. All 

landscape scenarios were compared in terms of carbon stock and the 

amount of dead wood input. The harvested stands had the same 

characteristics as in the stand level simulations while the set-aside areas 

were simulated based on values extracted from the control stands. In each 
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landscape scenario, harvested and set-aside stands were paired according to 

their site index, which was the same for the harvested and for the set-aside 

stands. The outcomes of the scenarios were expressed as averages per 

hectare over a 100-year rotation period. 

 

Figure 9. Composition of the landscape in different scenarios. Simulations of forest 

development in a 100-ha landscape with the same volume of harvested wood (19000 

m3 sub) over a 100-year rotation period in all scenarios. The respective areas of the 

retention and productive parts of managed forests and set-aside forests are shown. The 

landscape scenarios are divided in two groups, according to their site index, a proxy for 

site productivity. (Hägglund & Lundmark, 1977). 

 
5.7 Dead wood dependent lichens 

 

In paper III, we compared the species composition among different dead 

wood substrates using non-metric multidimensional scaling (NMDS). 

NMDS is an ordination method based on ranked Euclidean distances 

between samples. The data from the circular plots were pooled for each of 

the 15 forest stands. All ordination analyses were performed using R 

(version 3.2.1, and the packages Vegan, MASS, and BiodiversityR; 

Oksanen et al., 2007). Using the function “adonis” (Anderson, 2001), we 
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compared the samples by calculating the stress and performing a 

permutational multivariate analysis of variance using a distance matrix. To 

compare the species density on the different dead wood substrates, sample-

based rarefaction curves were used (Gotelli & Colwell, 2001). The analysis 

was based on the following comparisons: (1) wood type; (2) wood 

hardness; (3) wood age; (4) wood hardness and age; and (5) wood type and 

age. The rarefaction curves were computed using the software EstimateS, 

version 9.1.0 (Colwell, 2013). In order to compare the number of lichen 

species on equal areas of available wood, the x-axis was rescaled to 

represent the cumulative surface area. Calculations were made using the 

surface area per plot of dead wood without bark or bryophytes. 
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6.1 Effects of tree retention 

 

At the stand level, increases in tree retention had a negative impact on 

wood production and on profitability. Conversely, it had a positive impact 

on the amount, richness, diversity and conservation of dead wood, and on 

carbon stock. At the landscape level, at fixed constant wood production, the 

dead wood amount increased and the carbon stock decreased, but only 

slightly (table 2). 

 

Table 2. Influence of increasing tree retention level on the response variables at the 

stand and landscape level. The direction of the arrows indicates: decrease (pointing 

down), increase (pointing up). 

 

  

 

Response variables Stand level Landscape level 

Wood production       constant

Dead wood                   

Carbon stock 

Opportunity cost n.d.

Logging productivity n.d.

6 Results and discussion 
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6.2 Stand level outcome 

6.2.1 Merchantable wood production, costs, and revenues  

  

At final harvest, the revenues declined with increased retention level (paper 

I). Soil expectation values were generally low, reflecting the low 

productivity of this type of forest, and therefore the differences in 

opportunity cost were mainly dependent on the loss of income from the 

harvest. This in turn was due to increased harvesting costs and reduced 

harvested volumes as retention level increased.  

Both harvester and forwarder performance were lower at high than at low 

retention levels. The economic loss associated with the artificial creation of 

dead wood can be considered as the cost of creating substrates valuable for 

biodiversity, which in the case of girdling trees also means creating a 

continuum of valuable substrates over time (since girdled trees have a range 

of life expectancies according to the degree of injuries induced by the 

harvester). It was expected that retaining trees reduces the income due to 

reduced harvested volumes. Our study emphasizes in addition the increased 

harvesting costs incurred. The harvester performance was separated in 

processing and driving times. Both mean processing and driving times 

increased with retention level, with a relatively greater increase in driving 

times (ca. 50%) than in processing times (ca. 15%) when comparing low 

and high retention stands. The relatively larger increase in driving time is 

probably due to the occurrence of retained trees, which are obstacles to 

avoid, and fewer trees being processed per machine position. Eliasson et 

al., (1999) found no difference in processing time between different 

retention levels. In that study, girdling and high-cutting did not occur. We 

have no specific data on the time consumption for these measures. 

However, it seems that girdling is more time consuming and in contrast to 

high cutting (where the tree top is harvested) no timber is extracted. Thus, 

the increase in processing time is probably due mainly to tree girdling. 

