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According to the biological species concept, species are defined as groups of 

interbreeding populations reproductively isolated from other such groups. Hybrid seed 

lethality is a common reproductive barrier between plant species. Most frequently its 

developmental cause lies in the endosperm, but its molecular basis is not well 

understood. Hybrid seed defects differ depending on the cross direction, suggesting 

parent-of-origin-specific effects at work. Therefore, genomic imprinting, leading to the 

parent-of-origin-specific expression of genes in the endosperm, has been proposed to 

underlie hybrid seed lethality. Nevertheless, this hypothesis remains to be thoroughly 

tested. 

Therefore, the main goal of this thesis was to explore the link between genomic 

imprinting and hybrid seed lethality in Capsella. The first part of this work aimed at 

characterizing the imprintome (the set of imprinted genes) of Capsella rubella and to 

compare it with the imprintome of the closely related species Arabidopsis thaliana (10-

14 million years apart). This revealed that the imprintomes of both species are poorly 

conserved. Nevertheless, the pathways regulating genomic imprinting target 

transposable elements (TEs) in both species. Furthermore, studying the imprintomes of 

three Capsella species supported the notion of poor imprinting conservation between 

related species. This work also revealed that imprintome divergence between Capsella 

species is based on the divergence of TE insertions and consequent silencing 

mechanisms. Furthermore, this work discovered that hybrid seed lethality is widespread 

between each of the Capsella species. This phenomenon originates in the endosperm 

and exhibits a parent-of-origin pattern. Importantly, this work revealed that endosperm-

based hybridization barriers in Capsella correlate with the number and expression of 

paternally-expressed imprinted genes (PEGs). In addition, the mating system strongly 

impacts on the number of PEGs, which suggests that transitions of mating systems fuel 

the establishment of postzygotic hybridization barriers.  

Altogether, this thesis proposes a molecular and evolutionary explanation for the 

arising of endosperm-based hybridization barriers, in connection with genomic 

imprinting, TE dynamics and mating system. These data are expected to have a strong 

impact on plant breeding strategies and to promote further studies in this direction of 

research. 
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Menurut konsep spesiasi biologi, spesies didefinisikan sebagai kelompok populasi 

antarbiak yang saling terisolasi secara reproduktif. Letalitas benih hibrida adalah sawar 

reproduksi umum antara spesies tanaman. Seringkali penyebabnya terpaut dengan 

endosperma tapi dasar molekularnya belum dipahami secara utuh. Kecacatan berbeda 

benih hibrida, menunjukkan efek khas induk asal memainkan peranan penting dalam 

membentuk sawar hibridisasi pascazigotik. Oleh sebab itu, rekaman genomik yang 

mengarahkan ekspresi gen khas induk asal di endosperma diusulkan sebagai penyebab 

letalitas benih hibrida. Walaupun demikian, hipotesis ini belum sepenuhnya teruji.  

Oleh sebab itu, tujuan utama disertasi ini adalah untuk menjelajahi hubungan antara 

rekaman genomik dan letalitas benih hibrida pada Capsella. Bagian pertama karya ini 

ditujukan pada karakterisasi imprintom (himpunan gen-gen terekam) dari Capsella 

rubella dan membandingkannya dengan imprintom spesies berkekerabatan dekat, 

Arabidopsis thaliana (10-14 juta tahun terpisah). Hasilnya menunjukkan imprintom 

kedua spesies tidak dilestarikan dengan baik. Meskipun demikian, lintasan yang 

mengatur rekaman genomik menyasar transposon pada kedua spesies. Selanjutnya, 

imprintom dari tiga spesies Capsella, dibangun dan dibandingkan. Hasilnya semakin 

mendukung buruknya pelestarian rekaman antar spesies berkekerabatan dekat. 

Perbandingan wilayah pengapit gen-gen terekam menunjukkan bahwa perbedaan 

imprintom antar spesies Capsella terletak pada divergensi penyisipan transposon dan 

kelangsungan mekanisme penyenyapan. Selanjutnya, karya ini menemukan adanya 

persebaran letalitas benih hibrida antar spesies Capsella. Fenomena ini konsisten 

muncul di dalam endosperma dan menampilkan pola induk asal. Puncaknya, karya ini 

menunjukkan bahwa sawar hibridisasi berbasis endosperma pada Capsella berkorelasi 

dengan jumlah dan ekspresi gen terekam sebapak (GTB). Akhirnya, sistem penyilangan 

sangat berpengaruh terhadap jumlah GTB dan transisi sistem penyilangan memacu 

pembentukan sawar hibridisasi pascazigotik. 

Secara keseluruhan, disertasi ini mengusulkan penjelasan molekular dan evolusioner 

bagi kemunculan sawar hibridisasi berbasis endosperma dalam hubungannya dengan 

rekaman genomik, dinamika transposon, dan sistem penyilangan. Data ini diharapkan 

memiliki dampak yang kuat terhadap strategi pembiakan tanaman dan upaya 

mempromosikan studi lebih lanjut searah dengan tujuan riset ini. 

Kata kunci: sawar hibridisasi, rekaman genomik, transposon, endosperma, Capsella, 

Arabidopsis 
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Kotak Pos 7080, SE-750 07 Uppsala, Swedia  
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When I started my project on genomic imprinting in Capsella, the first thing 

that came into my mind is: “Will my study give important contributions to the 

scientific community and the people around the world?" I guess, this question 

has motivated not only me but also many scientists. I think my supervisor, 

Claudia, has done a really good work to keep that fire alive until I’m able to 

finish this thesis. I might finally have something that is worth it! 

Anyway, back to the important content in this thesis, I want to note that I’m 

using the term shepherd’s purse as a generic name for Capsella genus. Before, 

this name has been used specifically for C. bursa-pastoris, where the last 

binomial name for this species actually means the same in Latin. The reason is 

quite simple. Untrained eyes won’t be able to see the differences between these 

species. In addition to that, at least two of the Capsella species, C. bursa-

pastoris and C. rubella are known to be edible. I recommend you to try them! 

These plants hold a cultural importance especially for people in China and 

mentioned in some classic literatures. “As sweet as shepherd’s purse” is one of 

Chinese sayings to describe an “adequate” experience. For me it sounds similar 

to Swedish word, lagom (free to correct me if I’m wrong). This word describes 

my feeling a lot when I finished this thesis! Capsella might be not as important 

as other crops in human civilization but I think, it is enough to keep me to 

study for more than 4 years. 

Now we have come to another quite important part. If you are not familiar 

with molecular biology (or whatever science nerdy stuff), my way to describe 

genomic imprinting or imprinted genes in this study is the way Mama Plants 

and Papa Plants communicate before deciding to start a family. In Capsella-

ways, a too strong (or stubborn) plant needs another strong partner as an equal 

parent for having healthy children. Although it might not make any sense in 

some “Western” culture, I found this concept might work in my culture where 

actually two people need to be as stubborn as they can before they started a 

family. A stubborn person with a submissive partner won’t work because 

there’s no way to convey the feeling of one partner to the other. So in my 

philosophical way, you can say that this study is all about how plants 

communicate before they start a family, how to measure their stubbornness and 

how they can succeed as parents. If this concept intrigues you, please keep 

reading and enjoy! 
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1.1 Seed formation and endosperm development 

The nutrition of both, humans and animals, including livestock, heavily 

depends on seeds and products derived thereof. This means that seed crops, 

and cereals in particular, are considered staple crops, whose productivity is of 

unparalleled relevance from economical, societal and ecological standpoints. It 

is interesting to note that grass seeds have been proposed to be a part of the 

hominin diet, in some parts of the world, for as long as 100,000 years 

(Mercader, 2009) and some evidence has been found supporting the claim that 

the domestication of cereals may have started as early as 23,000 years ago 

(Snir et al., 2015). Since then, seeds of grass species have had a prominent role 

during the establishment of human civilization. Although the type of seeds 

consumed varied between different cultures and civilizations around the world, 

the domestication of cereals as a food source has been proposed to target the 

selection of plants with seeds containing a large endosperm, the tissue 

responsible for the storage of nutrients (Fuller, 2007; Preece et al., 2017). 

