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Deriving landscape metrics from sample data

Abstract

This thesis focuses on the efficiency of using sampling methods to derive landscape metrics. It also
explores what sampling methods are to be preferred for different metrics and how metrics in some cases
can be redefined to better suit a sample-based data collection framework.

In paper I, a review was conducted to assess previous research in the area of sample-based
assessment of landscape metrics. It was found that only rather few studies have been conducted, but these
indicate that data acquisition through sampling appears to be a promising alternative to traditional wall-
to-wall mapping.

In papers II and III, point and line intersect sampling (LIS) methods were used to estimate the
metrics Shannon’s diversity and edge density. Monte-Carlo simulation was employed to investigate the
statistical properties in terms of bias and root mean square error (RMSE) of the metrics estimators for
different sampling designs. Further, the cost (time needed) of data collection using wall-to-wall mapping
and sampling was studied. Both bias and RMSE decreased with increasing sample size, to magnitudes
small enough to make sampling a competitive alternative to wall-to-wall mapping. As is commonly the
case in sampling, systematic designs were found to be superior to simple random designs. In the case of
LIS, longer line transects were superior to short ones and a straight line was more efficient than the other
configurations considered.

Papers IV and V address the contagion metric. In paper IV a new definition of the metric for
vector data was developed. The definition is distance dependent and also forms a basis for estimating the
contagion metric from point sampling data. It was found that a simple negative exponential function
could be used as a good proxy function for the unconditional contagion while no such proxy function
was found for the conditional contagion metric. The proxy function for the unconditional contagion was
found to be strongly related to the area proportion of different land cover types (Shannon’s diversity) and
to the rate of change of the contagion value over different distances. In paper V sampling simulation was
performed to evaluate the properties of estimators for different point sampling designs and distances
between point pairs. For the unconditional contagion, the sizes of bias and RMSE were fairly small for
sample sizes that could be expected in practice, while the conditional contagion was found to require
large sample sizes or otherwise the accuracy of the estimates would be poor. A general conclusion from
the studies are that sample-based approaches to landscape metrics estimation are promising for several,
but not all, of the metrics commonly applied in landscape ecology. Further, by slightly redefining the
definitions for some metrics, it is possible to make them better suited for a sample-based data acquisition
framework.
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1 Introduction

1.1 Background

Human activities such as forest management and farming, along with natural
events such as fire, storms, and floods have caused widespread land use
changes and landscape fragmentation. Loss of biodiversity may be a
consequence of such changes (Lindborg and Eriksson, 2004; Hanski, 2005).
Landscape changes may also contribute to climate change when forested
area is converted to farmlands (Copeland et al., 1996; Stohlgren et al., 1998;
Pyke, 2004). The current patterns of landscapes are the result of interactions
of physical, biological, and social factors (Milne, 1991). Landscapes therefore
are dynamic systems, which change over time. In order to manage
landscapes in sustainable ways and monitor the development there is a need
for reliable information. Hence, many countries have now established or are
in the process of establishing monitoring programs that provide landscape
information, for instance, the Norwegian 3QQ Monitoring Program (NIJOS,
2001) and the National Inventory of Landscapes in Sweden (NILS)(Stihl et
al., 2010).

Landscape structure is of primary interest for landscape ecologists since a
fundamental assumption is that the structure of landscapes significantly
affects many ecological processes (Risser et al., 1984; van Dorp and Opdam,
1987; Turner, 1989; Turner, 1991; Pickett and Cadenasso, 1995; Kie et al.,
2002; Turner, 2005a). Landscape ecology attempts to understand such
pattern-process relationships (Fortin and Agrawal, 2005; Turner, 2005b;
Leitdo et al., 2006) and Haines-Young (2005) states that landscape structure
can be treated as a predictor variable in assessing many ecological processes.
Influence of landscape structure on ecological processes, especially on plant
species, has been studied by several authors (Harrison et al.,, 2001;



Hernandez-Stefanoni and Ponce-Hernandez, 2004; Hernandez-Stefanoni,
2005, 2006; Kumar et al., 2006; Hernandez-Stefanoni and Dupuy, 2008)

