
Chemical and Ultrastructural Aspects of 
Thermally Modified Wood with 

Emphasis on Durability 

  

Jie Gao 
Faculty of Forest Sciences 

Department of Forest Products/Wood Science 

Uppsala 

  

Doctoral Thesis 

Swedish University of Agricultural Sciences 

Uppsala 2017 



Acta Universitatis agriculturae Sueciae 

2017:112 

ISSN 1652-6880 

ISBN (print version) 978-91-7760-114-2 

ISBN (electronic version) 978-91-7760-115-9 

© 2017 Jie Gao, Uppsala 

Print: SLU Service/Repro, Uppsala 2017 



Chemical and Ultrastructural Aspects of Thermally Modified 
Wood with Emphasis on Durability 

Abstract 

The Termovuoto (thermo-vacuum) process is an environmental friendly industrial 

approach to modify wood by combining efficient vacuum drying and thermo-treatment. 

In this thesis, chemical and ultrastructural aspects of two softwoods (spruce and fir for 

4 h at 160−220℃) and two hardwoods (ash and beech for 3 h at 190−220℃) thermally 

modified using the Termovuoto process were studied by light- and electron microscopy 

with emphasis on durability.  

Histochemical staining indicated an increasing amount of acidic groups in thermally 

modified woods (TMWs), particularly in the compound middle lamella (CML) 

including middle lamella cell corner (MLcc) (CMLcc) regions of TMWs treated at 

220℃ (TMW220℃). TEM observations showed significantly increased KMnO4 staining 

intensity of lignin in TMW220℃, presence of electron dense particles in CMLcc regions 

of softwood TMW220℃, and large lignin aggregates and disordered lamellar structure in 

the fibre S2 layer of hardwood TMW220℃.  

The durability of TMWs against two white rot (Phlebia radiata, Pycnoporous 

sanguineus)-, two brown rot (Postia placenta, Gloeophyllum trabeum)- and three soft 

rot (Chaetomium globosum, Phialophora mutabilis, Phialophora malorum) fungi was 

evaluated by the soil block test. For brown- and white-rot fungi, Termovuoto treatment 

showed considerable improvement in durability class (i.e. class 1−3) for soft- and 

hardwoods at 220℃ against all fungal species tested. Softwood TMWs showed an 

overall lower decay resistance than hardwood TMWs, among which ash TMWs 

showed greater durability than beech TMWs. For soft rot fungi, softwood TMWs were 

more durable than hardwood TMWs, irrespective of fungal species. Ash showed lower 

durability than beech in untreated reference wood, while ash TMWs showed greater 

durability than beech TMWs during one year decay test. Behavior of thermal 

modification (TM) differed significantly between ash (ring-porous hardwood) and 

beech (diffuse-porous hardwood) against brown-, white- and soft-rot fungi, indicating 

importance of the native wood anatomy. 

     Decay patterns and morphological changes of TMWs were examined by light- and 

electron microscopy. The white rot fungus P. sanguineus did not show significant 

differences in characteristic features of decay in tracheids and fibres of TMWs 

compared to those in untreated reference. However, the delignification process in 

tracheids and fibres by P. sanguineus was delayed in TMWs, particularly at high 

treatment temperatures as evidenced by narrower transition zones from delignified and 

lignified areas than untreated reference. The soft rot fungus P. mutabilis produced 

typical soft rot Type-I cavities in fibres of hardwood TMWs at low temperature 

(190−200℃). However, soft rot cavity formation was greatly inhibited and/or delayed 



in fibres at high treatment temperatures (i.e. 210−220℃). Ash TMW200℃ showed a 

radial-like distribution of electron dense materials in cavities and lack of fibrillar-like 

materials within degraded fibre walls, which differed from reference.  

The fungal durability of Termovuoto TMWs differed in terms of treatments, wood 

and fungal species. The Termovuoto process did not change the patterns of decay 

caused by white-, brown- and soft-rot fungi used, but rather slowed down the decay 

process at certain treatment temperatures for certain wood species. Understanding of 

the decay patterns in TMWs is essential for further optimization of the Termovuoto 

process for improving the durability of specific wood species for specific purposes. 

Keywords: brown rot, decay resistance, light microscopy (LM), scanning electron 

microscopy (SEM), soft rot, thermo-vacuum (Termovuoto) process, thermally modified 

wood (TMW), transmission electron microscopy (TEM), ultrastructure, white rot.  
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1 Introduction 

1.1 Wood modification 

Wood is one of the world’s most excellent and abundant natural materials, 

which is biologically degradable, environmentally friendly and renewable, and 

has reasonably good mechanical properties. It has been widely used for 

millennia and is still indispensable for fulfilling varying purposes even today. 

For example, wood can serve as construction materials and can be used for 

furniture manufacturing and toy-making, not to mention important energy 

contributions coming from wood-derived fuels. Despite its uses and 

advantages, natural wood materials suffer from drawbacks that arise from their 

durability and dimensional stability. Many wood species do not give adequate 

performance and have limited durability against ageing and biodegradation 

under certain conditions.  

Over past decades, considerable achievement in wood modification has 

advanced techniques of chemical and physical treatments, so as to improve the 

properties of wood material for in-service use (Hill, 2011). The aims of wood 

modification are not only to improve the important properties of wood, such as 

dimensional stability, stiffness and hardness, but also to enhance the resistance 

of wood against biodegradation from fungi, bacteria, termites and insects, and 

thereby extend the service life of wood in use (Homan & Jorissen, 2004).  

With increasing public awareness of environmental problems, the demand 

for novel methods to produce sustainable and non-toxic wood products without 

application of toxic chemicals has also been steadily increasing. Among the 

investigated approaches [e.g. thermal treatments, furfurylation, acetylation, 

hydroboration with silicon treatments, modification with 1,3-dimethylol-4,5-

dihydroxy ethylene urea (DMDHEU), treatment with oil/wax/paraffins] that 

have been known for a long time particularly in European countries (Finland, 

Netherlands, France, Austria, Germany, Russia, etc.), thermal treatments have 
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drawn a great deal of attention for producing economically, ecologically and 

environmentally friendly wood products (Sandberg et al., 2013; De Vetter et 

al., 2010; Dieste et al., 2009; Homan & Jorissen, 2004). 

1.2 Thermal modification 

A variety of thermal modification (TM) technologies have been introduced 

over the decades, and include ThermoWood in Finland, Plato process in 

Netherlands, oil heat treatment (OHT-Process) in Germany, and the Les Bois 

Perdure and Retification processes in France (Esteves & Pereira, 2009; Homan 

& Jorissen, 2004). The sales of modified wood materials and products have 

thus increased greatly over the last few years (Production statistics, 2014). 

While such modification methods differ from each other, in terms of shield gas 

(nitrogen or steam), protecting liquid used and humidity requirements of wood 

(wet or dry) (Xie et al., 2002; Rapp, 2001), they all have one thing in common: 

they modify the chemical structure of wood at temperatures ranging from 160 

to 260℃. 

For selected wood species, different TM approaches can be applied with the 

performance gain often dependent on treatment level and wood species used. 

For example, TM at elevated temperatures can lead to permanent chemical 

modification of the cell wall (i.e. changes in hemicelluloses, cellulose and 

lignin), thereby improving decay resistance, reduced moisture deformation and 

increased dimensional stability (Hill, 2011). At the same time, treatments can 

render the wood to distinct shades of darker colours for final products. The 

degree of changes in wood properties are dependent on the process type, the 

wood species to be treated, the maximum temperature reached in the process, 

and the duration at that temperature, etc. As a result, TM processes can yield a 

high quality product with many excellent properties and outlook for exterior 

and interior applications, such as wall cladding, siding, garden furniture, 

window frames, doors, musical instruments and cupboards. The production of 

thermally modified wood (TMW) has been progressively increasing since 

2001. For example, ThermoWood global production grew nearly 8 fold, from 

18,799 m3 in 2001 to 145,733 m3 in 2014 (Production statistics, 2014). 

1.2.1 ThermoWood 

ThermoWood was developed in the early 90’s at the Finnish Research Centre 

(VTT) for both softwood and hardwood species and is the most widely applied 

industrial TM process in Europe, as reflected by the highest production rate. 

With this method, the wood is treated at temperatures above 180℃ under 

atmospheric pressure. According to the Finnish ThermoWood Handbook 
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(2003), the process is constituted of three main stages: 1) warming up, 2) 

drying, and 3) cooling and conditioning. During the warming-up process, the 

temperature rises quickly to around 100℃ and then increases steadily to 130℃ 

in order to heat and pre-dry the timber. A large amount of steam is generated at 

this stage, and the moisture content in the wood decreases to almost zero due to 

high temperature drying. During the drying phase, the temperature inside the 

kiln is increased between 185 and 215℃ depending on the application of the 

treated products and is then maintained at that level for a 2 to 3 h plateau. In 

the final stage, the temperature of the timber is reduced to 80−90℃ by using 

water spray systems, which is followed by conditioning that moistens the heat 

treated timber and reduces its moisture content to 4−7%.  

The use of water steam replaces air and builds low oxygen conditions, so as 

to prevent the wood from burning and cracking at high treatment temperatures. 

However, the generation of vapour and the long pre-heating time in turn 

significantly increase the costs of the above process. 

1.2.2 Oil heat treatments (OHT-process) 

The OHT-process differs from most other heat treatments in that it is carried 

out using a hot-oil bath. Through application of hot oil, oxygen is excluded 

from the wood during treatment with the heat transferred to the wood reaching 

up to 180−260℃ during the process (Rapp & Sailer, 2000). 

Wood samples with an initial moisture content of 12% are placed directly in 

a hot-oil bath without preheating. Extra processes for heating and cooling may 

be required if the dimension of wood samples are large. Although the oil bath 

ensures good heating and deficiency of oxygen during treatment, the oil (e.g. 

linseed oil) has an unpleasant smell and the wood can absorb a large amount of 

oil (ca. 50−70% mass increase) which are major disadvantages. 

1.2.3 Plato 

The Plato process (Militz & Tjeerdsma, 2001) modifies wood by combining 

hydrothermolysis with a dry-curing step. The hydrothermolysis process speeds 

up the reactivity of cell wall components resulting in chemical transformations. 

Plato consists of two steps, in which green or air-dried wood heated in water 

under high pressure (saturated steam conditions) is subjected to temperatures 

between 160 and 190℃. After the wood’s moisture content reaches 10%, a 

curing step is performed at atmospheric condition with temperatures in the 

range 170−190℃. 
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1.2.4 Retification and Les Bois Perdure 

For the Retification process, pre-dried wood (ca. 12% moisture content) is 

slowly heated to 210−240℃ in a nitrogen atmosphere of less than 2% oxygen 

content. With the Les Bois Perdure process, fresh wood can also be treated. 

The wood samples pre-dried in an oven are heated to 230℃ under a steam 

atmosphere. Studies have shown that the higher the treatment temperature, the 

more durable the wood becomes, but the greater strength loss induced. 

