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Summary 26 

Hantaviruses are globally distributed and cause severe human disease. Puumala hantavirus 27 

(PUUV) is the most common species in Northern Europe, and the only hantavirus confirmed 28 

to circulate in Sweden, restricted to the northern regions of the country. In this study, we 29 

aimed to further add to the natural ecology of PUUV in Sweden by investigating prevalence, 30 

and spatial and host species infection patterns. Specifically, we wanted to ascertain whether 31 

PUUV was present in the natural reservoir, the bank vole (Myodes glareolus) further south 32 

than Dalälven river, in south-central Sweden, and whether PUUV, in addition, can be 33 

detected in other rodent species in addition to the natural reservoir. In total, 559 animals were 34 

collected at Grimsö (59°43’N; 15°28’E), Sala (59°55’N; 16°36’E) and Bogesund (59°24’N; 35 

18°14’E) in south central Sweden between May 2013 and November 2014. PUUV ELISA-36 

reactive antibodies were found both in 2013 (22/295) and in 2014 (18/264), and 9 samples 37 

were confirmed as PUUV-specific by focus reaction neutralization test. Most of the PUUV-38 

specific samples were from the natural host, the bank vole, but also from other rodent hosts, 39 

indicating viral spill-over. Finally, we showed that PUUV is present in more highly populated 40 

central Sweden. 41 

 42 

Keywords: Bank vole; Bunyaviridae; Disease emergence; Hantavirus; Myodes glareolus; 43 

Puumala virus; Sweden; Zoonosis  44 
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Introduction 45 

Hantaviruses are single-stranded, negative-sense RNA viruses belonging to the family 46 

Bunyaviridae [1]. These constitute a widespread group of viruses, several are zoonotic agents 47 

with great impact on public health [2]. Hantaviruses are the major causative agents of two 48 

severe human diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus 49 

cardiopulmonary syndrome (HCPS) [3, 4]. Geographically, HFRS is mainly limited to 50 

Eurasia while HCPS is restricted to the Americas. Approximately, 10 000 cases of human 51 

HFRS are diagnosed annually in Europe [4, 5], about 150,000 to 200,000 cases throughout 52 

the world, although there are likely thousands of cases that are never reported [6-8]. Further, 53 

the number of HFRS cases are increasing, although the drivers of this phenomenon are 54 

unclear. Factors may range from increased surveillance to climatic factors [9, 10], including a 55 

shift in host distribution and behaviour as a result of climate change [5]. The clinical 56 

manifestation differs between hantaviruses, where Puumala virus (PUUV) causes less severe 57 

human diseases compared to other more pathogenic hantavirus species [11]. However, all 58 

pathogenic hantavirus infections have a similar initial clinical presentation; mainly influenza-59 

like illness, with symptoms including myalgia, malaise and high fever [12]. Virus 60 

transmission to humans occurs through inhalation of virus-contaminated aerosol from rodent 61 

excreta. Humans are most likely exposed to virus-contaminated aerosol through dust or 62 

handling hay/timber that has been in close contact with the hosts. Furthermore, there is a 63 

strong correlation between human infections and the number of infected rodents circulating 64 

in the same area [13, 14]. Rodent-to-rodent transmission occurs through both indirect 65 

(aerosol) and direct (contact) transmission [13-15].  66 

Hantaviruses constitute a large group of viruses with global distribution, reflecting the 67 

distribution of host reservoirs. There has been an increased focus on wild rodents as 68 

reservoirs for hantaviruses in Europe due to recent detections of Seoul virus (SEOV) in wild 69 
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rats combined with severe SEOV-caused human HFRS cases. Specifically, SEOV has 70 

recently been detected in England [16], France [17], and the Netherlands [18]. Furthermore, 71 

SEOV was found in Swedish pet rats that originated from England [16]. Globally, more than 72 

