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Forest managers need information about the forest state for planning treatments. The 

information needs to be sufficient for the purpose and preferably obtained at low cost 

and with regular updates. In the last decade, development and use of airborne laser 

scanning (ALS) for forest variable estimation has been a revolution for forest 

management planning. But it has also created opportunities for other three dimensional 

(3D) technologies which can describe the forest canopy surface, since it provides an 

accurate model of the ground elevation. One such technique is stereo photogrammetry 

using aerial images. Using aerial images from national image surveying programs, high 

resolution 3D data and spectral data can be acquired regularly with a frequency of about 

2-4 years over forest land in Sweden. The aim was to produce forest variable raster maps 

which can be used at stand level but also as information to describe within stand variation 

and updating stand boarders after clear-cut. 

In this thesis aerial images from the National Land Survey’s image acquisition 

program has been used in all studies, but also high resolution and highly overlapping 

images have been evaluated. Using field plots, the 3D and spectral data can be linked by 

models to predict forest variables of interest. In this thesis; tree height, diameter, basal 

area, stem volume, species-specific stem volume and species proportions have been the 

variables of interest. Models have been applied and evaluated at Remningstorp in 

southern Sweden (Lat. 58°N, Long. 13°E), but also scaled up to national level using field 

plots from the national forest inventory. The included studies show that aerial images can 

produce forest variable estimates with good accuracy where best results in terms of root 

mean square error of the mean were 8.8% for tree height, 14.9% for basal area and 13.1% 

for stem volume, but that species-specific variables did not perform as well.  

In conclusion, aerial images with 0.5 m resolution and 60% overlap using stereo 

photogrammetry produce estimates with an acceptable level of accuracy for use as a data 

source for forest management planning. However, very sparse forests, deciduous forests 

and mature forests have larger estimation errors. Nevertheless, from a forest management 

perspective, forest information can be collected at very low costs and with high spatial 

and temporal resolution. 

Keywords: area-based approach, aerial images, image matching, multi-spectral lidar, 

forest variables, species-specific. 
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Without stereo photogrammetry life would be pointless. 
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3D Three dimensional  

a.g.l. Above-ground level 

ALS Airborne laser scanning 

CHM Canopy height model 

CIR Colour infrared image 

dbh Diameter at breast height 

DEM Digital elevation model 

DMC Digital Mapping Camera (Zeiss Intergraph) 

DSM Digital surface model 

FMPP Forest management planning package 

GPS Global positioning system 

GSD Ground sampling distance 

ITC Individual tree crown approach 

k-MSN k most similar neighbour 

Lidar Light detection and ranging 

NFI National forest inventory 

RMSE Root mean square error 
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Remotely sensed data for forestry applications are now increasingly available. 

Spectral data are collected in many forms and scales ranging from satellite 

images to airplanes to drones, with image resolution ranging from tens of meters 

to a few centimetres. Some data are collected on a daily basis and over the whole 

globe, while other data can be collected personally as needed. Structural or three 

dimensional (3D) data are gathered using laser, radar and optical images, 

allowing the forests to be measured in ways which were not possible before. On 

the ground, survey data can be collected using sensors on mobile platforms from 

cars to backpacks to handheld devices, and even harvesters can be used to collect 

forest information. This vast possibility of technology is now available to 

forestry.    

Traditionally, forests have been managed in homogenous units or stands. 

Characteristics of forest stands are described as mean values for the whole stand, 

e.g., basal area weighted mean height (tree height), basal area weighted mean 

diameter (diameter), basal area, stem volume and tree species proportions. The 

stand is the unit for silvicultural treatments, like thinning and clear-cutting. Old 

information about the forest stands is replaced when a new inventory is 

conducted. Within stand variation or continuous variable characteristics are 

increasingly interesting aspects in modern forest management planning.  

In Sweden, forest management planning commonly used forest stand maps 

with stand boundaries and forest variable estimates produced using a 

combination of manual photo-interpretation of aerial images viewed in stereo 

and supported by subjective measurements in the field (Åge, 1985; Magnusson 

et al., 2007; Ståhl, 1992). This method typically provides estimates with relative 

Root Mean Square Error (RMSE) of 10% (of the surveyed mean) for tree height 

and 15% - 25% for stem volume (Ståhl, 1992, 1988). Another common method 

was combining photo-interpreted stand boundaries with forest variable estimates 

produced using subjective field measurements alone, which generated standard 

errors of 15% - 25% for stem volume, and approximately 10% for tree height 

1 Introduction 
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(Ståhl, 1992). Tree species are commonly recorded as a proportion of stem 

volume at stand level. Aerial images are used operationally to manually assess 

tree species proportions using spectral as well as textural information (Åge, 

1985).  

Up until the late 1990s and early 2000s, all forests stands were inventoried 

and assessed with a field visit or at least visually inspected in a stereo 

photogrammetric work station. However, access to wall-to-wall remote sensing 

data and methods for estimating forest attributes by using field data from a 

sample of plots within the area of interest changed how data are collected in 

forest inventory.   

The area-based approach is the most common modelling approach, where 

information or metrics from remotely sensed data are extracted from a sample 

of field surveyed areas, for example, circular plots, within the area of interest. 

The link between the surveyed forest variable of interest and the metrics from 

remote sensing can be modelled using various statistical methods. The remotely 

sensed data of the area of interest are then tessellated into units of the same area 

as the surveyed plots and the model are applied to produce wall-to-wall 

predictions of the surveyed forest variable of interest. Alternatively to area-based 

are object-based approaches, which for forest applications equals to individual 

trees and are commonly referred to as individual tree crown approach (ITC). 

Reviews of area- and ITC-based approaches and their use in forest applications 

can be found in Hyyppä et al. (2008) and McRoberts et al. (2010). 

Early use of the area-based approach was the use of satellite image data and 

National Forest Inventory (NFI) plots for multi-source national forest inventory 

of Finland (Tomppo, 1993). In Sweden a similar forest map product was 

produced (Reese et al., 2003) for year 2000 based on Landsat Thematic Mapper 

data using the k nearest neighbour (k-NN) method, delivering a national 25 m 

cell resolution raster consisting of tree height, diameter, basal area, tree species-

specific stem volume and age. The accuracy was not sufficient to be used by 

forest managers for silvicultural treatments at stand level, but useful for larger 

area analysis. Interest in model-based wall-to-wall estimates was created. The 

forest map was updated with data for year 2005 and 2010 and is planned to be 

continued.    