There are several definitions of the landscape concept (Farina, 2006). For
instance, Forman (1995) has defined landscape as a heterogeneous land area
composed of a cluster of interacting ecosystems that is repeated in similar
form throughout; landscape is defined by Green (1996) as a particular
configuration of topography, vegetation cover, land use which delimits
some rationality of natural and cultural processes; Haber (2004) has defined
landscape as a piece of land which we perceive comprehensively around us,
without looking closely at single components. Relevant landscape sizes
differ for different organisms and there is no unique size for a landscape.
Rather, the size of a landscape depends on what phenomena are considered
(McGarigal and Marks, 1995).

There are two general model approach of landscape structure; the patch-
mosaic model (Forman, 1995) and the gradient-based model (McGarigal and
Cushman, 2005; McGarigal et al., 2009). Under the patch-mosaic model,
landscape structure is as a mosaic of patches (landscape elements); a patch is
defined as a homogeneous area that differs from its surroundings. With this
model, discrete boundaries (edges) constitute borders between different land
cover/use types. The model is frequently used in landscape pattern analysis
and meta-population modeling is a typical example of this model in
ecological research. Unlike the former model the gradient-based model
assesses landscape properties to change continuously over space, i.e., there
are no explicit boundaries between patches. The patch-mosaic model is
widely applied in practice since landscape structure can be simplified and
represented by categorical maps, e.g., land cover/use maps, and the model is
a basis for many frequently applied software such as FRAGSTATS
(McGarigal and Marks, 1995).

For research, monitoring, and management there is a need for methods
that describe landscape structure in meaningful ways. Whereas direct
measurement of landscape structure is difficult (Traub and Kleinn, 1999),
quantification of landscape structure by means of landscape metrics has
become a common approach in landscape surveys (e.g., O’Neill et al., 1988;
Turner and Ruscher, 1988; McGarigal and Marks, 1995; Gustafson, 1998).
In such procedures, patches (landscape units) are treated as the basic
elements for calculating metrics based on measurable patch attributes such as
size, number, length of borders between patches (edge length), and space
among patches. The metrics can capture both composition and
configuration aspects of landscape structure. Composition refers to the
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abundance of different types of land cover/use types. Configuration refers to
how these types are geographically arranged within the landscape.

Landscape structure analysis through metrics provides useful information
for many applications. For instance, metrics serve as tools in environmental
monitoring programs (Hunsaker et al., 1994; Frohn et al., 1996; Sachs et al.,
1998; Chuvieco, 1999; Schuft et al., 1999; NIJOS, 2001; Stihl et al., 2010).
They also act as the quantitative linkage between landscape structure and
ecological processes as well as species abundances (Krummel et al., 1987,
Bunnell, 1997). Landscape metrics allow for comparisons between different
regions or studies of time trends (Tinker et al., 1998; Ji et al., 2006). They
provide information useful for biodiversity assessment at the landscape level
(Benitez-Malvido and Martinez-Ramos, 2003; Bebber et al., 2005), for
analyzing fragmentation, and connectivity of landscape units (Schumaker,
1996; With et al., 1997; Hargis et al., 1998).

Despite the widespread utilization of landscape metrics they have some
limitations. For instance, a single metric cannot capture all aspects of
landscape structure (Turner, 2005b) and a metric may have the same
numerical value for different structures (Tischendorf, 2001). Landscape
metrics often are sensitive to thematic resolution (number of land cover
types) (Bailey et al., 2007) and spatial scale (i.e., pixel size and extent)
(Turner et al., 2001), and classification errors (Hess, 1994; Wagner and
Fortin, 2005; Hoechstetter et al., 2008). Interpretation of some metrics is
often difficult (Gustafson, 1998) and qualitative changes in landscapes may
not be recognized by the metrics (Wickham et al., 1997; Turner et al.,
2001).

