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1. Introduction 
The objective of this report is to present statistical methods for normalisation, trend analysis and 
breakpoint analysis and illustrate these methods on some case studies.  It includes general 
recommendations on methodology that can be used for OSPAR RID data and a suggestion how to 
conduct such analysis in the open source software R.  

2. The RID database 

2.1 Reported loads and river flow 
For OSPAR reports the load of substances is reported as annual loads: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑄𝑄𝑟𝑟
∑ 𝐶𝐶𝑖𝑖𝑄𝑄𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑄𝑄𝑖𝑖𝑛𝑛
𝑖𝑖=1

 

where 𝐶𝐶𝑖𝑖 is the measured concentration in sample i, 𝑄𝑄𝑖𝑖  is the corresponding flow for sample i and 𝑄𝑄𝑟𝑟 
is the mean flow rate for the period in question, i.e. annual flow. n is the number of samples taken 
during the period (OSPAR Commission, 2008).  

Annual loads are usually computed from monthly or quarterly data. River flow is monitored 
continuously or daily in most countries, but local differences do occur. 

3. Flow normalisation  
Flow normalisation for time series of loads is relevant when the interest is not on the observed 
annual load to a receiving water body including short-term variation caused by meteorological or 
hydrological conditions but instead on long-term changes over time. Statistical methodology for 
normalisation stretches from simple ratios, over linear regression models to flexible non-linear 
models. 

3.1 Choice of normalisation period 
When data is normalised the goal is to establish reasonable loads for a situation when 
meteorological or hydrological conditions were at a constant level over time. This is obtained by 
removing the short-term variations created by annual flow conditions, while containing the mean of 
the loads at a level that would be observed for a mean flow 𝑞𝑞�. The mean flow can be the average 
flow over the entire observed time period or for a chosen reference period. For subsequent trend 
test the choice of mean flow level is not important since it is constant over time and therefore does 
not influence the temporal structure.  

If the goal of the analysis is to estimate normalised annual loads at reasonable levels in order to 
compare inputs to receiving waters from different countries or to add up inputs from different 
sources it is important that the same reference periods are used. It could be problematic, for 
example, to use period A for one input series and period B (which is some years shorter) for another, 
if the excluded years were especially dry or wet. The reference period should be chosen to be as long 
as possible to give a relevant estimate of the conditions during an ‘average’ year. Also, using 
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normalisation, it is assumed that flow levels do not change systematically over time, i.e. they do not 
exhibit a trend on their own.  

3.2 Methods 
Normalisation can be conducted using statistical regression models or by simple ratios between loads 
and flow. Three approaches are described and compared below. 

3.2.1. Flow normalisation by ratios 
Loads can be normalised by taking the ratio between the load and the flow rate (Uhlig and Kuhbier, 
2001): 

 

𝑅𝑅𝐿𝐿𝑖𝑖 =
𝐿𝐿𝑖𝑖
𝑞𝑞𝑖𝑖

 

This gives a measure on the concentration scale. To normalise this value to a normal flow year the 
ratio is multiplied by an appropriate long term average or reference value for flow 𝑞𝑞�: 

 

𝑁𝑁𝑅𝑅𝐿𝐿𝑖𝑖 = 𝐿𝐿𝑖𝑖
𝑞𝑞𝑖𝑖
∙ 𝑞𝑞�                                                                                    (A) 

 

3.2.2. Flow normalisation by linear regression  
A more common way to do flow-normalisation is by linear regression, assuming a linear relationship 
between the response variable, here nutrient load, and the flow variable. The model used is then  

𝐿𝐿𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽2𝑞𝑞𝑖𝑖                                                                            (B) 

for years i=1, n. Parameter 𝛼𝛼 is the intercept and 𝛽𝛽 describes the relationship between discharge and 
load. An increase of one unit in discharge leads to a modelled 𝛽𝛽 units increase in load.  

For the model above it is assumed that the mean load is approximately constant over time, which in 
longer time series usually is not the case. To account for this the model can be extended to: 

𝐿𝐿𝑖𝑖 = 𝛼𝛼 + 𝑓𝑓(𝑡𝑡𝑖𝑖) + 𝛽𝛽2𝑞𝑞𝑖𝑖                                                                           (C) 

where 𝑓𝑓(𝑡𝑡𝑖𝑖) represent the mean levels changing over time and 𝛽𝛽2 describes again the relationship to 
loads. The structure of 𝑓𝑓(𝑡𝑡𝑖𝑖) can be either linear, and is than replaced by 𝛽𝛽1𝑡𝑡𝑖𝑖 in the formula, or non-
linear but smooth. See section 4 for details. 

Normalised loads are computed by removing the interannual variation of flow rate.  

𝑁𝑁𝐿𝐿𝑖𝑖 = 𝐿𝐿𝑖𝑖 − 𝛽𝛽𝑞𝑞𝑖𝑖 + 𝛽𝛽𝑞𝑞� 

where 𝑞𝑞� is a flow rate mean. This means that for normalised loads the effect of the annual flow rates 
is removed and the effect of a ‘normal’ year is added to retain correct levels of mean loads (Stålnacke 
and Grimvall, 2001).  
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3.2.3. Flow normalisation by non-linear regression 
The relationship between flow rate and loads could also be assumed to be non-linear. In that case 
the function describing this relationship could be modelled as a smooth or any other kind of non-
linear function 

𝐿𝐿𝑖𝑖 = 𝛼𝛼 + 𝑓𝑓(𝑡𝑡𝑖𝑖) + 𝑔𝑔(𝑞𝑞𝑖𝑖) 

Normalised loads can be produced from such models in a similar way as above but using the mean of 
the function 𝑔𝑔(𝑞𝑞𝑖𝑖) to restore correct levels for the loads. Again, the trend function can be either 
linear or smooth. 

3.2.4. Assumptions in models 
Normalisation models establish a function to describe the relationship between flow and loads and 
use the estimated relationship to remove effects of flow from the series. Since significance testing is 
not an important part of the normalisation step, we do not need data that are normally distributed 
or have equal variance. However, parameter estimation gets more stable if the distribution is at least 
symmetric and if variances are not too different. Since RID data are annual sums of loads their 
distribution is usually rather symmetric.  It is also advisable to conduct normalisation only if there is a 
clear relationship to flow and the data is free from influential data points, see case study 3.3.2 for 
examples.   