Interestingly, at least in the case of wheat, increase in endosperm size was 

connected with a relative decrease in embryo size (Golan et al., 2015). 

1 Introduction 
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Figure 1. Schematic double fertilization events in angiosperm with nuclear type endosperm. 

The development of a seed starts after the fertilization of the maternal 

gametes, egg cell and central cell, by the paternal gametes, the sperm cells, 

which are carried into the maternal ovule by the pollen tube (reviewed in 

Drews and Yadegari, 2002). Thus, seed development is preceded by a double 

fertilization event (Figure 1) leading to two fertilization products: the embryo 

and the endosperm. The embryo constitutes the next generation and its 

development is supported by the endosperm, which accumulates nutrients 

originating from the maternal tissues and conveys them to the developing 

embryo and/or germinating seedling (Lafon-Placette and Köhler, 2014). 

Surrounding the embryo and endosperm is the seed coat, which physically 

protects the fertilization products, and also participates in establishing seed 

dormancy, in facilitating water uptake during germination, and in seed 

dispersal, among other functions (Debeaujon et al., 2000; Figueiredo and 

Köhler, 2014; Radchuk and Borisjuk, 2014). While the seed coat is a purely 

maternal tissue, the endosperm and embryo are directly derived from double 

fertilization. In order for the seed to develop successfully, these three structures 

have to communicate with one another and coordinate their growth and 

development (Figueiredo and Köhler, 2016; Ingram and Gutierrez-Marcos, 

2015; Ingram, 2010; Lafon-Placette and Köhler, 2014). Embryo development, 

in particular, is highly dependent on the endosperm. Defects in endosperm 

formation significantly affect seed viability. Depending on the plant species, 

the development of the endosperm can be classified in three distinct categories: 

nuclear, cellular and helobial endosperms. Nuclear endosperm is the most 

prevalent type in angiosperms and is characterized by the absence of a cell 

plate between the mitotically-dividing daughter nuclei (Olsen, 2004; Sabelli 
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and Larkins, 2009). Thus, this type of endosperm initially develops as a 

syncytium, which later in development undergoes cellularization (Figure 2). 

The second type of endosperm, ab initio cellular, occurs in several plant 

species, including several members of the Solanaceae family (Briggs, 1993), 

and is characterized by the absence of a syncytium, meaning that cell walls are 

formed after each mitotic nuclear division. Finally, the helobial type of 

endosperm development, which is specific to several monocot species, is 

characterized by the formation of a cell wall following the first endosperm 

division, after which two chambers are formed; one that develops as a 

syncytium and one that undergoes cellular endosperm development (Swamy 

and Parameswaran, 1963). 

 
Figure 2. Endosperm cellularization types. In cellular endosperm, each nuclear division is 

followed by cellularization. In nuclear endosperm, the endosperm initially develops as syncytium 

and cellularization starts after a defined round of nuclear divisions. Helobial endosperm is 

characterized by the formation of two chambers. One follows the nuclear type of endosperm 

development and one the cellular type (Tobe and Kadokawa, 2010). 
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The nuclear type of endosperm development is the most common type of 

endosperm development and characteristic for cereal crops, as well as for the 

model plant species Arabidopsis, among many others. As previously 

mentioned, this type of endosperm is characterized by its initial development 

as a syncytium, which later cellularizes. Importantly, the timing of endosperm 

cellularization is crucial for the development of the embryo and for the 

viability of the seed (Hehenberger et al., 2012; Pignocchi et al., 2009). In 

instances where the endosperm fails to cellularize, or where cellularization is 

delayed, this can lead to embryo arrest and abortion of the seed (Hehenberger 

et al., 2012; Pignocchi et al., 2009; Scott et al., 1998). Conversely, if the 

endosperm undergoes cellularization earlier than expected, this can lead to 

smaller seeds and, in extreme cases, may result in abortion of the progeny 

(Kang et al., 2008; Scott et al., 1998; Wang et al., 2010). 

It is interesting to note that the three developing structures within a seed are 

genetically distinct: in diploid species, the seed coat, given that it is not derived 

from a fertilization event, is diploid and contains only maternal genetic 

material; the embryo is also diploid, but contains one copy of both the maternal 

and paternal genomes; and the endosperm, which is derived from the 

fertilization of the homodiploid central cell by one of the paternal sperm cells, 

is triploid and contains two maternal and one paternal genome copies (Drews 

and Yadegari, 2002). Importantly, this ratio of maternal and paternal genomic 

copies is vital for the correct development of a seed. Deviations from this ratio, 

such as in crosses between parents of different ploidy levels leads to abnormal 

seeds which, in many cases, are not viable (Johnston et al., 1980; Scott et al., 

1998; Josefsson et al., 2006). These observations suggest that the parental 

genomes are not functionally equivalent during endosperm development and 

that there are likely parental-specific molecular factors whose activity needs to 

be tightly controlled in order to achieve successful seed development. 

1.2 Molecular mechanisms underlying genomic 
imprinting 

The non-equivalence of parental genomes suggests on the molecular level that 

certain genes are expressed in a parent-of-origin-specific manner (Arnaud and 

Feil, 2006; Jiang and Köhler, 2012). Genomic imprinting is an epigenetic 

phenomenon which causes certain genes to be specifically active only when 

either maternally or paternally inherited. Genes where the paternal alleles are 

silenced and the maternal alleles are predominantly active are called maternally 

expressed genes (MEGs). Conversely, genes where the paternal alleles are 

predominantly active are called paternally expressed genes (PEGs). In plants, 
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genomic imprinting is mostly confined to the endosperm; imprinting in the 

embryo is rare and transient (Hsieh et al., 2011; Jahnke and Scholten, 2009; 

Nodine and Bartel, 2012; Pignatta et al., 2014; Raissig et al., 2013). This 

differs from the occurrence of imprinting in mammals, where imprinted genes 

are found in most tissue types (Pires and Grossniklaus, 2014). 

There are different epigenetic mechanisms acting during male and female 

gametogenesis, causing both parental genomes to be epigenetically distinct 

(Gehring and Satyaki, 2017; Rodrigues and Zilberman, 2015). The epigenetic 

imprints applied during gametogenesis are mainly differences in histone 

modifications and DNA methylation. Most known imprinting mechanisms in 

plants depend on at least one of them if not both and will be discussed below. 

1.2.1 DNA Methylation 

DNA methylation, the addition of a methyl group to DNA, is a covalent 

modification that mainly affects cytosines in eukaryotes (Gehring and 

Henikoff, 2008). In plants, DNA methylation exists in three different sequence 

contexts, CG, CHG, and CHH methylation, where H can be any base but G 

(Law and Jacobsen, 2010). 

Methylation in each context is catalysed by different enzymatic pathways 

and has different roles. In Arabidopsis, CG methylation is mostly maintained 

by the DNA methyltransferase MET1 and is present in high density in 

transposable elements (TEs) and gene bodies. While in TEs, this modification 

is associated with TE silencing (Law and Jacobsen, 2010), the role of CG 

methylation in gene regulation remains elusive (Bewick and Schmitz, 2017; 

Niederhuth and Schmitz, 2017). As for CG methylation, non-CG methylation 

(CHG and CHH) is also associated with TE silencing and heterochromatin 

formation. Non-CG methylation in CHG context is established and maintained 

by the CHROMOMETHYLTRANSFERASE 3 (CMT3) that is recruited by 

binding to dimethylated histone H3 on lysine 9 (H3K9me2) (Law and 

Jacobsen, 2010). CHH methylation is established by two different pathways; in 

the RNA-dependent DNA methylation (RdDM) pathway the DOMAINS 

REARRANGED METHYLTRANSFERASE2 (DRM2) enzyme is recruited by 

ARGONAUTE4 (AGO4) to loci forming a chromatin-associated non-coding 

transcript by RNA Polymerase V (PolV). Small RNAs (sRNAs) bound by 

AGO4 that have sequence complementarity to PolV transcripts will effectively 

guide AGO4-DRM2 to target loci and establish CHH methylation (Law and 

Jacobsen, 2010; Matzke and Mosher, 2014; Stroud et al., 2014, 2013). An 

alternative pathway leading to CHH methylation involves CMT2 and is 

facilitated by the chromatin remodeler DDM1 that possibly removes or shifts 
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the linker histone H1 to allow methyltransferases to access DNA (Zemach et 

al., 2013). 

