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In series of crop variety trials, ‘test varieties’ are compared with one other and with a ‘refer-
ence’ variety that is included in all trials. The series is typically analyzed with a linear mixed
model and the method of generalized least squares. Usually, the estimates of the expected
differences between the test varieties and the reference variety are presented. When the series
is incomplete, i.e. when all test varieties were not included in all trials, the method of gener-
alized least squares may give estimates of expected differences to the reference variety that
do not appear to accord with observed differences. The present paper draws attention to this
phenomenon and explores the recurrent idea of comparing test varieties indirectly through
the use of the reference. A new ‘reference treatment method’ was specified and compared with
the method of generalized least squares when applied to a five-year series of 85 spring wheat
trials. The reference treatment method provided estimates of differences to the reference vari-
ety that agreed with observed differences, but was considerably less efficient than the method
of generalized least squares.

Key words: Agricultural field trials, Crop variety evaluation, Generalized least squares,
Series of experiments, Value for cultivation and use
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1. Introduction

In VCU trials, Values for Cultivation and Use of new crop varieties are tested for
admission to national lists. The crop varieties are tested in series of field experi-
ments (i.e. trials), which may comprise several locations and years or seasons. The
series are often analyzed statistically in two stages. At the first stage, each trial is
carefully analyzed separately; the expected values of the treatments (i.e. the vari-
eties) are estimated within each trial. At the second stage, the series is analyzed
using the estimates from the first stage as observations. This two-stage analysis
of series of experiments is associated with fewer computational problems than the
one-stage analysis [26] and is convenient when the experiments have varying exper-
imental designs. In addition, in an automated system for routine analysis some of
the computer algorithms from the first stage may be re-used at the second stage.
The present paper discusses the second stage of the two-stage analysis of series of
variety trials.

The dataset for the second stage of the analysis is an I ×J-table of observations
from I varieties and J trials. Often the table has missing cells, especially when
the series span several years, because every year new varieties enter the trials and
older, less performing, varieties are phased out. A ‘reference variety’ is regularly
included in all trials. This makes the series connected and facilitates construction
of summary tables showing differences between the I − 1 ‘test varieties’, as ap-
propriate for comparative experiments. The expected values of the varieties are
usually estimated by use of linear mixed models and generalized least squares [28].
In the simplest case, variety is modeled as a fixed factor and trial as a random
factor; the variance components are estimated using the residual maximum like-
lihood (REML) method [21, 22]. This procedure for analysis of incomplete series
of variety trials, which is closely related to the method of fitting constants [32], is
efficient [19].

In routine analysis the method of generalized least squares frequently gives ap-
parently strange estimates. The following phenomena may occur:

• In a series of variety trials, the estimate of the difference between a test variety
and the reference variety may be outside the range of the differences observed
within the trials.

• In a series of variety trials comprising many years, the estimate of the difference
between a test variety and the reference variety may not accord with previously
reported yearly estimates of differences.

These cases are problematic, because they are hard to understand and easily
suspected to be results of incorrect calculation. Stakeholders with genuine interest
in trials have difficulty in accepting these phenomena. The present paper highlights
and discusses the above mentioned problems in routine analysis of incomplete series
of variety trials.

The present study was also motivated by a request for a straightforward method
feasible for a new international database application. In this application, a table
that summarizes all observed results within selected regions, which may comprise
locations from different countries, should be constructed. It should be possible for
users to search for results from trials that include a variety of specific interest.
Through such selection, the variety of interest would be included in all trials and
could therefore be used as a reference variety. Average differences between other
varieties and the specific variety of interest could be presented. The other varieties
would be compared between themselves through the reported differences to the
reference variety. Statistics would be needed to assess the approximate precision in
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these comparisons.
The generalized least squares method produces a ranking of the treatments: If

Treatment A is better than Treatment B and Treatment B is better than Treat-
ment C, then Treatment A is better than Treatment C. A ranking could also be
accomplished by measuring performance of test varieties by differences to a refer-
ence variety. This procedure is known to be less efficient than the generalized least
squares method, since it does not use all available information [20]. The present
paper re-explores the old idea of comparing test varieties through a reference va-
riety [25], but uses a novel method for calculation and compares this ‘reference
treatment method’ with the method of generalized least squares. In Section 2, an
example shows that the reference treatment method provides estimates that would
easily have been accepted, although much less efficient than the generalized least
squares method.

In short, the reference treatment method is carried out in the following steps:

(1) Estimate the variance components of the statistical model using the REML
method.

(2) Within each experiment and for each test treatment, calculate the difference
between the test treatment and the reference treatment.

(3) Calculate mean differences. When appropriate, use estimates of variance
components for weighting.

(4) Calculate standard errors in mean differences and in differences between
mean differences.

Through the method of generalized least squares, means are adjusted so that
they can be compared with each other, although some observations are missing
[19]. This is efficient, but also the source of problematic discrepancies between ob-
served and estimated differences. With the reference treatment method this prob-
lem is, on the cost of efficiency, avoided by ignoring covariances. Specifically, in the
variance-covariance matrix Vd of the observed differences to the reference variety,
covariances between differences pertaining to different test varieties are zeroed. In
this way, the observed mean difference between a test variety and the reference vari-
ety is never adjusted due to correlations with test varieties that were experimented
in other trials.

Section 2 presents analyses of a five-year series of 85 spring wheat trials with
13 varieties. Analyses were made for each year as well as for the whole series
comprising all years, using the reference treatment method as well as the method
of generalized least squares. This example shows that the method of generalized
least squares produces estimates that appear to be incorrect, since the estimates are
not weighted averages, as often expected. The efficiency of the reference treatment
method as compared with the method of generalized least squares is quantified.
Section 3 specifies the reference treatment method, and Section 4 discusses the
methods and the example.