20 distinct species of hantaviruses have been described, and each virus species is spread by 73 

one specific mammalian host as a result of of long term co-evolution [19-21]. This hypothesis 74 

is supported by phylogenetic studies, whereby the genetic relationship between host and virus 75 

diversification is mirrored [22-24]. Although rodents constitute the majority of hosts, 76 

hantaviruses might have first appeared in Chiroptera (bats) or Soricomorpha (moles and 77 

shrews), before emerging in rodent species [25].  78 

The natural reservoir host for PUUV, the most common hantavirus circulating in central and 79 

northern Europe, is the bank vole Myodes glareolus. PUUV is currently the only hantavirus 80 

known to circulate in Sweden, and is endemic in the northern parts of the country [13, 26]. 81 

The current hypothesis is that PUUV is endemic only north of the river Dalälven, located 82 

north of the most urbanised regions of Sweden [26, 27]. This is reflected by the lack of 83 

human cases of south of the river Dalälven, however, recent sampling of rodents has 84 

suggested this may no longer be correct [13, 28]. In this study, we aimed to further add to the 85 

ecology of PUUV in Sweden by investigating prevalence, spatial, and host species infection 86 

patterns. Specifically, we wanted to ascertain the prevalence and distribution of hantaviruses 87 

in Swedish rodents south of the river Dalälven, and assess the host range of PUUV in rodent 88 

species in addition to the natural reservoir in this region. 89 

 90 

Materials and Methods 91 

Sampling strategy and ethics statement 92 

All trapping and sampling was carried out in accordance with Swedish and European law and 93 

regulations provided by the Swedish Board of Agriculture. The capture and sampling 94 
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protocols were approved by an ethical permission from the Animal Experiments Ethical 95 

Committee, Umeå, (Reference: A13-14). All trapping and sampling was conducted by trained 96 

biologists.  97 

Study sites and sample collection 98 

Rodents were captured between May 2013 – November 2014 from three geographical 99 

locations south of the river Dalälven: Sala (59°55’N, 16°36’E), Grimsö (59°43’N, 15°28’E), 100 

and Bogesund (59°24’N, 18°14’E) (Figure 1). These geographic locations represent three 101 

different ecotypes. Both Sala and Grimsö are inland, however where Grimsö is more 102 

forested, the area around Sala is mostly agricultural. Furthermore, at the time of sampling the 103 

area around Sala had been heavily affected by a large fire, resulting in a disturbed landscape. 104 

Bogesund is in close proximity to the Baltic Sea and has a more rocky terrain. Rodents were 105 

captured using commercially available snap-traps. Following capture, carcasses were frozen 106 

to ≤ -20 °C within 2 hours of collection. In the laboratory, the rodents were defrosted and 107 

were dissected. Partial spleen and heart tissues were collected and frozen in -80 °C until 108 

required for analysis. Other tissues were collected from the rodents for a number of other 109 

studies, and the carcasses were appropriately disposed following dissections. 110 

Serological screening  111 

Enzyme Linked Immunosorbant Assay  112 

Tissues were subdivided into smaller pieces of approximately 25 g, and homogenized in PBS 113 

(using a beater for 3 minutes in PBS). The homogenate was initially assayed using a 114 

hantavirus IgG ELISA, based on baculovirus-expressed PUUV nucleocapsid protein antigen 115 

[29], as previously described for use in sera [30]. This method has been validated and 116 

successfully used previously with organ homogenates [eg. 16, 18]. 117 
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Focus reaction neutralization test  118 

To confirm hantavirus-specificity, the ELISA positive samples were further evaluated by 119 

focus reaction neutralisation test (FRNT), the gold standard for hantavirus serology [31]. 120 

Briefly, a new subsection of tissue was homogenised as described above, initially extracted in 121 

PBS (1:25). The homogenate was further diluted (1:2) in 1x Hanks balanced serum solution 122 