Among all plant tissues, the epigenetic landscape in the endosperm is 

unique and determined before fertilization in the gametes. During female 

gametogenesis, the DNA glycosylase DEMETER (DME) is specifically 

expressed in the central cell, the precursor of the endosperm and removes 

methylated cytosines via the base-excision repair mechanism (Choi et al., 

2002; Park et al., 2016). As a consequence, the genome of the central cell 

becomes globally demethylated in all sequence contexts, with small 

euchromatic TEs being preferentially targeted by DME (Hsieh et al., 2009; 

Ibarra et al., 2012; Park et al., 2016). In the vegetative cell of pollen the 

activity of DME together with the silencing of DDM1 leads to low DNA 

methylation, TE reactivation and sRNAs production (Calarco et al., 2012; 

Schoft et al., 2011). In particular, a class of 21/22-nt sRNAs, called 

epigenetically-activated small interfering RNAs (easiRNAs) is specifically 

enriched in pollen (Calarco et al., 2012; Slotkin et al., 2009). EasiRNAs can 

travel from the vegetative nucleus to the sperm cells, where they accumulate 

and potentially reinforce TE silencing (Martínez et al., 2016). Indeed, 21/22-nt 

sRNAs have been shown to initiate DNA methylation via a modified RdDM 

pathway involving RDR6 (Nuthikattu et al., 2013). However, the level of CHH 

methylation remains low in sperm cells (Calarco et al., 2012), pointing to a 

potential post-fertilization role of easiRNAs. 

Thus, before fertilization, an epigenetic asymmetry exists between parental 

genomes: the maternal genome is demethylated while the paternal genome 

remains highly methylated at least in CG and CHG contexts. After fertilization 

and during the first stages of endosperm development, DNA methylation 

remains low and parentally asymmetric (Moreno-Romero et al., 2016). This is 

consistent with members of the RdDM pathway being silenced during the 

nuclear phase of endosperm development (Belmonte et al., 2013), thus unable 

to remethylate the maternal genome. This epigenetic asymmetry between 

parental genomes provides a potential molecular basis for parent-of-origin-

specific gene expression. Consistently, genes that are normally maternally 

expressed (MEGs) become biallelically expressed (Hsieh et al., 2011) upon 

met1 pollination, suggesting that the paternal allele of these genes is normally 

silenced due to DNA methylation while the maternal allele is demethylated and 

expressed. Nevertheless, this type of regulation does not affect all MEGs 

(Hsieh et al., 2011), suggesting alternative pathways for MEG regulation 

(Gehring and Satyaki, 2017). However, it is also possible that many genes have 

been erroneously assigned as MEGs but are in fact seed coat expressed (Schon 

and Nodine, 2017), explaining their lack of response to met1 pollination. For 
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PEGs, the use of met1 as pollen donors leads to a reduction of paternal allele 

expression (Hsieh et al., 2011), suggesting that DNA methylation in the 

paternal genome prevents the action of repressing factors, namely Polycomb 

group proteins. 

1.2.2 Histone Modification 

Polycomb group proteins are chromatin associated factors involved in the 

transcriptional regulation of target loci (Mozgova et al., 2015). They act in 

complexes, called Polycomb Repressive Complex (PRC) 1 and PRC2. PRC2 

catalyses the trimethylation of lysine 27 of histone H3 (H3K27me3), a 

repressive histone mark recognized by LIKE HETEROCHROMATIN 

PROTEIN1 (LHP1) that facilitates recruitment of PRC2, forming a feed-

forward loop of H3K27me3 deposition (Derkacheva et al., 2013), there are 

different PRC2 complexes acting during defined stages of plant development 

(Mozgova et al., 2015). Two members of PRC2 are specifically expressed 

during plant reproduction: FERTILIZATION-INDEPENDENT2 (FIS2) and 

MEDEA (MEA) (Luo et al., 2000; Vielle-Calzada et al., 1999), with FIS2, the 

name given to subunit of the FIS-PRC2, being specifically expressed in the 

endosperm. Both, FIS2 and MEA are MEGs and activated in the central cell by 

the demethylation of their promoter via DME action (Jullien et al., 2006). MEA 

and FIS2 are essential for seed viability, as shown by the complete seed 

lethality in mea and fis2 (Chaudhury et al., 1997; Grossniklaus et al., 1998). 

Interestingly, the endosperm defects of fis2 and mea mutants can be rescued by 

either increasing the number of maternal genome copies, or by removing the 

paternal contribution from the endosperm (Kradolfer et al., 2013a; Nowack et 

al., 2007). This suggests that the FIS-PRC2 is involved in the regulation of the 

relative dosage of maternal and paternal genomes. Consistently, the silenced 

maternal alleles of most PEGs are marked by H3K27me3, while the active 

paternal allele is devoid of H3K27me3 (Moreno-Romero et al., 2016). The 

cause for this parental asymmetry is partly understood. As mentioned above, 

due to the extensive DNA demethylation in the central cell (Ibarra et al., 2012), 

the paternal genome has increased methylation levels compared to the maternal 

one. PRC2 is thought to be excluded from densely DNA methylated regions 

(Deleris et al., 2012; Weinhofer et al., 2010), providing an explanation for the 

specific presence of H3K27me3 on the maternal allele, leading to its silencing 

and establishing the imprinting pattern (PEG). The majority of PEGs in 

Arabidopsis exhibit this regulatory pattern (Moreno-Romero et al., 2016), as 

do PEGs in maize and rice (Du et al., 2014; Zhang et al., 2014), suggesting a 

broad conservation of mechanisms regulating genomic imprinting in plants.  
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1.2.3 Transposable Elements 

Transposable elements (TEs) are fragments of DNA that can move from one 

location in the genome to another (Fedoroff, 2012). TEs can be grouped into 

two classes: the first class, called retrotransposons, move via a “copy-and-

paste” mechanism, while the second class, DNA transposons, move via a “cut-

and-paste” fashion (Kim, 2017). TEs ability to multiply and insert in any part 

of the genome creates the risk of recombination errors, gene disruption, and 

genome instability (Chen, 2007; Fultz et al., 2015). Eukaryotic organisms 

therefore evolved defense mechanisms that lead to the epigenetic silencing of 

TE activity. In plants, this involves the action of the RdDM and CMT2-based 

pathways, establishing DNA methylation in all sequence contexts (Matzke and 

Mosher, 2014; Stroud et al., 2014; Zemach et al., 2013). The TE content of a 

genome over generations is highly dynamic and depends on TE activity, host 

epigenetic silencing, TE elimination by mutations and recombination, and last 

but not least natural selection (Underwood et al., 2017). Indeed, TEs can be an 

important source of genetic variation on which natural selection can act (Kim, 

2017; Underwood et al., 2017), especially when TEs affect gene expression. 

TEs can evolve as cis regulatory sequences recognized by the host 

transcriptional machinery (Chuong et al., 2017). In addition, the epigenetic 

silencing of TEs can affect genes, either in cis as the chromatin repression of 

TEs will affect nearby genes, or in trans with TE-derived sRNAs targeting 

similar sequences that flank distant genes (Chuong et al., 2017; Kim, 2017; 

Underwood et al., 2017). In terms of genomic imprinting, TE insertions are 

thus a potential trigger for the establishment of the epigenetic asymmetry 

between parents. Consistently, there is a strong association between the 

presence of TEs in cis and the imprinting status of flanking genes in 

Arabidopsis (Pignatta et al., 2014; Wolff et al., 2011). More precisely, a 

specific family of TEs, helitrons, has been associated with PEGs, even though 

the reason for this association remains unclear (Pignatta et al., 2014; Wolff et 

al., 2011). In addition, sRNAs targeting MEGs accumulate to high levels in 

sperm cells and the seed, suggesting that TEs play a yet unclear role in MEG 

regulation via sRNAs, either in cis or in trans (Calarco et al., 2012). 