A further requirement in statistical models is that data used is independent. This is clearly not 
fulfilled in time series data, since measurements are made on at the same station or area at several 
times points. Annual data, however, exhibit often quite small correlations in time and therefore it is 
not proposed that the estimation of temporal correlation is included in these models.  

3.3 Case study 

3.3.1. Case study: The river X. 
Figure 1 (top) shows that the temporal pattern for flow rate and total nitrogen loads look very 
similar. In Figure 1 (bottom) total nitrogen loads are plotted against the flow rate, indicating a strong 
dependence of load on flow. In fact, the correlation between these two variables is 0.88.  The plot of 
nitrogen loads does, therefore, rather reflect patterns in discharge and not in anthropogenic forcing.  

3 
 



 

Figure 1: Top: Total nitrogen and flow rate against time. Bottom: Total nitrogen against the flow rate. 

 

Normalisation is conducted by the three approaches discussed above. Figure 2 shows the observed 
total nitrogen loads and the normalised loads. The normalised loads from the 3 different models are 
very similar.   
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Figure 2: The original observed total nitrogen loads (grey circles) and normalised loads produced by 
the three methods: ratios (A, blue), linear regression with linear trend (B, red) and linear regression 
with a non-linear trend (C, green). 

Since the dependence of total nitrogen loads on flow rate is strong, the choice of normalisation 
method is less important. With both methods B and C trend lines are estimated simultaneously and 
these are plotted in Figure 3. In this case it can be seen that the linear trend overestimates 
normalised values in the beginning and the end of the series, and underestimates values in the 
middle. The smooth trend line represents normalised loads better. If there is any knowledge about 
changes in emissions around year 2006 the series could also be split there and the two parts could be 
analysed separately. In that case linear trends for both parts are to be preferred , since the separate 
series would be too short to fit non-linear trends (Larsen and Svendsen, 2013). 
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Figure 3: Normalised total nitrogen loads and estimated trend curves:  linear (red) and smooth 
(green) trend. The normalised values as above. 

3.3.2. Case study: The sea area Y. 
Total phosphorus input to Y is presented in Figure 4. In this case there are three data points that 
need special attention. The observations 1990 and 1991 lie on the same level (1.1) and are 
considerably higher than other values with comparable flow rates. The observation in 1999 has a 
very low level of phosphorus at the same time as the flow rate is quite large. To be able to discuss 
effects of these deviating observations we distinguish between the terms outlier and leverage point: 

- outlier: an outlier is a value that lies at a considerably higher or lower value compared to 
other (surrounding) values 

- leverage point: is an outlier that in addition lies at a – for computations or models – crucial 
location 

For this data  we can say that the observations for 1990 and 1991 are leverage points in the trend 
analysis, since they constitute high values at the start of the series and thereby influence trend 
estimates considerably.  The observation in 1999 is not equally influential for the trend 
estimation and can be considered an outlier.  

Regarding the normalisation step the observation in 1999 is a leverage point since it influences 
the slope of the normalisation function (Figure 4, bottom and Figure 5), while the observations in 
1990 and 1991 are outliers.  The analysis below is done in two parts: Part 1 uses all observations 
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and Part 2 presents the analysis when the three observations in 1990, 1991 and 1999 are 
removed.  

Part 1: all observations included 

 

Figure 4: Top: Total phosphorus and flow rate against time. Bottom: Total phosphorus against flow 
rate. 
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Figure 5: The relationship of total phosphorus to flow rate. Black line: the regression fit for all data, 
red line: the regression fit if the leverage point in 1999 is removed (grey point). 

In cases like this it should be determined if the leverage point is correct and why it does not fit into 
the common picture of the flow-load relationship. The exclusion of the point should be considered, 
since it worsens the estimated relationship for the remaining points and, by that, could introduce 
artefacts in the normalised data.  
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Figure 6: The original observed total phosphorus loads (grey circles) and normalised loads produced 
by the three methods: ratios (A, blue), linear regression with linear trend (B, red) and linear 
regression with a non-linear trend (C, green). 

In Figure 6 we also see that there is a larger spread for the normalised values as there has been for 
the data in river X, since the normalisation model is influenced in different ways by how the trend 
function is estimated due to these leverage points. Especially, it should be noted that the normalised 
values of the outlying observations for 1991 and 1999 actually are even more deviating than the 
original observations. 

 

Part 2: influential observations removed 
To illustrate the effect of the 3 influential observations further we repeat the study with data for 
1992-2014 and a missing observation 1999. Data is presented in Figure 7. For this data the flow-load 
relationship is much clearer and the different normalisation methods lead to very similar results 
(Figure 8).  
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Figure 7: Top: Total phosphorus and flow rate against time. Bottom: Total phosphorus against flow 
rate. 3 observations are removed (1990, 1991 and 1999). 
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Figure 8: The original observed total phosphorus loads (grey circles) and normalised loads produced 
by the three methods: ratios (A, blue), linear regression with linear trend (B, red) and regression with 
a non-linear trend (C, green). 

Nonlinear relation between load and flow 
For both series also a non-linear relationship between load and flow was tested. For this a thin plate 
spline fit in a generalised additive model was used. Thin plate spline fits have the advantage that they 
reduce to linear fits if that is the best function to describe the data. For both case studies (for the sea 
area Y  with and without leverage points) the spline fit resulted in a linear fit. 

 

3.4 Recommendation for RID data 
The RID database contains annual load data both for inputs to sea areas and for individual rivers. 
Loads are in their nature, dependent on the predominant runoff conditions during the year and can 
therefore vary strongly between years. If the goal is to compare annual inputs into receiving waters 
over time, short-term variations due to such hydrological conditions are often not interesting and 
impair the possibility to detect trends due to the increased variation in the series. Normalisation is 
therefore recommended if possible, i.e. if the information on flow rate conditions for individual years 
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division by annual flow can be made, especially if time series are short. When regression models are 
used the relationship between flow and load can be assumed linear or non-linear. The uniquely most 
common assumption, which is also recommended for RID data, is the one of a linear relationship. A 
linear relationship is intuitively meaningful due to the way the loads are computed and held for the 
two case studies presented. Non-linear relationships were tested, but did not contribute to better 
model. 

Linear relationships between flow and load are quite robust to individual outliers. Leverage points 
are observations that are outliers in a very influencing position within the data. For data from sea 
area Y we had an observation with a high annual flow, but a rather low annual load. Since this 
observation lies far from the linear relationship fitted for the remaining data it influences the 
outcome substantially and the correctness for such observations should be checked. The 
normalisation step should always be accompanied by a plot of the flow-load relationship.  