(Corning, New York, USA), mixed with diluted virus (PUUV strain Kazaan-E6) [31] and 123 

added to confluent Vero E6 cell monolayers in six-well tissue culture plates. After 7 days, a 124 

solution of monkey anti-PUUV polyclonal serum in 5% Fetal Calf Serum (Gibco, 125 

ThermoFisher, Boston, USA) and wash buffer (0,15% Tween- 20 in PBS) was added and 126 

incubated. Virus-infected cells were visualized by addition of peroxidase-labelled goat anti-127 

human IgG (BioRad Laboratories, Hercules, CA), followed by terminative 3, 3’, 5, 5’-128 

tetramethylbenzidine substrate (Sigma, Stockholm, Sweden). The FRNT-positive samples 129 

from 2014 were further titrated (1:50 to 1:800) to ascertain the minimal dilution of rodent 130 

tissues to avoid non-specific inhibition. FRNT results are presented in percentages, 131 

representing the percentage reduction of the number of foci. A dilution series of infected 132 

Vero E6 cells were used as a positive control, and, 80% reduction of the number of foci was 133 

selected as the cut-off for the virus neutralization titre. 134 

 135 

Results  136 

A total of 559 animals were screened for PUUV reactive antibodies across three locations, 137 

south of the putative PUUV geographical boarder. Roughly similar numbers of organs were 138 

screened in 2013 and 2014, however in 2013 all 295 samples were homogenates from 139 

spleens, as compared to 187 hearts and 77 spleens in 2014. More than 50% of samples 140 

collected were from bank vole (n= 342), and PUUV reactive antibody prevalence in bank 141 

vole was 7.6% with no significant difference in prevalence between 2013 and 2014 (Fisher 142 
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Exact Test;X2=1.237, df=1, p=0.266). However, a number of other species were also positive 143 

including pygmy shrew (Sorex minutus, 25%), common shrew (S. araneus, 3.1%), yellow-144 

necked mouse (Apodemus flavicollis, 11.6%), wood mouse (A. sylvaticus; 16.7%) and a 145 

neonate roe deer (Capreolus capreolus, 9%). While antibody prevalence appeared higher in 146 

yellow-necked mouse and pygmy shrew as compared to bank vole, sample size for these 147 

species was much smaller. Species tested but not positive included Eurasian water shrew 148 

(Neomys fodiens), field vole (Microtus agrestis), wood lemming (Myopus schisticolor), and 149 

three avian species. Different locations appeared to have different importance for different 150 

species, however sampling bias did not allow for comparisons except for bank voles and 151 

yellow-necked mouse. For bank vole, PUUV antibody prevalence was higher in Bogesund 152 

(Fisher Exact Test;X2=8.787, df=1, p=0.003) and Grimsö (Fisher Exact Test;X2=4.26, df=1, 153 

p=0.04) than Sala. In contrast, yellow-necked mice in Sala had a higher prevalence (18.2%) 154 

than Bogesund (0.5%), however due to small sample sizes this is not significant (Fisher Exact 155 

Test;X2=3.634, df=1, p=0.056) (Table 1).  156 

Subsequently, all ELISA positives were assayed by FRNT to confirm hantavirus-specificity. 157 

Diluting homogenates prior to FRNT analysis proved crucial; homogenates from 2014 were 158 

serially diluted and revealed that a minimal dilution for a reliable result was 1:100 for this 159 

sample type (antibodies extracted from rodent spleens and hearts). The dilution 1:50, used in 160 

2013, was insufficient to avoid the possibility of non-specific inhibition, which would result 161 

in false positive outcomes. Thus, FRNT confirmation from the 2013 samples is tentative, 162 

however we infer that 5 of the 22 ELISA positives in 2013 reacted at 1:50 by FRNT dilution; 163 

roe deer (n=1), common shrew (n=1) and bank voles (n=3). In 2014, 9 ELISA positives were 164 

confirmed by FRNT, limited to bank voles from Bogesund (5/56 tested), a wood mouse in 165 

Bogesund (1/2 tested) and yellow-necked mice in Sala (3/22 tested). Interestingly, one 166 

yellow-necked mouse (Sample 134, 2014) had an end-point titre of >= 1:800 (Table 2) 167 
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 168 