Therefore it is essential to control accurately the temperature. However, both 

the above processes are very sensitive to slight changes in temperature, since 

the maximum temperature has a major impact on durability and mechanical 

properties. (Vernois, 2001) 

1.3 Termovuoto 

The Termovuoto process is a new industrial TM methodology that has been 

developed by the National Research Council of Italy - Tree and Timber 

Institute (CNR-IVALSA), and is based on the combination of an efficient 

vacuum drying process with thermal treatment process (Ferrari et al., 2013; 

Allegretti et al., 2012). It is actually a thermo-vacuum process. The wood is 

first dried in air at 100℃ until the moisture content reaches 0%. Thereafter, 

TM is performed in the same chamber by increasing the temperature to 

160−220℃. A vacuum pump is used at this stage to remove the residual air and 

maintain the vacuum. Compared to other TM processes, Termovuoto is more 

promising and has several advantages, including lower energy and time 

consumption, easier and cheaper management of the volatile wastes, less 

corrosion and lower mass loss of wood and no odor development. These effects 

are probably due to the action of the vacuum pump that continuously removes 

volatile products that can cause accelerated degradation of polysaccharides in 

wood cell walls during processing (Ferrari et al., 2013; Allegretti et al., 2012). 

Several soft- and hardwood TMWs produced by the Termovuoto process have 

also been found to yield satisfactory mechanical properties and decay 

resistance. 

1.4 Research on thermally modified wood (TMW) 

1.4.1 Chemistry and physical properties 

TMW is always accompanied by chemical degradation and/or modification of 

hemicelluloses, cellulose and lignin, which means the strength properties of the 

wood are modified because of changes in chemical structure of cell wall 

components. The changed wood composition results in lower hygroscopicity 
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and improved dimensional stability of the wood and increased resistance to 

fungal decay (Hill, 2006). However, high temperature and long process 

duration can lead to some undesired side effects, such as strength loss and 

increased brittleness for the treated wood, limiting its use as a commercial 

material (Salmén et al., 2008; Boonstra et al., 2007). 

The chemical and physical properties of TMWs have been extensively 

investigated by using a set of methodologies, such as classical wet chemistry, 

Fourier transform infrared (FTIR)- and nuclear magnetic resonance (NMR) 

spectroscopy, X-ray photoelectron spectroscopy (XPS), and ultraviolet 

microspectrophotometry (UMSP) (Dubey et al., 2012; Esteves & Pereira, 2009; 

Windeisen et al., 2007; Tjeerdsma & Militz, 2005; Sivonen et al., 2002). Such 

studies have provided detailed information regarding changes in structure and 

chemical bonding resulting from thermal treatment, but have shed little light on 

changes in the chemistry of TMWs at tissue and cellular levels, e.g. the 

chemical and structural changes in a specific cell wall layer following thermal 

treatment. Previous microstructural studies on TMWs have also mostly 

concentrated on changes in anatomy, porosity and pore-size distribution in cell 

walls, crystallinity, and microfibril angles (MFAs), using light- and electron 

microscopy, differential scanning calorimetry and X-ray scattering/diffraction 

(Biziks et al., 2013; Brandt et al., 2010; Zollfrank & Fromm, 2009; Boonstra et 

al., 2006a; Boonstra et al., 2006b).  

1.4.2 Resistance to biological degradation  

Fungal attack is responsible for significant morphological changes in wood 

structure and dramatic alterations of the physical properties and chemical 

composition of wood materials with profound implications for dimensional 

stability (e.g. archaeological objects). Thermal modification improves the 

resistance of wood against biological degradation in a way that the treated 

wood can no longer serve as a readily available nutrient medium for the 

enzymes and catalysts of degrading fungi (i.e. at least initially) (Chaouch et al., 

2010). Thus, fungal durability is of key consideration to evaluate TMWs and 

the risks associated with use of TMW products in-service.  

Under natural conditions and on the basis of physical and chemical changes 

produced and resulting alterations in color of decayed wood, wood decay fungi 

are primarily classified as brown-, white- and soft-rot.  

     Most previous studies concerning the fungal resistance of TMWs have 

focused on brown- and white-rot fungi (basidiomycetes) (e.g. Candelier et al., 

2012; Chaouch et al., 2010; Šušteršic et al., 2010; Hakkou et al., 2006; 

Kamdem et al., 2002), but little research has been made to evaluate the fungal 

resistance of TMWs against soft rot fungi. Unlike basidiomycetes, soft rot 
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commonly occurs in wood exposed to more extreme conditions (e.g. high 

moisture situations and wood treated with preservatives) that can hinder both 

colonization and attack by more aggressive basidiomycetes (Daniel, 2003; 

Daniel & Nilsson, 1998). This emphasizes the importance of extension of our 

understanding on durability of TMWs against soft rot fungi to evaluate the 

possibility of use of TMWs in outdoor out of ground situations where high 

moisture content can exist even if periodically. 

     The characteristic mode of decomposition of wood by fungi varies 

depending on fungal species as discussed below. Differences in the anatomy 

and chemistry between wood materials (e.g. softwoods, hardwoods) can also 

lead to variations in the mode of decay by the same fungal species. The TM of 

wood commonly induces changes in lignin chemistry as well as in the 

chemistry of polysaccharides and wood cell wall structure (Esteves & Pereira, 

2009). This suggests that decay patterns in TMWs can differ from general 

decay patterns of fungi. However, the effect of TM on morphological decay 

patterns of brown-, white- and soft-rot fungi is almost unknown. Furthermore, 

information on fungal degradation of cell wall components in TMWs, in 

particular at the cellular level is still lacking. 

Brown rot fungi decay 

Brown rot caused by basidiomycete fungi is generally considered the most 

common and destructive rot type for wood in-service, particularly in temperate 

geographic areas. Brown rot is characterized by a selective and rapid 

depolymerization of the cellulose of wood cell walls, without causing 

substantial lignin loss. The underlying mechanisms of brown rot decay have 

been extensively studied over the last decade (e.g. Arantes & Goodell, 2014; 

Goodell, 2003). The hyphae of brown rot fungi commonly colonize the wood 

cell lumen and attach to the S3 layer with the decay process proceeding 

preferentially in the S2 layer with first signs of attack often recognized at the 

S2−S1 interface. Often no visible morphological changes are observed in the S3 

layer until very advanced stages of decay. Enzymes responsible for the 

degradation of cellulose are thought too large to penetrate unmodified cell 

walls. Thus a non-enzymatic process (i.e. via Fenton reaction), has been 

advocated at least in the early stages of degradation by generating hydroxyl 

radicals so as to decompose the long chains of cellulose into small fragments 

(Goodell, 2003; Daniel et al., 2007; Jensen et al., 2001).  

White rot fungi decay 

White rot basidiomycetes decompose lignin as well as cellulose and 

hemicelluloses in wood (Daniel, 2014). The capacity for efficient lignin 

degradation in wood ensures the potential of white rot fungi in the pulp and 
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paper area. In this regard, the enzymes (e.g. lignin-/Mn peroxidases, laccase) 

involved in the degradation of lignin have been extensively investigated (Ten 

Have & Teunissen, 2001; Tuor et al., 1995; Daniel et al., 1989). For example, 

the widely studied white rot fungus Pycnoporus sanguineus used in this study 

can synthesize laccases capable of enduring high temperature that are 

particularly interesting for bio-bleaching of pulp and bioconversion of 

lignocellulosic materials (Pointing et al., 2000). The decay patterns of white rot 

fungi vary in the rates in which lignin is removed in relation to degradation of 

polysaccharides. In this respect, white rot fungi can also be classified on the 

basis of their decay patterns as causing “selective” or “simultaneous” white rot. 

Selective white rot preferentially degrades and removes lignin from wood cell 

walls with cellulose remaining intact although modified. By contrast, 

simultaneous white rot fungi degrade lignin along with all the cell wall 

polysaccharides causing homogeneous cell wall decay and erosion. However, 

degradation patterns can vary greatly depending on fungal species, strains, 

environmental and wood conditions (Eriksson et al., 2012; Singh & Singh, 

2014). Some fungi can cause selective and simultaneous decay in the same 

wood samples but at different locations, while some species can switch decay 

patterns between preferential and simultaneous degradation over time (Daniel, 

2013). Even different strains of a single species can also show considerable 

variations in lignin degradation.  

Soft rot fungi decay 

Soft rot fungi can tolerate a wide range of temperatures, humidity and pH 

conditions and decay a variety of wood substrates (Daniel, 2014). In contrast to 

brown- and white-rot fungi, soft rot decay commonly occurs in wood exposed 

to high moisture conditions or wood treated with preservatives that are capable 

of hindering both colonization and attack by the more aggressive 

basidiomycetes. Micromorphologically, soft rot decay differs from that caused 

by either brown- or white-rot fungi in several aspects. Decay normally involves 

a T-branching and/or L-bending process, and generation of characteristic 

cavities (Type I attack), and/or the complete erosion of the secondary wall 

(Type II attack) leaving a relatively intact middle lamella region (Daniel, 2016). 

The major chemical changes in wood derived from soft rot are quite similar to 

that from brown rot fungi and involve intense degradation of cellulose and 

hemicelluloses. It is commonly assumed that the nature of lignin, including 

concentration, condensation and composition (i.e. guaiacyl and syringyl lignin) 

significantly affect soft rot degradation of wood cell walls, in particular the 

formation of soft rot cavities (Daniel, 2016).  
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1.5 Objectives 

The aims of my work are to study the chemical changes, structural properties, 

decay resistance and decay patterns of Termovuoto process treated TMWs at 

the cellular level by employing light microscopy (LM), scanning electron 

microscopy (SEM), and transmission electron microscopy (TEM) combined 

with histo/cytochemistry and immunocytochemistry. Specifically, I have 

concentrated on the following three aspects: 

 

 Evaluation of the effect of Termovuoto process on the chemical and 

ultrastructural changes in softwoods (spruce and fir) and hardwoods 

(beech and ash) at the cellular level, with special emphasis on changes 

in lignin chemistry via histo/cytochemical studies;  

 

 Examination of the decay resistance of soft- and hardwood TMWs 

against brown-, white- and soft-rot fungi. Involves determining the 

fungal durability of TMWs with respect to treatment parameters (i.e. 

temperatures) and fungal species applied; 

 

 Ultrastructural and cytochemical characterization of soft- and 

hardwood TMWs degraded by white- and soft-rot fungi, with focus on 

changes in decay patterns following Termovuoto treatment. 
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2 Materials and methods 

2.1 Wood materials 

Norway spruce (Picea abies Karst.), silver fir (Abies alba Mill.), European ash 

(Fraxinus excelsior L.) and European beech (Fagus sylvatica L.) used 

throughout the study were obtained from the Val di Fiemme forest (at an 

average altitude of 1757 m), Trentino region, Italy. Thermal modification (TM) 

of boards was carried out by the Termovuoto (thermo-vacuum) process 

according to the scheme described by Ferrari et al. (2013) and Allegretti et al. 

(2012). Spruce and fir (softwoods) were treated at temperatures 160, 180, 200 

and 220℃ for 4 h under 240−260 mbar. Ash and beech (hardwoods) were 

treated at temperatures of 190, 200, 210 and 220℃ for 3 h under 240−260 

mbar. (Ferrari et al., 2013; Allegretti et al., 2012) 

2.2 Fungi 

Two brown rot-, two white rot- and three soft-rot fungi were used in the studies 

namely: 

 

 Brown rot fungi: Postia placenta (Fries) Cooke (QM1010), 

Gloeophyllum trabeum (Persson: Fries) Murrill (BAM Ebw 109); 

 

 White rot fungi: Pycnoporus sanguineus (Linnaeus: Fries) Murrill, 

Phlebia radiate (Fries) (L12-41);  
 

 Soft rot fungi: Chaetomium globosum (Kunze: Fries, Telemorph) 

(strain F-171-1, ATCC 34152) (syn=Chaetomidium japonicum), 

Phialophora malorum (M. N. Kidd & A. Beaumont) McColloch and 
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Phialophora mutabilis (J. F. H. Beyma) Schol-Schwarz (1970) 

(syn=Lecythophora mutabilis). 