4.  Trend analysis 
Trend analysis can be conducted on total loads or on total normalised loads. Since interannual 
variation is removed by flow normalisation it is generally easier to see and statistically detect 
anthropogenic trends in normalised loads.  

4.1 Methods 

4.1.1 Nonparametric trend tests: Mann-Kendall tests and Sen’s slope 
Non-parametric methods relax the distributional assumptions in tests. In the case of Mann-Kendall 
tests (Mann, 1945; Hirsch and Slack, 1984) underlying data does not need to be normally distributed. 
Instead computations are made on the ranks of observations, which is the same as using signs for 
differences between pairs of observations:  

𝑀𝑀𝑀𝑀 = �𝑠𝑠𝑔𝑔𝑠𝑠�𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗�
𝑗𝑗<𝑖𝑖

 

where sgn(x) is the sign function 

𝑠𝑠𝑔𝑔𝑠𝑠(𝑥𝑥) = �
1,      𝑖𝑖𝑓𝑓 𝑥𝑥 > 0
0,      𝑖𝑖𝑓𝑓 𝑥𝑥 = 0
−1,    𝑖𝑖𝑓𝑓 𝑥𝑥 < 0

. 

The resulting statistics MK is used to test if the observed trend is statistically significant or not. Mann-
Kendall tests can detect linear or monotone trends. 

In addition Sen’s slope (or Theil-Sen slope, Theil, 1959, Sen, 1968, Gilbert, 1987)) can be computed to 
quantify the average yearly increase or decrease in the series. Sen’s slope is the median annual 
change over the entire time period. It does not say anything about the shape of the trend.  

Partial Mann-Kendall tests 
If normalisation by a model is not possible or not chosen, an adjustment for flow can be made within 
the Mann-Kendall test using the so-called partial Mann-Kendall test (Libiseller and Grimvall, 2002). 
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For this the Mann-Kendall statistics MK for the load is adjusted for the Mann-Kendall statistics of 
flow, leaving a test statistics for the part of the trend that cannot be explained by changes in flow.  

Assumptions in the analysis:  
Data does not need to follow any specific distribution, but observations do still need to be 
independent of each other. Otherwise, if observations are positively correlated, p-values will be too 
low leading to an increased risk for falsely positive tests. The p-value of the test is based on a normal 
distribution which holds for the MK statistics if there are at least 10 years of annual data.  

4.1.2 Linear trends: Linear regression 
Linear regression can be used if the temporal development in the series is approximately linear. The 
model fitted is  

𝐿𝐿𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1 ∙ 𝑡𝑡𝑖𝑖 

The slope estimate 𝛽𝛽1 gives the magnitude of the linear trend and can be tested to see if the change 
in time is significant or not.   

Percentage change 
The estimated amount of increase or decrease as a percentage of the initial levels can be computed 
from the estimated parameter �̂�𝛽1  or using predicted values from the model: 

𝑃𝑃𝐶𝐶𝑙𝑙𝑖𝑖𝑛𝑛 𝑟𝑟𝑟𝑟𝑟𝑟 = 100 ∙
(𝑠𝑠𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡 − 𝑒𝑒𝑠𝑠𝐿𝐿)

𝑠𝑠𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡
 

where start indicates the reference value of the series, often the modelled load for the first year in 
the series and end the modelled load for the last year. 

Assumptions in the analysis:  
Traditional linear regression assumes normally distributed errors, i.e. residuals in the model should 
be approximately normal. Furthermore observations need to be independent and variation around 
the regression line needs to be approximately constant.  If these assumptions are violated the p-
values for the trend tests cannot be relied on. 

4.1.3 Non-linear trend: Estimation of smooth curves 
If trends cannot be assumed to be linear some version of smoother can be used. Typical choices are 
loess or spline smoothing (Hastie and Tibshirani, 1986; Wood, 2006; Cleveland and Devlin, 1988). 
Generally the model can be written as  

𝐿𝐿𝑖𝑖 = 𝑓𝑓(𝑡𝑡𝑖𝑖) 

where 𝑓𝑓( ) is any type of smooth function, meaning that the function is governed by observed levels 
at the same time as the modelled mean is not allowed to change too quickly between years.  

Percentage change 
Smoothers are non-parametric methods, in the meaning that they do not estimate parameters such 
as intercept or slope, and therefore significance testing of trends is more difficult. As before 
modelled start and end values can be used to compute the percentage change over the entire time 
period:  
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𝑃𝑃𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 100 ∙
(𝑠𝑠𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡 − 𝑒𝑒𝑠𝑠𝐿𝐿)

𝑠𝑠𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡
 

Assumptions in the analysis 
Model outputs are not used for statistical testing in this case and therefore there is no requirement 
for data to be independent or normally distributed. However, estimates are usually more stable as 
data distributions are more symmetric and independent. 

4.1.4 Percentage change 
As described above percentage change in the time series can be computed from modelled values. In 
the same manner percentage change can be computed directly from the normalised (or non-
normalised) values, i.e 

𝑃𝑃𝐶𝐶𝑛𝑛𝑠𝑠𝑟𝑟𝑠𝑠 = 100 ∙
(𝑠𝑠𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡 − 𝑒𝑒𝑠𝑠𝐿𝐿)

𝑠𝑠𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡
 

where start and end stand for the normalised values for the first and last year.   

4.2 Case study 

4.2.1 Case study: The river X. 

Mann-Kendall test and Sen’s slope 
Different normalisation procedures for the river X resulted in very similar normalised time series for 
total nitrogen. Therefore it is not essential which method is used to normalise the series. Here we 
use normalised data by the linear regression approach (B). As seen from the p-value in Output 1 the 
trend is highly significant (p-value: 0.0000125). The Sen’s slope is estimated to be -0.1975 indicating a 
median decrease of 0.1975 units per year. Note that no information is given about if the decrease is 
constant over time or the result of a sudden drop. Therefore it is necessary to combine Mann-Kendall 
tests with plots over normalised values.  

Output 1: The results for the non-parametric Mann-Kendall trend test and Sen’s slope for total 
nitrogen in river X using the rkt package in R. P-value in yellow, Sen’s slope in green.  