Discussion 169 

Emerging and re-emerging pathogens are among the greatest challenges of the twenty-first 170 

century, and present a large economic burden to society. Further, most emerging and 171 

remerging pathogens are zoonotic viruses; viruses with natural hosts in the animal reservoir 172 

[32-34]. European studies indicate that hantaviruses are not only spreading to new areas [17, 173 

18], but also to new hosts [35]. In this study, we aimed to assess the dynamics of hantaviruses 174 

in Sweden, by assessing virus diversity and prevalence, spatial distribution, and host species 175 

fidelity through antibodies. Spatially, the current working hypothesis is that PUUV in 176 

Sweden is endemic north of the river Dalälven [26, 27], however both this study and Lõhmus 177 

et al (2016) clearly demonstrated PUUV infections in bank voles south of this boarder. We 178 

found positive rodents from Grimsö, Sala and Bogesund, captured in both 2013 and 2014, 179 

however, different areas were more important for different species. Reactive antibody 180 

prevalence was highest in Grimsö and Bogesund in bank vole; the Sala landscape, which is 181 

mostly agricultural was devastated by a large fire during the sampling period of this study. 182 

How this affects PUUV antibody prevalence is uncertain. In contrast, Sala was more 183 

important for yellow-necked mouse. The role of habitat for disease risk is complex, but a 184 

recent review suggests that there is a strong correlation between habitat and disease 185 

prevalence. Specifically, factors such as forest cover, fires, fragmentation and barrow space 186 

influence the dispersal of voles (and in this case mice), consequently affecting the 187 

epidemiology of PUUV [4, 19, 36, 37].The Bogesund site is particularly interesting as it is 188 

the southern most location of both this study, where PUUV prevalence in bank voles was 189 

high. At this southern location Lõhmus et al 2016 detected PUUV in a more southern 190 

location, but in yellow-necked mice [28]. This range expansion of PUUV in wildlife 191 

reservoirs has yet to result in numerous human causes. A similar trend is evident in France, 192 
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where PUUV has been detected in voles in populated regions with no human cases of HFRS, 193 

however in this case it is suggested to be driven by specific animo acid differences in the 194 

viruses [38]. Regardless, expansion of PUUV into areas with a higher human population is 195 

concerning in context of public health. 196 

Not only did we detect an expansion in the known PUUV geographic range, we also illustrate 197 

an increase in host range following detection of PUUV reactive antibodies in a number of 198 

permissive species. Yellow-necked mouse, wood mouse, common shrew and pygmy shrew 199 

were found among the ELISA positive samples; in total 37% of ELISA reactive samples 200 

were from species other than bank vole, indicating PUUV spill-over to other rodent and 201 

shrew species, or the presence of to date unknown hantaviruses causing cross-reacting 202 

antibodies detected by ELISA. Yellow-necked mouse has previously been shown to be a 203 

permissive host for PUUV in Sweden [28], but we found ELISA reactive antibodies in most 204 

species tested (given a large enough sample size), with the exception of field vole. While 205 

rodents, specifically mice are plausible spill over hosts, detection of PUUV reactive 206 

antibodied from a roe deer is unusual. The actual hantavirus species infecting Swedish 207 

shrews awaits further investigations. Given the numerous shrew-carried hantaviruses 208 

discovered during the last decade [6, 8], it is likely that one or several of these species are 209 

circulating also in Sweden, although also PUUV spill-over events can not be excluded at this 210 

stage. Given the deviation from known hantavirus host range, a more in depth analysis of 211 

shrews and ungulates ranging from sampling to virus sequencing is warranted. Indeed, Ahlm 212 

et al. (2000), described hantavirus-infected moose from northern Sweden [39], thus ungulates 213 

appear permissive to PUUV infection, but whether they are dead-end hosts or not is 214 

unknown. Hantaviruses are considered to be host-specific [21], however, this study revealed 215 

unexpected spill-over to a spectrum of different rodents, corroborating the hypothesis that 216 