 

All fungi were obtained from the culture collection, maintained at the 

Department of Forest Products, Swedish University of Agricultural Sciences. 

2.3 Durability testing of TMWs 

Soil block decay test was conducted according to AWPA E10-08 (AWPA 

Technical Subcommittee, 2008) with some minor modifications in wood 

sample size and incubation time. Test blocks were cut from TMW boards 

(30×100×1000 mm), numbered and oven-dried overnight at 103 ± 2℃ to 

measure the initial dry weight. Untreated blocks served as reference. The fungi 

described above were re-cultured on 2.5% w/v malt extract agar (MEA) plates 

for two weeks. One plate of each fungus was homogenized with 100 mL 

deionized water for further inoculation as described below.  

 

 For brown rot fungi:  

Glass culture jars (500 mL) were half-filled with moist commercial 

planting soil. Scots pine (Pinus sylvestris L.) feeder strips (8×20×62 

mm) were soaked in water for 10 min before being placed on the soil 

surface in the jars. After sterilizing the jars (103 kPa at 121℃ for 

30 min) the test blocks (5×20×20 mm) were horizontally placed on the 

surface of the feeder strips.  

 

 For white- and soft-rot fungi:  

Erlenmeyer glass flasks (100 mL) were used and half-filled with moist 

commercial planting soil. Test blocks (for white rot fungi: 5×20×20 

mm; for soft rot fungi test: 5×10×30 mm) were vertically placed in the 

soil of the flasks with 5 mm of their length protruding above the soil 

surface.  

 
Subsequently, the jars and flasks were sterilized at 103 kPa and 121℃ for 

30 min. After cooling, the jars and flasks were inoculated by 6 and 4 mL 

homogenized fungal solution for brown- and white/soft-rot fungi, respectively, 

and placed in a dark culture room at 25℃ and 75% relative humidity to 

promote fungal growth. For soft rot decay test, the jars and flasks were 

weighed monthly to control the moisture content (i.e. 70−75%) by adding 

sterilized deionized water during the whole test period. The moisture content of 

the test wood blocks was also monitored during the whole decay process to 
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validate the test and for further analysis. The decayed blocks were removed at 

regular time intervals for mass loss (%) determination and microscopy 

observations. 

2.4 Sample preparation for microscopy 

2.4.1 Sample embedding 

Small pieces (ca. 1×1×3 mm) were removed from untreated reference and 

TMW blocks with a razor blade. After fixation with a mixture of 2.5% v/v 

glutaraldehyde (GA) and 2% v/v paraformaldehyde (PA) in 0.05−0.1 M 

sodium cacodylate buffer (pH 7.4) for 3−4 h at room temperature, samples 

were dehydrated in a graded ethanol series (20−100%) and embedded in 

London Resin White (LR White, Basingstoke, UK) according to Kim & Daniel 

(2012). Some small sectors were also collected from fungal degraded wood 

blocks and embedded in LR White resin according to the procedures described 

above. For observations of soft rot decayed wood blocks, small pieces removed 

from the sectors were post-fixed in 2% w/v osmium tetroxide in 0.1 M sodium 

cacodylate buffer for 3 h at room temperature after fixation with a mixture of 

GA+PA. 

2.4.2 Light microscopy 

Small blocks (ca. 1×1×1 cm) removed from untreated reference and TMW 

blocks were immersed in distilled water overnight. Thereafter, transverse 

sections (ca. 10−30 μm) were prepared with a Leitz sliding microtome 

(Wetzlar, Germany). Some sections were also made from entire degraded 

wood blocks to provide information on the colonization process of fungi from 

the outside to the inside of wood blocks. After staining with 1% w/v toluidine 

blue in 1% borax (pH 8.5) or 1% w/v safranin O, sections were mounted in 

50% v/v glycerol or with Canada balsam mounting medium. Sections were 

examined using a Leica DMLB light microscope (Wetzlar, Germany) equipped 

with an Infinity X-32 digital camera (DeltaPix, Samourn, Denmark). Semi-thin 

resin sections (ca. 1−2 µm) prepared from LR white embedded wood blocks 

using a Leitz rotary microtome (Wetzlar, Germany) or a Reichert ultra-

microtome (Wien, Austria) were also examined according to the procedures 

described above. To visualize lignin distribution, thin sections (ca. 20−40 μm) 

were stained according to Wiesner and Mäule reactions (Nakagawa et al. 

2012).   
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2.4.3 Transmission electron microscopy (TEM) 

Transverse ultrathin sections (ca. 90 nm) were cut on a Reichert ultra-

microtome (Wien, Austria) and examined by a Philips CM12 TEM 

(Eindhoven, Netherlands) at 80 kV for further analysis. Negative TEM films 

were digitalized by a film scanner (Epson Perfection Pro 750, USA). To detect 

lignin, ultrathin sections were stained with 1% w/v KMnO4 in 0.1% w/v 

sodium citrate. For further details see Papers I and II. 

2.4.4 Scanning electron microscopy (SEM) 

Small blocks (ca. 3×5×5 mm) removed from P. sanguineus degraded blocks 

were fixed and osmicated as described above. After subsequent washing in 

3×sodium cacodylate buffer (20 min each), samples were dehydrated in a 

graded ethanol series (20−100%) followed by an acetone/ethanol series (1:3, 

1:1, 3:1 and 100% acetone), with three transfers made in absolute acetone. 

Samples (submerged in pure acetone) were subsequently dried in a AGAR 

CPD critical point drying apparatus (Agar Scientific Ltd., England) using CO2 

as the transition fluid. After drying, samples were mounted on aluminum stubs, 

coated with a layer of gold using an Emitech K550X sputter coater (Ashford, 

England), and finally examined and photographed under a Philips XL30 

(Eindhoven, Netherlands) scanning electron microscope using an accelerating 

voltage of 10−15 kV. 



25 

3 Chemical and ultrastructural changes of 
Termovuoto treated softwoods and 
hardwoods 

3.1 Histochemical observations of softwood TMWs  

The color changes of spruce TMWs (i.e. thermally modified woods) are shown 

in Figure 1. The blocks of TMWs show a gradual decrease in yellowness and 

increasing brownness with increasing treatment temperature from 160 to 

220℃. The color of unstained transverse thin sections changed from white to 

orange/reddish through the treatment process (Figure 1a−e). A similar trend 

was observed in the change of color for fir TMWs. Compound middle lamella 

(CML) including middle lamella cell corner (MLcc) (CMLcc) regions show an 

overall stronger orange/reddish color than secondary cell walls of tracheids 

(Figure 1f). By increasing treatment temperatures up to 220℃, the toluidine 

blue staining color was shifted from blue to greenish for tracheid secondary 

cell walls (Figure 1h−l), and from dark blue to light orange/yellowish for 

CMLcc regions (arrows in Figure 1g).  

     Toluidine blue is a polychromatic dye with high affinity for acidic polymers 

and reacts with different tissue components generating characteristic colors 

(Sridharan & Shankar, 2012; O'brien et al., 1964), i.e. the different coloration 

of toluidine blue staining is positively correlated to the number of acidic 

groups present in tissues. Thus, changes in the staining color in tracheid cell 

walls (i.e. blue to green) and CMLcc regions (i.e. dark blue to orange) 

following thermal treatment reflect an increase of acidic groups in TMWs, 

particularly in CMLcc regions, which is presumably due to new carboxylic- 

and acidic phenolic groups generated by degradation or chemical modification 

of lignin and non-cellulosic components (Esteves & Pereira, 2009; Windeisen 

et al., 2007; Sivonen et al., 2002; Tjeerdsma et al., 1998).  
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Figure 1. Changes in native wood/cell color and structure in spruce TMWs. The color of thin 

sections shifted from white in reference (a) to orange/reddish in TMWs (b−e), with stronger 

coloration in CMLcc regions than secondary cell walls (f). Note the formation of small cracks in 

latewood tracheids of TMW220℃ (arrowheads in f, g). After staining with toluidine blue (TB), the 

color shifted from blue in reference (h) to greenish in TMWs (g, i−l) for the tracheid secondary 

cell walls, and from dark blue (h) to light orange/yellowish (arrows in g, i−l) for the CMLcc 

regions. Scale bars = 30 µm (a−e, j−i), 10 µm (f, g). 

Small cracks were often detected between latewood tracheids in TMWs 

treated over 200℃ (arrowheads in Figure 1f, g). Interestingly, Bernabei & 

Salvatici (2016) found the explosion of bubbles in similar regions of spruce 

latewood tracheids during heat treatment using in-situ environmental scanning 

electron microscopy (ESEM) and hypothesized that the bubbles indicate the 

sudden release of steam and other gases from the cell walls. Presumably, this 

appears to be a common feature of TMWs and reflects dimensional changes in 

the cells (possibly swelling and contraction of the S1 layer) during the 

treatment process. 
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Figure 2. Changes in ultrastructure and lignin distribution in fir and spruce TMW220℃. Stained 

with KMnO4. The intensity of KMnO4 staining in tracheids (T) and ray parenchyma cells (R) was 

stronger in TMW220℃ (d−f) than reference (a−c). Note the formation of electron dense particles in 

CMLcc regions of tracheids of TMW220℃ (arrows in g, h). These particles were not detectable in 

reference (insets in g, h). Scale bars = 1 µm (a, b, d, e), 500 nm (c, f−h). 

     After staining with KMnO4, ultrathin sections from both reference and 

TMW220℃ were examined by TEM (Figure 2). The differences in both lignin 

concentration and distribution in CMLcc regions between reference and TMWs 

were compared at the ultrastructure level. Fir and spruce TMWs showed 

almost identical staining features in the xylem cells. The staining intensity in 

secondary cell walls and CMLcc regions of tracheids and ray cells was 
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significantly increased by the treatment (Figure 2a−f), consistent with our light 

microscopy observations (Figure 1; Paper I) and previous investigations in 

which an apparent and relative increase in lignin content of TMWs was 

reported (Esteves & Pereira, 2009; Windeisen & Wegener, 2008; Boonstra & 

Tjeerdsma, 2006). It is generally considered that the apparent increase of lignin 

content in TMWs is due to the increased ratio of lignin by degradation of other 

cell wall components or by the polycondensation reactions of lignin with other 

cell wall components, rather than by generation of new lignin during treatment 

(Esteves & Pereira 2009). Degradation of polysaccharides and formation of 

abundant electron dense particles in CMLcc regions of tracheids and ray cells 

following thermal treatment may particularly reflect this aspect (Figure 2g, h; 

Paper I). Destruction of highly lignified warts in tracheids was also frequently 

detected in fir TMWs, as shown by both reduction in size and loss (Figure 

2a−f). 