In the late 1990s, apart from satellite-based inventories, lidar technology and 

airborne laser scanning (ALS) were applied in forest applications (Næsset, 

1997a, 1997b; Nilsson, 1996). ALS generates 3D data by sending out a laser 

pulse, which, as it travels down towards the ground, generates echoes (returns) 

form the vegetation it interacts with and a last return as it reaches the ground. 

The returns are received by the system, and by using the time of flight and the 

known scan angle, a position (point) for each return can be calculated. As the 
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position and orientation of the system is known using a global navigation 

satellite system and an inertial navigation system, the lidar point’s coordinates 

are in a geographical coordinate system. A scanning lidar commonly emits 

hundreds of thousands of pules per second generating a point cloud from the area 

of interest. From the point cloud, various statistical measures (metrics) 

describing the forest at each inventory plot and wall-to-wall raster cell can be 

calculated and used in area-based approaches. 

The first large area mapping using lidar and the area-based approach was 

done in Norway (Næsset, 2002b). ALS-based methods perform well enough for 

forest management planning, turning forest companies into users of ALS-based 

capture of forest data, primarily using area-based approaches (Magnussen and 

Boudewyn, 1998; McRoberts et al., 2010; Næsset, 2002b; Næsset et al., 2004). 

In the Nordic boreal forest, these methods deliver stand level estimation 

accuracies (in relative RMSE) typically in the range of 2.5% - 13.6% for tree 

height, 5.9% - 15.8% for diameter and 8.4% - 16.6% for stem volume (Næsset 

et al., 2004). Woods et al. (2011) showed plot level estimation accuracies of 

5.2% - 8.2% for tree height, 14.3% - 18.2% for basal area and 13.9% - 20.5% 

for stem volume for different boreal forest types in Canada. Spectral data from 

aerial images have been used as an additional information source to estimate tree 

species-specific stem volume in ALS-based forest inventories using various 

frameworks (Hyyppä et al., 2008) such as non-parametric methods like k most 

similar neighbours (k-MSN) (Breidenbach et al., 2010; Packalén et al., 2009; 

Packalén and Maltamo, 2007). Due to high accuracy, ALS-based forest 

inventories are now common practice for forest companies in many countries 

(Vauhkonen et al., 2014; White et al., 2013). Also, many countries, such as 

Denmark, Finland, Netherland, Switzerland and Sweden, are performing or have 

performed national ALS surveys. In Denmark, the national ALS and NFI data 

have been used to estimate forest resources, reporting RMSEs of 42% for basal 

area and 46% for stem volume at plot level (Nord-Larsen and Schumacher, 

2012). In Austria, low point density ALS data acquired for elevation mapping 

together with NFI data collected under operational conditions were used for 

wide-area stem volume estimation, resulting in standard deviation of 31.5% at 

plot level (Hollaus et al., 2009). For the Swedish national forest attribute map 

based on ALS data and NFI plots, stand level accuracies for 253 forest 

production stands in south and mid Sweden, RMSE ranged from 5.4% to 9.5% 

for tree height; from 8.7% to 13.1% for diameter; from 13.9% to 18.2% for basal 

area; and from 17.2% to 22.0% for stem volume (Nilsson et al., 2017). 

The use of lidar technology opens up opportunities for other 3D technologies 

which can describe the forest canopy surface, since it provides an accurate model 

of the ground elevation (i.e., a digital elevation model or DEM). Stereo 
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photogrammetry is one such technology, as it can deliver 3D data of the forest 

canopy generated from aerial images. Many countries have national image 

acquisition programs using large format digital mapping cameras with high 

repeat rates (e.g., in Sweden every 2 – 4 years over productive forest land). 

Image acquisition comes at lower cost then lidar, due to higher flight altitude 

and wider field of view of the sensor. Aerial images also include spectral 

information which are interesting for tree species discrimination. Aerial images 

have been used in forestry for a long time making it a familiar source of 

information to the end user. 

Photogrammetry is the knowledge of measurement by images of light, which 

to a large part can be interpreted as measurement with cameras and is one of the 

oldest remote sensing techniques. Stereo photogrammetry is the technique where 

overlapping images are used to measure the distance to an object using 

triangulation. The development of digital images, image processing and 

computation power (computers) have greatly improved its use the last two 

decades. 

In digital stereo photogrammetry, algorithms detect features in one image and 

match them to the corresponding feature found in overlapping images. For all 

features matched, their relative position to the camera is calculated using 

triangulation. Since the camera’s position and orientation is known in a 

cartographic reference system, the position of the feature will be generated as a 

3D point in the same coordinate system. When applied to all features in many 

overlapping images, a so called point cloud is generated. 

Studies utilizing digital surface models (DSMs) derived by stereo 

photogrammetry report similar accuracies compared to those obtained with ALS 

when operated at the same flight altitude (Baltsavias, 1999). Næsset (2002a) 

used scanned analogue high-resolution (0.19 m pixel size) aerial images to 

derive 3D data using stereo photogrammetry. Ground elevation was assessed 

using manual photo-interpretation of the images viewed in stereo in a limited 

number of locations with visible ground, and then interpolated to full spatial 

cover. At the test site in Norway, tree height was estimated for forest stands 

using regression analysis with standard error ranging from 0.9 m to 2.1 m, which 

is similar to accuracy achieved using manual photo-interpretation. Nuske and 

Nieschulze (2004) reported 0.3 m systematic deviation and 1.4 m standard error 

when measuring stand heights of mature homogeneous beech forest in Germany 

from a DSM based on digitized stereoscopic images (0.44 m resolution). DSM 

data produced by stereo photogrammetry of UltraCamD imagery showed 0.8 m 

systematic deviation with 2.4 m standard error from measured upper layer tree 

heights of non-alpine forest in Austria (Hirschmugl et al., 2007). In two 

Canadian forested test sites, St-Onge et al. (2008) compared canopy height 
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models (CHMs) assessed by ALS and photogrammetry using scanned analogue 

aerial images with 0.24 m pixel size (in both cases the ground elevation was 

determined by ALS), with the best correlation coefficient being 0.89. Plot 

metrics, such as height percentiles, derived from the two data sources using  

20 m × 20 m windows were highly dependent showing correlation coefficients 

up to 0.95 (for the 95th height percentile).  