1.2.4 Conservation of imprinted genes among angiosperms 

With the rise of next generation sequencing techniques, the imprintomes (the 

total of imprinted genes) of several plant species have been elucidated 

(Klosinska et al., 2016; Luo et al., 2011; Pignatta et al., 2014; Waters et al., 

2013; Xu et al., 2014; Zhang et al., 2016). Their comparison revealed that the 

number of commonly imprinted genes is rather low (Figure 3). This weak 
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conservation seems independent of the genetic distance between species; thus, 

there is low conservation between monocots and dicots that diverged more than 

140 million years ago (Mya), but also between sister species like Arabidopsis 

thaliana and A. lyrata that diverged about 5 Mya (Klosinska et al., 2016; Luo 

et al., 2011; Waters et al., 2013). In addition, even high intraspecific variation 

of imprinted genes has been observed in A. thaliana (Pignatta et al., 2014). 

Nevertheless, while there are species-specific imprinted genes, their biological 

function is largely conserved: they are enriched for transcriptional and 

chromatin regulators, suggesting that they play a role in the control of 

endosperm development (Luo et al., 2011; Wolff et al., 2011; Zhang et al., 

2016). In addition, conserved PEGs include auxin biosynthesis genes (Luo et 

al., 2011), an important phytohormone essential for the initiation of endosperm 

and seed coat development (Figueiredo et al., 2016, 2015). 

 
Figure 3. Low conservation of imprinted genes among species. Venn diagram was generated by 

identifying A. thaliana homologs of imprinted genes reported in each species using a simple 

BLAST search (e-value < 0.000001). 

Accession-specific imprinting in A. thaliana has been associated with DNA 

methylation variation at TEs neighbouring imprinted genes (Pignatta et al., 

2014). This suggests that variation in TEs and their epigenetic silencing could 

be the molecular explanation for imprinting variation between species, a 

hypothesis that remains to be thoroughly tested. 
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1.3 Evolutionary forces driving genomic imprinting 

While in the previous chapter 1.2 eluded on the molecular mechanisms causing 

genes to adopt an imprinted expression patters, in the following I will discuss 

the evolutionary forces that maintain imprinted genes in a population. 

1.3.1 The Kinship Theory 

The parental conflict or kinship theory developed by David Haig and Mark 

Westoby is undoubtly the most widely known theory explaining the evolution 

of genomic imprinting (Haig, 2000; Haig and Westoby, 1989). The theory 

posits that in species where the maternal parent mates with several males and 

invests resources in the offspring, a conflict arises over the allocation of 

resources to the developing progeny (Patten et al., 2013). While it will be 

advantageous for the maternal parent to distribute resources equally to all of its 

offspring, paternal parents will favor if their offspring acquires more resources, 

on the expense of their non-related siblings. This scenario implies an 

intragenomic parental conflict among the offspring. It also implies that 

selection acts antagonistically on males and females concerning the evolution 

of traits regulating nutrient transfer to the progeny. While mono-allelic 

expression is generally a disadvantage, this conflict could be the reason that 

imprinted expression of certain genes is evolutionary conserved (Haig and 

Westoby, 1989). Consistent with the prediction of the kinship theory, 

paternally expressed genes in mammals favor prenatal growth, while 

maternally expressed genes act as inhibitors (Haig, 2004). Similarly, in 

Arabidopsis, the paternal genome has a positive influence on endosperm 

growth, while the maternal genome has the opposite effect (Scott et al., 1998). 

In addition, parental conflict is expected to be stronger in outbreeding species 

compared to selfing species (Brandvain and Haig, 2005). Consistently, 

imprinted genes are expressed at a higher level in the outbreeding A. lyrata 

compared to its selfing congener A. thaliana (Klosinska et al., 2016) and a high 

number of imprinted genes has been found in maize (Waters et al., 2013). 

If this theory is true, one would expect not to encounter imprinted genes in 

selfing plants. However, to date, the majority of studies about genomic 

imprinting in plants has been led on selfing species, and discovered a 

significant number of imprinted genes (Gehring et al., 2011; Luo et al., 2011; 

Wolff et al., 2011; Xu et al., 2014). One likely explanation is that selfing 

species retained genomic imprinting from the ancestral outbreeding mating 

type (Igic et al., 2008). Alternatively, it is possible that imprinted genes 

acquired a function that is crucial for seed development, independently of any 

parental conflict. Consistent with assumption, some imprinted genes that are 
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conserved across selfers share similar functions (Figueiredo et al., 2015; Luo et 

al., 2011). To understand how mating system transitions impact on the fate of 

imprinted genes, it is required to survey genomic imprinting in additional 

outbreeding species and their related selfers. 

1.3.2 Mating system-dependent TE dynamics and genomic imprinting 

A major argument against the kinship theory is the extreme imprintome 

variability across angiosperms and the absence of phenotypic defects in 

mutants of imprinted genes in Arabidopsis (Luo et al., 2011; Waters et al., 

2013; Wolff et al., 2015, 2011; Xu et al., 2014; Zhang et al., 2016). Instead of 

being functionally relevant, genomic imprinting could be seen as a mere by-

product of the dynamic epigenetic TE silencing occurring around fertilization 

(Barlow, 1993; Calarco et al., 2012; Ibarra et al., 2012). Nevertheless, both 

seemingly opposing scenarios can be reconciled when considering the 

silencing of TEs as the molecular cause for imprinted expression that is of 

functional relevance for only a few genes. The imprinted expression of those 

genes will be maintained over long evolutionary timescales, explaining 

conservation of some imprinted genes in a wide range of species (Klosinska et 

al., 2016). 

In this perspective, the evolution of genomic imprinting would follow the 

evolution of TEs. Hybridization, the rate of outcrossing, or the effective 

population size are proposed factors influencing the evolution of TE 

transposition rate in a given population (Ågren and Wright, 2011). Especially, 

it is expected that in selfing species, TEs get eliminated from the host genome 

over generations (Ågren and Wright, 2011; Boutin et al., 2012). Thus, if one 

considers genomic imprinting solely as a by-product of TE silencing, less 

imprinted genes should be found in selfing species compared to outcrossing 

ones. This expectation meets the prediction made by the kinship theory 

(Brandvain and Haig, 2005; Haig and Westoby, 1989). To further explore this 

hypothesis, a thorough study comparing TE and genomic imprinting evolution 

in selfing and related outbreeding species is needed. 

1.4 Interspecies hybridization barriers in the endosperm 

Hybridization between related species has fuelled angiosperm evolution and is 

widely employed for breeding purposes. Many important crops for human 

civilization such as rapeseed (Arias et al., 2014) and oranges (Wu et al., 2014) 

are hybrids between two different species. Hybridization events allow gene 

flows that can lead to the acquisition of new adaptive traits (Goulet et al., 
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2017). Nevertheless, there are multiple barriers that generally prevent 

hybridizations under natural conditions that can act either before (prezygotic) 

or after fertilization (postzygotic) (Seehausen et al., 2014). This is reflected in 

the “biological species concept” that defines species as groups of interbreeding 

natural populations that are reproductively isolated from other populations 

(Mayr, 1996; Seehausen et al., 2014).  

In plants, postzygotic reproductive barriers can act directly after 

fertilization, impairing growth of the embryo and/or the endosperm. 

Alternatively, embryogenesis can be completed, but the resulting hybrid is not 

viable. Hybrid seed inviability is a major problem for plant breeding, and has 

thus been extensively studied during the last century (Cooper and Brink, 1945, 

1942; Florez-Rueda et al., 2016; Gill and Waines, 1978; Johnston and 

Hanneman, 1982; Lafon-Placette et al., 2017; Lee and Cooper, 1958; Sansome 

et al., 1942; von Wangenheim, 1957). Failure in endosperm development has 

been suspected as the main cause of hybrid seed lethality, since the hybrid 

embryo frequently survives and grows to maturity if dissected and provided 

with suitable nutrients (Chen et al., 2016; Lafon-Placette et al., 2017; Sharma 

et al., 1996). Thus, it appears that negative epistasis between parental alleles in 

the hybrid as predicted by the Dobzhansky-Muller model of speciation 

(Dobzhansky and Dobzhansky, 1937; Muller, 1942, 1940) is a frequent 

phenomenon in the endosperm. 