3.2 Histochemical observations of hardwood TMWs 

The change in color of ash TMWs was overall similar to that of softwoods 

(spruce, fir) with increase of treatment temperature, i.e. a gradual decrease in 

yellowness and increasing brownness in wood blocks and change from white to 

orange/reddish in transverse thin sections (Figure 3a, c, d). Similar changes in 

the color of toluidine blue staining as softwood TMWs were also detected in 

hardwood TMWs, indicating an increase of acidic groups by thermal treatment 

(Figure 3b, e, f). Like tracheids of softwood TMWs, hardwood TMWs also 

showed formation of small cracks between latewood fibres above 200℃ 

(arrowheads in Figure 3d). 

To understand the relationship between lignin distribution in ash reference 

wood and variations in color changes between cell types in ash TMWs, lignin 

distribution in ash reference wood were examined using Mäule and Wiesner 

reactions (Figure 4). The Mäule reaction stains red and yellow for syringyl (S) 

and guaiacyl (G) lignin, respectively and Wiesner reaction for total lignin 

detection (i.e. pinkish-red staining color). For ash reference, the vessels 

showed a weaker Mäule reaction (Figure 4a, b) in early- than latewood but 

revealed the opposite patterns for Wiesner reaction (Figure 4e, f). The axial- 

and ray parenchyma cells revealed stronger Mäule and Wiesner reactions than 

fibres (Figure 4c, g). Wiesner reaction in the CMLcc regions of fibres was 

stronger than that in secondary cell walls (Figure 4e−g). These variations 

generated in ash reference suggest that the distribution and concentration of 

S/G lignin and total lignin content differ greatly depending on early-/latewood, 

cells types, cell wall regions and size of fibres.   
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Figure 3. Changes in native cell color and structure in ash TMW220℃. The color of thin sections 

shifted from white in reference (a) to orange/reddish in TMW220℃ (c, d), with stronger coloration 

in vessel (V), axial (AP)/ray (R) parenchyma cells and CMLcc regions than fibres (F) (c). Note 

the formation of small cracks in latewood fibres of TMW220℃ (arrowheads in d). After staining 

with toluidine blue (TB), the color in secondary cell walls and CMLcc regions (arrows in e, f) 

shifted from blue/dark blue in reference (b, insets in e, f) to green/orange-reddish in TMW220℃ (e, 

f), respectively. Scale bars = 50 µm (a−c, e), 10 µm (d−f). 
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Figure 4. Lignin distribution in ash reference wood. Vessel (V) cell walls in earlywood (a) 

showed weaker Mäule reaction than in latewood (b). Axial/ray parenchyma cells (AP/R) revealed 

stronger Mäule reaction than fibres (a−c). Mäule reaction in large fibres (F) was weaker than that 

in small fibres (b−d). CMLcc regions showed stronger Mäule reaction in earlywood than 

latewood (arrowheads in a, d). Wiesner reaction was stronger in vessels, axial/ray (bi-/triseriate, 

arrows) parenchyma cells and CMLcc regions (arrowheads) than fibres (e−g). Scale bars = 25 

µm. 

     As a result, the total lignin content, rather than the ratio of S/G lignin 

determined the color changes between cell types and between cell wall regions 

by thermal treatment. For example, no significant difference was found 

between early- and latewood vessels and between large and small fibre classes 

in TMWs (Figure 3c, d) even though these cells showed variations in the ratio 

of S/G lignin (Figure 4a−d). In contrast, the stronger Wiesner reaction (i.e. 

higher lignin content) observed in vessels and parenchyma cells (Figure 4e−g) 

was positively correlated with the stronger orange/reddish in these cells than 

fibres (Figure 3c).  
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Figure 5. Changes in ultrastructure and lignin distribution in fibres of ash TMW220℃. Stained with 

KMnO4. Electron dense particles, observed in CMLcc regions of softwood TMW220℃ (arrowheads 

in left inset), were not found in CMLcc regions of ash TMW220℃ (a, right inset). Typical lamellar 

structure in the fibre S2 layer of ash reference (b) was not detectable in TMW220℃ (c). Note 

formation of large dark lignin aggregates in TMW220℃ (c). Scale bars = 500 µm (a), 100 nm (b, c). 

After staining with KMnO4, ash TMW220℃ displayed stronger staining 

intensity than the reference. As outlined for softwoods (spruce, fir), such a high 

staining intensity may be caused by the relative increase in lignin content 

through degradation of other polysaccharides and polycondensation reactions 

of lignin with other cell wall components in TMWs. Electron dense particles, 

observed in CMLcc regions of softwood TMW220℃ (Figure 2g, left inset in 

Figure 5a), were not found in ash TMW220℃ (Figure 5a and right inset). 

Interestingly, rather large dark staining lignin aggregates (with KMnO4) were 
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apparent in the fibre S2 layer of ash TMW220℃ (Figure 5c), but were not 

detectable in ash reference (Figure 5b). These lignin aggregates in TMW220℃ 

disrupted ordered lamellar structures of the fibre S2 layer formed between 

lignin and cellulose microfibrils. The ultrastructural changes outlined above are 

consistent with published results on changes in lignin content, porosity, pore-

size distribution, and reorganization of crystalline cellulose by thermal 

treatment (Pfriem et al., 2010; Esteves & Pereira, 2009). 
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4 Decay resistance of Termovuoto treated 
softwoods and hardwoods 

4.1 Decay resistance of soft- and hardwood TMWs to brown- 
and white-rot fungi 

Mass loss (ML) data and durability classes (i.e. 1−5) of both reference and 

TMWs of two softwoods (spruce and fir treated at 160−220℃ for 4 h) and two 

hardwoods (ash and beech treated at 190−220℃ for 3 h) exposed to brown- 

and white-rot fungi are shown in Tables 1 and 2, respectively. 

Table 1. Mass loss data (obtained from four replicates) of spruce and fir untreated reference and 

TMWs exposed to fungi indicated. Data in parenthesis indicates the durability classes of reference 

and TMWs after 18 weeks exposure.  

Fungus 
Untreated  160℃  180℃  200℃  220℃ 

Spruce Fir  Spruce Fir  Spruce Fir  Spruce Fir  Spruce Fir 

P. placenta 

(BR) 

50.0 

(5) 

48.2 

(5) 
 

57.0 

(5) 

48.3 

(5) 
 

46.2 

(5) 

37.8 

(4) 
 

40.6 

(4) 

38.8 

(4) 
 

22.0 

(3) 

23.6 

(3) 

P. sanguineus 

(WR) 

55.6 

(5) 

59.1 

(5) 
 

64.6 

(5) 

61.2 

(5) 
 - -  

44.8 

(4) 

49.0 

(4) 
 

23.6 

(3) 

29.2 

(3) 

The SD of the mass loss data are less than ±5% 

For spruce and fir TMWs, the mass loss decreased with increasing 

temperature over the range 180 to 220℃ (Table 1). Although small differences 

existed in mass loss at a certain treatment temperature, the two softwoods 

exhibited almost the same durability classes. In addition, there was no notable 

difference in durability class between the brown- (P. placenta) and white-rot 

(P. sanguineus) fungi used for either species of wood (Table 1). After 18 

weeks of fungal exposure, the TMWs treated at and below 200℃ 

(TMW160−200℃) showed durability class 4 (i.e. slightly durable) or 5 (i.e. non-
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durable) in both spruce and fir, regardless of fungal species. When the 

treatment temperature reached 220℃, spruce and fir TMWs showed more than 

50% reduction in mass loss compared to untreated reference wood, and the 

durability was classified as class 3 (i.e. moderately durable). Consequently, for 

the Termovuoto process, spruce and fir wood should be treated at temperatures 

higher than 200℃ to have a considerable improvement in decay resistance. 

Table 2. Mass loss data (obtained from four replicates) of ash and beech untreated reference and 

TMWs exposed to the fungi indicated. Data in parenthesis indicates the durability classes of 

reference and TMWs after 18 weeks exposure.  

Fungus 
Untreated  190℃  200℃  210℃  220℃ 

Ash Beech  Ash Beech  Ash Beech  Ash Beech  Ash Beech 

P. placenta 

(BR) 

29.6 

(5) 

54.0 

(5) 
 

25.5 

(4) 

57.7 

(5) 
 

14.4 

(3) 

53.1 

(5) 
 

3.1 

(1) 

30.7 

(3) 
 

0.6 

(1) 

11.7 

(2) 

G. trabeum 

(BR) 

55.5 

(5) 

62.7 

(5) 
 

38.9 

(4) 

58.5 

(5) 
 

32.4 

(3) 

57.2 

(5) 
 

10.3 

(2) 

25.1 

(3) 
 

6.9 

(1) 

13.7 

(2) 

P. sanguineus 

(WR) 

37.3 

(5) 

55.0 

(5) 
 

46.3 

(5) 

63.4 

(5) 
 

32.9 

(4) 

54.6 

(5) 
 

27.8 

(4) 

32.5 

(3) 
 

7.0 

(2) 

11.8 

(2) 

P. radiata 

(WR) 

29.0 

(5) 

28.3 

(5) 
 

36.3 

(5) 

34.9 

(5) 
 

25.9 

(4) 

30.8 

(5) 
 

14.3 

(3) 

21.1 

(4) 
 

6.6 

(2) 

12.7 

(3) 

The SD of the mass loss data are less than ±5% 

The mass loss of ash and beech TMWs exposed to brown rot fungi P. 

placenta and G. trabeum decreased when the treatment temperature reached 

190℃ or above (Table 2). However, such a decreasing trend in mass loss was 

not observed when ash and beech TMWs were exposed to the white rot fungi 

P. sanguineus and P. radiata (Table 2). Instead, ash and beech TMW190℃ 

showed a slight increase in mass loss compared to references (Table 2). After 

18 weeks, the durability class of ash and beech TMW220℃ ranged between 1 

and 2 after exposure to brown rot fungi P. placenta and G. trabeum and ranged 

between 2 and 3 when subjected to white rot fungi P. radiata and P. 

sanguineus (Table 2), indicating higher decay resistance against brown- than 

white-rot fungi in hardwood TMWs at high treatment temperatures.  

Overall, ash TMWs showed higher decay resistance than beech TMWs, no 

matter the temperature or which kind of fungal species was used (Table 2). For 

example, ash TMW200℃ showed the same durability as beech TMW210℃ (class 

3) against two brown rot fungi. Windeisen and Wegener (2009) characterized 

the chemical composition of ash and beech TMW200℃ and identified that there 

is only a difference in the amount of free phenolic groups between the two 

hardwood species. This suggests that the anatomical and structural differences 
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between ash and beech wood, especially the vessel arrangement may be closely 

related to the higher durability of ash TMWs than that of beech TMWs. Ash 

(Fraxinus excelsior L.) is a ring-porous hardwood with the largest vessels 

located in earlywood and small vessels distributed evenly in latewood. In 

contrast, beech (Fagus sylvatica L.) is a diffuse-porous hardwood which has 

relatively small diameter vessels distributed evenly across both early- and 

latewood. Presumably, a similar situation may exist for other thermal 

modification processes with the wood anatomy and ratio between cellular 

elements and thereby native chemistry playing an important role.  