Yates and Cochran [32] and Cochran [5] discussed methods for summarizing es-
timates from several experiments and proposed weights closely related to those
used in Section 3. Nabugoomu, Kempton and Talbot [18] employed the same ba-
sic models as the present paper, with random experimental effects and possible
grouping of experiments, when considering series of variety trials with heteroge-
neous variety-by-location variance. The above mentioned problems with apparently
strange estimates have not been much noted in the literature [9], although many
authors have proposed various extensions of basic linear mixed models ([6], [10],
[12], [27], [29]). Bathke et al. [1] derived asymptotic methods for analyzing large
series of randomized block experiments with non-normal data.
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Caliński et al. [2–4] studied single stage analyses of heteroscedastic observa-
tions from complete I×J-tables without grouping of the experiments, whereas the
present paper considers second stage analyses of homoscedastic observations from
incomplete I × J-tables with possible grouping of environments. At the first stage
of the two-stage analysis, experiments are analysed separately according to their
specific experimental designs. Weights can be used at the second stage of the two-
stage analysis for separating effects of treatment-by-experiment interactions from
effects of intra-experimental plot errors [26]. Welham et al. [30] compared the two
stage analysis of series of crop variety trials with the one-stage analysis, assuming
different models, and concluded, based on a simulation study, that the unweighted
two-stage approach performed poorly. On the other hand, Möhring and Piepho
[17] compared two-stage analyses using different weighting methods with the one-
stage analysis and found that the unweighted two-stage analysis gave reasonable
estimates, although weighted two-stage analyses performed better.

2. Example: A series of spring wheat variety trials

As an example, a series 85 VCU trials in spring wheat, carried out during the
five-year period 2002–2006, is analyzed. The locations for the trials were not fixed
during the years, because the trials were conducted on farmers’ fields and not
on permanent experimental stations. Section 2.1 illustrates the apparent problems
mentioned in the Introduction, and Section 2.2 demonstrates the reference treat-
ment method.

2.1 Results with the method of generalized least squares

After each season, the model

yij = αi + tj + eij (1)

was fitted to the observed yields, i.e. to the estimated averages from the single
trials performed that year. In Equation (1), yij denote the yield of variety i,
i = 1, 2, . . . , I, in trial j, j = 1, 2, . . . , J , and αi denotes the expected yield of
the ith variety, tj is a random effect of the j th trial, and eij is a random error.
The random effects and the random errors were assumed to be independent and
normally distributed with expected value 0 and variances σ2

t and σ2
e , respectively.

These variances were estimated using the REML method and the mixed proce-
dure of the SAS System [23].The expected values αi, i = 1, 2, . . . , I, with I = 6 in
2002, I = 7 in 2003 and 2004 and I = 13 in 2005 and 2006, were estimated using
generalized least squares, that is by

ᾰ = (X′V̂−1X)−1X′V̂−1y , (2)

where y is the vector of observed yields, X is the design matrix indicating the
varieties, and V̂ is the estimated covariance matrix of y.

The estimated differences between the expected values of the test varieties and
the reference variety 9601 were calculated and reported for each year as in Table 1,
columns 2002–2006. Well-informed readers of Table 1 may react to the estimates
presented in these columns, and suppose that the dataset or the analysis is in-
correct. For example, Variety 20549, which was included in a single trial in 2005
and in three trials in 2006, yielded 336 kg/ha less than the reference variety in the



October 6, 2017 Journal of Applied Statistics Version*for*Epsilon

4 J. Forkman

single trial performed in 2005, but the estimated difference was −108 kg/ha. In the
report (not shown) of the analysis of the only experiment performed in 2005 that
included Variety 20549, the estimate of the difference between Variety 20549 and
the reference variety was reported as −336 kg/ha. No other trials in 2005 studied
Variety 20549. Nevertheless, when analysed together with other trials of that year,
the difference was estimated to be −108 kg/ha. This estimate does not fully agree
with the observed difference in the trial.

Table 1. Generalized least-squares estimates of differences (kg/ha) to the reference variety

9601, by year and for the complete period 2002–2006. Numbers of trials (N), pairwise tests

and standard errors of the differences (SED) refer to the complete period. The reference

variety mean was estimated to be 6571 (SE 299) kg/ha. Varieties connected by the same

letter are not significantly different on level 5%.

Variety N 2002 2003 2004 2005 2006 2002–2006 SED

20303 19 518 484 666 580 520 a 85
20512 9 289 523 415 ab 115
20501 11 334 347 367 ab 107
20212 34 173 318 304 432 394 293 b 72
20122 77 198 306 440 228 32 242 b 59
20211 66 306 210 204 336 150 237 b 61
20511 23 305 78 224 b 87
9602 79 164 412 277 96 25 195 b 58
9601 85 0 0 0 0 0 0 c 0
20513 16 -83 -37 -6 c 97
20125 69 -664 -361 -550 -542 -535 -517 d 60
20549 4 -108 -1053 -737 d 161
20548 6 -1156 -1393 -1233 e 135

Table 2. Reference treatment method mean differences (kg/ha) to the reference variety

9601, by year and for the complete period 2002–2006. Numbers of trials (N), pairwise tests

and standard errors of the differences (SED) are given for the the complete period. The

reference variety mean was estimated to be 6570 (SE 299) kg/ha. Varieties connected by

the same letter are not significantly different on level 5%.

Variety N 2002 2003 2004 2005 2006 2002–2006 SED

20303 19 474 426 607 657 514 a 100
20512 9 236 464 340 ab 143
20212 34 105 273 304 373 472 284 b 80
20122 77 198 332 440 228 32 242 b 59
20211 66 238 235 204 336 150 232 b 62
20501 11 216 197 207 bc 132
9602 79 193 411 277 96 25 203 b 59
20511 23 301 50 165 bc 102
9601 85 0 0 0 0 0 0 cd 0
20513 16 -135 -118 -124 d 117
20125 69 -699 -361 -559 -551 -535 -524 e 61
20549 4 -336 -1044 -855 e 205
20548 6 -1187 -1384 -1286 f 170

At the end of the five-year period the whole series was analyzed using the model

yijk = αi + aj + gij + tjk + eijk . (3)

In Equation (3), yijk denotes the yield of variety i, i = 1, 2, . . . , 13, in the kth
trial, k = 1, 2, . . . ,Kj , of year j, j = 1, 2, . . . , 5. Furthermore, αi is the expected
value of the ith variety, aj is a random effect of the j th year, gij is a random
interaction between the ith variety and the j th year, tjk is a random effect of
the kth trial in the j th year, and eijk is a random error. The trials were nested
within years, and the interaction between varieties and trials was included in the
error term eijk. The random effects were assumed to be independent and normally
distributed with expected value 0 and variances σ2

a, σ2
g , σ2

t and σ2
e , respectively.