Interestingly, the endosperm defects are repeatedly observed after 

interspecific hybridization and very similar to problems of hybrid seeds 

originating from parents of the same species but of different ploidies (Florez-

Rueda et al., 2016; Ishikawa et al., 2011; Lafon-Placette et al., 2017; Lafon-

Placette and Köhler, 2016; Lee and Cooper, 1958; Scott et al., 1998; Sekine et 

al., 2013; von Wangenheim, 1957). Namely, in species with nuclear 

endosperm, pollinations of maternal plants with pollen derived from a higher 

ploidy parent lead to increased seed growth, failure of endosperm 

cellularization, and prolonged endosperm proliferation (Scott et al., 1998; 

Sekine et al., 2013). The reciprocal hybridization leads to smaller seeds with 

precociously cellularized endosperm and reduced endosperm proliferation. The 

similarity of phenotypes in hybrid seeds between different species of the same 

ploidy suggests that rather than an intrinsic qualitative incompatibility, the 

cause of endosperm defects has a quantitative nature. Consistent with this idea, 

raising the ploidy level of one of the parents frequently increases the viability 

of hybrid seeds and restores endosperm development (Johnston and 

Hanneman, 1982; Josefsson et al., 2006; Lafon-Placette et al., 2017). These 

results suggest that species have different “effective” ploidies, which, upon 

hybridization lead to interploidy-like endosperm problems that can be restored 
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by manipulating their actual ploidy (Johnston and Hanneman, 1982). This has 

been conceptualized as Endosperm Balance Number (EBN, Johnston et al., 

1980). The EBN is a relative number given to a species according to its ability 

to form viable hybrid seeds with another species of defined EBN (Johnston and 

Hanneman, 1982). For example, a species does not form viable seeds when 

crossed to a species whose EBN is set to 2. If doubling the ploidy of the 

species with unknown EBN leads to viable seed formation, its EBN will be set 

to 1. 

With the EBN concept, the problems affecting the endosperm from 

interploidy/interspecies hybridization come down to one same cause: a 

disturbed parental ratio of two maternal to one paternal (2m:1p) genome copies 

that is crucial for endosperm development (Johnston et al., 1980). This can be 

due to an actual imbalance in parental copy numbers (interploidy hybrids), or 

an imbalance of “effective” ploidies while the actual genome copy numbers are 

still in a 2m:1p ratio (interspecies hybrids). Thus, identifying the genetic 

elements establishing hybridization barriers is likely to reveal the genetic basis 

of the EBN. Early on, it was proposed that the EBN could be under the control 

of few genetic loci (Ehlenfeldt and Hanneman, 1988; Johnston et al., 1980). 

Nevertheless, recent QTL studies found multiple loci to be involved in hybrid 

seed lethality that have an additive effect (Burkart-Waco et al., 2012; Garner et 

al., 2016). This is consistent with the common idea that multiple small loci 

slowly diverge over time to establish postzygotic barriers, also named “snow-

ball effect” (Coyne and Orr, 2004; Seehausen et al., 2014). Identifying such 

loci is inherently difficult, explaining why no causal genetic element has yet 

been found to be responsible for interspecies hybrid seed lethality.  

Nevertheless, during the last decades major progress has been made in 

identifying the molecular mechanisms underlying hybrid seed lethality. 

Especially, the parent-of-origin defects observed in interploidy and interspecies 

hybrid seeds suggest that imprinted genes play a causative role in establishing 

hybridization barriers in the endosperm (Gutierrez-Marcos et al., 2003). 

Consistently, disturbed imprinting has been reported in hybrids of several 

species, ranging from the Arabidopsis to Solanum genera (Burkart-Waco et al., 

2015; Florez-Rueda et al., 2016; Kirkbride et al., 2015). The most compelling 

evidence comes from genetic studies showing that mutating PEGs can rescue 

seeds derived from interploidy hybridization that are otherwise inviable 

(Kradolfer et al., 2013b; Wolff et al., 2015). Interestingly, mutating these 

genes does not cause any phenotypic effect in diploid seeds (Wolff et al., 

2015), revealing that the functional role of imprinted genes is masked in a 

balanced genomic background. Nevertheless, whether the same genes underpin 

interspecies hybrid seed lethality remains to be tested. 
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What could be the reason that related species have different EBNs? If 

imprinted genes underpin the EBN, the same evolutionary forces driving 

genomic imprinting, namely TEs, are driving differences in EBN. Following 

the logic of the kinship theory predicting differences in imprinted genes 

between selfing and outbreeding species, the Weak Inbreeder/Strong 

Outbreeder (WISO) theory predicts outbreeding species to have a higher EBN 

compared to selfing species (Brandvain and Haig, 2005). This theory is 

supported by the strong correlation between EBN and mating systems in the 

Solanum genus (Brandvain and Haig, 2005; Lafon-Placette and Köhler, 2016). 

Nevertheless, this evidence remains correlative and more evidence is needed to 

conclude. 

1.5 Shepherd’s Purse (Capsella) 

 
Figure 4. The phylogenetic tree of Capsella. Distances are not scaled. Credit goes to Clément 

Lafon-Placette for the concept and idea. 

Capsella is a plant genus in the Brassicaceae family, close to the Arabidopsis 

genus (~10-14 Mya apart; Koch and Kiefer, 2005; Mitchell-Olds, 2001). It 
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consists of four species: the diploid C. orientalis, C. rubella and C. grandiflora 

and the allotetraploid C. bursa-pastoris (Figure 4).  

C. grandiflora is the only outbreeding species of the genus due to its 

gametophytic self-incompatibility (SI) mating system (Paetsch et al., 2006). In 

the Brassicaceae, it is assumed that gametophytic SI is the ancestral mating 

state (Igic et al., 2008). Therefore, the self-compatible (SC) Capsella species 

(C. orientalis, C. rubella, and C. bursa-pastoris) most probably evolved from 

the ancestral lineage by the loss of SI (Douglas et al., 2015). C. rubella arose 

around 100,000 years ago, as a likely consequence of the loss of SI followed 

by a strong bottleneck (Douglas et al., 2015; Guo et al., 2009; Slotte et al., 

2013). Meanwhile, C. orientalis is predicted to have diverged around 1 million 

years ago from the C. rubella / C. grandiflora lineage (Douglas et al., 2015). 

While current evidence does not support a definitive conclusion, the high 

homozygosity observed in C. orientalis and the strong “selfing syndrome” 

(small flower size, high ovule/pollen ratio, absence of scent) argues for a long 

time of inbreeding, substantially exceeding the time of inbreeding of C. rubella 

(Douglas et al., 2015; Hurka et al., 2012). The emergence of C. orientalis 

could be concomitant with its loss of SI, but data are missing to conclude on 

this point. Finally, C. bursa-pastoris is an allotetraploid that originated from 

the hybridization between the C. orientalis and C. rubella/grandiflora lineages 

that occurred around 200,000 years ago (Douglas et al., 2015). 

TE evolution has been studied in all Capsella species (Ågren et al., 2016, 

2014). Among the diploid species, these studies revealed that C. orientalis has 

the lowest TE content among all species. In addition, C. grandiflora has the 

highest occurrence of gene-neighboring TEs, followed by C. rubella and C. 

orientalis (Ågren et al., 2014). These findings are consistent with the 

theoretical prediction that in selfing species, TEs get eliminated over 

generations (Boutin et al., 2012). Also, the lower TE incidence in C. orientalis 

compared to C. rubella argues in favor of a longer selfing time of the former 

species. 

Regarding all the elements developed in the present introduction, several 

questions arise. Firstly, bearing in mind the general low conservation of 

genomic imprinting between species, how comparable is the imprintome of the 

closely related species C. rubella and A. thaliana? How distinctive are the 

imprintomes of all Capsella species? Are the imprintomes of C. rubella, C. 

grandiflora and C. orientalis associated with the TE composition of their 

genomes? Then, current predictions imply that outbreeders have a higher EBN 

compared to selfers. Are the selfer C. rubella and the outbreeder C. grandiflora 

distant enough to have evolved a different EBN? Does this trend stand with C. 
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orientalis? And finally, how is the imprintome of each species related to its 

EBN? 
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The aims of this study are to: 

1 Survey the imprintome of three related species, Capsella rubella, C. 

grandiflora, and C. orientalis; 

2 Characterize the hybrid seed lethality occurring between the three species; 

3 Establish a link between genomic imprinting and hybridization success in 

Capsella. 