Studying small-area estimation of forest attributes in Norway using NFI data 

and a photogrammetric DSM as auxiliary data, relative RMSE for biomass was 

41.6% and 42.8% at plot-level for a linear mixed-effect model and a linear 

regression model, respectively (Breidenbach and Astrup, 2012). In one study 

from Finland, a canopy height model from aerial images was used together with 

field plots to estimate mean height, mean diameter, basal area and mean volume, 

resulting in relative RMSEs of 11.8%, 25.3%, 27.9%, 18.6% and 31.3%, 

respectively, at plot level (Vastaranta et al., 2013). In another study from 

Finland, Nurminen et al. (2013) used surface models from stereo 

photogrammetry reporting plot-level RMSEs of 6.7% 12.0%  and 22.6% for 

height, diameter and stem volume, respectively, when using 80% forward 

overlap between images. A review article (White et al., 2013), compared lidar- 

and image-based point clouds for forest attribute estimation, concluding that the 

impact of the fact that image based point clouds only characterize the surface of 

the canopy needs to be studied more. Comparing lidar- and image-based metrics 

for survey plots, the similarity between metrics from the two data sources 

generally increased with increasing canopy cover (White et al., 2015). In a 

Norwegian study, lidar- and-image based estimates of forest characteristics were 

compared; for the image data, the best results were found using the smallest 

ground sampling distance (Gobakken et al., 2015). The article also gives a 

summary of the results from earlier lidar- and image-based methods for 

estimating forest attributes. For large area forest attribute mapping, aerial images 

and NFI plots were used resulting in RMSEs of 37.6%, 43.5% and 29.2% for 

basal area, timber volume and biomass, respectively, at plot level (Rahlf et al., 

2017). In a study, Puliti et al. (2017) used Dirichlet regression to predict tree 

species-specific proportion and multiplied with the predicted total volume; they 

reported species-specific stem volume with relative RMSEs of 46.5%, 36.6%, 

and 84.9% for pine, spruce, and deciduous species, respectively, at plot level. 

The introduction on digital stereo photogrammetry for forest data collection 

describes the research field until now, however, when this thesis project started 

in 2010, there was many topics to explore. Hence, the aims of this thesis. 
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The overall aim of the thesis is to assess the potential use of large format digital 

aerial images and stereo photogrammetry as a technology for collecting 

information for forest management planning. 

  

Papers I-V: 

I. Aims to investigate the possibilities of estimating forest variables 

with focus on tree height, basal area and stem volume, using 3D 

data from photogrammetric matching of Zeiss/Intergraph Digital 

Mapping Camera (DMC) images in combination with ALS DEM 

data. Performance of using image data of various resolutions and 

overlap is addressed using three different data sets. 

II. Aims to evaluate the accuracy of forest attribute mapping using 3D 

data from standard aerial images from the national image 

acquisition program in Sweden, in combination with sample plot 

data from the NFI. Height, diameter, basal area and stem volume 

are mapped using the area-based approach. In addition, models for 

one sub-area are applied to other sub-areas to evaluate the effect of 

phenological variations (leaf-on/off) and model robustness for 

different geographical variations, like forest structure and 

composition. 

III. Aims to investigate the possibilities of estimating species-specific 

(pine, spruce and deciduous trees) tree height, basal area and stem 

volume at stand level using spectral and 3D data from the DMC 

sensor in combination with ALS DEM data. 

IV. Aims to evaluate the accuracy of estimating the proportion of 

deciduous stem volume using change detection between CHMs 

from leaf-on and leaf-off data sets in an area-based approach. 

2 Aim 
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V. Aims to compare how different methods for colouring image point 

cloud data effects the estimation accuracy of tree species-specific 

proportions and stem volume estimation using standard image 

products. Also different spectral metrics and their importance for 

tree species estimation are compared. 
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Figure 1. Orthomosaic (©Lantmäteriet) overlaid with the positions of field plots and an overview 

(inset) of the Reminingstorp study area’s position showing the Nordic countries (©ESRI) and the 

sub-areas and NFI plots used in Paper II. 

3.1 Study areas 

For Papers I, III, IV and V, the study area is the Remningstorp forest estate, 

which is situated at 58°30’ N, 13°40’ E (Figure 1). The estate is privately owned, 

3 Material 
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managed for timber production, and has relatively flat terrain. The forest is 

mainly dominated by Norway spruce (Picea abies), Scots pine (Pinus sylvestris), 

and birch species (Betula spp.). 

The study in paper II was conducted in four image acquisition blocks (sub-

areas) with the size of about 10 000 km2 in southern (E2) and central (N2, Q2, 

R2) Sweden (Figure 1). In each sub-area, forests consist of all kind of developing 

stages and are mainly dominated by conifers (Scots pine and Norway spruce), 

but deciduous trees, especially birch, are also present. Forests are largely well-

managed and owned by both forest companies and private land owners. 

3.2 Field data 

3.2.1 Training data 

For the Remningstorp study area, field plots with 10 m radius were objectively 

surveyed using a regular quadratic grid design, with 40 m spacing between 

adjacent plots over the 1.0 km by 2.3 km central part of the estate (Papers I and 

III) or 200 m spacing for the entire estate (Papers IV and V). The origins of the 

grids were allocated randomly. Each plot was surveyed using the methods and 

state-estimating models of the Forest Management Planning Package (FMPP; 

Jonsson et al., 1993). For plots with mean tree height less than 4 m or mean stem 

diameter at breast height (dbh; i.e., 1.3 m above ground) less than 5 cm, height 

and species of all saplings and trees were recorded. For the remaining plots, 

calipering of all trees at breast height including only trees greater than 5 cm in 

stem diameter, and sub-sampling of trees to measure height and age, were 

performed. Heights of remaining callipered trees on the plots were estimated 

using models developed by Söderberg (1992) relating tree height to stem 

diameter. Plot location was measured using differential GPS producing sub-

meter accuracy. Correction of the forest growth between the surveys and the date 

of aerial image acquisition was made by forecasting the forest state at each plot 

using single tree growth models (Söderberg, 1986). 