October 6, 2017 Journal of Applied Statistics Version*for*Epsilon

Journal of Applied Statistics 5

Using the mixed procedure of the SAS System and the REML method, the variance
components σ2

a, σ2
g , σ2

t and σ2
e were estimated to be 341 589, 3835, 1 634 977, and

75 074, respectively. The expected values αi, i = 1, 2, . . . , 13, were estimated using
the method of generalized least squares.

The eighth column of Table 1 gives the estimates of the differences to the ref-
erence variety. The estimates of the five-year series do apparently not accord with
previously reported yearly estimates. For example, Variety 20513 was estimated
to give 83 and 37 kg/ha lower yield than the reference variety in 2005 and 2006,
respectively. The other years, this variety was not experimented. When all five
years were analyzed together, the expected long-term difference was estimated to
be −6 kg/ha. In this case, the sign of the estimate of the five-years series was luck-
ily the same (negative) as the sign of the yearly estimates. When this is not so, or
when the discrepancy is larger, careful readers become suspicious of the validity of
the report.

It is customary to report the number of trials, as in Table 1. For example, Variety
20513 was included in 16 trials. However, the estimate, −6, of the difference to the
reference variety, was not based on 16 trials only, as one might think.

In 2005, Variety 20501 was included in six trials and produced in average 216
kg/ha higher yield than the reference variety. In 2006, Variety 20501 was included
in five trials and produced in average 197 kg/ha higher yield then the reference
variety (not shown in Table 1). Through the generalized least squares analyses, the
differences were estimated to be 334 and 347 kg/ha, for 2005 and 2006, respec-
tively (Table 1). These estimates were noticeably higher than the observed mean
differences. Rather than summary statistics, Table 1 comprises efficient estimates
of differences in treatment effects. When all years were taken into account, the es-
timate was adjusted further upwards, to 367 kg/ha, which is significantly different
from 0 (Table 1). Thus, a systematic long-term difference between Variety 20501
and the reference variety was detected. This might be surprising considering that
Variety 20501 was only tested in two years and differences between varieties can
vary much between years, as a consequence of varying weather.

The general F-statistic [16],

F =
ᾰ′L′(LC̆L′)−1Lᾰ

R
, (4)

for the hypothesis of no differences between the expected values of the varieties was
calculated as 34.15, which may be compared with an F distribution with 12 and
29 degrees of freedom (P < 0.001). In Equation (4), ᾰ is defined as in Equation

(2), C̆ = (X′V̂−1X)−1, R = 12 and L is a matrix of 12 orthogonal contrasts.
In the numerator of the F-distribution, the number of degrees of freedom is 12,
because twelve orthogonal contrasts are tested. In the denominator, the number
of degrees of freedom is 29, since the variety-by-year interaction has 29 degrees of
freedom. In the balanced case, with no missing cells and with the same number of
trials every year, the expected value of the mean sum of squares for varieties equals
the expected value of the mean sum of squares for the variety-by-year interaction.
This applies provided that the null hypothesis is true, regardless of the number of
trials per year. However, in the unbalanced case, the F-test is approximate. Table 1
includes standard errors for the differences estimated in the five-year series, each
calculated from variances and covariances in C̆, using (L′C̆L)1/2, where now L is
the row vector such that Lᾰ is the estimated difference. The last but one column
of Table 1 shows the results of pairwise testing without adjustments for multiple
comparisons. These results were obtained by comparing the values of the general



October 6, 2017 Journal of Applied Statistics Version*for*Epsilon

6 J. Forkman

t-statistics Lᾰ(LC̆L′)−1/2 with the t distribution with 29 degrees of freedom [23].
The SAS macro pdmix800 [24] was employed for this computation.

In all statistical analyses, residuals were plotted against predicted values and in-
spected in normal probability plots. No outliers or systematic patterns were found.

2.2 Results with the reference treatment method

An analysis using the reference treatment method as detailed in Section 3 was
carried out on the spring wheat dataset. Table 2 reports estimated differences and
results of pairwise testing. Note that the order of the varieties is different from
Table 1, because the methods rank the varieties differently. The yearly results were
obtained using variance estimates from a fit of Model (1), whereas the results of
the five-years series were obtained using variance estimates from a fit of Model (3).
The same variance estimates were used for the reference treatment method as for
the generalized least squares method.

The difference estimates obtained using the reference treatment method are av-
erages. Note specifically that, in contrast to the generalized least squares analysis,
the expected difference between Variety 20549 and the reference variety was esti-
mated to be −336 kg/ha in 2005. This was expected, because the only observed
difference in yield was −336 kg/ha. Thus, the analysis of the complete series of tri-
als performed in 2005 gave exactly the same estimate as the analysis of the single
trial including Variety 20549. In the analysis of the five-years series, the difference
between Variety 20549 and the reference variety was estimated to be −855 kg/ha,
which is a weighted average of the estimates −336 from 2005 and −1044 kg/ha
from 2006. The second estimate, which was based on three trials, gained more
weight than the first, which was based on a single trial.

For Variety 20513, the estimated difference in the five-year series is −124 kg/ha,
which is a weighted average of the estimates −135 and −118 kg/ha that were ob-
tained for 2005 and 2006, respectively. Unlike the generalized least squares method,
the reference treatment method never gives estimates of differences to the reference
variety that are not simple or weighted averages of differences observed within tri-
als. The estimate, −124 kg/ha, of the difference to the reference variety, was indeed
based on 16 trials, as reported.

Variety 20501 was the third best performing variety according to the generalized
least squares analysis (Table 1), but only the sixth best according to the reference
treatment method . The estimates 216 and 197 kg/ha, reported in Table 2, are
simple averages of within-trial differences between Variety 20501 and the reference
variety. In the analysis of the five-years series, the difference was estimated to be
207 kg/ha, which is a weighted average of 216 and 197 kg/ha. This estimate, 207
kg/ha, was not significantly different from 0 (Table 2).