Quantification of landscape structure through metrics is commonly
conducted on land cover/use maps of entire landscapes, i.e., wall-to-wall
mapping, which are frequently based on remotely sensed data (e.g., O’Neill
et al., 1988; Hunsaker et al., 1994; Wu et al., 2002; Li et al., 2005). This has
been simplified by recent advances in computer processing and geographic
information system (GIS). To derive landscape metrics from mapped data of
entire landscapes, software such as FRAGSTATS (McGarigal and Marks,
1995) and The Patch Analyst (Elkie et al., 1999) are commonly applied. In
some cases, however, complete land cover maps may not be available.
Furthermore, land cover/use maps based on low or medium-resolution
satellite images (e.g., Landsat TM and SPOT) may have low overall
accuracy (Fang et al., 2006). Although high spatial resolution satellite
imagery, for instance, QuikBrid and IKONOS, can provide detailed
information there are also constraints in using these data sources.
Restrictions, include a large amount of data to store, costs (Wulder et al.,
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2004; Lu and Weng, 2007; Gardner et al., 2008), and cloudy conditions, in
particular in mountainous areas (Ihse, 2007).

As mentioned earlier, wall-to-wall land cover/use maps are frequently
employed in landscape ecological surveys. However, it should be noted that
land cover and land use refer to different characteristics of the landscape.
Whereas land cover describes natural and man-made features that can be
observed on a landscape, land use refers to how people use the land. Land
cover maps are often made by remotely sensed data such as satellite imagery
and aerial photographs. Land use maps, however, cannot be extracted from
remote sensing data since the interpretation of land use from remotely
sensed data can be problematic. Hence, there is a need for reference data
like field survey.

In the commonly applied wall-to-wall mapping approach to quantify
landscape structure, at the first step all potential polygons are delineated on
remotely sensed data. Manual or automated delineation methods are used
for this purpose. The former method is not only time-consuming (Corona
et al., 2004) but it is also a subjective method. The latter one is often
associated with problems such as merging two dissimilar adjacent polygons
into one, or conversely, dividing a large polygon to two small ones (Wulder
et al.,, 2008). In addition, overall time (for delineation and correction) may
be large if an inappropriate automated technique is chosen. However, an
alternative to the wall-to-wall mapping approach would be to use sample
data. It is known from many different areas of application that sample data,
rather than census data, would often be preferred when all relevant aspects
of planning, data acquisition, and estimation are simultaneously considered.

The above issues are the main motivations for exploring the usability of
sampling methods in landscape metrics estimation as an alternative to the
common wall-to-wall based approaches. Generally, in sample surveys, data
are collected at low cost and sampling may also provide more accurate
results, since assessments can be carefully conducted at a small number of
sampling units such as points, lines, or plots (Freese, 1962; Raj, 1968;
Cochran, 1977). Moreover, sample surveys can cover large areas and more
variables can be assessed (Sorensen et al., 2002). Several studies are emerging
where the potential of using this type of data for landscape metrics
estimation is investigated (Hunsaker et al., 1994; Kleinn, 2000; Kleinn and
Traub, 2003; Corona et al., 2004). For instance, Corona et al. (2004) found
that some characteristics of landscapes can be estimated at low cost and that
the results in general will be accurate, provided that the sample sizes are
large enough. Kleinn (2000) demonstrated that landscape metrics can be
derived from field-based forest inventory, allowing the use of existing data



from large scale monitoring programs. Issues of data acquisition and
accuracy assessment become more critical in landscape ecology (Wu and
Hobbs, 2002) due to landscape ecological surveys being conducted at large
scale (e.g., regional and national levels). Danielsen et al. (2003) point out
that large scale monitoring programs are costly and are often terminated to
budget limitation.

1.2 Overview of patch-mosaic-based landscape metrics

Landscape metrics were first used in the 1980s to describe landscape
structure. These metrics have been developed for patch, class, and landscape
levels (McGarigal and Marks, 1995). While patch level metrics are
computed for every patch in the landscape, class and landscape level metrics
are calculated for individual land cover/use types and all patches in the
pattern are considered. It is important to note that landscape level is limited
by the size of the landscape (King, 2005) and this property can be varied
depending on ecological processes or organisms under investigated. We
consider some important metrics of both composition and configuration that
are commonly used in the quantification of landscape structure. It should be
noted that not all landscape metrics can easily be classified into either of the
categories. For example, mean patch size and patch density of a particular
land cover/use type reflect both the amount of a land cover/use type
present (composition) and its spatial distribution (configuration) (McGarigal
and Marks, 1995). However, these two general categories are frequently
accepted and often applied by landscape ecologists.