PUUV epidemiology may be more complex [30, 40, 41].  217 
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Based upon our results, and emerging evidence [30, 40, 41], strict host fidelity in this system 218 

seems unlikely. The role that these spill-over hosts play in the epidemiology is, however 219 

unclear; they are indeed permissive to infection, and given the detection levels in this study, 220 

these spill over events are not rare. In order to reveal the role of putative spill over hosts play 221 

in the epidemiology of PUUV we need to ascertain whether they are dead-end hosts, spill 222 

over hosts, or are able to transmit infection. Regardless, it is likely that PUUV potentially has 223 

lower fitness in species other than bank voles, which may in turn limit frequency of 224 

infections. This potentially expanded model of PUUV (and hantavirus) epidemiology has 225 

large implications for the mitigation of human hantavirus-derived disease cases, as more 226 

hosts increase the risk for human transmission. This is further compounded with range 227 

expansion into more populated regions of Sweden. If these phenomena result in endemicity 228 

in new hosts or geographic regions, the health burden caused by hantaviruses will certainly 229 

increase. 230 

Conclusions 231 

Studies such as these are imperative in ascertaining PUUV prevalence in wildlife hosts to 232 

better inform risk areas for human infections. Given an expansion of PUUV range in the 233 

wildlife host, surveillance in humans is prudent. Hantavirus is an emerging virus in Sweden, 234 

with detections of antibodies against PUUV in both the reservoir and other small mammals 235 

farther south than previously described. Specifically, PUUV is now detected in more densely 236 

populated, as described here, in close proximity to large cities such as Uppsala and 237 

Stockholm. Moreover, rodents such as yellow-necked mouse utilize anthropogenic buildings 238 

ten times more frequently than bank voles [28]. These two factors rapidly decrease distance, 239 

and thus increase interactions, between humans and the wildlife reservoir. This may have 240 

large implications, as it increases the probability of human contact with infected rodent 241 
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excreta, creating a large reservoir for potential hantavirus infections in humans.   242 
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Table Legends 356 

Table 1: ELISA prevalence and number of samples collected from locations south of the river 357 

Dalälven in 2013-2014 in Sweden. 358 

Species Prevalence (# ELISA positive/# samples collected) 

 Year Location Total 

 2013 2014 

Bogesun

d Grimsö Sala 

 

Bank vole (Myodes 

glareolus 

9.3% 

(15/162)  

6.1% 

(11/180) 

13.4% 

(11/82) 

8.1% 
(13/160

) 

2.0% 

(2/100) 

7.6% 
(26/342) 

Field vole (Microtus 
agrestis) 

<0.001% 
(0/17) 

<0.001% 
(0/9) 

<0.001% 
(0/1) 

<0.001

% 
(0/19) 

<0.001
% (0/6) 

<0.001% 

(0/26) 

Common shrew (Sorex 

araneus) 

3.4% 

(3/89) 

<0.001% 

(0/7) 

<0.001% 

(0/3) 

3.4% 

(3/89) 

<0.001

% (0/4) 

3.1% 

(3/96) 
Eurasian Pygmy shrew 

(Sorex minutus) 25% (2/8) NT NT 

25% 

(2/8) NT 

25% 

(2/8) 

Eurasian Water shrew 
(Neomys fodiens) 

<0.001% 
(0/1) NT NT 

<0.001
% (0/1) NT 

<0.001% 
(0/1) 

Wood lemming 

(Myopus schisticolor) NT 

<0.001% 

(0/1) NT 

<0.001

% (0/1) NT 

<0.001% 

(0/1) 

Wood mouse 
(Apodemus sylvaticus) NT 

16.7% 
(3/18) 

50% 
(1/2) NT 

12.5% 
(2/16) 

16.7% 
(3/18) 

Yellow-necked mouse 

(Apodemus flavicollis) 