In Paper II, plots from the Swedish NFI were used; the Swedish NFI surveys 

approximately 9500 sample plots in the field annually. Of these, 60% are 

permanent plots with a plot radius of 10 m that are revisited every five years 

while the remaining 40% are temporary plots with a 7 m radius. The NFI plots 

are positioned with GPS receivers giving a horizontal positional accuracy of 

about 5 m. These plots are organized into square or rectangular clusters 

consisting of 4, 6 or 8 plots total and with a distance between plots ranging from 

300 m to 600 m. For Paper II, NFI plots were selected from the same year or  
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1–2 years before aerial image acquisition. NFI plots covered forests from 

different developing stages and tree species composition. Permanent and 

temporary plots on productive forest land with tree height over 3 meters were 

used. For these plots all trees were calipered. A summary of the training data is 

shown in Table 1. 

Table 1. Surveyed forest variables for the training plots in Papers I-V. Basal area weighted mean 

tree height (H), basal area weighted mean tree diameter (D), basal area (BA), mean stem volume 

(V), mean stem volume of pine (Vp), mean stem volume of spruce (Vs) and mean stem volume of 

deciduous (Vd) 

 

 Forest 

variable Min Mean Max 

Number 

of plots 

Inventory 

method 

Paper I  H (m) 2.9 18.4 30.3 344 FMPP 

 
 BA (m2 ha-1) 0.1 28.0 34.8 

 
 

 
 Vol (m3 ha-1) 0.5 262.0 804.0 

 
 

Paper II sub-area E2 H (m) 3.0 14.3 28.2 216 NFI 

  D (cm) 1.3 18.2 43.4   

  BA (m2 ha-1) 0.7 21.3 61.3 
 

 

 
 V (m3 ha-1) 2.4 168.6 669.1 

 
 

 
sub-area N2 H (m) 3.0 15.9 30.8 167 NFI 

 
 D (cm) 3.5 21.0 42.8 

 
 

 
 BA (m2 ha-1) 1.0 22.3 50.8 

 
 

 
 V (m3 ha-1) 2.7 181.4 627.1 

 
 

 
sub-area Q2 H (m) 3.1 15.0 28.4 223 NFI 

 
 D (cm) 2.8 19.0 41.2 

 
 

 
 BA (m2 ha-1) 2.7 22.0 50.5 

 
 

 
 V (m3 ha-1) 6.6 174.9 547.9 

 
 

 
sub-area R2 H (m) 3.0 17.0 29.8 233 NFI 

 
 D (cm) 1.0 22.5 45.4 

 
 

 
 BA (m2 ha-1) 0.1 23.8 59.8 

 
 

 
 V (m3 ha-1) 0.5 207.9 701.5 

 
 

Paper III  H (m) 1.4 18.1 33.0 696 FMPP 

 
 BA (m2 ha-1) 0.0 26.1 62.2 

 
 

 
 V (m3 ha-1) 0.0 249.0 829.0 

 
 

Paper IV  Decid. prop. 0.0 0.2 1.0 207 FMPP 

Paper V  V (m3 ha-1) 3.4 218.0 790.1 156 FMPP 

 
 Vp (m3 ha-1) 0.0 43.0 355.1 

 
 

 
 Vs (m3 ha-1) 0.0 142.0 790.1 

 
 

 
 Vd (m3 ha-1) 0.0 32.0 383.9 
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3.2.2 Validation data 

In Paper II, two independent data sets were used: i) forest company stands 

(company stands); ii) biotope protection stands (biotope stands) (see Table 2). 

Company stands represent typical forest stand used as planning and operational 

units in forestry, where data were collected using the methods and state-

estimating models of the FMPP (Jonsson et al., 1993). Three to twelve circular 

sample plots having a radius between 5 m and 10 m were placed systematically 

in each stand depending on the size and heterogeneity of the stand. Biotope 

stands are areas created for conservation of biotopes and endangered species. 

The total stem volume was surveyed thoroughly since it was used for economic 

compensation to the land owners. Therefore, diameter measurement of all trees 

with dbh over 8 cm and about 100 height measurements per biotope stand were 

used to model the stem volume. 

Table 2. Summary of basal area weighted mean tree height (H), basal area weighted mean tree 

diameter (D), basal area (BA), mean stem volume (V) of the validation data for sub-areas E2, Q2 

and R2 in Paper II 

 Company stands Biotope stands 

Characteristic Min Max Mean Std Min Max Mean Std 

E2, Company stands: n =25; Biotope stands: n=10  

H, m  - - -  - - - - 

D, cm 13 31 21.9 4.9 - - - - 

BA, m2 ha-1 12.6 42.7 25.9 7.3 - - - - 

V, m3 ha-1 91 380 211 75.6 144.4 357.0 262.5 66.3 

Q2, n = 37/11 

H, m 10.5 24.8 17.8 3.7 - - - - 

D, cm 12.2 30.6 22.7 5.2 - - - - 

BA, m2 ha-1 12.0 47.0 21.8 8.8 - - - - 

V, m3 ha-1 65 540 219.0 106.4 179.3 508.8 341.0 95.1 

R2, n =82/18  

H, m 9.1 24.9 18.9 3.7 - - - - 

D, cm 8.4 40.0 25.4 6.1 - - - - 

BA, m2 ha-1 12.0 50.0 27.4 8.4 - - - - 

V, m3 ha-1 61.0 509.0 243.3 101.3 254 481 349 67.0 

 

Validation in Paper IV was done using an independent data set of 40 m radius 

plots placed within forest stands, and surveyed using the same method as the 10 
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m radius FMPP plots. A total of 47 validation plots were used where the tree 

height range was 6.8–31.4 m (mean 21.3 m), age 17–125 years (mean 57 years), 

proportion of deciduous stem volume 0.0–1.0 (mean 0.33) and the stem volume 

ranged from 20.1 to 555 m3 ha−1 (mean 277 m3 ha−1). For Papers I and III stand 

wise leave-one-out cross-validation was performed, i.e., all the field plots from 

one stand was omitted when training the model and the average of the omitted 

field plots values was used as validation data for the stand. In Paper V leave-

one-out cross-validation on the training plots was performed.  

3.3 Aerial images 

For all papers, large frame aerial cameras for the national aerial image program 

have been used to acquire image data (Table 3). In Papers I, III and IV a DMC 

system was used, with standard acquisition settings of flight altitude 4800 m 

above ground level (a.g.l.) and 60% along-track image overlap and 30% across-

track overlap (60/30% overlap). However, for Paper I, a 4800 m a.g.l. 80/30% 

overlap data set and a 1200 m a.g.l. 80/60% overlap data set were also collected.  