1.2.1 Composition metrics

These metrics refer to the variety and abundance of different land cover
types within a landscape, but disregard the spatial character and position of
patches in the landscape. Metrics of this group are often applicable at
landscape level. Below, some commonly applied examples are described.

Proportion (p) of a certain land cover/use type in a landscape is
fundamental composition metric and is defined as

a

= 1
=" (1)
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where @; is the area of land cover/use category i and A is the total area of

the landscape. The proportion is often correlated with aspects of pattern
such as patch size, length of edge, and the number of patches in a landscape
(Gustafson and Parker, 1992; Turner et al., 2001).

Shannon’s diversity index (H) refers to both the number of land cover/use
types and their proportions in a landscape. The index is defined as

ipi -In p;
T 2

where s is the total number of land/use types in the classification system or
the number present. The index value ranges between 0 and 1. A high value
shows that land cover types present have roughly equal proportion whereas
a low value indicates that the landscape is dominated by one land cover

type.

Simpson’s diversity index (S) (McGarigal and Marks, 1995; Herzog and
Lausch, 2001) is an alternative to Shannon’s diversity. The index is defined

as
S =1—ZS: P’ (3)
i=1

Its value ranges between 0 and 1. A high value indicates that the number of
land cover types is high and that they have roughly equal proportion
whereas a low value indicates that the landscape is dominated by a single
land cover type. This index, unlike Shannon’s diversity, is more sensitive to
rare cover/use types.

Total core area (TCA) (McGarigal and Marks, 1995) is the interior area of
a given land cover type after a user-specified edge buffer is eliminated. It is

defined as

TCA= Zn:ck )

k=1

where C, is the core area of the K th patch of a certain land cover/use type,
and n is the number of patches. The value of TCA s> 0.

14



Edge density (ED) refers to the amount of edge length per unit area. An
edge is defined as the border between two different land cover types. Edge
density is a robust metric and can be applied as a measure of fragmentation
(Li et al., 1993; Saura and Martinez-Millan, 2001). ED is defined as

ED=2 (5)
A
where e is the total edge length and A is total area. In a highly fragmented
landscape there are more edges and response to these changes depending on
the species under consideration. Edge length is an image resolution-
dependent metric. In high resolution images the total edge lengths tend to
be longer compared to those in coarse resolution images.

1.2.2 Configuration Metrics

This group of metrics refers to spatial character and position, arrangement or
orientation of patches within a certain class or the whole landscape. Some
important metrics of this group are considered below.

Contagion (C) was first proposed by O’Neill et al. (1988) and later by
several authors (e.g., Turner, 1989; Turner et al.,, 1989; Turner, 1990;
Graham et al., 1991; Gustafson and Parker, 1992) as a measure of clumping
or aggregation of patches. This index is highly correlated with indices of
diversity and dominance (Riitters et al., 1995; Cain et al., 1997); it is
defined as

ZS:ZS: p; - In p;
C=1412i2 (6)
2-1In(s)

where [ is the probability that two randomly chosen adjacent pixels

belong to land cover type iand j, respectively, that is, Pij = Pi - Pjyi and s

is the number of land cover types in the system or in the landscape. Values
for contagion range from O to 1. A high contagion value is characteristic of a
landscape with few large continuous patches, while a low value of C
indicates a fragmented landscape with many small patches. Although
contagion is not defined as a measure of fragmentation, it is indirectly
related to fragmentation (Moilanen and Nieminen, 2002). For instance,
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Hargis et al. (1998) found that there is a substantial negative correlation
between contagion and edge density metrics.