25%% 

(1/4) 

10.2% 

(4/39) 

0.5% 

(1/20) 

<0.001

% (0/1) 

18.2% 

(4/22) 

11.6% 

(5/43) 
Unknown mouse 

species NT 

<0.001% 

(0/8) 

<0.001% 

(0/7) NT 

<0.001

% (0/1) 

<0.001% 

(0/8) 

Roe deer (Capreolus 
capreolus) 9% (1/11) NT 

12.5% 
(1/8) 

<0.001
% (0/3) NT 

9% 
(1/11) 

Great tit (Parus major) 

<0.001% 

(0/1) 

<0.001% 

(0/2) NT 

<0.001

% (0/1) 

<0.001

% (0/2) 

<0.001% 

(0/3) 

Eurasian nuthatch 
(Sitta europaea) 

<0.001% 
(0/1) NT NT NT NT 

<0.001% 
(0/1) 

European robin 

(Erithacus rubecula) 

<0.001% 

(0/1) NT NT 

<0.001

% (0/1) NT 

<0.001% 

(0/1) 

Total 295 264 123 285 151 559 

 359 

  360 
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Table 2: FRNT neutralization of ELISA positive samples from small mammals collected in 361 

2014. 362 

Samp

le ID 
Year Organ Area Species FRNTa,b 

     

Interp

retatio

n 

 (1:50)  (1:100)  (1:200)  (1:800) 

2 2014 Heart Bogesund 
Bank 

vole  
POS 3% 1,70% 10% 53% 

11 2014 Heart Bogesund 
Bank 

vole 
POS 8% 0% 17.5% 92,50% 

22 2014 Heart Bogesund 
Bank 

vole  
POS 5% 1,70% 18% 56,70% 

28 2014 Heart Bogesund 
Bank 

vole  
POS 1,70% 3% 25% 51,70% 

40 2014 Heart Bogesund 
Bank 

vole  
NEG 10% 32% 85% 110% 

43 2014 Heart Bogesund 
Bank 

vole 
NEG 5% 30% 52,50% 70% 

47 2014 Heart Bogesund 
Wood 

mouse  
POS 0% 1,70% 6,70% 45% 

51 2014 Heart Bogesund 
Bank 

vole 
POS 8% 20% 77,50% 117,50% 

72 2014 Heart Sala  

Yellow-

necked 

mouse 

NEG 10% 30% 47,50% 135% 

129 2014 Heart Sala  
Bank 

vole 
NEG 8% 35% 67,50% 110% 

130 2014 Heart Sala  
Wood 

mouse 
NEG 10% 62,50% 112,50% 137,50% 

132 2014 Heart Sala  
Wood 

mouse 
NEG 31% NTc NT NT 

134 2014 Heart Sala  

Yellow-

necked 

mouse 

POS 11,70% 12,50% 2,50% 15% 

135 2014 Heart Sala  
Bank 

vole 
NEG 13% 62.5% 52,50% 60% 

142 2014 Spleen Sala  

Yellow-

necked 

mouse 

POS 5% 5% 25% 90% 

145 2014 Spleen Sala  

Yellow-

necked 
mouse 

POS 10% 10% 22,50% 55% 

249 2014 Heart Grimsö 
Bank 

vole 
NEG 5% 50% 75% 90% 

252 2014 Spleen Bogesund 
Bank 

vole  
NEG 48% 52.5% 80% 90% 

a. FRNT result at 1:100 dilution of less than 20% indicates a positive result 363 

b. Percentage of foci as compared to virus control 364 

c. Not tested 365 

  366 
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Figure Legend 367 

Figure1: Locations from which small mammals were collected in this study. Sample sites are 368 

indicated in black. Stockholm, the largest city in Sweden, and Uppsala, Sweden´s fifth largest 369 

city are indicated with a grey marker have been included for reference. The river Dalälven, 370 

the assumed Swedish PUUV border, is indicated. 371 
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