Standard model 
Tau = -0.6266667 
Score =  -188 
var(Score) =  1833.333 
2-sided p-value =  1.257464e-05 
Theil-Sen's (MK) or seasonal/regional Kendall (SKT/RKT) slope= -0.1974725 
 

Trend analysis by linear regression 
If a linear trend can be assumed, trend testing can be done by linear regression. In that case it is best 
to combine the normalisation and trend testing step in the same model, which has been shown to 
work better than stepwise approaches.  

In Output 2 we can see that the trend in the data is highly significant (p-value: 0.00000098) and the 
mean annual decrease is 0.1982, i.e. very similar results to the nonparametric test and slope.  

14 
 



 

Output 2: Results of a linear regression including the normalisation using the lm function in R. p-value 
in yellow and slope estimate in green. 

Call: 
lm(formula = TotN ~ year + flowRate, data = riverX) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.55262 -0.68161 -0.02781  0.63740  2.40213  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  3.966e+02  5.893e+01    6.73 9.17e-07 *** 
year        -1.982e-01  2.958e-02   -6.70 9.81e-07 *** 
flowRate     2.937e-04  1.760e-05   16.68 5.69e-14 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.011 on 22 degrees of freedom 
Multiple R-squared:  0.9272,    Adjusted R-squared:  0.9206  
F-statistic: 140.2 on 2 and 22 DF,  p-value: 3.024e-13 
 
 
Since we from the normalisation study already know that the linear trend assumption does not hold 
for river X (see also Figure 9), the mean annual decrease should not be interpreted as an ongoing 
decrease of this magnitude, but should again be judged in connection with the plot of normalised 
data, which indicates rather constant levels before 2005 and a steeper drop thereafter.  
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Figure 9: Normalised total nitrogen loads and linear trend line for river X. 
 
The percentage of decrease over the entire time period can be computed from the normalised values 
for 1990 and 2014:  
 
 𝑃𝑃𝐶𝐶𝑛𝑛𝑠𝑠𝑟𝑟𝑠𝑠 = 100 ∙ 10.86223−15.97286

15.97286
= −31.99573 

 
or from the modelled values of the linear trend model for the same years: 
  

𝑃𝑃𝐶𝐶𝑙𝑙𝑖𝑖𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟 = 100 ∙
12.41485 − 17.17067

17.17067
= −27.69733 

 
Here, however, it must be noted that the estimation for the modelled values is influenced by the 
misspecification of the model. The trend is not linear and the estimation of percentage change for 
the entire time period is therefore less reliable.  
 

Trend analysis by non-linear smooth regression 
Also in the smooth trend model both trend estimation and normalisation can be done at the same 
time. Fitting a smooth function to describe trends in time allows more flexible structures over time 
(Figure 10). This comes with the drawback that there is no parameter in the model that can be used 
to test if the trend is significant. Normalised values from this model can be trend tested using Mann-
Kendall tests to compensate for this.  

Output 3: Output from the smooth model fitted by the gam function in the mgcv package in R.  
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Family: gaussian  
Link function: identity  
 
Formula: 
TotN ~ s(year) + flowRate 
 
Parametric coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 3.416e-02  5.896e-01   0.058    0.954     
flowRate    2.913e-04  1.137e-05  25.614   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
          edf Ref.df     F  p-value     
s(year) 3.177  3.928 38.63 2.27e-14 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =   0.97   Deviance explained = 97.5% 
GCV = 0.49143  Scale est. = 0.38966   n = 25 
 

 
 

 
Figure 10: Normalised values and trend curve from the smooth model for river X.. 
 
Percentage changes for the entire time period can again be computed using normalised or modelled 
values. Since normalised values produced from the different models are very similar also the 
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estimated percentage change for these values is very similar to the ones produced by the linear 
model: 
 

𝑃𝑃𝐶𝐶𝑛𝑛𝑠𝑠𝑟𝑟𝑠𝑠 = 100 ∙
10.888− 15.958

15.958
= −31.769 

 
The smooth model is not bound by any a priori assumptions of the trend and therefore the modelled 
values are more reliable than from the linear regression model. The percentage change for the 
modelled values is computed as:  
 

𝑃𝑃𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 100 ∙
10.978− 16.181

16.181
= −32.152 

 

4.2.2 Case study: the sea area Y. 
As seen in the normalisation step, results for Y are influenced by 3 observations, which should be 
considered and quality checked. If the decision is to remove these three observations the 
normalisation results are no longer dependent on model choice. Also the trend analysis is influenced 
by the outlying observations, especially by the two initial data points in 1990 and 1991. Below we see 
the results when all observations are included (Part 1) and how results change without these 
observations (Part 2). The corresponding linear and nonlinear trend curves are given in Figure 11 (all 
observations) and Figure 12 (without influential observations). 

 

Figure 11: Normalised total nitrogen loads and estimated trend curves:  linear (red) and smooth 
(green). The normalised values as presented in the normalisation section. 
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Figure 11 shows that the smooth trend curve is more easily influenced by the outlying observations, 
especially the leverage points in the beginning of the series, but also the linear regression line is 
affected (many points in the beginning of the series lie below the regression line, and most points in 
the end of the series lie above). In Figure 12 the estimated trend curves are more stable and do not 
show any trend. The smooth curve adapts more readily to changes in mean values that persist for 
some years.  

 

Figure 12: Normalised total nitrogen loads and estimated trend curves:  linear (red) and smooth 
(green). The normalised values as presented in the normalisation section.  

 

Mann-Kendall test and Sen’s slope 

Part 1: all observations 
In Table 1 we see that the trend test result is slightly dependent on the choice of normalisation 
method. However all lead to the conclusion that there is no significant trend in the data.  In this case 
the non-parametric nature of the Mann-Kendall test is an advantage, since it is computed on ranks of 
observations instead of original observations and this lowers the influence of the strongly deviating 
observations in the beginning of the series. Since the remaining part does not show any clear further 
downward trend the results are non-significant.  

Table 1: Results of the Mann-Kendall test for the three types of normalised data 
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 Ratio normalised linear trend normalised smooth trend 
normalised 

MK trend test: p-value 0.31 0.41 0.26 
Sen’s slope -0.0026 -0.0039 -0.0028 
 

Part 2: influential observations removed 
When the three deviating observations are removed the results for the trend tests do not vary much 
for different normalisation methods and results show clearly that there is no significant trend in the 
data. Results are given in Table 2. 