4.1.1 Comparison of decay resistance between soft- and hardwood TMWs 

A clear difference in decay resistance between soft- and hardwood TMWs 

was observed (Tables 1, 2). Mass losses due to P. placenta and P. sanguineus 

attack were higher for softwoods (spruce, fir) than for ash (hardwood), with the 

difference even more evident at higher treatment temperatures. Beech 

TMW200℃ gave higher mass loss than softwoods with exposure to the brown rot 

fungus P. placenta during the whole decay period, but had similar mass loss as 

softwoods when they were decayed by P. sanguineus. By raising the treatment 

temperature to 220℃, the decay resistance of beech TMW220℃ was 

considerably improved with lower mass loss than softwoods in the presence of 

P. placenta or P. sanguineus (Figures 1, 2; Paper III). Ash wood seemed to be 

more resistant to decay after the Termovuoto process than the other wood 

species used (i.e. beech, spruce, fir). A considerable increase in durability 

occurred with ash wood treated at high temperatures (i.e. 210, 220℃) against 

the brown- and white-rot fungi tested. For example, ash TMW210−220℃ did not 

show obvious decay (3.1 and 0.6% mass loss at TMW210℃ and TMW220℃, 

respectively) by P. placenta and was classified as class 1 (i.e. very durable).  

According to previous studies, decay resistance of TMW is strongly 

correlated to the weight loss caused by the actual thermal treatment process 

(Chaouch et al., 2010; Šušteršic et al., 2010). Ferrari et al. (2012, 2013) 

compared the weight loss of hard- and softwoods caused by Termovuoto 

technology under different temperatures. Ash and beech wood showed an 

overall higher weight loss than softwoods. When the temperature was higher 

than 180℃, the weight loss of ash were much greater than softwoods. By 

increasing the temperature from 200 to 220℃, hardwoods (ash, beech) 

experienced an exponential increase in weight loss (twice as high at 220℃ than 

200℃). This is consistent with our findings that the mass loss of beech TMWs, 

compared to softwoods, was higher at 200℃ and lower at 220℃. Present 

results also agree with those of Hakkou et al. (2006) who suggested that the 
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durability of heat treated beech wood starts to increase at 200℃ when weight 

loss due to thermal degradation occurs. 

4.1.2 Changes in decay resistance of TMWs depending on temperature 

Lower treatment temperatures apparently accelerated fungal decay. Spruce and 

fir TMW160℃ were quite sensitive to attack by both brown- (P. placenta) and 

white-rot (P. sanguineus) fungi as suggested by slightly higher mass losses 

compared to reference especially for P. sanguineus (Table 1). Similar results 

have been also reported by Sivonen et al. (2003) who found that pine TMWs 

treated at 120 and 140℃ showed higher mass loss against P. placenta than 

TMWs treated at 100℃. Earlier results showed that depolymerized 

hemicelluloses without severe denaturalization and degradation are more 

readily consumed by fungi (Mazela et al., 2004). In addition, sugar anhydrides, 

mono- and oligo- as well as polysaccharides may polymerize at lower 

temperatures (i.e. below 200℃) to form dextrin and other branched 

carbohydrates. Such carbohydrates may serve as substrates and become more 

accessible to fungal attack (Mazela et al., 2004; Sivonen et al., 2003).  

     Similar results were also shown by exposing ash and beech TMW190℃ to the 

white rot fungi P. sanguineus and P. radiata (Table 2). However, this 

conclusion does not necessarily follow when brown rot fungi are used. 

Considering that white rot fungi are capable of degrading both polysaccharides 

and lignin and that brown rot fungi rapidly degrade carbohydrates and 

primarily only modify lignin (i.e. demethylation) and do not metabolize lignin 

to a great extent, we conclude that the elevated mass loss in the presence of 

white rot fungi presumably results from the thermo-vacuum treatment induced 

modification of the cell wall and lignin, which at low temperature treatments 

may allow better accessibility for lignolytic enzymes and non-enzymatic 

catalysts. 

4.1.3 Comparison between soil block (AWPA E10-08) and agar block (EN 113) 

testing of hardwoods 

Our findings from AWPA E10-08 soil block test were in agreement with data 

from the EN 113 agar block test (Table 3), with no notable difference in 

durability class of TMWs between the two tests. The mass loss and durability 

class achieved by thermal modification depended on the wood species, 

treatment temperature and test fungus. AWPA E10-08 and EN 113 also 

confirmed improved decay resistance of ash wood from Termovuoto treatment. 

Compared with spruce, fir and beech wood, ash is the best candidate for 

treatment by the Termovuoto process, which can attain the same durability 

level at lower treatment temperatures by using a shorter time.  
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Table 3. Comparison of durability classes between soil-block (AWPA E10-08) and agar-block 

test (EN 113) for hardwood TMWs. 

Durability classes in EN 113 test are cited from Terziev (2014). 

In summary, a wide spectrum of factors, including fungal species, treatment 

temperatures and wood species affect the decay resistance of Termovuoto 

treated TMWs. Mass losses indicate that there is a considerable improvement 

in decay resistance of TMWs with increasing temperature. After 18 weeks 

exposure to brown- and white rot fungi, wood samples treated at 200℃ or 

above showed improved decay resistance, as demonstrated by low mass loss. 

Wood samples treated at 220℃ show lowest mean values of mass loss and 

durability class (i.e. 1−3). The experiments based on Termovuoto treated 

TMWs against basidiomycetes (i.e. brown- and white-rot fungi) indicate that 

the results from the soil block test (AWPA E10-08) agree very well with those 

from the agar block (EN 113) approach. These results help us understand and 

evaluate the impact of thermal modification on the durability of wood samples 

by different approaches and contribute further for optimizing the Termovuoto 

process. 

Wood  Fungus Decay test 
Treatment temperature 

190℃ 200℃ 210℃ 220℃ 

Ash 

Brown rot 

P. placenta 
EN 113 5 3 2 1 

AWPA E10-08 4 3 1 1 

G. trabeum 
EN 113 3 2 1 1 

AWPA E10-08 4 3 2 1 

White rot 

T. versicolor EN 113 4 4 3 3 

P. sanguineus AWPA E10-08 5 4 4 2 

P. radiata AWPA E10-08 5 4 3 2 

Beech 

Brown rot 

P. placenta 
EN 113 5 5 2 1 

AWPA E10-08 5 5 3 2 

G. trabeum 
EN 113 4 4 1 1 

AWPA E10-08 5 5 3 2 

White rot 

T. versicolor EN 113 5 5 4 3 

P. sanguineus AWPA E10-08 5 5 3 2 

P. radiata AWPA E10-08 5 5 4 3 
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4.2 Decay resistance of soft- and hardwood TMWs to soft rot 
fungi 

4.2.1 Comparison of decay resistance between soft- and hardwood TMWs 

Figures 6 and 7 show the mass loss of Termovuoto treated hard- and softwood 

TMWs and corresponding reference woods exposed to P. malorum, P. 

mutabilis and C. globosum for different exposure periods.  

     Mass loss of hardwood TMWs was always less than that of the 

corresponding reference woods. Greatest decay resistance was observed with 

treatment at 220℃ for both ash and beech wood (Figure 6). Differences in the 

mass loss between fungal species tested were negligible with TMW220℃, 

whereas values from reference and TMW190−210℃ showed the order P. mutabilis 

> C. globosum >> P. malorum, emphasizing the variation in decay ability 

between fungal species. 

Figure 6. Mass loss (obtained from four replicates) of ash and beech (hardwoods) reference (Ref.) 

and TMW190−220℃ exposed to soft rot fungi P. malorum, P. mutabilis and C. globosum over 1 year.  

Interestingly, the patterns of mass loss between the two hardwoods were 

different. Ash wood showed similar or higher mass losses than beech in 

reference groups, but lower mass loss than beech in TMWs groups over the 

entire exposure period. The major reduction in mass loss (i.e. more than 50% 

reduction compared to reference) in relation to treatment temperature also 

differed between ash and beech TMWs. For example, after 30 weeks exposure 

to P. mutabilis, the major reduction in mass loss was detected at 200℃ for ash 

(ca. 66%) but was at 210℃ for beech (ca. 75%). The reduction in mass loss 

was only ca. 29% for beech TMW200℃. These results indicate that thermal 

treatment causes different impacts on ash and beech wood. Similar differences 

were also detected in mass loss patterns against brown- and white-rot fungi 
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between ash and beech TMWs (See chapter 4.1; Gao et al., 2016). Thus, it can 

be assumed that natural variations in the anatomy (i.e. ash is a ring porous 

hardwood and beech is diffuse porous hardwood) and chemistry between ash 

and beech wood likely influence the difference in thermal behavior of wood, 

and therefore affect resistance of TMWs against soft rot fungi. (Gao et al., 2016) 

 
Figure 7. Mass loss (obtained from four replicates) of spruce and fir (softwoods) reference (Ref.) 

and TMW160−220℃ exposed to soft rot fungi P. malorum, P. mutabilis and C. globosum over 1 

year.  

     In contrast to hardwoods that were decayed quite rapidly by the soft rot 

fungi, softwoods showed much less mass loss during the same exposure period 

(Figure 7). Previous studies have shown that the slower rate of fungal 

degradation observed in softwoods is influenced strongly by the nature and 

composition of lignin that differs considerably from hardwoods (Singh et al., 

2006; Daniel & Nilsson, 1998). Ash and beech (hardwoods) have a lignin 

content of around 18−22%, while softwoods have a higher lignin content of 

25−28%, implying a greater resistance of softwoods against soft rot fungi. In 

addition, softwood lignin is composed almost exclusively of G-lignin, which is 

assumed to have moderate resistance to soft rot fungi, whereas hardwood 

lignin is characterized by both G- and S-units that have variable distribution 

according to cell type and cell wall layer. For example, the fibre secondary cell 

walls in hardwoods (i.e. usually highly degraded by soft rot fungi) are 

primarily S-lignified. This suggests that natural varieties in lignin chemistry 

between soft- and hardwoods significantly affect the difference in decay 

resistance of TMWs. With increase in treatment temperature, the mass loss 

difference between hard- and softwoods is decreases, indicating that the impact 
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of initial differences in lignin chemistry between hard- and softwoods on the 

durability of soft rot decay also decreases.  
 

 

 

Figure 8. Correlation between changes in lignin/xylan content of TMWs and mass loss after 30 

weeks decay by P. mutabilis (left to right 220, 210, 200, 190℃, reference). Mass loss showed 

positive and negative correlation with lignin (a, b) and xylan (c, d) content, respectively, in both 

ash (a, c) and beech (b, d) TMWs. Chemical data of lignin and xylan content are cited from 

Jebrane et al. (2016). 

The reasons for mass loss decrease in TMWs treated at higher temperatures 

are still poorly understood. However, it is generally accepted that improved 

decay resistance of TMWs is related to changes in chemical components 

(Esteves & Pereira, 2009), such as the apparent increase in lignin content 

caused by a decrease of accessible polysaccharides (mainly hemicelluloses), 

which is apparently an important factor for soft rot decay. A recent study 

(Jebrane et al., 2016) showed the Termovuoto process caused a relative 

increase in percentage of total lignin content for both ash and beech wood via a 

decrease in total xylan content (Figure 8). For example, when the treatment 

temperature for beech reached 210℃, a substantial increase in total lignin 

content (ca. 25%) was shown, while the xylan content decreased dramatically 

(ca. 23%) relative to the reference (Figure 8b, d). The major change in lignin 

and xylan content occurred at temperatures between 190 and 200℃ in the two 

hardwoods (Figure 8). Mass loss from the soft rot decay test showed a negative 

linear correlation with the lignin content (Figure 8a, b) and a positive relation 

with the xylan content (Figure 8c, d) in the two hardwoods. The percentage of 

glucan (i.e. cellulose) fluctuated between 43−50% for ash and 38−45% for 
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beech, and no significant correlation with mass loss was found (Jebrane et al., 

2016). These results suggest that even if the cellulose content does not change 

remarkably, wood blocks with lower hemicelluloses and higher lignin content 

are more durable to soft rot decay (i.e. by P. mutabilis). It should be noted that 

the results of mass loss and chemical changes discussed are from gross 

analyses of wood blocks. However, the patterns of polymer distributions at 

tissue and individual cell levels (e.g. fibre, parenchyma cell, vessel) vary 

considerably in hardwoods as outlined earlier in this thesis and in Paper IV. 