The DMC system consists of four panchromatic and four spectral camera heads. 

The four panchromatic images are stitched into one image and merged with the 

spectral images to create one pan-sharpened virtual image with 7680×13824 

pixels (Hinz et al., 2001). The ground sampling distance (GSD) for the 4800 m 

image block is approximately 0.48 m and 0.12 m for the 1200 m block. For 

Papers II and V, the Vexcel (Microsoft) UltraCam Xp and Eagle camera systems 

were used flying at 2800 and 3700 m a.g.l., respectively, generating images with 

a GSD of 0.25 m and with a 60/30% overlap. The UltraCam systems also consist 

of four spectral camera heads and multiple panchromatic camera heads where 

the separate images are stitched into one image. For all papers, the images were 

block triangulated using bundle adjustment and radiometrically corrected by 

Lantmäteriet, as part of their operational aerial image production. The 

radiometric correction was conducted using a model based approach, which 

included correction of haze, atmospheric effects, hotspots and an adjustment of 

the final colourtone (Wiechert and Gruber, 2011), resulting in pan-sharpened 

Colour Infrared (CIR) images (Green, Red, Infrared) with an 8-bit radiometric 

resolution, used for Papers I, II, IV and V. For Paper III, a lower level image 

product (LR4) was used where only the stitching of the panchromatic images 

and no pan-sharpening or radiometric correction was done.  Aerial acquisitions 

were made both in summer leaf-on season as well as spring leaf-off season 

(Papers II and IV). 
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Table 3. Summary of image data sets used 

Paper Sensor Overlap 

forward/side 

(%) 

Ground 

sampling 

distance 

(m) 

Spectral 

product 

Season 

I DMC 80/30, 60/30, 

80/60 

0.48 

0.12 

 

8-bit CIR leaf-on 

II UltraCam 60/30 0.25 8-bit CIR leaf-on, 

leaf-off 

III DMC 60/30 0.48 12-bit LR4 leaf-on 

IV DMC 60/30 0.48 8-bit CIR leaf-on, 

leaf-off 

V UltraCam 60/30 0.25 8-bit CIR leaf-on, 

leaf-off 
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4.1 Stereo photogrammetry 

In Papers I and III, stereo photogrammetry was performed using the Match-T 

DSM software version 5.3.1 (Anon., 2011) to produce point cloud data for each 

data set. This was done by sequential multi-matching (Lemaire, 2008), where 

both least squares and feature-based matching were combined. A number of 

different settings were applied to evaluate their effects on the generated point 

cloud and DSM. In the end, the parameters that produced the DSM with the 

highest visible dynamic range were selected, which excluded filtering of the 

point cloud data. In Papers II, IV and V, stereo photogrammetric processing of 

the images to produce point cloud data was done using the SURE software 

(Rothermel et al., 2012) which generates a height value for each pixel, using a 

modified semi-global matching algorithm (Hirschmüller, 2008). Software 

setting AERIAL6030 (pre-defined settings optimized for aerial surveys with 

60/30% overlap) was used to define parameters for point cloud generation. 

Finally, the point cloud height values were transformed from height above mean 

sea level to height above ground level by subtracting the height of the ground 

with an elevation model originated from ALS. 

4.2 Metrics 

For the area-based approach, metrics describing the forest at the training plots 

and for raster cells over the area of interest are needed. Metrics were derived 

from the point cloud data sets for each field plot. For the modelling, metrics 

describing canopy height were derived as percentiles corresponding to, for 

example, the 10th, 20th, …, 90th, 99th and 100th quantiles of the point height 

distribution. Two types of canopy density metrics were derived. First, the 

4 Methods 
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proportions of points over, for example, 20%, 30%, 40%, and 50% of the 

maximum height (i.e., 95th or 100th percentile), and second, the proportions of 

points over fixed heights of 2 m, 3 m, 4 m, and 5 m, were calculated for each 

field plot. Different moments of the point height distribution, such as mean, 

variance and skewness have also been calculated. These metrics were generated 

using Fusion (McGaughey, 2016). Aerial stereo photogrammetry produces point 

cloud data based only on the canopy surface that is visible from above. In 

contrast to lidar, which penetrates canopy and captures the complete height 

distribution, the density metrics from stereo photogrammetry are not expected 

to be as explanatory for forest variable estimation as their lidar counterparts. 

Therefore, height-based texture metrics were investigated as a complement. 

Texture metrics (Haralick et al., 1973) such as angular second moment; contrast; 

entropy; homogeneity; inverse difference moment; and maximum probability 

were evaluated in Paper I. For Papers II and V a CHM was generated, with 0.5 

m cell size, assigning the maximum height to each raster cell. Metrics describing 

the surface of that CHM were calculated, such as the mean of canopy height; 

slope; aspect; surface ruggedness; and surface roughness (Hijmans et al., 2016). 

These metrics were also calculated with all no-data pixels (i.e., occluded areas) 

set to zero instead of being ignored in the calculation. Also, with the aim of 

describing forest density, a filter approach was used where a 3 by 3 pixel window 

identified the centre cell as local maxima if the eight neighbours had a lower or 

equal height value. For each training plot, the number of local maxima and sum 

of squared heights of the local maxima were calculated from the image based 

CHM and a CHM smoothed using a 3 by 3 pixel mean filter. In Paper V, using 

the planar position (2D) of the local maximum, two spatial descriptive statistics 

have been applied: i) spatial dispersion was calculated as the average distance 

between nearest neighbours (Clark and Evans, 1954), and ii) deviations from 

spatial homogeneity using Ripley’s K function (Ripley, 1976). In Paper IV, 

metrics describing the change in the canopy height between two seasons was 

used. A binary raster was created where cells where classified as changed if the 

change in height value between seasons was above a given threshold. Different 

thresholds based on relative heights were used and investigated. A summary of 

metrics and models for all papers is in shown Table 4. 

4.3 Modelling 

Throughout all papers the area-based approach has been used to predict the 

variables of interest. In Papers I, II, IV and V linear regression were used to 

model tree height, diameter, basal area and stem volume. Independent variables 

(metrics) were selected based on regression model fit statistics and studies of 
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residual plots. Bias correction was carried out for predictions with logarithmic 

or square root transformation of the variable of interest.  