Table 2: Results of the Mann-Kendall test for the three types of normalised data 

 Ratio normalised linear trend normalised smooth trend 
normalised 

MK trend test: p-value 0.88 0.83 0.79 
Sen’s slope -0.0004 -0.0009 -0.0007 
 

Trend analysis by linear regression 

Part 1: all observations 
If trend tests are done by linear regression we see that neither the linear trend nor the relationship 
between flow and load is significant (Output 3). Only about 10% of all variation in phosphorus load 
can be explained by this model. The estimated trend curve is given in Figure 11. 

Output 3: Results of a linear regression including the normalisation using the lm function in R. p-value 
in yellow and slope estimate in green, R2 value in blue. 

Call: 
lm(formula = mean1 ~ year + flow1, data = seaareaY) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.53138 -0.08531  0.01247  0.08643  0.34564  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)   
(Intercept)  1.434e+01  1.038e+01   1.382   0.1816   
year        -6.992e-03  5.183e-03  -1.349   0.1917   
flow1        2.726e-05  1.520e-05   1.794   0.0872 . 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1792 on 21 degrees of freedom 
Multiple R-squared:  0.1933,    Adjusted R-squared:  0.1165  
F-statistic: 2.516 on 2 and 21 DF,  p-value: 0.1048 
 
The computed percentage changes are quite high since they are strongly influenced by the high value 
in 1990. Using modelled values of the trend curve instead of normalised values lowers this effect 
somewhat. The percentage changes need however to be interpreted together with the plots over the 
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data and the non-significant trend tests made on the data. Hence, the conclusion must be that there 
is a high uncertainty about the magnitude of decrease in sea area Y.   
For normalised values: 
 
 𝑃𝑃𝐶𝐶𝑛𝑛𝑠𝑠𝑟𝑟𝑠𝑠 = 100 ∙ 0.732−1.107

1.107
=  −33.89 

 
For modelled values from the linear regression model: 
 
 𝑃𝑃𝐶𝐶𝑙𝑙𝑖𝑖𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟 = 100 ∙ 0.6385166−0.8063325

0.8063325
= −20.81224 

 

Part 2: influential observations removed 
As already noticed before the relationship between flow and load becomes clearer when the three 
deviating observations are removed. This leads to a stronger estimated relationship between flow 
and load in the model at the same time as the trend estimate gets smaller. For this data 77% of the 
variation can be explained by the model (Output 4). The trend curve was shown in Figure 12. 

Output 4: Results of a linear regression including the normalisation using the lm function in R. p-value 
in yellow and slope estimate in green, R2 value in blue. 

Call: 
lm(formula = mean1 ~ year + flow1, data = seaareaY) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.11164 -0.03852  0.01459  0.04689  0.10346  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  6.985e-01  4.418e+00   0.158    0.876     
year        -3.450e-04  2.204e-03  -0.157    0.877     
flow1        5.025e-05  6.066e-06   8.285 1.48e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.06662 on 18 degrees of freedom 
Multiple R-squared:  0.7925,    Adjusted R-squared:  0.7695  
F-statistic: 34.38 on 2 and 18 DF,  p-value: 7.123e-07 
 
 
Since the initial high values are removed this has a substantial effect on the computations of 
percentage change, both for the normalised values (3.34%) and for the modelled values (-1.07%). 
The percentage change is now computed with 1992 as start year and 2014 as end year.  
For normalised values: 
 
 𝑃𝑃𝐶𝐶𝑛𝑛𝑠𝑠𝑟𝑟𝑠𝑠 = 100 ∙ 0.721−0.698

0.698
=  3.34 

 
For modelled values from the linear regression model: 
 
 𝑃𝑃𝐶𝐶𝑙𝑙𝑖𝑖𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟 = 100 ∙ 0.705−0.713

0.713
= −1.07 
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Trend analysis by non-linear smooth regression 

Part 1: all observations 
Similar results as for the linear regression are obtained by the non-linear smooth regression. The 
trend curve was shown in Figure 11. Since the smooth curve, however, adapts more easily to single 
or small groups of observations the modelled value for 1990 is higher than for the linear regression 
and therefore the percentage change is also estimated to be higher, but still less than for normalised 
values. 

For normalised values: 

 𝑃𝑃𝐶𝐶𝑛𝑛𝑠𝑠𝑟𝑟𝑠𝑠 = 100 ∙ 0.729−1.109
1.109

=  −34.255 
 
For modelled values from the smooth regression model: 
 
 𝑃𝑃𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 100 ∙ 0.727−0.984

0.984
= −26.074 

 

Part 2: 3 observations removed 
Again removing the 3 observations leads to no changes in the levels for total phosphorus loads. The 
trend curve was shown in Figure 12. The estimates are 0.79% and 2.1% , and far from statistically 
significant (as shown with Mann-Kendall) or practically interesting. 

For normalised values: 

 𝑃𝑃𝐶𝐶𝑛𝑛𝑠𝑠𝑟𝑟𝑠𝑠 = 100 ∙ 0.72−0.705
0.705

=  2.1 
 
For modelled values from the smooth regression model: 
 
 𝑃𝑃𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 100 ∙ 0.701−0.696

0.696
= 0.79 

 

4.3 Recommendation for RID data 
When time series get longer it is usually a disadvantage to assume strict functional forms for the 
shape of the trend. A linear trend, for example, suggests that the decrease or increase is constant 
over the entire time period, which is often not the case, as seen from the case study on river X. The 
RID database contains 25 years of data and therefore the trend models should be flexible and fitted 
by a smooth curve. Smoothers have been used for trend analysis for a long time and there are 
several software packages designed for environmental data, e.g. the RTrend package or the 
MULTITREND program for Excel (Grimvall et al., 2009). Here, similar models within the general 
additive models framework (GAM, mgcv package in R (Wood, 2006) ) were used to fit smooth trends.  

Using smooth trends to visualise and analyse trends comes with the drawback that significance 
testing is not readily available. Changes between the start and the end of the series can be presented 
as percentage changes. If these values are predicted from the model significance tests could be 
based on the model uncertainty, but this is not discussed here. Instead, the results from the smooth 
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trend fitting and the computed percentage change should be presented together with a non-
parametric trend test on normalised data. For this the Mann-Kendall test is recommended.  

Computing percentage change from the beginning to the end of a series can be done for normalised 
data or for modelled values. Generally modelled values are more stable, since they are less 
influenced by other confounding factors that were not included in the model, e.g. meteorological or 
hydrological influences other than flow. If other factors are neglectable the results for the two 
approached are expected to be very similar.  