4.2.2 Correlation between changes in moisture content of TMWs and mass 

loss 

Since TM of wood commonly decreases the equilibrium moisture content of 

wood, and that soft rot fungi typically prefer to attack high moisture containing 

wood (Esteves & Pereira, 2009; Daniel, 2003), the moisture content (MC) of 

the soil (i.e. used in the test flasks) was adjusted monthly to around 70−75%, 

and the MC of wood blocks was monitored during the entire decay period. 

When the treatment temperature increased from 190 to 220℃, the MC of 

hardwood TMWs (ash, beech) decreased and was positively correlated with 

mass loss for all three soft rot fungi tested (Figure 9a−c). By contrast, the MC 

of softwood TMWs (spruce, fir) were similar to the reference at all 

temperatures (160−220℃), and were higher than those of hardwood reference 

and TMWs (Figure 9d−f). These results suggest that the ability for water 

absorption in TMWs may differ significantly between hard- and softwood 

TMWs. However, we are not sure whether the decreased MC in hardwood 

TMWs actually has an effect on the inhibition or delay of soft rot decay in 

TMWs, since there is no documented information about the optimal levels of 

MC for soft rot growth in TMWs. Laboratory decay tests generally allow a 

final MC of decayed wood blocks in the range 25−80% (EN 113, 2004). In our 

work, although the MC of decayed samples is lower than that of the reference, 

we consider the value ranges 50−60% in TMW190−220℃ are sufficient for the 

growth of the soft rot fungi species used. Another important point to stress is 

that the decrease in mass loss of hardwood TMWs is likely induced by changes 

in other factors along with change of MC, such as the apparent increase in 

lignin content as outlined above. Weak positive correlation between changes in 

mass loss and MC in softwood TMWs decayed by soft rot fungi may also 

reflect this aspect (Figure 9d−f). For example, lower mass loss in TMWs than 

reference may simply reflect the apparent increase in relative lignin content 

after thermal treatment, since TMWs and reference showed similar levels of 

high MC in softwoods. 
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Figure 9. Correlation between changes in moisture content (MC, obtained from four replicates) of 

TMWs and mass loss after 30 weeks decay (left to right 220, 210, 200, 190℃, reference). 

Hardwoods (ash, beech) showed decreased MC in TMWs compared to reference (Ref.), with 

greater decrease at higher temperature (a−c), while softwoods (spruce, fir) revealed similar MC 

between TMWs and reference. Note strong and weak positive correlation between changes in MC 
and mass loss in hardwoods and softwoods, respectively.  
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5 White rot decay patterns of Termovuoto 
treated softwoods and hardwoods 

From decay resistance and durability studies (Section 4), it was apparent that 

white rot fungi caused significant mass loss of TMWs and even attacked wood 

treated at the highest temperature used (i.e. 220℃; see Tables 1, 2). From the 

known changes induced in wood during thermal treatment, such as loss and 

redistribution of hemicelluloses, relative increase in lignin content and 

condensation and modification of cell wall ultrastructure (Sections 1−3), it can 

be hypothesized that TMWs may show differences in morphological features 

of the decay process compared with reference against white rot fungi. To 

elucidate these aspects, micro- and ultrastructural analyses were carried out on 

untreated (reference) and TMWs exposed to the white rot fungus Pycnoporus 

sanguineus for 10 weeks using microscopy techniques. In particular, the decay 

process in TMW220℃ was studied in comparison with reference. For more 

specific details see Paper V. 

5.1 Observations of P. sanguineus degraded softwood TMWs 

Overall, reference and TMWs in the two softwoods (spruce and fir) were 

colonized similarly with hyphal advancement through the open ends of 

tracheids and along the rays with growth and development in the cell lumina. 

Figure 10 shows examples of the decay of tracheids from reference and 

TMW220℃. For both reference and TMW220℃, earlywood (EW) tracheids 

showed greater resistance of tangential (Ta)- than radial (Ra) cell walls, while 

latewood (LW) tracheids revealed opposite pattern (Figure 10a, b). Tangential 

longitudinal sections of reference and TMW220℃ showed colonization of the 

cell lumina of tracheids and rays (i.e. ray parenchyma, ray tracheids) with 

decay initiated from bordered pits by enlargement of the pit borders to form 

large bore holes (Figure 10c, d).  
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Figure 10. Softwood reference and TMW220℃ degraded by P. sanguineus. Both reference and 

TMW220℃ showed similar decay patterns; more severe degradation in early- than latewood (a, b), 

decay from the pits by enlarging the size of the border to form bore holes (c, d), delignification 

and decay of tracheid secondary cell walls as evidenced by a bright concentric zone with a 

‘spongy-like’ cell wall structure from SEM observations (e, f) and a dark purple colored decayed 

cell walls with toluidine blue staining (g, h). Scale bars = 25 µm (a−f), 100 µm (g, h). 

Principle decay of tracheid cell walls by P. sanguineus in both reference 

and TMW220℃ was by slow erosion of the surrounding lumen cell wall 

producing concentric delignification zones that progressed outwards across 

cells, reflecting attack in “time and space”. The concentric zones were readily 

visible using light microscopy (LM) and particularly distinct in latewood 

tracheids after staining with toluidine blue (Figure 10g, h; arrows; Paper V). 

Using SEM, the zones were visible as a less dense and more open layer (i.e. 

presumably enhanced during sectioning) surrounding the cell lumina (Figure 

10e, f; arrows). In more advanced phases of hyphal attack, delignification in 

the concentric zones passed across middle lamella regions into adjacent 

tracheids in both reference and TMW220℃. The development of concentric 

zones in wood cells is a characteristic feature of selective (i.e. preferential) 

white rot decay of wood cells including P. sanguineus (Kim et al., 2015a; 

Daniel, 1994; Daniel, 2014). 
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Figure 11. Decay of spruce tracheids by P. sanguineus. Stained with KMnO4. Reference (a−c) 

and TMW220℃ (d−g) showing progressive delignification from the lumen outwards and formation 

of prominent delignified zones (double headed arrows) in secondary cell walls (a, d). Note 

formation of the transition zone from delignified- to lignified cell wall regions in TMW220℃ 

(dashed lines in d) and the relatively wider area of delignification (arrowheads) in CMLcc regions 

of reference (b, c) than those of TMW220℃ (e, g). A residual ML region after complete degradation 

of tracheid secondary cell wall (f) was also detected only in TMW220℃. Scale bars = 500 nm.  

TEM studies combined with KMnO4 staining for lignin on spruce reference 

and TMW220℃ showed further details on the formation of concentric 

delignification zones in tracheid cell walls (Figure 11). As observed in LM and 
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SEM, both reference and TMW220℃ showed progressive delignification in 

tracheid cell walls from the lumen surface outwards, followed by formation of 

prominent delignified zones (double headed arrows in Figure 11a, d). 

However, delignification in TMW220℃ contrasted with reference in that the 

transition zone from delignified- to lignified cell walls (dashed lines in Figure 

11d) in which preferential lignin degradation occurred in tracheid cell walls 

was much thinner and more distinct. A similar difference was also detected in 

the compound middle lamella (CML/ML) including middle lamella cell corner 

(MLcc) (CMLcc) regions. TMW220℃ (arrowheads in Figure 11e, g) showed 

much narrower delignified zones in these regions compared to reference 

(arrowheads in Figure 11b, c). These results suggest that delignification of 

tracheids in TMW220℃ occurs in much narrower area than that in reference. The 

ML remaining after complete degradation of tracheid secondary cell walls in 

TMW220℃ supports this idea (Figure 11f).  

Consequently, results demonstrate that characteristic features of decay in 

softwoods by P. sanguineus including colonization of fungal hyphae, general 

variations in decay between early- and latewoods and preferential 

delignification are not changed by thermal modification. However, results 

suggest that delignification in tracheids is slower in TMW220℃ than reference, 

thereby leading to delay of tracheid degradation in TMW220℃.   

TEM immunogold labeling combined with KMnO4 staining showed that the 

process of hemicellulose removal by P. sanguineus is similar between 

reference and TMW220℃ (Figure 12a, b; Paper V). Both samples showed 

presence of abundant heteroxylan and heteromannan epitopes in the electron-

lucent decay zones (i.e. where lignin had been degraded) (double headed 

arrows in Figure 12a, b). These results indicate that lignin is preferentially 

degraded prior to complete degradation of hemicelluloses by P. sanguineus 

during progressive decay in both reference and TMW220℃. At the same time, 

results indicate that thermal modification does not affect significantly the 

temporal degradation patterns of lignin and hemicelluloses in spruce tracheids. 

Unlike reference (Figure 12c), TMW220℃ sections stained with uranyl 

acetate frequently showed greater electron density layers in decayed tracheid 

cell walls (arrowheads in Figure 12d, e), probably indicating the transition zone 

from delignified- to lignified cell walls as evidence by KMnO4 staining (Figure 

11d). TMW220℃ also showed similar positive uranyl acetate staining across 

tracheid cell walls including decayed cell walls (double headed arrows in 

Figure 12d, e), while reference revealed positive and almost negative staining 

in the un-decayed- and decayed cell walls, respectively (Figure 12c). Based on 

the principle that an aqueous solution of uranyl acetate does not stain 

crystalline cellulose but stains amorphous phase cellulose (Heyn, 1966), the 
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degree of crystallinity of cellulose remaining after delignification by P. 

sanguineus may be lower in TMW220℃ than reference, thereby increasing the 

intensity of staining in delignified cell walls. However, the result should be 

further investigated since the change in cellulose crystallinity by thermal 

modification is a controversial issue and results vary depending on treatment 

temperature (reviewed by Esteves & Pereira, 2009). Formation of higher 

electron dense layers in TMW220℃ also suggests that substances that readily 

react with uranyl acetate may be accumulated in transition zones, most likely 

protein-based such as ligninolytic enzymes. For example, several previous 

studies have reported the concentration of lignin/Mn peroxidases and laccase at 

the interface between degraded (i.e. delignified) and non-degraded cell walls 

(Daniel et al., 2004; Daniel, 1994; Daniel et al., 1991; Daniel et al., 1989; 

Srebotnik et al., 1988). 

Figure 12. Distribution of heteroxylan and heteromannan epitopes in P. sanguineus decayed 

spruce tracheid cell walls. Reference (a) and TMW220℃ (b) stained with KMnO4 showing 

abundant LM21 heteromannan epitopes in delignified cell wall layers (double headed arrows). 

Reference (c) and TMW220℃ (d, e) stained with uranyl acetate showing almost negative and 

positive staining in the delignified cell walls (double headed arrows), respectively. Note 

localization of LM10 heteroxylan (c, d) and LM21 heteromannan (e) epitopes in delignified cell 
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walls and formation of more electron dense layers (arrowheads in d, e) in TMW220℃. Scale bars = 

500 nm. 