Expected differences were estimated as Equations (6) and (14), and the standard
errors of the differences as the square roots of Equations (10) and (18), for yearly
results and the five-years series, respectively. Equivalently, expected differences may
be estimated as Equation (28), and standard errors as the square roots of diagonal
elements of S in Equation (31); this gives the same result. The F-statistic (33) was
26.4 on 12 and 29 degrees of freedom (P < 0.001), indicating differences between
varieties.

2.3 Comparison of efficiency

The reference treatment method was less efficient than the generalized least squares
method, as seen by comparing approximate standard errors of differences (SED)
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Table 3. Ratio of SED with the method of generalized least squares to SED with the reference treatment

method, for all pairs of varieties

Variety 20125 20211 20212 20303 20501 20511 20512 20513 20548 20549 9601 9602

20122 0.98 0.98 0.90 0.85 0.81 0.85 0.80 0.83 0.80 0.78 0.99 0.98
20125 0.99 0.91 0.86 0.82 0.86 0.81 0.83 0.80 0.79 0.98 0.97
20211 0.92 0.86 0.82 0.86 0.81 0.84 0.80 0.79 0.98 0.94
20212 0.92 0.81 0.81 0.81 0.81 0.76 0.76 0.90 0.87
20303 0.82 0.82 0.84 0.83 0.76 0.76 0.85 0.85
20501 0.90 0.87 0.89 0.82 0.79 0.81 0.81
20511 0.89 0.95 0.79 0.79 0.85 0.85
20512 0.92 0.75 0.75 0.80 0.80
20513 0.80 0.80 0.83 0.83
20548 0.93 0.80 0.80
20549 0.78 0.78
9601 0.99

of Table 2 with those of Table 1. The SED are approximate since variances in
estimates of variance components were ignored. As a consequence of larger SED,
the reference treatment method produced significant differences less often than the
generalized least squares method. The reference treatment method was particularly
inefficient for comparisons between test varieties that were not tested all years. This
is shown by Table 3, which presents ratios between SED using the generalized least
squares method to SED using the reference treatment method. These ratios vary
from 0.75 to 0.99. Efficiency is usually measured as ratio in variance (i.e. by squared
SED ratios). In this example, the efficiency of the reference treatment method to
the generalized least squares method varied from 0.56 to 0.99. Efficiency measured
as the ratio of the average variances (averages over all comparisons) was 0.67. For
pairs of varieties that were tested in all five years, the reference treatment method
was almost as efficient as the generalized least squares method. For pairs of varieties
that were missing some years, the efficiency of the reference treatment method was
considerably lower.

The reference treatment method as specified in Section 3 takes into account
weights, wij and uj , which are inverses of variances. These are defined in Equations
(13) and (15), respectively. To investigate the importance of these weights in the
present example, a calculation was made using equal weights, i.e. wij = 1 and
uj = 1 for all i and j. Applying Equation (C1) in Appendix C, the efficiency of
this equal-weights method to the reference treatment method was 0.90, measured
as the ratio of average variances. The efficiency of the equal-weights method to the
generalized least squares method was 0.60.

3. Specification of the reference treatment method

Section 3.1 specifies the reference treatment method for series with independent
experiments, Section 3.2 considers series of experiments that can be classified ac-
cording to for example points of time or locations, and Section 3.3 derives the
method for general linear mixed models. Within each section, equations for vari-
ances and covariances of weighted mean differences are derived, making possible
assignments of standard errors of differences, confidence intervals and probability
values.
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3.1 Series with independent experiments

Let yij denote an observation from treatment i, i = 1, 2, . . . , I, in experiment j,
j = 1, 2, . . . , J . Let

yij = αi + tj + eij , (5)

where αi denotes the expected value of the ith treatment, tj is a random effect of
the j th experiment, and eij is a random error. The random effects and the random
errors are assumed to be independent and normally distributed with expected value
0 and variances σ2

t and σ2
e , respectively.

The series comprises I treatments and J experiments, but yij may not have been
observed for all pairs of i and j. Let subscript i = c if the treatment is the reference
treatment. For all i and j such that yij has been observed, let dij = yij − ycj . Let
J (i) = {i : dij exists}, and let Ji be the number of elements in J (i). Thus, the
number of experiments including treatment i is Ji. The difference δi between the
expected value αi of the ith treatment and the expected value αc of the reference
treatment can be estimated by

δ?i =
1

Ji

∑
j∈J (i)

dij , (6)

which is distributed as N(αi − αc, 2σ
2
e/Ji) when i 6= c. Using Model (5) and the

reference treatment method, the expected value αc of the reference treatment is
estimated by

α?
c =

1

J

J∑
j=1

ycj , (7)

and the expected value αi of treatment i, i 6= c, is estimated by

α?
i = α?

c + δ?i . (8)

Proposition 3.1 Let Jpq be the number of experiments that include both treat-
ments p and q. The covariance between α?

p and α?
q, as defined by Equations (7) and

(8), is

cov(α?
p, α

?
q) =



σ2
t + σ2

e

J
, if p = q = c

σ2
t

J
+
( 2

Jp
− 1

J

)
σ2
e , if p = q 6= c

σ2
t

J
−
( 1

J
− Jpq
JpJq

)
σ2
e , if

p 6= q
p 6= c
q 6= c

σ2
t

J
, if

{
p 6= q
q = c .

Proof See Appendix A. �
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Corollary 3.2 The variance in the estimated difference between two test treat-
ments is

var(α?
p − α?

q) =
( 1

Jp
+

1

Jq
− Jpq
JpJq

)
2σ2

e , (9)

where p 6= q, p 6= c and q 6= c, and the variance in the estimated difference between
a test treatment and the reference treatment is

var(δ?i ) =
2σ2

e

Ji
. (10)

In applications, the variance components σ2
t and σ2

e are unknown. These may
be estimated using the REML method, which, in balanced cases, gives the same
estimates, when positive, as the traditional ANOVA method [22]. Let σ̂2

e be the
REML estimate of σ2

e . The ratio between the estimate, Equation(6), of the dif-
ference αi − αc, i 6= c, and the standard error 2σ̂2

e/Ji may be compared with a t
distribution with N − I − J + 1 degrees of freedom, where N is the total number
of observations. Similarly, the ratio between the difference α?

p − α?
q , where p 6= q,

p 6= c and q 6= c, and the square root of Equation (9), with σ̂2
e substituted for σ2

e ,
may be compared with a t distribution with N − I − J + 1 degrees of freedom.