  

2 Aims of the study 
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3.1 Rapid evolution of genomic imprinting in two species 
of the Brassicaceae 

The comparison of imprintomes across species is an important approach to 

better understand the mechanisms establishing genomic imprinting. Most 

studies reached the conclusion that genomic imprinting is poorly conserved 

among species (Luo et al., 2011; Pignatta et al., 2014; Waters et al., 2013; Xu 

et al., 2014; Zhang et al., 2016). Nevertheless, those studies compared either 

species that have diverged long time ago (e.g. monocots vs dicots) or species 

that differ for traits that might affect genomic imprinting (e.g. outbreeding vs 

inbreeding). A. thaliana and C. rubella are closely related species that are 

predicted to have diverged around 10-14 million years ago (Koch and Kiefer, 

2005; Mitchell-Olds, 2001). Both species are similar in terms of life cycle, 

mating system or genome size, making them well suitable to study 

conservation of genomic imprinting. The present work compared the 

imprintomes of A. thaliana and C. rubella and their epigenetic regulation. 

Interestingly, the number of genes commonly imprinted in both, C. rubella 

(Cr) and A. thaliana (At), is rather low. The conservation of imprinting of 

PEGs is higher compared to MEGs, which is consistent to what has been 

observed in other species (Klosinska et al., 2016; Luo et al., 2011; Pignatta et 

al., 2014; Waters et al., 2013; Xu et al., 2014; Zhang et al., 2016). When 

comparing all possible homologs of Cr imprinted genes in At, around 29% of 

Cr PEGs were found to have imprinted homologs in At, meanwhile only 19% 

of MEGs in Cr were found to have their homologs imprinted in At. Genes that 

shared a common imprinting status in Cr and At were found to have similar 

functional roles. Based on GO enrichment analysis, conserved MEGs are 

enriched for genes involved in transcriptional regulation and metabolism, while 

3 Results and discussion 
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conserved PEGs are only enriched for genes involved in transcriptional 

regulation. This suggests that conserved imprinted genes might play an 

important role in regulating endosperm development. In contrast, non-

conserved imprinted genes are not enriched for specific functional roles. 

Given the low conservation of imprinted genes, their functional relevance 

could be questioned. To test this, signs of purifying selection and adaptive 

evolution of imprinted genes were investigated by measuring the distribution 

of fitness effects (DFE) and the rate of adaptive substitutions relative to the rate 

of neutral evolution (ωa). The DFE analysis revealed that PEGs have a higher 

proportion of nearly neutral nonsynonymous variants than average, suggesting 

relaxed purifying selection. Nevertheless, imprinted genes have a significantly 

higher ωa compared to a control gene set, suggesting imprinted genes undergo 

adaptive evolution. This argues for an important functional role of imprinted 

genes. 

The molecular regulation of imprinted genes in Cr was then investigated 

and compared to At. In At, transposable elements (TEs), especially helitrons 

and MuDR transposons, are associated with imprinted genes (Pignatta et al., 

2014; Wolff et al., 2011). Enrichment of TEs was found in the proximity of 

PEGs in Cr, confirming the trend observed in At (Pignatta et al., 2014; Wolff et 

al., 2011). In particular, helitrons and MuDR transposons were strongly 

associated with upstream and downstream regions of PEGs. No clear 

association between MEGs and TEs could be found. Consistent with the 

presence of TEs, non-CG methylation in PEGs was found to be significantly 

higher than average. Interestingly, while there was no association between 

MEGs and TEs, non-CG methylation was also significantly higher in MEGs. 

DNA methylation in MEGs is likely to be driven by small RNAs (sRNAs), as 

shown by the strong accumulation of sRNAs around these genes. This suggests 

a trans regulation of MEGs controlled by distant TEs. In addition, the level of 

non-CG methylation and sRNA accumulation was different between MEGs 

and PEGs, suggesting different epigenetic regulation between MEGs and PEGs 

in Cr, as suggested for At (Figure 5; Moreno-Romero et al., 2016; Pignatta et 

al., 2014; Wolff et al., 2011). 
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Figure 5. Different epigenetic regulation of MEGs and PEGs in C. rubella. (A) Biallelically 

expressed genes. (B) Demethylated TEs associated with the maternal allele of PEGs allow access 

of the FIS-PRC2, establishing H3K27me3 on the maternal allele. DNA methylation on the 

paternal allele prevents access of the FIS-PRC2, allowing paternal allele expression. (C) In 

sporophytic tissues, maternal and paternal alleles of MEGs will be targeted by trans-acting 24-nt 

small RNAs (sRNAs) generated by TEs distantly located from MEGs. This will cause repeat 

elements located in the vicinity of MEGs to be methylated via the RNA-dependent DNA 

methylation (RdDM) pathway. Activity of DEMETER (DME) in the central cell of the female 

gametophyte will remove DNA methylation on maternal alleles. Since DME is not active in 

sperm, paternal alleles will remain methylated. The RdDM pathway is not active in the early 

endosperm, maintaining DNA methylation differences on maternal and paternal alleles after 

fertilization. 
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3.2 Non-reciprocal interspecies hybridization barriers in 
the Capsella genus are established in the endosperm 

The selfer C. rubella (Cr) and the outbreeder C. grandiflora (Cg) are very 

closely related (~100 kya; Douglas et al., 2015). The stochastic accumulation 

of Dobzhansky-Muller incompatibilities is a function of time (Coyne and Orr, 

2004; Seehausen et al., 2014), we therefore wondered whether postzygotic 

hybridization barriers could evolve in this short timeframe. Since endosperm-

based hybridization barriers have been proposed to quickly arise between 

outbreeding species and their inbreeder congeners (Brandvain and Haig, 2005), 

we specifically tested for the presence of endosperm-based postzygotic 

hybridization barriers between both species.  

Following crosses between Cr and Cg, a significant rate of seed lethality 

was found. This rate was cross direction-dependent: while Cr × Cg seeds were 

shrivelled and mostly inviable, 60% of Cg × Cr seeds survived. In addition, 

seed size varied depending on the cross direction: Cr × Cg seeds grew larger 

than non-hybrid seeds, while Cg × Cr were substantially smaller.  

The developmental cause for this hybrid seed inviability was investigated. 

Interestingly, the embryo could develop normally if dissected out of the seed 

and grown on MS medium, strongly suggesting that endosperm defects are the 

cause for hybrid seed lethality and not the embryo. For this reason, endosperm 

development was further investigated. Endosperm cellularization has been 

shown to be a crucial developmental transition for embryo survival 

(Hehenberger et al., 2012; Pignocchi et al., 2009). Consistently, Cr × Cg seeds 

showed delayed or even failed endosperm cellularization while in contrast, Cg 

× Cr endosperm cellularization occurred prematurely compared to the parental 

species. Such non-reciprocal endosperm defects have been described in hybrid 

seeds originating from parents of different ploidies (Scott et al., 1998; Sekine 

et al., 2013). This suggests that Cr × Cg non-reciprocal endosperm defects are 

a consequence of dosage imbalance between Cr and Cg genomes, even though 

Cr and Cg are both diploid. To further test whether interploidy and interspecies 

endosperm defects share the same mechanism, the transcriptome of reciprocal 

Cr × Cg hybrid seeds was compared to the transcriptome of Arabidopsis 

interploidy hybrid seeds (produced using the osd1 mutant forming unreduced 

gametes). Interestingly, a significant number of genes that were up and 

downregulated in Cr × Cg compared to the parental species were misregulated 

the same way in 2x × 4x interploidy hybrid seeds. In particular, among 

upregulated genes we found AGAMOUS-LIKE (AGL) MADS box transcription 

factor genes that are putatively involved in inhibiting endosperm cellularization 

(Kang et al., 2008). Conversely, a significant number of misregulated genes in 

Cg × Cr were also misregulated in 4x × 2x Arabidopsis seeds. Altogether, 



39 

 

these results show that the endosperm defects in Cr × Cg reciprocal hybrid 

seeds are similar to interploidy seed defects both at the developmental and 

molecular level. This suggests a dosage imbalance as the cause for Cr × Cg 

hybrid seed lethality, with Cg behaving as a species of higher ploidy level 

compared to Cr, even though both species are diploid (Figure 6).  