5.  Breakpoint detection 
The analysis of break points in a series can have two different starting points:  

a) using the knowledge that the series is interrupted due to any planned or unplanned event within 
the sampling period. Examples of such events could be the addition or removal of substantial point 
sources or the change of methodology or change of accredited laboratory used to make the analyses.  

b) not using any a priori knowledge in order to find so far unknown reasons for a change in mean 
level or other data characteristics. Example of such reasons could be shifts in the ecological systems 
or unknown problems with measurement equipment.  

The presence of breaks in series is an important issue in trend analysis, since abrupt changes in levels 
can be mistaken as trends (e.g von Brömssen et al., 2017). Available methods are described and 
discussed below.  

5.1 Methods 

5.1.1 Methods that have a priori information about the location of a break point 
If there are known reasons that can result in a level shift in time series this knowledge can be used to 
improve the trend analysis.  

A general approach is to include the time point of change in the model used to describe the trend. 
This is possible if e.g. a linear or smooth regression model is used. It needs, however, be noticed that 
it usually is problematic to estimate a level shift at the same time as a trend estimate, since these 
two estimates influence each other and this procedure can lead to an underestimation of the 
magnitude of the level shift and an overestimation of the trend magnitude or vice versa. Clearly, this 
is still better than to ignore shifts in level.  

Another possibility is to analyse different time periods separately from each other  (Larsen and 
Svendsen, 2013). For RID data this is probably the better approach, since it demands less modelling 
effort and can be conducted as long as there are reasonably long series before and after a break 
point.  

For both approaches above the time point of changes needs to be known. At this stage no 
information is present in the RID database about events that could lead to breaks in single or 
multiple series.  
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5.1.2 Methods that have NO a priori information about the location of a break point 

CUSUM methods 
CUSUM methods (McGilchrist and Woodyer, 1975) are sequential methods computing the 
cumulative sum of the response variable over time. By this a plot is created from which it can be seen 
if the level of a series deviates from earlier levels. CUSUM plots are mainly used in industry for 
quality assurance of production processes, assuming that a variable lies on a constant level until a 
problem arises. The deviation from the constant level is observed in the CUSUM plot after a number 
of time steps. The plots are also used in environmental assessment, but are less useful there due to 
the presence of trends, high inter-annual variation and possible outlying observation due to other 
reasons than process changes. CUSUM plots can however be used in dynamic adaptive monitoring 
for specified systems, i.e. by defining a threshold that should not be passed for a particular lake or 
river. Then the goal is to quickly detect and evaluate sudden changes in mean levels (Mac Nally and 
Hart, 1997). 

Pettitt’s test 
Pettitt’s test (Pettitt, 1979) is used to determine the location of a break point in a series. The test 
assumes constant levels before and after this breakpoint and the computation of the test is based on 
ranked observations rather than observed values, which makes it more robust against outliers in the 
series. Pettitt’s test is used retrospectively, i.e. it is usually not used to detect deviations in real time, 
but in a follow-up analysis. A simulation study (von Brömssen et al., 2017) 
 showed that Pettitt’s test often indicate significant break points at location where no break was 
simulated and generally works badly when the series additionally includes a trend.  

5.2 Case study: Cadmium loads in sea areas Z1 and Z2 
Cadmium loads to the  sea area  Z1 drop dramatically in 2003, which is easily seen in the plotted data 
(Figure 13, top). A CUSUM method can correctly locate this break point (Figure 13, bottom).  Similarly 
a single high observation in cadmium loads in sea area Z2 is identified as break point by CUSUM 
(Figure 14). In both cases the plot of the original data gives more information than the CUSUM 
results. For the data for Z1 quality needs to be assured, since the break comes after a two-year 
period with no observations and at the same time as flow observations are started to be reported. 
For Z2 we are looking at an outlying observation, since no data is available for the time period before 
1990. Even for this quality needs to be assured. 

For the plots below the efp function in the package strucchange in R is used. This function allows 
missing values in data series. 
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Figure 13: Cadmium loads in sea area Z1. A dramatic reduction in 2004 after a period of 2 years 
without data (Top). The break is detected and correctly located by a CUSUM method, when the black 
line crossed the red line (Bottom).  
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Figure 14: Cadmium loads in sea area Z2. A single high value is observed in 1990 (top) and identified 
as break point by CUSUM (bottom). 

Pettitt’s test could not be used for the  Z1cadmium loads, since this series has missing values.  

For the  Z2 cadmium loads Pettitt’s test suggests a highly significant break after 11 years (Output 5), 
which is hard to interpret from the plot of the data (Figure 15). 

Output5: The Pettitt’s test computed by the trend package in R. P-value in yellow, indicated time 
point of change in green. 
 
Pettitt's test for single change-point detection 
 
data:  seaareaZ2$mean1 
K = 154, p-value = 0.0003148 
alternative hypothesis: true change point is present in the series 
sample estimates: 
probable change point at tau  
                          11 
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Figure 15: The time series of cadmium loads to sea area Z2  with the break point at year 2000 
suggested by the Pettitt test. 

5.3 Recommendation for RID data 
OSPAR RID data consist of about 25 years of annual loads for a number of rivers and sea areas. 
Generally it cannot be expected that system changes without a priori knowledge could be identified 
on data with this aggregation levels unless the effect is extremely strong and can be clearly observed 
visually. Furthermore none of the available methods is really appropriate for RID data: CUSUM works 
best adaptively while Pettitt’s test works poorly even on long series, especially if trends are present 
(von Brömssen et al., 2017). In shorter series, like RID data, tests will, most likely not be able to 
identify any break points unless there are outlying observations and even then they seem to suggest 
breaks at unreasonable time points.  

Further it must be noticed that many of the break point detection methods in R do not support the 
presence of missing values in the data. This is true, for example, for the local.trend function in the 
pastecs package (a CUSUM method, also used in the TTAinterfaceTrendAnalysis), the cusum function 
in the qcc package and the Pettitt’s test function pettitt in the trend package. The efp function in the 
package strucchange can, however, be used to compute the CUSUM method if missing values are 
present.  
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If the goal of a breakpoint analysis is to find a time point where a trend is starting or levelling out the 
best approach in time series of RID type is to rely on visual inspection, for example, enhanced by a 
smooth trend curve fit and combined with knowledge about the sources and processes behind the 
data.  