5.2 Observations of P. sanguineus degraded hardwood TMWs 

Fungal colonization of hardwood (ash, beech) reference and TMWs was in 

principle similar with hyphal growth developing within the wood structure 

from the vessels and rays as shown in examples from reference and TMW220℃ 

(Figure 13). Initial decay and colonization in both reference and TMWs was 

characterized by prominent development of bore holes between fibre-

fibre/vessel-vessel/fibre-ray parenchyma cells and scarce development between 

ray parenchyma cells (Figure 13c, d). Hyphal colonization in the cell lumina of 

fibres from where attack of the secondary cell walls was initiated and earlier 

decay of early- than latewood fibres were also detected in both reference and 

TMWs (Figure 13a, b). Vessels and ray/axial parenchyma cells showed greater 

and lower decay resistance than fibres in ash (Figure 13a, b) and beech (Figure 

13e, f) respectively in both reference and TMWs.  

 
Figure 13. P. sanguineus degraded ash (a−d) and beech (e, f) reference and TMW220℃. More 

severe degradation in early- than latewood (a, b) and formation of bore holes was apparent (c, d). 

Note the lower and greater decay in vessels than fibres in ash (a, b) and beech (e, f) respectively 

in both reference and TMW220℃. Scale bars =25 µm. 

Like softwood tracheids, preferential delignification was apparent, followed 

by cell wall erosion of fibres in both reference and TMWs. Delignification was 

also typically initiated from hyphae in the fibre cell lumina and developed 

outwards into the secondary cell walls frequently passing through ML into 

adjacent fibres (Figure 14a). Interestingly, fibres unlike tracheids showed a 

notable difference in staining patterns of decayed cell walls depending on 
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treatment temperature (Figure 14b−g). A distinct concentric line between 

lignified- and delignified cell walls was frequently detected in TMW200−220℃ 

and particularly TMW220℃ (Figure 14d−g). This line presumably reflects the 

narrow transition zones observed in TMW220℃ with TEM (see below). The 

intensity of safranin staining in delignified cell wall regions was stronger than 

lignified cell walls in reference (Figure 14b) but changed gradually as 

treatment temperature increased (Figure 14c−e) and finally showed lower 

intensity in TMW220℃ (Figure 14f, g). This result may indicate that the cell wall 

structure in the delignified zone becomes more compact as the treatment 

temperature increased and thus the staining solution cannot easily penetrate 

into this zone (i.e. difficulty of stain adsorption). 

 
Figure 14. P. sanguineus degraded fibres of beech (a−f) and ash (g) TMW220℃. Stained with 

toluidine blue (a) and safranin (b−g). Preferential delignification of fibres, followed by cell wall 

erosion (a). Note changes in intensity of safranin staining in delignified fibre cell walls and 

formation of concentric lines (arrowheads) with increase in temperatures (d−g). Scale bars =25 

µm. 

Characteristic features of delignification in secondary cell walls of ash 

fibres were similar to those in spruce tracheids, regardless of thermal 

modification. Both reference (Figure 15a) and TMW220℃ (Figure 15d) showed 

progressive delignification in fibre cell walls from the lumen surface outwards, 

followed by formation of prominent delignified zones (double headed arrows 

in Figure 15a, d). The only difference was the width of transition zones that 

were overall narrower in ash fibres (Figure 15d) than spruce tracheids (Figure 
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11d). Features of delignification in CMLcc regions of ash fibres were also 

similar to those of spruce tracheids. Delignification in CMLcc regions of fibres 

progressed gradually from the outermost layer inwards in TMW220℃ 

(arrowheads in Figure 15e, f), followed by formation of very narrow transition 

zones, but occurred in a relatively wider area in reference (arrowheads in 

Figure 15b, c). 

Figure 15. Decay of ash fibres by P. sanguineus. Stained with KMnO4. Reference (a−c) and 

TMW220℃ (d−f) showing progressive delignification from the lumen outwards and formation of 
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prominent delignified zones (double headed arrows) in secondary cell walls (a, d). Note formation 

of the narrow transition zone from delignified- to lignified cell walls in TMW220℃ (arrowheads in 

d) and the relatively wider area of delignification (arrowheads) in CMLcc regions of reference (b, 

c) than those of TMW220℃ (e, f). Scale bars = 500 nm.  

Figure 16. Distribution of heteroxylan and heteromannan epitopes in P. sanguineus decayed ash 

fibre cell walls. Reference (a) and TMW220℃ (b) stained with KMnO4 showing abundant LM10 

heteroxylan epitopes in delignified cell wall layers (double headed arrows). Reference (c) and 

TMW220℃ (d, e) stained with uranyl acetate showing almost negative and positive staining in 

delignified cell walls (double headed arrows), respectively. Note localization of LM10 

heteroxylan (c, d) and LM21 heteromannan (e) epitopes in delignified cell walls and formation of 

more intense electron dense layers (arrowheads in d, e) in TMW220℃. Scale bars = 500 nm. 
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Results of TEM immunogold labeling of degraded ash fibres were also 

similar to those in spruce tracheids. Abundant heteroxylan and heteromannan 

epitopes were detected in delignified fibre cell wall regions (as evidenced by 

the lack of KMnO4 staining) of reference and TMW220℃ (Figure 16a, b). As 

outlined for spruce tracheids, this result indicates that the fundamental decay 

process of ash fibres by P. sanguineus in relation to preferential delignification 

prior to degradation of hemicelluloses is not affected by thermal modification. 

Development of more intense electron dense layers (arrowheads in Figure 16d, 

e) and positive uranyl acetate staining in decayed fibre cell walls in TMW220℃ 

(double headed arrows in Figure 16d, e) that were not detected in reference 

(Figure 16c) also suggest modification in the degree of cellulose crystallinity in 

delignified fibre cell walls and accumulation of protein-based substances in 

transition zones following thermal modification. 

5.3 Section conclusions 

Results demonstrate that thermo-vacuum modification does not affect 

characteristic features of preferential delignification by P. sanguineus in spruce 

tracheids (softwood) and ash fibres (hardwood), regardless of treatment 

temperatures. However, results suggest that the delignification process in 

tracheids and fibres by P. sanguineus may be delayed in TMWs, particularly at 

high treatment temperature. Formation of narrower transition zones in 

TMW220℃ than reference likely reflects the difference in delignification process 

following thermal modification. At present, there are two plausible 

explanations in relation to delay of delignification in TMWs by P. sanguineus. 

The first is delay of delignification by an apparent increase of lignin content 

following degradation of polysaccharides (mostly hemicelluloses) and 

modification of the lignin structure, particularly increase of condensation in 

TMW220℃. This expectation is based on the assumption that P. sanguineus 

produces the same qualitative and quantitative ligninolytic enzymes and free 

radicals in reference and TMW220℃. Since TMWs do not contain fungicides in 

the lumina of tracheids and fibres where fungal hyphae colonize, this 

assumption may be reasonable. Activities of the same type and amount of 

ligninolytic enzymes and free radicals produced by P. sanguineus may be 

restricted/or delayed (i.e. via a reduction in porosity) in TMW220℃ due to 

increased lignin content and condensation. In our previous study on ash 

reference wood, compared to fibres, P. sanguineus produce narrow delignified 

zones in vessel and parenchyma cell walls that contain higher lignin and have 

differences in the syringyl/guaiacyl ratio compared to fibres (Kim et al., 

2015a). The second explanation is delay of delignification by modification of 
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cell wall structure. In our previous study, ash TMW220℃ showed severe 

changes in the supramolecular structure of fibre S2 layer (Kim et al., 2015b). 

The lamella structure of the fibre S2 layer was disrupted in TMW220℃ followed 

by formation of larger lignin aggregates than reference (Kim et al., 2015b). 

Several studies have also reported blocking of micropores and reduction in 

void volume in the wood cell wall following TM (reviewed by Esteves & 

Pereira, 2009). These observations suggest that the modified cell wall structure 

of TMW220℃ can delay penetration/or diffusion of ligninolytic enzymes (i.e. 

laccase) and free radicals in the cell wall, thereby delaying delignification in 

TMW220℃. Narrower transition zones in spruce tracheids and ash fibres of 

TMW220℃ observed in this study may particularly reflect this aspect. 
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6 Soft rot decay patterns of Termovuoto 
treated hardwoods 

To understand the effect of thermal modification (TM) on soft rot decay of 

TMW, samples (ash, beech) degraded by P. mutabilis for 18 weeks were 

examined using light microscopy combined with two histochemical staining 

approaches (i.e. toluidine blue and safranin staining). To examine 

ultrastructural changes in decay patterns of TMWs, TEM was carried out on 

ash TMW200℃ decayed by P. mutabilis in comparison with decayed ash 

reference wood. 

6.1 Histochemical observations of P. mutabilis decayed ash and 
beech TMWs 

After 18 weeks exposure, hardwood (ash, beech) reference and TMWs showed 

typical pattern of cavity formation (i.e. soft rot Type-I) in fibre cell walls. Soft 

rot erosion (i.e. Type-II) attack by luminal hyphae was not observed in both 

reference and TMWs. The higher the treatment temperature, the less advanced 

decay stages detected in fibres. Ash and beech reference, ash TMW190℃ and 

beech TMW190−200℃ showed advanced stages of decay in which the entire 

secondary S2 layer was completely degraded, leaving a residual S3 layer 

adjacent to the cell lumina (Figure 17a, b, e−g; Paper IV) and undegraded 

middle lamella (ML) regions. For ash TMW200℃ and beech TMW210℃, decay 

morphologies differed slightly from those exhibited in the reference. The 

secondary cell walls contained large numbers of uniting cavities close to the 

fibre lumina, leaving only remnants of the outer secondary wall (Figure 17c, 

h). Ash TMW210℃ showed only a few cavities of smaller diameter even though 

the cell lumina were filled with numerous hyphae (Figure 17d). For ash and 

beech TMW220℃, cavity formation was almost completely inhibited and only 

very thin hyphae were found to propagate across wood cells (Figure 17i).  
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Figure 17. P. mutabilis decayed fibres in ash and beech reference and TMWs. Formation of 

typical soft rot Type-I cavities in the S2 layer was shown in two references (a, e), ash TMW190℃ 

(b) and beech TMW190−200℃ (f, g), with a residual S3 layer and undecayed ML regions. Ash 

TMW200℃ (c) and beech TMW210℃ (h) showed coalesced cavities restricted to inner regions of the 

S2 layer. Ash TMW210℃ (d) revealed only a few cavities (arrowheads) in the S2 layer even though 

the colonization of numerous hyphae was observed in cell lumina. Beech TMW220℃ (i) showed a 

few hyphae in cell lumina and no cavities in the S2 layer. Scale bars = 20 μm. 
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Therefore, it is likely that an effect of TM on soft rot decay is to suspend 

cavity formation and thereby to delay/inhibit the decay process. The relative 

increased lignin concentration (i.e. about 10% higher in ash and beech 

TMW210−220℃ compared to reference) due to TM is most likely the major factor 

influencing the resistance of wood (i.e. secondary cell walls) to soft rot decay 

(Section 4, Paper III). Higher natural resistance of ML regions in both 

reference and TMWs further reflect this aspect, i.e. the high lignin content in 

ML regions inhibits soft rot decay in these regions (Daniel, 2014). Possibly, the 

loss and/or redistribution of hemicelluloses and cellulose microfibrils and 

condensation of lignin following TM can also interfere with the fungus ability 

to produce T- and L-branching which is a prerequisite for subsequent cavity 

formation.  