 
Figure 6. Interspecies hybrid seeds in Capsella mimicking interploidy hybridization phenotypes 

in Arabidopsis thaliana (At). In B and D, large seeds with delayed cellularization were observed 

when Capsella grandiflora (Cg, strong parent) or 4x Arabidopsis thaliana (At) served as pollen 

donor. While in C and E, small seeds with precocious cellularization were observed when 

Capsella rubella (Cr, weaker parent) or 2x At served as pollen donor. AGAMOUS-LIKE (AGL) 

genes are following similar expression patterns in seeds that share similar phenotype. No changes 

in endosperm proliferation rates were observed in B and C type of crosses compared to D and E. 
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Nevertheless, there are differences between seeds derived from interploidy 

and interspecies hybridization. While endosperm proliferation is altered in 

interploidy hybrid seeds (Scott et al., 1998), aberrant nuclei proliferation was 

not observed in Capsella hybrid seeds. This suggests that endosperm 

cellularization and endosperm proliferation are two unconnected processes. 

Finally, to determine the paternal genetic loci involved in Cr × Cg hybrid 

seed lethality, a QTL analysis was performed using CgCr Recombinant Inbred 

Lines (RILs; Sicard et al., 2011). This work revealed that at least two or more 

loci in the Cg genome are responsible for the aborted hybrid seed phenotype. 

This is strengthened by subsequent finding of Cg PEGs (Paper III) that are 

located within the mentioned QTL, namely Carubv10020920m.g (homolog of 

translation factor, AT1G66070), Carubv10021385m.g (homolog of F-box 

protein, AT1G66300) and Carubv10026304m.g (homolog of ripening-

responsive protein, AT5G65380). 

3.3 Paternally expressed genes correlate with 
hybridization success and likely underpin the 
Endosperm Balance Number in the Capsella genus 

Most of described cases of hybrid seed failure are related to a dosage 

imbalance between parental genomes in the endosperm (Ishikawa et al., 2011; 

Johnston and Hanneman, 1982; Lafon-Placette et al., 2017; Parrott and Smith, 

1986; Valentine and Woodell, 1963). Even parents with the same ploidy level 

can have different genome dosages, or “Endosperm Balance Numbers” (EBNs; 

Johnston et al., 1980; Johnston and Hanneman, 1982). The reasons for 

different EBNs between species, and thus hybrid seed lethality, are still 

unclear. The parent-of-origin defects frequently observed in interploidy and 

interspecies hybrid seeds suggest that parent-of-origin molecular mechanisms - 

namely genomic imprinting - are the processes underlying hybrid seed lethality 

(Gutierrez-Marcos et al., 2003; Haig and Westoby, 1989; Lafon-Placette and 

Köhler, 2016). Consistently, a causal link between imprinted genes and 

interploidy seed lethality has been established (Kradolfer et al., 2013b; Wolff 

et al., 2015). Nevertheless, such evidence is missing for interspecific 

hybridization failures. In parallel, a strong correlation between mating system 

and EBN exists: selfing is usually associated with low EBN while outcrossing 

correlates with high EBN (Brandvain and Haig, 2005; Lafon-Placette and 

Köhler, 2016). The reason for this correlation remains elusive. In this work, a 

link between EBN, genomic imprinting, mating system, and hybridization 

success in Capsella is proposed. 
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This work focused on the three diploid Capsella species: the outbreeder C. 

grandiflora (Cg) and the early and late selfers C. orientalis (Co, estimated 

divergence ~1 Mya) and C. rubella (Cr, divergence ~100 kya; Douglas et al., 

2015). All species were reciprocally crossed with each other. Overall, hybrid 

seeds from all cross combinations were highly inviable, showing a strong level 

of reproductive isolation between the three species. Parent-of-origin hybrid 

seed defects were observed: both, Co × Cr and Co × Cg were dark and 

shrivelled while the reciprocal seeds were extremely small, resembling Cr × 

Cg reciprocal hybrid seeds (Rebernig et al., 2015). Endosperm defects are the 

cause for Co × Cr and Co × Cg seed failure like previously described for Cr × 

Cg reciprocal hybrid seeds (Rebernig et al., 2015), while endosperm 

cellularization failed to occur in seeds with Co as maternal plant, it occurred 

precociously in Cr × Co. The endosperm in Cg × Co even arrested before this 

developmental transition. In addition, hybrid embryos between the three 

species could all be grown to viable plants if dissected out from the seed and 

incubated on MS medium, confirming that the endosperm is the cause for 

hybrid seed inviability (Rebernig et al., 2015; Sicard et al., 2015). The 

phenotype of the endosperm mimics the effects of interploidy hybridization 

(Scott et al., 1998). Importantly, viable Cr × Cg hybrid seed could be produced 

when using a tetraploid Cr as maternal parent, strongly suggesting that Cg has 

the highest “effective ploidy” or EBN, followed by Cr and Co. 

The imprintome of all three species was established and compared. The 

comparison of the number of imprinted genes between species showed that Cg 

has the highest number of PEGs, followed by Cr and Co, correlating with the 

EBN ranking of the species. Such correlation did not hold for MEGs, Cr has a 

much higher number of MEGs compared to the two other species. In addition, 

PEGs were expressed to a higher level in Cg, the species with the highest EBN, 

compared to Cr. No significant difference was found for MEGs. Finally, in Cr 

× Cg hybrid seeds, PEGs from both, Cr and Cg, were specifically upregulated. 

These results suggest that the number and/or the expression level of PEGs are 

involved in the variation of EBN between Capsella species, the primary cause 

of the defects in the hybrid endosperm. 

The molecular cause for the variation in PEG number between species was 

investigated. Genomic imprinting has been associated with TEs and DNA 

methylation (Du et al., 2014; Pignatta et al., 2014; Wolff et al., 2011). By 

comparing imprinted genes and their non-imprinted homologs in other 

Capsella species, it appeared that species-specific PEGs were associated with 

species-specific CHH methylation in the regions neighboring PEGs. CHH 

methylation, as mentioned above, is a hallmark of TE silencing. This suggests 

that differential TE insertions between species drive the emergence of species-
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specific PEGs. Consistently, the highest number of PEGs found in Cg, 

followed by Cr and Co, matches with the highest occurrence of TEs nearby 

genes in Cg, followed by Cr and Co (Ågren et al., 2014). The different TE 

abundance between Cg, Cr, and Co is consistent with theoretical predictions 

proposing that TEs are more efficiently eliminated in selfing species compared 

to outbreeding species (Boutin et al., 2012). As a consequence, this suggests 

that the mating system, influencing the rate of TE insertions in the genome, is a 

strong evolutionary driver of genomic imprinting and the EBN. This could 

explain the difference of EBNs often found between selfing and outbreeding 

species (Figure 7; Brandvain and Haig, 2005; Lafon-Placette and Köhler, 

2016). 

 
Figure 7. Hypothetical changes in number of imprinted genes and EBN related to species 

transition time from outcrossing to selfing. Number of imprinted genes correlates with the number 

of TEs in respective species and decreases as the TEs being purged in species with a longer 

selfing history. Different to MEGs, PEG numbers directly correlate with the EBN and the number 

of TEs occupying the proximity of genes. 
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By investigating the evolution of genomic imprinting in the Capsella genus, 

this work strongly supports the hypothesis that genomic imprinting is a rapidly 

evolving phenomenon in plants. There is low conservation of imprinted genes 

among the three investigated species, but also the number of imprinted genes 

and their expression level substantially differ. Genomic imprinting is driven by 

TEs and host-mediated silencing mechanisms of TEs that impact on the 

regulation of neighbouring genes. Selfing and outbreeding species differ in 

number of TEs, providing a compelling explanation for the correlation of 

imprinted genes with the plant mating type. This work furthermore shows that 

Capsella species are reproductively isolated by an endosperm-based 

postzygotic hybridization barrier. Each Capsella species has a specific EBN 

that correlates with the number of PEGs, providing a link between EBN, PEGs 

and mating type. Not only the number of PEGs but also their expression level 

is substantially higher in outbreeding compared to selfing species, indicating 

that higher selection pressure in outbreeding species enforces PEG expression. 