3.2 Series with experiments in groups

When the experiments can be classified into groups, for example groups of ex-
periments conducted at about the same point of time or at the same location,
the following model is useful. Let yijk denote an observation from treatment i,
i = 1, 2, . . . , I, in the kth experiment, k = 1, 2, . . . ,Kj , of group j, j = 1, 2, . . . , J .
Let

yijk = αi + aj + gij + tjk + eijk . (11)

In Equation (11), αi denotes the expected value with the ith treatment, aj is
a random effect of the j th group, gij is a random interaction between the ith
treatment and the j th group, tjk is a random effect of the kth experiment in the
j th group, and eijk is a random error. The random effects and interactions are
assumed to be independent and normally distributed with expected value 0 and
variances σ2

a, σ2
g , σ2

t and σ2
e , respectively.

Define dijk as the difference between the observations of the treatments i and c
in the kth experiment in group j, whenever these observations exist. Thus dijk =
yijk − ycjk. Let K(i, j) = {k : dijk exists} and Kij be the number of experiments
with treatments i (and c) in group j (i.e. the number of elements in K(i, j)). The
mean difference over experiments of group j is normally distributed:

1

Kij

∑
k∈K(i,j)

dijk ∼ N
(
αi − αc , 2

(
σ2
g +

σ2
e

Kij

))
. (12)
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Define weights {wij} as

wij =


1

2(σ2
g + σ2

e/Kij))
if Kij > 0

0 if Kij = 0 .

(13)

Let J (i) = {j : dijk exists for some k}. Thus J (i) is the set of all subscripts for
groups with experiments including treatment i. Then

δ?i =
1∑J

j=1wij

∑
j∈J (i)

wij

Kij

∑
k∈K(i,j)

dijk (14)

is a pooled estimate of δi = αi−αc. The expected value αc of the reference treatment
can be estimated by

α?
c =

1∑J
j=1 uj

J∑
j=1

uj
Kj

Kj∑
k=1

ycjk , (15)

where uj = (σ2
a + σ2

g + σ2
t /Kj + σ2

e/Kj)
−1, and the expected value of αi, i =

1, 2, . . . , I, may be estimated by

α?
i = α?

c + δ?i . (16)

Proposition 2 gives the variance of α?
i , i = 1, 2, . . . , I, and the covariances between

α?
p and α?

q when p 6= q.

Proposition 3.3 Let Kpqj denote the number of experiments, in the jth group,
that include the treatments p and q. The covariance cov(α?

p, α
?
q) between α?

p and α?
q,

as defined by Equations (15) and (16) is
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1∑J
j=1 uj

, if p = q = c

1∑J
j=1 uj

+
1∑J

j=1wpj

+
2∑J

j=1wpj
∑J

j=1 uj

J∑
j=1

wpjuj
(
−σ2

g −
σ2
e

Kj

)
, if p = q 6= c

1∑J
j=1 uj

+
1∑J

j=1wpj
∑J

j=1 uj

J∑
j=1

wpjuj
(
−σ2

g −
σ2
e

Kj

)

+
1∑J

j=1wqj
∑J

j=1 uj

J∑
j=1

wqjuj
(
−σ2

g −
σ2
e

Kj

)

+
1∑J

j=1wpj
∑J

j=1wqj

∑
j∈J (p,q)

wpjwqj(σ
2
g +

Kpqjσ
2
e

KpjKqj
) , if

p 6= q
p 6= c
q 6= c

1∑J
j=1 uj

+
1∑J

j=1wpj
∑J

j=1 uj

J∑
j=1

wpjuj
(
−σ2

g −
σ2
e

Kj

)
, if

{
p 6= q
q = c ,

(17)

where the sum over J (p, q) = J (p) ∩ J (q) is 0 if J (p, q) is empty.

Proof See Appendix B. �

Corollary 3.4 The variance in the estimated difference between two test treat-
ments is

var(α?
p − α?

q) =
1∑J

j=1wpj

+
1∑J

j=1wqj

− 2∑J
j=1wpj

∑J
j=1wqj

∑
j∈J (p,q)

wpjwqj(σ
2
g +

Kpqjσ
2
e

KpjKqj
) ,

where p 6= q, p 6= c, q 6= c and the last sum is 0 if J (p, q) is empty, and the variance
in the estimated difference between a test treatment and the reference treatment is

var(δ?i ) =
1∑J

j=1wij

. (18)

An alternative expression for the variance in the estimated difference between
two treatments is provided in Appendix C.

Let σ̂2
a, σ̂2

g , σ̂2
t and σ̂2

e be the REML estimates, restricted to non-negative values,

of σ2
a, σ2

g , σ2
t and σ2

e , respectively. Let ŵij = (2(σ̂2
g + σ̂2

e/Kij))
−1 and ŵpqj = (2(σ̂2

g +

σ̂2
e/Kpqj))

−1, with Kpqj defined as in Proposition 2. Then,

δ̂i =
1∑J

j=1 ŵij

∑
j∈J (i)

ŵij

Kij

∑
k∈K(i,j)

dijk
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is an estimator of αi−αc, and δ̂p− δ̂q is a reference treatment method estimator of

αp−αq. The ratio between δ̂i and its standard error, (
∑J

j=1 ŵij)
−1/2, may be used

as a test statistic for the difference between the ith treatment and the reference
treatment. Similarly, the ratio between δ̂p − δ̂q and the standard error( 1∑

j∈J (p) ŵpj
+

1∑
j∈J (q) ŵqj

− 2∑J
j=1 ŵpj

∑J
j=1 ŵqj

∑
j∈J (p,q)

ŵpjŵqj(σ̂
2
g +

Kpqj σ̂
2
e

KpjKqj
)
)1/2

may be used as a test statistic for the difference between the pth and the qth
treatment, p 6= c, q 6= c. These statistics can be approximately compared with a t
distribution with

∑J
i=1 Ji − I − J + 1 degrees of freedom.