6. Other considerations 
The number of observations used to compute the annual mean is available in the RID database. If the 
number of observations varies within a series this information could be used to define the 
uncertainty around the computed mean values. This could be incorporated in a regression analysis 
framework.  In most cases, however, the number of available observations is expected to be the 
same within the series and therefore this is not studied further in this report. 

If there are several inputs to the same water body it could be interesting to sum the inputs together 
to quantify the total riverine input to this water body. This can be done for the reported loads or for 
normalised loads. When using normalised loads it is, however, necessary to define a common 
reference time period to compute the mean flow on, so that normalised inputs are on a comparable 
level. Even if common reference time series are defined it must be kept in mind that countries 
bordering to the same water body can have large geographical distances and therefore can have 
different meteorological conditions  and therefore reference  time series, again, need to be chosen 
to be as long as possible to receive an average flow that is representative. 

 

 

7.  Conclusions 
RID annual load data is reported by participating countries since 1990. The loads are computed from 
observed (monthly or seasonal) concentration and weighted by observed flow rate. Therefore annual 
loads are often highly dependent on the predominant flow processes. If the goal of an analysis is to 
compare input to sea areas over time the interannual variation due to changed flow is not interesting 
and should be removed. This process is called normalization. Normalisation is often based on linear 
regression model assuming a linear relation between loads and flow and such models have shown to 
work well for RID data. The exact form of the normalisation model is often not important as long 
normalization is conducted. It is, however, important to be aware of the influence of individual 
deviating observations on the model. 

Normalised data is further analysed to compare input from rivers or to sea areas over time. For this 
trend analysis smooth trend functions should be assumed, since completely linear trends are seldom 
observed in time series as long as RID data.  Many functions for fitting smooth trends have also the 
property that they simplify to linear trends if that is the best fitting function.  

When smooth functions are fitted as trend one disadvantage is that it is not obvious how to test if 
the trend is significant. The question if there is a significant up- or downward trend can be answered 
by a follow-up non-parametric trend test, e.g. a Mann-Kendall test. Together with the result from the 
Mann-Kendall test an estimate for the Theil-Sen’s slope is often received and can be used to quantify 
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the median change per year.  Another possibility is to estimate the percentage change in levels for 
the last year compared to levels during the first year. Percentage change estimation is clearly very 
dependent on which levels are observed during the first year and therefore it needs to be certified 
that these levels are correct. A more robust version is to use modelled values for the first and last 
year using the trend analysis model. Even though also modelled values are influenced by outlying 
observations in the beginning and the end of the series these values are affected by a lesser degree.  

Breakpoint analysis is sometimes suggested in connection to trend analysis. Typical breakpoint 
detection method search for potential break over the entire series, but have a higher probabilities to 
find such breaks near the middle of the series. In short series with a lot of variation, such as RID data, 
breakpoint detection methods can lead to either no significant results, since series are too short, or 
to significant breaks due to individual outlying observations. Furthermore many of the available 
methods only work on series without missing data. For RID data the application of breakpoint 
detection methods is not recommended. Instead, if there are reason to believe that the series can be 
split in two parts due to added or removed point sources, changes in analysis methods or other 
drastic changes in the series, normalisation and trend analysis should be done separately for the two 
parts.  
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Appendix A: R code for the extraction and analysis of RID data 
 

Extraction of data from the RID database 
Data from the RID database are saved as text files, containing loads and flow data respectively. Files 
available are called: 

for loads: RIDdatabase_utdragnovember2016.txt 

for flow: Flow rate november2016.txt).  

RID <- read.table("Z:\my 
documents\Projekt\HaV\faktablad\Analysis\RIDdatabase_utdragnovember2016.txt
",sep="\t", na.strings="", header=TRUE) 

RIDflow <- read.table("Z:\\my 
documents\\Projekt\\HaV\\faktablad\\Analysis\\Flow rate 
november2016.txt",sep="\t", na.strings="", header=TRUE) 

In the database values for the mean, as well as lower and upper levels are stored as text variables 
and need therefore be converted to numerical values before analysis 

RID$mean1<-as.numeric(as.character(RID$mean)) 
RID$lower1<-as.numeric(as.character(RID$lower)) 
RID$upper1<-as.numeric(as.character(RID$upper)) 
RIDflow$flow1<-as.numeric(as.character(RIDflow$flowRate)) 
 
 

Data stored in the RID database is ordered hierarchically from Country to ‘main area’ to individual 
rivers. Both sea areas and rivers from different countries can have the same areaID.  To extract 
relevant data it is therefore necessary to select the country and within the country the correct areaID 
and ‘Input table’, where available input tables are 

Table 5a: Sewage effluents to the maritime area 
Table 5b: Industrial effluents to the maritime area 
Table 5c: Total direct discharges to the maritime area 
Table 6a: Main riverine inputs to the maritime area 
Table 6b: Inputs of tributary rivers to the maritime area 
Table 6c: Total riverine inputs to the maritime area (For France: Table 6c represents 
unmonitored areas) 

The examples here have no connection to the analysis presented in the main text except that the 
same script was used for those analysis. 

Example 1: Extracting total phosphorus loads (determinantID=12) for sea area 183  in the UK 

RID_183_TP<-subset(RID, determinandID==12 & country== "UK" & areaID 
== 183 & Input_Table =='6c') 

Extracting flow data for the same area: 

RIDflow_183<-subset(RIDflow, country =="UK" & areaID == 183) 
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In case mean values are missing in the database, but lower and upper bounds are given the mean is 
computed as the mean of lower and upper 

RID_183_TP$mean1[is.na(RID_183_TP$mean1)]<-
(RID_183_TP$lower1[is.na(RID_183_TP$mean1)]+RID_183_TP$upper1[is.na(
RID_183_TP$mean1)])/2 

Load and flow data is combined 

RID_183<-merge(RID_183_TP, RIDflow_183, by.x="year", by.y="year", 
sort=TRUE, all=TRUE) 

Only relevant variables are kept in the dataset: year, mean load, flow, lower and upper bound and 
the dataset is renamed to RIDn (the code after renaming the data set can be used for any sea area or 
river). 

RID_183 <- subset(RID_183, select = c(year, mean1, flow1, lower1, 
upper1)) 

Example 2: Extracting total nitrogen loads (determinantID=11) for river 98 in  Sweden):  

Data for a river are extracted by determining the areaID for the river and selecting Input Table 6a. 
The remaining part corresponds to the selection of data for a sea area.  