Mean forwarding time increased by about 35% between low and high 

retention stands. The reason for this loss in productivity has not been 

studied, but can probably be ascribed to smaller timber piles and fewer 

trees loaded per machine position, as a result the harvester occupying more 

processing patches per unit area (Brunberg, 2004). 

Seen over a whole rotation period, the production of merchantable wood 

decreased with the number of trees retained and increased with the site 
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productivity (paper II). Thus, the loss of wood production is related to both 

the loss of area for production trees in the new forest stand and to its 

productivity.  

6.2.2 Dead wood   

 

The number of dead wood types and dead wood diversity increased linearly 

from the lowest to highest retention level, in which almost 50% of the trees 

were retained (paper I). Moreover, old dead wood was not destroyed by 

forest machines at retention levels above 30%. This result shows that the 

retention of trees has a direct effect on the conservation of dead wood. Tree 

retention also reduces the destruction of dead wood during soil scarification 

(Hautala et al., 2004). Soil scarification had not been carried out when we 

did our field study, but in a subsequent study within the same stands, 

Weslien and Westerfelt (2017) reported that the amount of undamaged 

dead wood outside the retention patches was indeed further reduced by soil 

scarification. 

Seen over a whole rotation, dead wood input increased with increasing 

retention level (paper II). This was mostly because more dead wood was 

artificially created in stands with higher retention levels. Consequently, set-

aside stands had lower dead wood input, due to the lack of artificially 

created dead wood. After harvesting, dead wood input was higher in the 

control stands, but only during the first 90 years, after which the input of 

dead wood was higher in the lower retention treatments. This can be 

attributed, to their having the highest standing volume.   
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Figure 10. Dead wood input over a 100-year forest rotation. The light blue lines 

represent the dead wood artificially created at year zero. 

 

Old dead wood had a different lichen species composition than young 

wood, and a higher species density (paper III). Old, hard dead wood was by 

far the most important category of dead wood for dead wood dependent 

lichens. All the species observed in this study occurred on this substrate, 

and over half were exclusive to it. Such wood is referred to as kelo wood 

(Box 2). The volume of old dead wood is much lower in managed forests in 

comparison to natural forests (Linder & Östlund, 1998). The lifetime of 

wooden substrates is always limited due to wood decay, but in managed 

forest dead wood is also destroyed during forestry operations. To maintain 

continuous availability of old dead wood, entire forest stands or retention 

groups should be set aside, since it is difficult for dead wood to become old 

and hard in managed forests.  
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Box 2. Kelo 

Under certain conditions, which probably include repeated wild fires, dead 

wood of Scots pine becomes hard and resin-impregnated, and is 

subsequently very long lasting. In Finland, such old, silver-grey and 

decorticated trunks of Scots pine are called kelo (Niemelä et al., 2002). 

Many fungal species are confined to kelo substrates (Niemelä et al., 2002). 

Formation and decay of kelo trees are very slow processes. Scots pine can 

become up to 800 years old, and its transformation into kelo trees takes 

about 40 years after tree death (Sirén, 1961; Leikola, 1969). Kelo trees can 

remain standing for a further 700 years (Niemelä et al., 2002), and final 

decay of the fallen stem may take another 200 years (Tarasov & Birdsey, 

2001). Formation of kelo trees is unlikely to occur in commercially 

managed forests with fast growing trees and short rotation cycles. 

 

 

 

Figure 11. Kelo tree, Ylikiiminki, Finland. Photo: SeppVei. 
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6.2.3 Carbon stock 

 

Over the whole rotation, the average carbon stock increased with increasing 

retention level and site index (paper II). In all treatments, the carbon stock 

increased over time. The difference in carbon stock between low and high 

retention treatments was higher early in the rotation, with carbon stock 

converging across treatments towards the end.  

 

Figure 12. Carbon stock development over a 100-year forest rotation. 

 

At year 0, the control stands were set aside, while the others were harvested 

with various levels of retention. The unlogged control stands were 

predicted to keep growing and assimilating carbon during the coming 100 

years, indicating that the unmanaged system will not reach a state when the 

net carbon sequestration approaches zero during that time period, even if 

the rate levels off. It has been suggested that continued growth of old stands 

beyond the normal final felling age, i.e. prolonging rotations, can be used to 

mitigate climate change (Kaipainen et al., 2004; Zanchi et al., 2014). By the 

same logic, it could be argued that increasing retention levels could be a 

way to increase carbon stock over time and thus to mitigate climate change 

(Nunery & Keeton, 2010). However, this is just one part of the overall 

picture. Increased retention and prolonged rotations reduce overall 

production of merchantable wood.                         
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Therefore, less will be made available as a substitute for fossil-based 

energy and fossil-dependent materials like steel or concrete (Lundmark et 

al., 2014; Nabuurs et al., 2007).   