In conclusion, variation in EBN between selfing and outbreeding species is 

likely a result of different TE dynamics establishing genomic imprinting, or a 

result of different levels of selection pressure (parental conflict), or both. 

4 Conclusions 
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Based on the conclusions of this study, genomic imprinting, TEs and EBN are 

closely connected. Nevertheless, the causal link between TE insertion and 

establishment of imprinting remains to be demonstrated. A way to test the 

causality of this relationship could be to create an imprinted gene, i.e. by 

introducing a TE into the promoter sequence of a gene and testing whether this 

renders the expression status of the gene.  

Another interesting aspect worth of further investigation is genomic 

imprinting in C. bursa-pastoris, an allopolyploid species derived after 

hybridization of C. orientalis and C. rubella/grandiflora lineages (Douglas et 

al., 2015). Its genome therefore consists of two subgenomes, and it would be 

interesting to know if the two subgenomes retained the genomic imprinting 

pattern from the parental species, or whether they evolved differently. Notably, 

TEs in C. bursa-pastoris are more abundant in gene-rich regions compared to 

the parental species (Ågren et al., 2016), which is expected to lead to higher 

numbers of imprinted genes. Unpublished work by the Köhler research group 

revealed that C. rubella and C. bursa-pastoris have similar EBNs, thus, 

hybridizations between both species lead to viable hybrid seeds. Whether this 

correlates with similar number and expression of imprinted genes remains an 

exciting question to be addressed. 

Furthermore, substantial evidence points that imprinted genes and/or the 

regulatory machinery responsible for genomic imprinting are establishing 

interspecies hybridization barriers; nevertheless, a causal link remains to be 

identified. Current work in the lab aims at identifying the causal loci 

underlying the identified QTLs. The identification of those loci will be a major 

advance for our understanding of the evolution of postzygotic hybridization 

barriers between related species. 

Finally, the knowledge generated in this study has the potential to be 

utilized in plant breeding, which is worth to be further explored. Many crop 

species have a different EBN compared to their ancestral varieties, causing 

5 Future perspectives 
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problems when introgressing traits from ancestral varieties into modern crops. 

Knowing the molecular mechanisms underlying the EBN will allow to bypass 

this barrier, by either generating mutants in the identified genes or 

manipulating their expression. The Köhler research group has shown that 

manipulating DNA methylation levels allows bypassing the interploidy 

hybridization barrier (Schatlowski et al., 2014). Similar approaches could be 

used to test whether they suffice to bypass interspecies hybridization barriers 

established by differences in EBN. Overcoming these barriers is furthermore of 

high relevance to engineer apomixes, a trait allowing clonal seed production. 

Inducing clonal embryo formation by genetic manipulation is possible 

(Marimuthu et al., 2011); however, engineering a functional endosperm is 

hindered by the parental-dosage sensitivity of the endosperm. In fact, most 

apomictic species are pseudoapomicts, meaning that the endosperm is 

developing after fertilization. Dosage sensitivity in the endosperm is built by 

imprinted genes; therefore, knowing the genes responsible for building dosage 

sensitivity in the endosperm will have a strong impact to engineer apomictic 

seed production. Finally, changes in parental genome dosage cause strong 

effects on seed size, a trait of high relevance in breeding programs. Identifying 

the causal genes will be a worthwhile effort of future investigations. 
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Many crops important for human civilization are hybrids, derived after 

hybridization of different species, varieties, or cultivars. Hybrids often 

outperform their parents by having increased growth rate, yield, and endurance 

to stress. However, the production of hybrids is laborious and often fails due to 

the lethality of seeds produced from crosses between related species. 

This study aimed at understanding the molecular mechanisms underlying 

hybridization success or failure. Especially, it focused on the endosperm, the 

nourishing part of the seed, which is known to develop abnormally in hybrid 

seeds. The study models were three species of the Shepherd’s purse (Capsella) 

genus. The data presented here suggest that epigenetic mechanisms regulating 

mobile DNA elements are causally involved in hybrid seed lethality. These 

regulatory pathways cause genes to be active only when inherited from one of 

the parents, either the mother or the father. The epigenetic modification, also 

termed imprint, is applied during gamete formation and maintained after 

fertilization. This study revealed that closely related species differ in number 

and activity of imprinted genes, explaining that hybrid seed defects differ 

depending on which species served as male or female parent.  Thus, the results 

of this work suggest that imprinted genes can serve as a predictor for the 

hybridization success between species.   
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Många grödor som är viktiga för mänskligheten är hybrider som kan härledas 

från korsningar mellan olika arter och sorter. Hybrider överträffar ofta sina 

föräldrar genom att ha snabbare tillväxt, högre avkastning och stresstålighet. 

Framställning av hybrider är dock mödosam och misslyckas ofta på grund av 

att frön från korsningen aborteras. 

Målet med den här studien var att förstå de molekylära mekanismer som 

avgör om en hybridisering lyckas eller inte. Studien fokuserade särskilt på 

endospermet, den näringsgivande delen av fröet, vilket har visat sig utvecklas 

onormalt i hybridfrön. Modellväxterna bestod av tre olika Capsellaarter 

(lommeört). De data som presenteras här tyder på att epigenetiska mekanismer 

som reglerar mobila DNA-element är involverade i frödödligheten hos 

hybrider. Dessa regleringsvägar gör gener aktiva beroende på om de ärvs från 

moder- eller faderplantan. Den epigenetiska modifieringen, även kallad 

”imprint”eller prägling, sker under gametformationen och upprätthålls efter 

befruktningen. Denna studie visade att närbesläktade arter skiljer sig åt 

beträffande antal imprintade gener och aktiviteten hos dessa och att 

hybridiseringsdefekter skiljer sig åt beroende på vilken art som fungerar som 

moder- respektive faderplanta. Således antyder resultatet av studien att 

imprintade gener kan studeras för att förutsäga hybridiseringsframgången 

mellan olika arter. 
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Banyak tanaman penting bagi peradaban manusia merupakan hibrid dari dua 

spesies, varietas, atau kultivar. Tanaman hibrida menampilkan karakter yang 

cenderung melampaui induknya, seperti meningkatnya laju pertumbuhan, hasil, 

kekebalan terhadap penyakit, dan ketahanan terhadap stress. Namun, produksi 

tanaman hibrida sering kali gagal karena benih-benih letal yang dihasilkan dari 

penyilangan dua tanaman yang berkekerabatan dekat. 

Studi ini ditujukan untuk memahami apa yang menyebabkan kecocokan dua 

tanaman dalam menghasilkan benih-benih hibrida hidup pada tingkat 

molekular. Studi ini difokuskan pada endosperma, sumber gizi yang 

menghidupi benih, yang juga diketahui menyebabkan abnormalitas pada benih 

hibrida. Disertasi ini menggunakan model studi dari tiga spesies tanaman 

dompet gembala (Capsella). Data yang disuguhkan disini menunjukkan bahwa 

mekanisme epigenetik pengatur elemen DNA bergerak terlibat sebagai 

penyebab dalam letalitas benih hibrida. Lintasan pengatur ini menyebabkan 

gen menjadi aktif hanya ketika diwariskan oleh salah satu induk, oleh ibu atau 

bapak. Modifikasi epigenetik ini, yang juga disebut rekaman, terjadi ketika 

pembentukan gamet dan dipelihara setelah pembuahan. Studi ini 

mengungkapkan bahwa spesies berkekerabatan dekat berbeda dalam hal 

jumlah dan aktivitas gen-gen terekam; menjelaskan bahwa kecacatan berbeda 

pada benih hibrida tergantung pada spesies mana yang dijadikan induk jantan 

atau betina. Pada akhirnya, karya ini mengusulkan bahwa gen-gen terekam 

dapat dijadikan sebagai penaksir kesuksesan hibridisasi antarspesies. 
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