RID_98_TN<-subset(RID, determinandID==11 & country == "Sweden" & 
areaID == 98 & Input_Table =='6a') 

RIDflow_98<-subset(RIDflow, country == "Sweden" & areaID == 98) 

RID_98_TN$mean1[is.na(RID_98_TN$mean1)]<-
(RID_98_TN$lower1[is.na(RID_98_TN$mean1)]+RID_98_TN$upper1[is.na(RID
_98_TN$mean1)])/2 

RID_98<-merge(RID_98_TN, RIDflow_98, by.x="year", by.y="year", 
sort=TRUE, all=TRUE) 

RID_98 <- subset(RID_98, select = c(year, mean1, flow1, lower1, 
upper1)) 

 

Plotting data 
The following code can be used for any river of sea area. Therefor the dataset is renamed to the 
general RIDn. The first part produces plots as presented in Figure 1 and 4. 

RIDn<-RID_183 

or 

RIDn<-RID_98 
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Plots over total loads and flow and their relationship are made: 

par(lend=1) 

par(mfrow=c(2,1)) 

par(mar=c(5,4,2,4)) 

plot(RIDn$year, RIDn$mean1, xlab="Year", type="h", lwd=10, 
ylab="Total phosphorus", xlim=c(1989, 2015), col="chocolate3") 

par(new=T) 

plot(RIDn$year, RIDn$flow1, axes=F, ylab="", type="l", lwd=4, 
xlim=c(1989,2015),xlab="", col="blue") 

axis(side = 4, line=0, col="blue", lwd=2, col.axis="blue") 

mtext(side = 4, line=2, 'Flow', col="blue" ) 

plot(RIDn$flow1, RIDn$mean1, xlab="Flow Rate", ylab="Total 
phosphorus", cex=1.2, pch=16 ) 

 

Removal of deviating observations or subsetting a series 
If some observations should be removed at this stage of the analysis it can easily be done making a 
subset of the data, e.g. by removing the year 1990-1992. 

RIDn<-subset(RIDn, year!=1990 & year!=1991 & year!=1992) 

Flow normalisation and trend analysis 
For the normalisation model the mgcv package is used and for computing Mann-Kendall tests the rkt 
package is used. Both packages need to be installed in R (Packages -> Install packages) and invoked: 

library(mgcv) 

library(rkt) 

The flow reference value is needed to bring normalised values on the correct level. Here the mean of 
the available flow data for this series is used. 

flowmean<-mean(RIDn$flow1, na.rm=T) 

The normalisation model is given in mod_G with a smooth trend and a linear relationship to flow. 
Normalised values are computed from the model: 

par(mfrow=c(1,1)) 

mod_G<-gam(mean1~s(year)+flow1, data=RIDn) 

RIDn$normalised_G<-RIDn$mean1-
mod_G$coefficients["flow1"]*RIDn$flow1+mod_G$coefficients["flow1"]*f
lowmean 
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A plot over original and normalised values including a trend line is produced by the following code: 

plot(RIDn$year, RIDn$mean1, xlab="Year", ylab="Observed and 
normalised total phosphorus", xlim=c(1989, 2015), cex=1.2, pch=16) 

points(RIDn$year, RIDn$normalised_G, xlab="Year", cex=1.5, pch=18, 
col="red") 

lines(RIDn$year,predict(mod_G, 
newdata=data.frame(year=RIDn$year[RIDn$flow1!="NA"], 
flow1=flowmean)), col="red") 

 

The Mann-Kendall test is computed on the normalised values by: 

rkt(RIDn$year, RIDn$normalised_G) 

 

Computation of percentage change 
Percentage change is computed using normalised (pcnorm) and modelled (pcmod) values. For 
example, if a series is observed between 1993 and 2014: 

startyear=1993 

endyear=2014 

start<-RIDn$normalised_G[RIDn$year==startyear] 

end<-RIDn$normalised_G[RIDn$year==endyear] 

pcnorm=100*(end-start)/start 

 

start<-predict(mod_G, newdata=data.frame(year=startyear, 
flow1=flowmean)) 

end<-predict(mod_G, newdata=data.frame(year=endyear, 
flow1=flowmean)) 

pcmod=100*(end-start)/start 

Write: 

pcnorm 

pcmod 

to print the results to the console. 

 

34 
 


	Contents
	1. Introduction
	2. The RID database
	2.1 Reported loads and river flow

	3. Flow normalisation
	3.1 Choice of normalisation period
	3.2 Methods
	3.2.1. Flow normalisation by ratios
	3.2.2. Flow normalisation by linear regression
	3.2.3. Flow normalisation by non-linear regression
	3.2.4. Assumptions in models

	3.3 Case study
	3.3.1. Case study: The river X.
	3.3.2. Case study: The sea area Y.
	Part 1: all observations included
	Part 2: influential observations removed

	Nonlinear relation between load and flow

	3.4 Recommendation for RID data

	4.  Trend analysis
	4.1 Methods
	4.1.1 Nonparametric trend tests: Mann-Kendall tests and Sen’s slope
	Partial Mann-Kendall tests
	Assumptions in the analysis:

	4.1.2 Linear trends: Linear regression
	Percentage change
	Assumptions in the analysis:

	4.1.3 Non-linear trend: Estimation of smooth curves
	Percentage change
	Assumptions in the analysis

	4.1.4 Percentage change

	4.2 Case study
	4.2.1 Case study: The river X.
	Mann-Kendall test and Sen’s slope
	Trend analysis by linear regression
	Trend analysis by non-linear smooth regression

	4.2.2 Case study: the sea area Y.
	Mann-Kendall test and Sen’s slope
	Part 1: all observations
	Part 2: influential observations removed

	Trend analysis by linear regression
	Part 1: all observations
	Part 2: influential observations removed

	Trend analysis by non-linear smooth regression
	Part 1: all observations
	Part 2: 3 observations removed



	4.3 Recommendation for RID data

	5.  Breakpoint detection
	5.1 Methods
	5.1.1 Methods that have a priori information about the location of a break point
	5.1.2 Methods that have NO a priori information about the location of a break point
	CUSUM methods
	Pettitt’s test


	5.2 Case study: Cadmium loads in sea areas Z1 and Z2
	5.3 Recommendation for RID data

	6. Other considerations
	7.  Conclusions
	8.  References:
	Appendix A: R code for the extraction and analysis of RID data
	Extraction of data from the RID database
	Plotting data
	Removal of deviating observations or subsetting a series
	Flow normalisation and trend analysis
	Computation of percentage change