6.3 Landscape level outcome  

 

If production is kept constant, an increasing level of tree retention is 

associated with a diminishing set-aside area in the landscape scenarios 

(paper II). Dead wood input increased with increasing retention level, while 

carbon stock decreased, but in both the cases differences along the retention 

gradient were small. One explanation for the increased dead wood input is 

that dead wood is artificially created under tree retention management. The 

decrease in carbon stock can probably be explained by the fact that, with 

retention, less space is available for the growth of new trees, whose carbon 

fixation is more efficient than in older trees (Harmon, 2001). However, 

which dead wood types were favored by the different management 

scenarios was not analysed.  Simulations taking this into account have 

suggested that different landscape-level strategies favour different species 

(Ranius & Roberge, 2011). Setting aside entire stands resulted in lower 

volumes of dead wood input, but the dead wood from the earlier forest 

generation is probably better maintained, generating a better continuity of 

dead wood over time (paper II). This seems to be important for some dead 

wood dependent species, especially those depending on old growth-forest 

attributes (Kuuluvainen et al., 2017; Lõhmus & Lõhmus, 2011; Siitonen & 

Saaristo, 2000; Sverdrup-Thygeson & Lindenmayer, 2003). A substantial 

proportion of the dead wood input at retention was actively created. Many 

species, prefer sun-exposed wood, hence the artificially created dead wood 

at harvesting may be favorable during the period of time before the canopy 

closes (Djupström B. et al. 2012; Lindhe et al., 2005; Pasanen et al., 2014). 

Moreover, species that prefer shaded wood during a later phase of 

decomposition may also be favoured, but to our knowledge no studies have 

been performed on created dead wood during this later phase of stand 

development. For many species, the natural accumulation of dead and 

dying trees in set-asides seems to be necessary since many species are 

much more frequent there (Djupström B. et al., 2008; Perhans et al., 2007). 

Thus, to favour different species assemblages, land sharing (with dead 

wood creation) and land sparing (with continuity) approaches should be 

combined.   
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In our landscape-level scenarios we summarized the outcome in a 100-ha 

area over a rotation period. However, for biodiversity conservation the 

spatial and temporal distribution of the habitat may also be important. 

Sverdrup-Thygeson et al. (2014) showed, in a review, that there is a large 

variation in the response of different dead wood associated species to 

spatial and temporal habitat patterns. Species adapted to natural large-scale 

disturbance regimes could be assumed to be generally more dispersed and 

less dependent on the fine grain landscape structure than species adapted to 

more stable conditions (cf. Nilsson & Baranowski, 1997). However, 

empirical studies are needed to test this hypothesis. 
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6.4 Dead wood dependent lichens 

 

Dead wood dependent lichens occurred on 46 % of all inventoried dead 

wood objects (paper III). There were 21 species, among which four were 

red-listed (Near Threatened status, Swedish Species Information Centre, 

2015) (figure 13). 

1. Carbonicola anthracophila Nyl.                 2. Carbonicola myrmecina Ach.                                      

3. Cladonia parasitica Hoffm.                        4. Hertelidea Botryosa Fr.                      

Figure 13. The red-listed species found in Effaråsen. Photos: 1) Mikael Hagström;           

2) Jeanette Fahlstad; 3) Jens Johannesson; 4) Billy Lindblom.  
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Lichen species composition differed significantly among dead wood types 

(low stumps, snags, logs), wood hardness, wood age and occurrence of fire 

scars. 

Among the studied wood types, snags had the highest species density. This 

result confirms previous studies on lichens that showed similar patterns 

(Humphrey et al., 2002; Lõhmus & Lõhmus, 2001; Nascimbene et al., 

2008; Svensson et al., 2016). The species composition analyses revealed a 

significant difference between the three wood types (low stumps, snags, 

and logs). This may be due to structural differences between dead wood 

types, but also differences in microclimatic conditions, such as light 

exposure (Rudolphi & Gustafsson, 2011). 

Hard wood had higher species density than softer wood, a difference 

particularly marked in the hardest wood category. Fourteen species were 

restricted, entirely or almost entirely, to hard wood, including all four red-

listed species. Species density was highest for wood in intermediate 

decomposition stages. An explanation for this pattern could be that this 

type of dead wood often provides a wider range of microhabitats than 

earlier or later decay stages (Caruso & Rudolphi, 2009; Kruys & Jonsson, 

1999; Wagner et al., 2014). Moreover, the progressive decrease of substrate 

stability over time is probably disadvantageous for lichens (Nascimbene et 

al., 2008). 