3.3 General series

Often the experiments can be classified with regard to more than a single factor.
For example, the experiments may have been conducted on several points of time,
e.g. years, and at several locations. In this case, let yijkl denote an observation from
treatment i, i = 1, 2, . . . , I, in the lth experiment, l = 1, 2, . . . , Ljk at point of time
j, j = 1, 2, . . . , J and location k, k = 1, 2, . . . ,Kj . Let

yijkl = αi + aj + bk + gij + hik + tjkl + eijkl . (19)

In Equation (19), αi is the expected value using the ith treatment, aj is a random
effect of the j th point of time, bk is a random effect of the kth location, gij is a
random interaction between the ith treatment and the j th point of time, hik is
a random interaction between the ith treatment and the kth location, tjkl is a
random effect of the lth experiment at the j th point of time and the kth location,
and eijkl is a random error. The random effects are assumed to be independent
and normally distributed with expected value 0 and variances σ2

a, σ2
b , σ2

g , σ2
h, σ2

t

and σ2
e , respectively. In series of crop variety trials, points of time are often years

or seasons. In these cases, it is often reasonable to assume that effects of points of
time, which are mainly due to changes in weather, are uncorrelated, especially if
new plots are used every year. Model (19) can be augmented with the interaction
between points of time and locations, provided that the effects of this interaction
are not confounded in the design with the effects of points of time, locations or
trials. If this is fulfilled, let

yijkl = αi + aj + bk + gij + hik + sjk + tjkl + eijkl . (20)

In Equation (20), hik is a random interaction between the ith treatment and the
kth location, and sjk is a random interaction between the j th point of time and
the kth location. The random effects are assumed to be independent and normally
distributed with expected value 0 and variances σ2

a, σ2
b , σ2

g , σ2
h, σ2

s , σ2
t and σ2

e ,
respectively.

Let N denote the total number of observations, and M the total number of
experiments. Let I(k) ≡ Ik denote a k × k-identity matrix and 1k a k-vector of
ones. Models (5), (11), (19) and (20) can be written

y = Xα + Ztγt + e , (21)
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y = Xα + Zaγa + Zgγg + Ztγt + e , (22)

y = Xα + Zaγa + Zbγb + Zgγg + Zhγh + Ztγt + e , (23)

y = Xα + Zaγa + Zbγb + Zgγg + Zhγh + Zsγs + Ztγt + e , (24)

respectively. In Equations (21)–(24), X, Za, Zb, Zg, Zh, Zs and Zt denote full
column-rank design matrices for treatments, points of time, locations, treatment-
by-time interactions, treatment-by-location interactions, time-by-location interac-
tions, and experiments, respectively, whereas α, γa, γb, γg, γh, γs, γt and e denote
vectors of fixed treatment effects, random point of time effects, random location
effects, random treatment-by-time effects, random treatment-by-location effects,
random time-by-location effects, random experiment effects and random model
errors, respectively.

Let Ga = σ2
aI(rank(Za)), Gb = σ2

b I(rank(Zb)), Gg = σ2
gI(rank(Zg)), Gh =

σ2
hI(rank(Zh)), Gs = σ2

sI(rank(Zs)), Gt = σ2
t I(rank(Zt)) and R = σ2

e IN . Let V
denote the covariance matrix of y. For Models (5), (11), (19) and (20), respectively,

V = ZtGtZ
′
t + R ,

V = ZaGaZ
′
a + ZgGgZ

′
g + ZtGtZ

′
t + R ,

V = ZaGaZ
′
a + ZbGbZ

′
b + ZgGgZ

′
g + ZhGhZ′h + ZtGtZ

′
t + R ,

V = ZaGaZ
′
a + ZbGbZ

′
b + ZgGgZ

′
g + ZhGhZ′h + ZsGsZ

′
s + ZtGtZ

′
t + R .

Generally, linear mixed models can be written y = Xα + Zγ + e, where X and
Z denote design matrices for treatments and random effects, respectively, whereas
α, γ and e denote vectors of fixed treatment effects, random effects and random
model errors, respectively. The covariance matrix of y is V = Z′GZ + R, where
G is the covariance matrix of γ and R is the covariance matrix of e. Given V, the
generalized least squares estimator of α is α◦ = (X′V−1X)−1X′V−1y, and the best
linear unbiased predictor of γ is γ◦ = GZ′V−1(y−Xα◦). In complete series, that
is in tables without missing cells, treatments are orthogonal to experiments, which
results in uncorrelated generalized least squares estimates of treatment differences
and experimental effects: cov(Lα◦,γ◦) = LX′R−1Z = 0, when L is a row vector
of contrast constants.

At the second stage of the two-stage analysis, the residual variance is a sum of
two components: the variance due to treatment-by-experiment interaction, and the
variance due to intra-experimental plot errors. When R is modeled as σ2

e IN , the
residual variance is assumed to be homogeneous. In general, if the elements of y are
sorted by experiments, R is a block-diagonal matrix. Estimated covariance matri-
ces from the analyses of the first stage can be used as blocks. This makes it possible
to estimate the effects of the treatment-by-experiment interaction. Equations (5),
(11), (19) and (20) can be augmented by a term uij , uijk, uijkl and uijkl, respec-
tively, for random treatment-by-experiment interaction effects. However, from a
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data processing point of view it is difficult to store all estimated covariance matri-
ces for future use at second stages [26]. For this reason, R is often approximated
by σ2

eD, where D is a diagonal matrix [17].
Define the I-vector δ = (δ1, δ2 . . . , δI) of differences in expected values as

δ = α− 1Iαc , (25)

where αc is the expected value of the reference treatment, so that δc = 0. Denote
by Zt the subset of columns of Z that form the design matrix of the experiments.
Let xi be the ith column of X, and A = Z′tdiag(xc). Then Ay is the M -vector
of reference treatment observations, with variance AVA′. The N -vector of within-
experiment differences to the reference is

d = (IN − ZtA)y . (26)

The expected value of d is E(d) = E(y − ZtE(Ay)) = E(y − Zt1Mαc) = X(α−
1Iαc) = Xδ, because E(y) = Xα and Zt1mαc = X1Iαc. The covariance matrix of
d is

Vd = (IN − ZtA)V(IN − ZtA)′ . (27)

Through the reference treatment method each treatment is compared with the
reference treatment directly. As discussed in the introduction, covariances in Vd

between treatments are not considered for the estimation of the differences between
the test treatments and the reference, i.e.