In Paper III, as a pre-modelling step, each point in the cloud was classified 

as either pine, spruce or deciduous. This was performed by supervised 

classification with the spectral information using plots with uniform species 

composition, defined as  plots where more than 95% of the field surveyed 

volume consisted of pine, spruce or deciduous trees (40, 351 and 18 plots, 

respectively) as training data. Species classification of the point cloud was made 

using quadratic discriminant analysis with equal prior probabilities. The forest 

variables of interest: tree height, basal area, total stem volume, pine stem 

volume, spruce stem volume and deciduous stem volume were estimated using 

k-MSN, with k = 1. Stem volume and basal area were logarithmically 

transformed in order to achieve linear relationships in the canonical correlation 

transformation. Estimation was done using the YaImpute library (Crookston and 

Finley, 2008) in the R statistical software package (R Core Team, 2015) and 

resulted in raster data sets for the variables of interest.   

For estimating tree species-specific proportions a Random Forest approach 

was used (Papers IV and V). This, since the variable (i.e., species proportion) is 

a fraction, that is, continuous values within the finite interval [0,1], and shows 

non-linear dependencies to the metrics. A parametric method such as ordinary 

linear regression is not directly applicable due to the non-normal error 

distribution and lack of linearity. Thus, models relating the addressed 

proportions to the calculated metrics were developed using the non-parametric 

method Random Forest (Breiman, 2001, 1996) implemented in the R package 

randomForest (Liaw and Wiener, 2002; R Core Team, 2015). In short, it 

combines the ideas of regression trees and bootstrap aggregating (“bagging” 

(Breiman, 1996)) to fit and evaluate a large number of regression trees (a 

“forest”). Each tree is fitted using a random sample of the training data, and each 

node of the tree is defined by the best splitting variable out of a small random 

selection of the independent variables (i.e., the metrics). Error and variable 

importance are assessed using the training data left out (out-of-bag data). Given 

the forest of regression trees, final estimation is made using majority votes. 

4.4 Validation 

Validation has been done using leave-one-out cross-validation or validation 

using an independent data set. When prediction has been done to raster cells, the 

cell size was chosen to be close to that of the plot area, except in Paper II, where 

a smaller cell size was used. This was to resemble the data of the national forest 

attribute map, an already existing data set generated from lidar. For stand level 
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accuracy, raster cells of the predicted variable were overlaid with stand borders 

and intersecting cells were aggregated and assessed against surveyed stand 

means. Performance was reported in RMSE in absolute terms and RMSE in 

percent of surveyed mean as well as bias in absolute terms and bias in percent 

of surveyed mean. 

Table 4. Summary of materials and methods for all papers. Basal area weighted mean tree height 

(H), basal area weighted mean tree diameter (D), basal area (BA), mean stem volume (V), mean 

stem volume of pine (Vp), mean stem volume of spruce (Vs) and mean stem volume of deciduous 

(Vd) 

Paper Inventory 

method 

Number 

of plots 

Modelling 

approach 

Variables of 

interest 

Metrics 

I FMPP 344 linear 

regression 

H, BA, V height, density, 

texture 

II NFI 216, 167, 

223, 233 

linear 

regression 

H, D, BA, 

V 

height, density, 

CHM, local 

maximum 

III FMPP 696 k-MSN H, BA, V, 

Vp, Vs, Vd 

height, density, 

spectral 

IV FMPP 207 Random Forest Deciduous 

proportion 

height 

V FMPP 156 linear 

regression, 

Random Forest 

V, Vp, Vs, 

Vd 

height, density, 

CHM, local 

maximum, spectral 
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5.1 Predicting non species-specific forest attributes 

In Papers I, II, III and V non-species specific forest attributes were predicted. A 

summary of the results are presented in Table 5, together with results from other 

referenced studies. 

Paper I showed that 3D data from the standard aerial image acquisition 

carried out by Lantmäteriet could be used to accurately estimate tree height, 

basal area and stem volume for forest management planning. At stand level, the 

best results in terms of RMSE using these image data were 8.8% for tree height, 

14.9% for basal area and 13.1% for stem volume. Also, it was shown that 

increasing the image overlap and decreasing the ground sampling distance did 

not improve estimation results. In Paper III, very similar results (Table 5) were 

reported using a different method and data set, but at the same test site. Other 

studies have confirmed the performance and usability. From Finland, Nurminen 

et al. (2013), confirmed the results that the increase in forward image overlap, 

from 60% to 80%, did not clearly improve estimation accuracy and contributed 

with new knowledge that estimation accuracy was not impacted by the plots’ 

off-nadir angle. Vastaranta et al. (2013) compared image and lidar based metrics 

and predicted forest attributes, concluding that performance was similar in 

single-layered even-aged stands. They argued that for other types of forests, 

image based predictions need to be studied further. An early review article from 

Canada continued on this previous work by covering the differences between 

image and lidar point clouds and their usability in forest inventory (White et al., 

2013). This was followed up by a thorough study on the differences between 

metrics derived from image and lidar point clouds (White et al., 2015), reporting 

the largest differences in metrics for low percentiles and sparse forests, but 

similar accuracies in general when estimating forest variables using an area-

5 Results and discussion 
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based approach. Gobakken et al. (2015) concluded that image-based point 

clouds performed similarly compared to lidar for six forest variables in different 

forest strata in Norway, but that more research was needed before it could be 

used in large-scale forest operational use. There are some small differences in 

the accuracies within each variable presented in Table 5, these are probably 

because of differences in: forest type (e.g., distribution and mean of variable of 

interest); number and size of field plots, method used for modelling; validation 

method (e.g., n fold in cross-validation) and the size of validation stands. 
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Table 5. Estimation accuracy of non-species specific forest variables in terms of relative RMSE. Basal area weighted mean tree height (H), basal area weighted 

mean tree diameter (D), basal area (BA), mean stem volume (V) 

 Plot level Stand level 

Paper H (%) D (%) BA (%) V (%) H (%) D (%) BA (%) V (%) 

I     8.8  14.9 13.1 

II 9.5 –13.5 16.6 – 19.7 26.0 – 29.8 28.8 – 32.9 7.7 – 10.5 12.0 – 17.8 17.7 – 21.1 21.8 – 22.8 

III     7.5  11.4 13.2 

IV - - - - - - - - 

V    36.0 – 36.7     

Vastaranta et al. (2013) 11.2 21.7 23.6 24.5     

Nurminen et al. (2013) 7.5 12.0  22.6     

White et al. (2015) 14  37.7 36.9     

Gobakken et al. (2015) 6.6 – 10.2 12.6 – 18.7 11.8 – 18.3 12.0 – 21.7 6.8 – 7.7 8.6 – 14.1 10.5 – 15.3 13.1 – 17.4 