The species density was about three times higher on old (>120 years) dead 

wood than on young dead wood. Moreover, species composition was 

clearly affected by wood age, since more than half of the species, including 

three of the four red-listed species, were found only on old dead wood. This 

may be because old dead wood has certain characteristics, such as lower 

cellulose and lignin content (Stokland et al., 2012) and higher nitrogen 

content due to fungal mycelia, which are rich in nitrogen (Cowling & 

Merrill, 1966). Higher frequency of occurrences on older substrate may 

also be a consequence of lichens having had a longer time for colonization 

than on more recently formed substrate (Johansson et al., 2012). 

Fourteen species were found on burned wood, of which three were found 

exclusively on this substrate. Species density analyses were not possible in 

this case, due to the low number of observations on burned wood. 

Interestingly, both Carbonicola anthracophila and C. myrmecina have been 

found to grow on burned wood as much as 300 years after fire (Esseen et 

al., 1997), indicating that this kind of wood retains its value for biodiversity 

for a very long time.  
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All 21 species observed in this study occurred on old and hard wood (kelo 

wood; Box 2). Eleven species were found only on this type of wood. For 

red-listed species this type of dead wood was shown to be important, since 

two of the four red-listed species were not found on any other substrate, 

and the other two only rarely. Thus, a high proportion of wood dependent 

lichens depend on kelo wood.  

This study adds to the knowledge of dead wood dependent organisms that 

can be applied in forest management and conservation. To conserve wood 

dependent lichens, old dead wood should be preserved by tree retention or 

by setting aside areas, where the wood quality for lichens is most likely 

higher than in managed forest. Further knowledge is needed on how to 

sustain the formation of kelo trees. The Effaråsen experiment is ongoing, 

and may contribute to such knowledge in the future. Our lichen inventory 

may also serve as a baseline study, to be of use in future assessments of the 

experimental plots at Effaråsen. 
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In this thesis, I have investigated the synergies and trade-offs between 

different deliverables from pine forests: dead wood, merchantable wood, 

and carbon storage, under varying tree retention levels. In addition, I also 

investigated the habitat requirements of wood dependent lichens. I consider 

the results collected in this thesis to be representative for most boreal pine 

forests in Fennoscandia. The outcomes can be used to suggest strategies to 

sustain such deliverables under economic restriction.  

The main outcome of the thesis is that tree retention has an impact on all 

the investigated variables. The results from paper I showed that increasing 

the level of tree retention incurs increased costs, not only because of the 

reduced harvest volumes but also because of the increasing logging costs. 

For land owners, there is also a reduction of income due to the reduction of 

area available for regeneration and future forest production, although this 

loss is comparatively low if “normal” interest rates (2 %) are assumed and 

the productivity of the land is low. 

By increasing the level of retention, the volume of dead wood increased 

(paper I and II), mainly because the volume of dead wood artificially 

created was proportional to the level of retention, and because less dead 

wood was destroyed by machineries. Furthermore, by increasing the level 

of retention, the number of dead wood types increased with retention level 

up to the highest level (paper I). 

At the stand level, higher level of retention means a slightly higher carbon 

stock during the rotation, because more trees and dead wood remain post-

harvest (paper II). To what extent that is a valid argument for more 

retention depends on which view that is chosen on substitution effects. At 

7 Conclusions  
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the landscape level, with increasing level of retention, carbon stock slightly 

decreased, probably because set-aside patches store less carbon than 

productive patches, due to the different carbon fixation capacity associated 

with tree age.  

For lichens dependent on dead wood, old and hard dead wood is the most 

important type in pine forest. Hence, for lichens it is important to preserve 

available dead wood by setting aside entire stands or retention groups, since 

this practice favours the creation of old dead wood, and also by ensuring 

the creation and conservation of sun exposed substrates. It is not known to 

what extent it is possible to create such wood, but probably burning of pine 

forests that have low amount of dead wood present would be useful.   