Ṽd =

I∑
i=1

diag(xi)Vddiag(xi)

is used for the estimation of δ as defined in Equation (25). Thus,

δ? = (X′Ṽ−dX)−X′Ṽ−dd , (28)

is the I-vector of estimates δ?i , with δ?c = 0, i = 1, 2, . . . , I. In Equation (28)

generalized inverses are used, because Ṽd and X′Ṽ−dX are singular. The reference
treatment method estimator α?

c of the expected value αc of the reference treatment
is found by regressing Ay on 1M , using generalized least squares:

α?
c = (1′M (AVA′)−11M )−11′M (AVA′)−1Ay . (29)

The off-diagonal values of AVA′ involve variances between groups (locations or
points of time) and variances for variety-by-group interaction. When these between-
groups variances are large, the estimate α?

c will be close to an unweighted average
of group means. When they are small, α?

c will be close to a weighted average of
group means, using numbers of experiments as weights. The vector α?of reference
treatment method estimates of expected values is

α? = 1Iα
?
c + δ? . (30)

Proposition 3.5 The covariance matrix var(α?), of α? as defined in Equation
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(30), is

C = 1I(1′M (AVA′)−11M )−11′I + S + T′ + T ,

where

S = (X′Ṽ−dX)−X′Ṽ−dVd((X′Ṽ−dX)−X′Ṽ−d )′ , (31)

T = (X′Ṽ−dX)−X′Ṽ−d (IN − ZtA)VB′ .

Proof Let B = 1I(1′M (AVA′)−11M )−11′M (AVA′)−1A. From Equations (26), (27),
(28), (29) and var(α?) = var(1Iα

?
c) + var(δ?) + cov(1Iα

?
c , δ

?) + cov(δ?,1Iα
?
c),

it follows that C = BVB′ + S + T′ + T. Finally note that BVB′ =
1I(1′M (AVA′)−11M )−11′I . �

In applications, the variance components are unknown. Let V̂ denote the estimate
of V, obtained by substituting the REML estimates for the unknown variance
components, and let Ĉ and α̂ denote the covariance matrix C and the estimates
α?, respectively, calculated using V̂ in place of V. Approximate tests of linear
combinations of the expected values αi, i = 1, 2, . . . , I, can be carried out using
general t- and F -statistics. Consider the statistical hypothesis H0 : Lα, where L
is a matrix of full row rank. When L is a single row, the general t-statistic is
applicable:

t =
Lα̂√
LĈL′

. (32)

When L comprises R ≥ 1 rows, the general F -statistic given by

F =
α̂′L′(LĈL′)−1Lα̂

R
(33)

may be used for testing the hypothesis H0. Using Models (19) and (20), the
contrasts in the treatments are compared with variances for treatment-by-time
and treatment-by-location interactions estimated with

∑J
i=1 Ji − I − J + 1 and∑K

i=1Ki−I−K+1 degrees of freedom, respectively, where Ji is the number of points
of time comprising the ith treatment, and Ki is the number of locations comprising
the ith treatment. For this reason it is reasonable to compare Equations (32) and

(33) with a t distribution with min{
∑J

i=1 Ji−I−J+1 ,
∑K

i=1Ki−I−K+1} degrees

of freedom and an F distribution with R and min{
∑J

i=1 Ji− I−J + 1 ,
∑K

i=1Ki−
I−K+1} degrees of freedom, respectively. Alternatively, the generalized Satterth-
waite method [8, 23] can be used. When L is a single row, it is assumed that LCL′ is
approximately chi-square distributed with 2E((LCL))2/var(LCL′) degrees of free-
dom. Let M denote the observed information matrix, obtained at maximization
of the residual likelihood, and let g denote the vector of derivatives of LCL′ with
respect to the variance components. Then gMg′ approximates var(LCL′), and
the Satterthwaite approximation of the degrees of freedom is 2E((LCL′))2/gMg′.
Kenward and Roger [13, 14] proposed further approximations for general t- and
F-tests.
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Probability values can be adjusted for multiple comparisons by the Tukey-
Kramer method [15]. The Dunnett method [7] is appropriate if the only compar-
isons of interest are those between the test treatments and the reference treatment.

4. Discussion

This paper highlighted practical problems when communicating generalized least
squares estimates in series of variety trials. Performance is often measured as dif-
ference in yield to a reference variety. As shown, generalized least squares estimates
of differences can appear strange when compared with observed differences.

Sometimes it is suggested that test varieties could be compared indirectly through
the use of a reference variety. This recurrent idea was examined by specification of
a ‘reference treatment method’. The reference treatment method gives estimates
of differences to the reference treatment that are averages or weighted averages
of observed differences, thereby avoiding the striking discrepancies produced by
the method of generalized least squares. However, for indirect comparisons of test
varieties, through comparison with the reference variety, discrepancies between
estimates and observations can occur, i.e. with the reference treatment method, an
estimate of the expected difference between two test varieties can be outside the
range of observed differences.

It might seem restrictive that the reference treatment method requires that a
reference variety must be included in all trials. In practice this is seldom a problem,
since series of VCU trials are planned, and a reference variety is always included
to facilitate comparison. However, if the series is not designed for a joint analysis,
this requirement can be problematic. Through the reference treatment method,
estimates of differences can depend on the choice of reference variety. The reference
treatment method is intended for the situation that the reference variety is of
particular interest. The reference variety may be a variety mix or a standard variety
that is well known.

The main problem discussed in this paper is that point estimates do not always
compare well with what is truly observed. This problem can be diminished if con-
fidence intervals are provided. When estimated differences deviate from observed
differences, standard errors in differences are usually large and confidence intervals
wide. By presenting confidence intervals for differences it is pedagogically made
clear that estimates are uncertain.

The efficiency in the example, of the reference treatment method as compared
with the method of generalized least squares, was evaluated. In the five-years series,
the standard errors in the differences were consistently higher with the reference
treatment method than with the generalized least squares method. This was not
surprising, because the comparison was made under the assumption that the model
was correct, and the reference treatment method ignores some correlations in the
data. When the model is incorrect, the reference treatment method could possibly
in some cases perform better than the generalized least squares method. Further
studies are needed to investigate if this might be the case. Otherwise, the reference
treatment method cannot be recommended from a statistical point of view. It
should be more important that the statistical tests of the differences between the
varieties are made as efficiently as possible, than that estimated and observed
differences agree.