Rahlf et al. (2017)   37.7 43.5     
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In Paper II, the use of image based point clouds was scaled-up to larger areas 

with varying conditions. Using NFI plots for training, results showed higher 

RMSEs (ranging from 7.7% to 10.5% for tree height; 12.0% to 17.8% for 

diameter; 17.7% to 21.1% for basal area; and 22.0% to 22.7% for stem volume, 

at stand level) than for dedicated 3D remote-sensing-based forest inventories, 

which often use various sampling designs for allocation training plots. However, 

the results were similar to the Swedish National Forest attribute map (RMSEs 

ranging from 5.4% to 9.5% for tree height; 8.7% to 13.1% for diameter; 13.9% 

to 18.2% for basal area; and 17.2% to 22.0% for stem volume), which is based 

on lidar and NFI plots (Nilsson et al., 2017). In a similar study from Norway, 

Rahlf et al. (2017) used image data and NFI plots, which resulted in RMSEs of 

37.7% and 43.5% for basal area and timber volume, respectively, at plot level. 

Plot level RMSE in Paper II was 26.0% to 29.8% for basal area and 28.8% to 

32.9% for stem volume. 

Results also showed that the accuracies between forest types clearly differs 

for both image- and lidar-based methods, but between methods the difference in 

accuracy is small (Figure 2). This agrees with a study from Canada (Pitt et al., 

2014), which observed other forest types, and concluded that accuracy varied 

between strata, but was similar between image and lidar point clouds. Similar 

results were presented in Gobakken et al. (2015), where for three different strata 

according to age class and site quality, lidar performed slightly better except for 

young and mature forest on poor sites where tree height was estimated slightly 

better using images. 

 
Figure 2. Relative RMSE and bias for image- and lidar-based predictions of stem volume in 

different forest types (from Paper II) at plot level. 

Paper II also concluded that image data from leaf-off season should be 

avoided since the height distribution of the point cloud is affected for the leaf-

off deciduous trees, resulting in underestimation and poor accuracy.    

In Papers I, II, III and V, total stem volume was predicted and the results are 

in line with other studies (Table 5). Predictions of basal area and stem volume 
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using image-based point clouds are similar, but not as accurate as for lidar-based 

predictions (Gobakken et al., 2015; Vastaranta et al., 2013; White et al., 2015; 

Yu et al., 2015). This is probably because of the difficulty of describing the forest 

density using images which only capture the top of the canopy, explaining the 

large bias for both sparse and dense mature forest (Figure 2). Estimating canopy 

cover using image-based point clouds, Melin et al. (2017) reported that 3D 

canopy density was challenging to describe using image-based point clouds. 

Already in Paper I, this was addressed by complementing the commonly used 

lidar density metrics (i.e., proportion of points over specific thresholds) with 

texture metrics (Haralick et al., 1973) derived from the CHM. The conclusion 

was that the texture metrics did not really improve the estimation accuracy, but 

were exchangeable to image based common density metrics. In Papers II and V, 

surface-describing metrics, such as slope and roughness, were derived from the 

CHM and used for prediction. Roughness was used for modelling total stem 

volume for all image data sets in Paper V. Setting the NoData cells in the CHM 

to zero resulted in the occluded areas being gaps instead (Figure 3), which could 

create bias. However, ignoring the NoData in the calculations of metrics also 

creates bias. As an example: calculating the proportion of points over 2 m from 

the lidar points in Figure 3a would result in a value of 65%. Doing the same for 

the image-based points would result in a value of 100%. However, doing the 

same on the CHM where NoData was set to zero would result in a value of 61%. 
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Figure 3. Examples of (a) lidar and image point clouds for a 1 m transect, (b) CHM with NoData 

and CHM with NoData set to zero for a 1 m transect (CHM0), (c) CHM with local maxima and 

transect in red, and (d) surface roughness. 

In Paper V, local maxima of the CHM (Figure 3) were used to calculate the 

sum of squared heights at the plot. This was the single best metric for modelling 

total stem volume for the image-based products and was used for all four data 

sets. The two spatial descriptive statistics, spatial dispersion (Clark and Evans, 

1954) and Ripley’s K function (Ripley, 1976), did not improve stem volume 

prediction. However, it would be of interest to test application of a marked 

spatial point process (i.e., using the 3D position of the points). 

5.2 Predicting tree species-specific attributes 

In Paper III, species-specific stem volume was estimated using the k-MSN 

method resulting in absolute RMSEs of 25.5 m3 ha-1, 46.1 m3 ha-1 and 10.6  

m3 ha-1 for pine, spruce and deciduous, respectively, at stand level. The species-



32 

 

specific stem volume estimates showed marginally lower absolute accuracies 

compared to Packalén and Maltamo (2007), which combined lidar and images, 

resulting in better absolute RMSE for spruce (27.0 m3 ha-1), but more similar for 

pine and deciduous stem volume with 27.7 m3 ha-1 and 13.7 m3 ha-1, respectively, 

at stand level. Measured in relative terms, the results of Paper III -- RMSEs of 

90.6% , 26.4% and 72.6% -- are higher compared to their RMSE results of 

28.0%, 32.6% and 62.3% for pine, spruce and deciduous stem volume, 

respectively (Packalén and Maltamo, 2007). These differences are probably due 

to the large differences in surveyed mean values. Furthermore, Paper III was 

carried out using a simplified framework compared to the thorough study 

performed by Packalén et al. (2009). In Paper III, estimation was performed 

using imputation as a mean to preserve the natural dependencies between 

estimated variables; k-MSN was applied using k = 1 rather than a larger value of 

k, which is expected to produce more accurate results. Using stereo 

photogrammetry of aerial images, Puliti et al. (2017), reported RMSEs of 43.3%, 

35.0% and 80.1% for pine, spruce and deciduous stem volume, respectively, at 

stand level which is better than in Paper III. An extensive transformation of 

predictor variables and an exhaustive variable selection method using best subset 

regression was used Puliti et al. (2017), aiming to find best performing variables, 

creating multiple-linear regression models for total stem volume and modelling 

of tree species proportions with Dirichlet regression.   