Compensating production loss due to retention by decreasing the area of 

set-asides at the landscape level produced only small differences in 

landscape-level dead wood input and in carbon stock. This outcome may 

however conceal a more varied response among dead wood types and the 

spatial distribution of dead wood. Today, most forests in Fennoscandia are 

managed according to a similar strategy, in which both set-asides and tree 

retention occurs. I believe that increasing diversity in landscapes would be 

advantageous for biodiversity conservation, since the species richness will 

be favoured by the simultaneous occurrence of different habitats. Active 

promotion of specific dead wood substrates, as well as their conservation, 

may be an attractive complement to the existing management strategies.  
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Tree retention studies are increasing in number, but some aspects are still 

poorly investigated.  Firstly, it would be interesting to study forest carbon 

dynamics in relation to other aspects, such as the albedo (surface 

reflectance) and their influence on climate. The albedo exerts a big 

influence on the earth’s climate and its intensity varies among land cover 

types and tree retention may be counteractive. Secondly, knowledge is 

needed about the long-term effects of tree retention on both biodiversity 

and various ecosystem services. Lastly, it would be useful to extend the tree 

retention studies to forest types not yet investigated.  

 

 

 

 

 

 

 

 

8 Future prospects  
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Forests provide a multitude of benefits such as firewood, building 

materials, and habitats for many species, as well as regulating carbon, 

nutrients and water cycles. Forest management tends to focus on only a few 

of these benefits, primarily wood production. Attention is however 

increasingly being paid to other services, such as biodiversity conservation 

and carbon storage, which is related to climate regulation. Trees store 

carbon during photosynthesis, a process that converts sunlight, CO2 and 

water into carbohydrates (nutrients for the plants), while releasing oxygen. 

Carbon storing capacity varies with tree age. Young trees fix more carbon 

than older trees. Forests also release carbon, during decomposition of dead 

wood and soil respiration, performed by organisms that decompose organic 

matter. Dead wood is a fundamental substrate in forest, a habitat for many 

species (such as beetles, fungi, lichens and mosses) but its occurrence, in 

terms of volume and diversity, is threatened by forest management that 

tends to reduce the accumulation of non-merchantable materials. 

Since the main objective of the forest industry is to maximize production 

while minimizing costs, the provision of multiple services is not always 

easy to achieve. For example, biodiversity conservation and carbon storage 

incur an economic cost but rarely produce immediate benefits for 

individual forest owners. 

Today, in what is called sustainable forest management, the balance 

between ecological, economic and socio-cultural aspects is highly 

promoted, with the aim of ensuring the same benefits that forests provide 

now are also available to the future generations.  

In this thesis, I have investigated the impacts of tree and dead wood 

retention practice on wood production, biodiversity (in relation to dead 

wood) and carbon stock, in Swedish Scots pine forest. 

Popular science summary 
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The experiments were conducted in 15 forest stands with varying tree 

retention levels, in which four categories of trees were retained at similar 

proportions: green living trees, damaged trees, standing cut trees and cut 

trees left on the ground. Three additional stands were left intact to monitor 

their natural development over time.  

This thesis consists of three studies. In the first, I investigated how tree 

retention affects both the amount and diversity of dead wood and the 

economic outcomes for the landowner. In the second, I simulated outputs of 

commercial wood production, dead wood and carbon stock over a 100-year 

period at the scale of both the stand and the wider landscape. At the 

landscape scale, landscape size and volume of wood produced were kept 

constant, while forest management type and amount of unharvested land 

set-aside for conservation were varied. In the third study, I investigated 

how different dead wood types and their specific characteristics influence 

the occurrence of dead wood dependent lichens. The results showed that 

increased retention level leads to diminished income from wood 

production, decreased level of dead wood destruction, and a higher volume 

and diversity of dead wood. Furthermore, increased retention level 

promotes carbon storage at the stand scale. The stand-scale simulations 

showed that different retention levels have a large influence on the long-

term delivery of the investigated variables. However, if merchantable wood 

production was maintained at a constant level among landscape-scale 

simulations, differences in the other outcomes were generally small. The 

lichen species composition differed significantly among the investigated 

wood types. Many species were highly associated with old and hard wood, 

a rare wood type in managed forest. The findings of this thesis can be used 

to guide future forest management plans.  
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In this thesis, I enhanced the importance of forest structural diversity. In 

here I wish to enhance the importance of humans’ structural diversity. For 

some strange reasons, it seems like the differences among individuals have 

never been welcome. By reducing the diversity, we reduce our common 

knowledge which is probably the most valuable treasure of all time.  I’m 

glad to have had the chance to learn from diversity and I will do my best to 

keep it alive. So, thank you diversity.  

Finally, I would like to thank Nature for being so marvellous. I hope to be 

lucky enough to reach the day when we will all realize the terrible mistakes 

committed without asking You the permission. We belong to You, we 

don’t own You. What we own is just our soul, the rest is borrowed. 

Figure 14. A friend. Photo: Io.  