 
Figure 18. P. mutabilis decayed vessels (V) and axial/ray parenchyma cells (AP/R) in reference 

and TMWs. Stained with toluidine blue (a−c, f) and safranin O (d, e, g). Ash (a, b) and beech (d, 

e) references and beech TMW190℃ (f) showed advanced stages of Type-I cavity formation in 

secondary cell walls, while no obvious cavity formation and decay were detected in ash TMW190℃ 

(c) and beech TMW200℃ (g). Scale bars =20 μm 
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In vessels and axial/ray parenchyma cells, ash and beech reference showed 

formation of soft rot type-I cavities in secondary cell walls (Figure 18a, b, d, e). 

Beech TMW190℃ also exhibited similar advanced stages of decay in these cell 

types, with the secondary cell walls almost completely degraded (Figure 18f). 

However, no cavity formation was observed in vessels or parenchyma cells of 

ash TMW190℃ (Figure 18c). Similar observations were seen in the case of beech 

TMW200℃ (Figure 18g). Also no obvious cavity formation was detected in 

TMWs treated at higher temperatures in the two hardwoods. Consequently, the 

Termovuoto process significantly increased durability of vessels and 

parenchyma cells against P. mutabilis at 190/200℃ for ash/beech, respectively. 

These results differed from fibres that displayed notable increase in durability 

when the treatment temperature was raised to 210/220℃ (i.e. much higher 

temperatures than vessels and parenchyma cells). Thus, a considerable 

difference in soft rot decay resistance between vessels/parenchyma cells and 

fibres was evident. These differences in durability are probably originating 

from difference in the native chemical composition between cell types, for 

example, the proportion of lignin in vessels/parenchyma cells is higher than in 

fibres (Obst, 1982). Our previous research on ash reference also showed an 

overall stronger lignin staining in vessels/parenchyma cells than fibres (Kim et 

al., 2015b). Furthermore, vessels and parenchyma cells generally contain 

tyloses and deposits of aromatic compounds and extractives, respectively. All 

these differences in chemical composition may contribute to a higher decay 

resistance in vessels/parenchyma cells than fibres in TMWs. 

6.2 TEM observations of P. mutabilis decayed ash TMW200℃ 

Since the mass loss results and light micrographs from decay tests suggest 

significant structural and chemical changes in ash wood during treatment 

temperatures around and above 200℃, characteristic decay patterns in ash 

TMW200℃ by P. mutabilis was compared with ash reference wood using TEM.  

Figure 19 shows advanced stages of cavity formation in fibres of ash 

reference and TMW200℃, in which almost the entire S2 fibre cell wall was 

destroyed through cavity formation. Distinct granular layers were formed 

around fungal hyphae (i.e. inside the secondary cell wall or in the cell lumina) 

consisting of electron dense materials as observed in both reference and 

TMW200℃, with differences in the morphology, texture and amount remaining 

(Figure 19). The granular electron dense materials were retained after cavity 

formation and even after hyphal death, suggesting they presumably represent 

un-degraded/or modified lignin and fungal melanin, which react strongly with 

osmium tetroxide.  
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Figure 19. TEM micrographs of fibres of ash reference and TMW200℃ decayed by P. mutabilis. 

Reference (a, b) and TMW200℃ (c, d) showed advanced stages of decay; complete degradation of 

the entire S2 layer, leaving a residual S3 layer adjacent to the cell lumina and ML regions and 

deposition of electron dense materials and osmium particles around hyphae. Note a characteristic 

radial-like distribution of electron dense granular materials around hyphae located in the S2 layer 

and close to the S3 layer and ML regions of TMW200℃ and lack of fibrillar-like materials in 

decayed TMW200℃ fibre cell walls (c, d), which differed from reference (a, b). 

Micromorphologically, the electron dense materials in the fibre S2 layer 

showed different distributional patterns between reference and TMW200℃. They 

formed a radial-like arrangement around hyphae in TMW200℃ with amorphous 

granular material apparently expanding from hyphae (Figure 19c, d) differing 

from the more granular and open patterns observed in the reference (Figure 

19b). This arrangement was also occasionally located close to the S3 layer and 

ML regions of TMW200℃ (Figure 19d). In decayed fibre cell walls, reference 

frequently showed abundant and widely distributed fibrillar-like materials 

(Figure 19a, arrowheads), while these materials were not observed in 

TMW200℃ (Figure 19c, d). Variations in the distribution of osmium particles 
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and differences in the size of electron dense granules in decayed fibre cell 

walls between TMW200℃ and reference were also noted.  

These characteristic differences in degraded fibre cell walls between 

reference and TMW200℃ presumably reflect changes in the decay mechanism 

by soft rot fungi which is most likely related to the modified cell wall structure 

and lignin chemistry following TM, such as polycondensation of lignin and 

formation of large lignin aggregates followed by loss of the lamellar 

orientation discussed in earlier sections. The modified lignin may also be prone 

to aggregate and polymerize with melanin secreted by the fungal hyphae and 

form an even more compact aggregate structure in the presence of osmium 

tetroxide. Consequently, the electron dense granular materials around cavities 

in fibres of TMW200℃ were more apparent than those in the reference wood. 

 
Figure 20. TEM micrographs of vessels (V) and axial/ray parenchyma cells (AP/R) of ash 

reference and TMW200℃ decayed by P. mutabilis. Reference showed advanced stages of decay in 

secondary cell walls of vessels and parenchyma cells (a, b), while no obvious signs of decay were 

detected in TMW200℃ (c, d). Note characteristic holes produced by micro-hyphae across ray 

parenchyma cell walls in reference (arrowheads in b), which were not observed in TMW200℃. 
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In vessels and parenchyma cells, reference showed advanced stages of 

decay (Figure 20a, b), while no obvious decay was detected in TMW200℃ even 

though neighboring fibres showed advance decay (Figure 20d). This indicates 

that durability of vessels and parenchyma cells was significantly improved 

following TM as outlined with light microscopy (Figure 18). Unlike TMW200℃, 

reference showed some representative holes (bore holes; arrowheads in Figure 

20b) of various shapes across vessel and parenchyma cell walls. These holes 

differed from characteristic cavities formed in the S2 layer. Probably, these 

observations reflect the penetration of micro-hyphae produced from luminal 

hyphae. Consequently, the differences between reference and TMW200℃ 

observed indicate changes in the action of soft rot decay in vessels and 

parenchyma cells following TM. Like fibres, modified cell wall chemistry and 

structure of vessels and parenchyma cells by TM (see Paper II) may induce 

these differences.  
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7 Conclusions 

The Termovuoto (thermo-vacuum) process is a relatively new industrial 

approach that combines an efficient vacuum drying process with thermal 

modification (TM). Two softwoods (spruce and fir) and two hardwoods (ash 

and beech) were thermally modified under industrial conditions by the 

Termovuoto process for 3−4 h at 160−220℃ and used throughout this thesis. 

Changes in ultrastructure and lignin chemistry of TMWs were investigated 

using light- and electron microscopy combined with histo/cytochemistry. 

Variations in changes in native cell color in TMWs were positively correlated 

with differences in lignin content between cell types and cell wall regions in 

reference wood. Histochemical staining showed increasing amounts of acidic 

groups in TMWs with different response to toluidine blue or safranin between 

secondary cell walls and CMLcc regions. The CMLcc regions of softwood 

TMW220℃ (4 h) were composed almost entirely of modified lignin with 

increased amounts of acidic groups. With cytochemical staining for lignin, 

many electron dense particles were detected in the CMLcc regions of softwood 

TMWs, indicating early degradation/modification by Termovuoto treatment. In 

hardwoods, increased intensity of lignin staining and large dark lignin 

aggregates in the fibre S2 layers were detected in TMW220℃ (3 h). Hardwood 

TMW220℃ differed significantly in ultrastructure of fibre cell walls compared to 

reference, including loss of the lamellar structure and size and ultrastructural 

distribution of lignin aggregates. Modification in CMLcc structure in ash 

TMW220℃ was different from that of softwood TMW220℃. 

Durability of TMWs exposed to two brown rot (P. placenta, G. trabeum)-, 

two white rot (P. radiata, P. sanguineus)- and three soft rot (C. globosum, P. 

malorum, P. mutabilis) fungi were investigated using the soil-block test 

(AWPA E10-08). For brown- and white-rot fungi, considerable improvement 

in durability for soft- and hardwoods was only achieved when the TM 

temperature reached 220℃. TM temperatures below 200°C (i.e. TMW160℃ for 

softwoods and TMW190℃ for hardwoods) occasionally influenced decay 
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resistance negatively in case of some fungal species in both soft- and 

hardwoods. Hardwood TMWs demonstrated an overall higher decay resistance 

than softwood TMWs at high TM temperatures. The durability of ash TMWs 

was higher than beech TMWs, meaning the behavior of TM differed between 

ash (ring-porous hardwood) and beech (diffuse-porous hardwood). Comparison 

between results of soil block (AWPA E10-08) and agar block (EN 113) tests 

demonstrated that the influence of testing method in terms of determination of 

durability classes is of less importance. For soft rot fungi, softwood TMWs 

were more durable than hardwood TMWs, irrespective of fungal species tested. 

In hardwoods, ash exhibited less durability than beech in untreated reference, 

but greater durability in TMWs, suggesting differences in the effect of TM 

depending on variation in anatomy between the two hardwoods as shown from 

brown- and white-rot decay. 

Decay patterns in TMWs exposed to the white rot fungus P. sanguineus and 

soft rot fungus P. mutabilis were evaluated at tissue and cellular levels by 

various microscopy techniques. P. sanguineus attacked soft- and hardwood 

TMWs showed similar decay patterns as untreated reference wood in terms of 

fungal colonization, variations in decay between cell types and preferential 

degradation of lignin. However, results demonstrate that the delignification 

process in tracheids and fibres by P. sanguineus is delayed in TMWs, 

particularly at high treatment temperatures. P. mutabilis decayed hardwood 

TMWs showed evidence for formation of typical soft rot Type-I cavities in 

fibres at lower temperatures (190−200℃) similar to those in reference fibres. 

However, cavity formation in fibre cell walls was inhibited and/or delayed in 

TMWs at higher temperatures between 210 and 220℃. With TEM, decayed 

ash TMW200℃ showed a radial-like distribution of electron dense materials in 

cavities and lack of fibrillar-like materials within degraded fibre walls, features 

differing greatly from reference. Presumably, differences in decay patterns of 

white- and soft rot fungi between reference and TMWs are due to the modified 

cell wall structure and chemistry following thermal treatment. 

This study provides detailed information regarding chemical and 

ultrastructural changes, durability and decay patterns of TMWs against brown-, 

white- and soft-rot fungi. Fungal durability of TMWs is highly dependent on 

soft- and hardwoods, wood species, treatment temperature and fungal species. 

With the knowledge gained, it is important to take chemical and anatomical 

characteristics of selected wood species into consideration to choose the 

optimal Termovuoto conditions to meet the requirements for specific future 

purposes.  
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