In Paper V, absolute RMSE for the species proportions were 24%, 23% and 

20% for pine, spruce and deciduous, respectively. However, for the species-

specific stem volume at plot level, the RMSE in percent of surveyed mean was 

129%, 60% and 118% for pine, spruce and deciduous, respectively. The 

colouring method of the point cloud and using more complex spectral metrics 

showed little improvement in estimating tree species-specific proportions. In 

general combining spectral and spatial information from two seasons improved 

the species estimation, especially for the deciduous proportion, but also for the 

coniferous proportions. 

Species-specific forest variables are important for forest management and 

therefore they have been studied over the years (Breidenbach et al., 2010; 

Maltamo et al., 2015; Packalén et al., 2009; Packalén and Maltamo, 2007; Puliti 

et al., 2017), but RMSEs in percent of surveyed mean is very dependent on the 

mean stem volume of the tree species, making comparison difficult to perform. 

Another problem with reporting RMSE is that it does not describe the 

distribution of the error for the range of the species-specific stem volume or 

proportion of volume estimation. In Paper V, when comparing the histograms of 

the field surveyed and estimated species proportions it is clear that species-pure 

plots are underestimated and mixed plots are overestimated. Similar results can 
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be seen in Puliti et al. (2017), however, the same errors at the ends of the species-

specific distribution are not visible in the results by Packalén and Maltamo 

(2007).  

To improve tree species classification, research has been aimed at calibrating 

sensors and performing radiometric correction of aerial images (Honkavaara et 

al., 2009; Korpela et al., 2011). Nevertheless, the proximity effects in mixed 

stands was found to influence the mean reflectance by 1%–17% in the visible 

bands and up to 33% in the near-infrared (NIR) band, adding substantial 

classification errors (Korpela et al., 2011). When classifying species of 

individual trees, using the directional reflectance effect in multi-image data, and 

the use of atmospherically corrected reflectance images from the Leica ADS40 

narrow-banded camera did not improve the classification compared to using 

spectral averages (Korpela et al., 2014). The properties of the trees explained as 

much as 58%–70% of the variance in NIR reflectance, while directional 

reflectance anisotropy explained only 4%–14%. They concluded that directional 

reflectance anisotropy between species does not differ enough to improve tree 

species classification, even though the images have been accurately reflectance 

calibrated. This partly explains the results in Paper V, that selecting the right 

method of colorization or using more complex spectral metrics does not improve 

species discrimination compared to using simple averages of spectral values.  

In Paper IV, 3D information from standard aerial images of the forest canopy 

acquired at different seasons (leaf-on and leaf-off) was used to map the 

proportion of deciduous stem volume with good results. The non-parametric 

Random Forest approach was used to estimate the proportion of deciduous stem 

volume and the accuracy assessment at stand level showed an absolute RMSE 

and bias of 18% and −6%, respectively (in the best case). Classifying the 

estimates in four equally wide classes resulted in an overall accuracy of 83% 

(kappa value = 0.68). To the best of my knowledge, no other study have used 

3D data from leaf-on and leaf-off images to estimate or map deciduous trees. 

However, using leaf-off ALS data to classify tree species composition at field 

plots into coniferous or deciduous dominated forest resulted in 91% overall 

accuracy (Villikka et al., 2012), which is directly comparable with the 89% 

overall accuracy obtained by the proposed method when using the same class 

boundaries. The result of 18% absolute RMSE corresponds with the 20% to 25% 

RMSE for deciduous proportion at plot level presented in Paper V. However, in 

Paper IV no spectral information was used, whereas spectral information was 

used in Paper V. 



34 

 

Aerial images and stereo photogrammetry utilized in an area-based approach for 

forest variable estimation of non-species specific forest attributes performs 

better than traditional inventories based on either photo-interpretation or 

subjective field inventory. Compared to lidar-based forest inventories, which are 

commonly used today, similar results are achieved. Therefore, concluding that 

aerial images and stereo photogrammetry produce an acceptable level of 

accuracy for use as a data source for forest management planning and to a much 

lower cost than ALS. However, very sparse forests, deciduous forests and 

mature forests have larger estimation errors. Nevertheless, from a forest 

management perspective, forest information can be collected at very low costs 

and with high spatial and temporal resolution. The 12 to 18 m spatial resolution 

used here is enough to describe within stand variations of the forest attribute. 

The use of aerial images from national image acquisition programs guarantee 

continuous flow of image data with a high temporal resolution, e.g., 2-4 years 

for most of Sweden. Also, Lantmäteriet now produces a coloured DSM from 

their images using stereo photogrammetry, making the technology highly 

available. Today, the research field of predicting tree height, diameter, basal area 

and stem volume using the area approach and stereo photogrammetry is 

thoroughly explored, except maybe for improving metrics describing forest 

density.  

Predicting tree species-specific forest variables using aerial images with an 

area-based approach is still challenging. Using default colouring of the point 

cloud and averages of spectral values within plots when predicting species-

specific variables performs similarly to other methods. From the perspective of 

a forest manager, the underestimation of species-pure plots and overestimation 

of mixed plots is undesirable, as forest managers strive for species-pure stands 

using silivcultural treatments. 

6 Conclusions 
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Further research is needed to improve the species-specific estimates at the 

extremes of the range of the species distribution. Possible paths towards doing 

this would be to use sub-plot level information and narrower spectral bands. 

However, with new, higher resolution mapping cameras, increased spatial 

resolution is possible which will make the patterns of branches and other 

structural information available for use in tree species classification.   

Stereo photogrammetry of aerial images from national acquisition programs 

has the advantage of not only giving new data often, but also that those programs 

have been acquiring national image data sets for decades. With the digitisation 

of those data sets, important forest variables like growth development and site 

index could be estimated. Time series of aerial images could possibly be used to 

detect changes in the forest landscape, both man-made and natural disturbances. 

Information on site index combined with mapping of changes could improve 

growth models and forecasts of forest variables between mapping campaigns. 

The vast amount of available remotely sensed data together with an open data 

policy of governmental organisations will benefit the forest owners, in particular 

private forest owners with small estates. As an example, the next version of the 

Swedish National Forest attribute map will be made based on the digital surface 

model generated from aerial images from the Lantmäteriet together with NFI 

plot data.  

7 Future outlook 
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