The discrepancies in results between the methods of generalized least squares
and the reference treatment method indicates that the model does perhaps not
describe the observations sufficiently well. In a two-way table of yields from I
varieties and J trials, there may be variety-by-trial interaction that is not included
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in the additive models of the present paper. Instead of investigating other ways to
make calculations one could, in future research, consider other models.

As shown in Section 3.3, in series that are complete, generalized least squares
estimates of treatment differences are uncorrelated with experimental effects. If
possible, a series of trials should be designed as a complete series, because this elim-
inates the problems of separating effects of treatments from effects of trials. Series
of complete variety trials can be analyzed using GGE or AMMI analyses [11, 31],
which provides insight into variety-by-trial interactions. Series of VCU trials can,
for reasons mentioned in the Introduction, rarely be de designed as complete series.
However, if the series is made ‘as complete as possible’, such apparent problems
that were discussed in the present paper may be partially avoided.
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Appendix A. Proof of Proposition 1.

Proof By Model (5), var(α?
c) = (σ2

t + σ2
e)/J and

cov(α?
c , δ

?
i ) = cov

( 1

J

J∑
j=1

ecj ,
1

Ji

∑
j∈J (i)

(eij − ecj)
)

=
∑

j∈J (i)

−σ2
e

Ji
=
−σ2

e

J
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when i 6= c. Moreover, var(δ?i ) = 2σ2
e/Ji when i 6= c, and

cov(δ?p, δ
?
q ) =

1

JpJq
cov
( ∑
j∈J (p)

(ypj − ycj),
∑

j∈J (q)

(yqj − ycj)
)

=
Jpqσ

2
e

JpJq
,

when p 6= q, p 6= c and q 6= c. The second equation of the proposition follows
from var(α?

p) = var(α?
c) + var(δ?p) + 2 cov(α?

c , δ
?
p). The third equation follows from

cov(α?
p, α

?
q) = var(α?

c) + cov(α?
c , δ

?
p) + cov(α?

c , δ
?
q ) + cov(δ?p, δ

?
q ), where cov(δ?p, δ

?
q ) =

σ2
eJpq/(JpJq). The fourth equation follows from cov(α?

p, α
?
c) = var(α?

c)+cov(α?
c , δ

?
p).

�

Appendix B. Proof of Proposition 2.

Proof Write δ?i as δ?i =
∑

j∈J (i) vij d̄ij·, where vij = wij/
∑

j∈J (i)wij and d̄ij· =∑
k∈K(i,j) dijk/Kij . By Equation (12), var(d̄ij·) = 1/wij . Consequently

var(δ?i ) = var
∑

j∈J (i)

vij d̄ij· =
1∑J

j=1wij

. (B1)

Since cov(d̄pj·, d̄qj·) = cov(
∑

k∈K(p,j)(ypjk−ycjk) ,
∑

k∈K(q,j)(yqjk−ycjk))/(KpjKqj)

= (KpjKqjσ
2
g+Kpqjσ

2
e)/(KpjKqj) = σ2

g+Kpqjσ
2
e/(KpjKqj), the covariance between

δ?p and δ?q is

cov
( ∑
j∈J (p)

vpj d̄pj· ,
∑

j∈J (q)

vqj d̄qj·
)

=
∑

j∈J (p,q)

vpjvqj cov(d̄pj· , d̄qj·)

=
1∑J

j=1wpj
∑J

j=1wqj

∑
j∈J (p,q)

wpjwqj(σ
2
g +

Kpqjσ
2
e

KpjKqj
) .

(B2)

Write α?
c as α?

c =
∑J

j=1 xj ȳcj·, where xj = uj/
∑J

j=1 uj and ȳcj· =
∑Kj

k=1 ycjk/Kj .

Since cov(d̄ij· , ȳcj·) = cov(
∑

k∈K(i,j)(yijk − ycjk) ,
∑Kj

k=1 ycjk)/(KijKj) =

(−KijKjσ
2
g − Kijσ

2
e)/(KijKj) = −σ2

g − σ2
e/Kj , the covariance between δ?i and

α?
c is

cov
( ∑
j∈J (i)

vij d̄ij· ,

J∑
j=1

xj ȳcj·
)

=
∑

j∈J (i)

vijxj cov(d̄ij· , ȳcj·)

=
1∑J

j=1wij
∑J

j=1 uj

∑
j∈J (i)

wijuj(−σ2
g −

σ2
e

Kj
) .

(B3)

The variance var(α?
c) in the estimator of the expected value of the reference treat-

ment is 1/
∑J

j=1 uj , because var(
∑Kj

k=1 ycjk/Kj) = 1/uj . The second equation of the

proposition follows from var(α?
p) = var(α?

c +δ?p) = var(α?
c)+var(δ?p)+2 cov(α?

c , δ
?
p)

using Equations (B1) and (B3). The fourth equation of the proposition follows from
cov(α?

p , α
?
c) = cov(α?

c + δ?p , α
?
c) = var(α?

c) + cov(α?
c , δ

?
p) using Equation (B3). The

third equation of the proposition follows from cov(α?
p, α

?
q) = cov(α?

c + δ?p , α
?
c + δ?q )

= var(α?
c)+cov(α?

c , δ
?
p)+cov(α?

c , δ
?
q )+cov(δ?p , δ

?
q ) using Equations (B2) and (B3).
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Appendix C. Another expression for the variance in the estimated difference
between two treatments.

With the reference treatment method as applied to Model (11), the variance in the
estimated difference between two treatments is

var(α?
p − α?

q) =
2

(
∑

j∈J (p)wpj)2

∑
j∈J (p)

w2
pj(σ

2
g +

σ2
e

Kpj
)

+
2

(
∑

j∈J (q)wqj)2

∑
j∈J (q)

w2
qj(σ

2
g +

σ2
e

Kqj
)

− 2∑J
j=1wpj

∑J
j=1wqj

∑
j∈J (p,q)

wpjwqj(σ
2
g +

Kpqjσ
2
e

KpjKqj
) .

(C1)
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