Heterogeneity index (Hix) was developed by the monitoring program 3Q
in Norway (Fjellstad et al., 2001). The index is defined as

Zn: Zn:Wij "Gy
Hix=1- =12 (7)
22w
i=1 j=1

where W; is a binary weight set to 1 if i and j are neighbours, otherwise 0;

and Cj is the binary similarity index set to 1 if i and j are identical,

otherwise 0. Hix is 1 in a heterogeneous landscape where no two
neighbouring points have the same class and 0 indicates a homogeneous
landscape.

Mean perimeter-area ratio (MPAR) is the sum of each patch perimeter/area
ratio divided by number of patches. It was proposed by Mandelbrot (1977)
as mean to compute a fractal dimension of natural planar shapes and is
defined as

Zn:(pk/ak)

MPAR = £2— (®)

where P, and @, are perimeter and area of the Kth patch, respectively.

Perimeter to area ratio is mathematically easy to calculate; however, it is
relatively insensitive to differences in patch shape.

Mean shape index (MSI) is the sum of the patch perimeter divided by the
square root of patch area for each patch in the landscape, adjusted by a
constant for a circular standard (vector) or square standard (raster), and
divided by the number of patches. On raster-based data it is defined as

> (p/44a)
MSI =X+ )
n
when all patches are square (grids) the value of MSI is equal to one. Shape
indices have been applied in wildlife research (Diamond, 1975) and timber
management planning (Baskent and Jordan, 1995).
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Area weighted mean shape index (AWMSHI) (Saura and Martinez-Millan,
2001) is intended, similar to MSI, to measure complexity of patch shape but
in AWMSHI patch area is used as a weighting factor since larger patches
have more effect on landscape structure (Li et al., 1993; Schumaker, 1996).

Square pixel (SqP) was introduced by Frohn (1998) as an alternative to
fractal dimension for quantifying shape complexity. It considers the
perimeter-area relationship for a raster format data set. SqP is defined as

SqP = 1—£ (10)

where A is the total area of the landscape and E is the total edge length.
Value of SqP ranges from O to 1.

Patch cohesion (PC) index was developed by Schumaker (1996) to quantify
the connectivity of patches of the same land cover/use type (class). It is

defined as
2P [ 1 T (11)
PC=|1-— &=t
{ > (P JA

where @; and P; are the area and perimeter of patches of the class i,

respectively. Its value ranges between 0 and 1. A low value shows that
patches of given class are isolated while a high value (close to 1) indicates a
single patch for a given class. Schumaker (1996) found PC to be more
relevant than other metrics in surveys of animal population dispersal.

Proximity index (PROX) (Gustafson and Parker, 1992; Gustafson and
Parker, 1994) is the sum of the ratio between area and nearest neighbor
edge-to-edge distance for all patches within a predefined bufter distance
around a patch. PROX is defined as

PROX = Zn:(;‘—_i) (12)

where @; is patch area and @, is distance to the nearest patch of the same
land cover type. Different forms of this metric have been developed, for
instance, by Hokit et al. (1999) and Hanski (1999). From a biological
perspective, this metric reflects the number of habitat sources that are
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adjacent to a patch as a function of their sizes and distances (Bender et al.,
2003).

1.3 Gradient-model based landscape metrics

The gradient landscape model is only recently introduced and not many
studies are reported. In a gradient model, environmental properties change
continuously and landscape heterogeneity is represented as a surface. The
metrics reported so far have focused on the topography and less on patch-
based metrics. One advantage is that the model contains topographic
characteristics such as slope and elevation, which play a critical role in
ecosystem functioning and structuring (Hoechstetter et al., 2008). This
model is beginning to emerge in landscape structure analysis and McGarigal
(2005) states that in such procedures a primary concern is to develop
relevant metrics. For this purpose, techniques such as surface metrology,
fractal analysis, and wavelet analysis have been proposed by McGarigal
(2005). These techniques were first developed and applied in physical
science for describing three-dimensional structures. The techniques have
recently been applied in landscape structure analysis (Hoechstetter et al.,
2008; McGarigal et al., 2009) for complete mapping. Similar to the patch-
mosaic model, both non-spatial and spatial metrics can be defined for the
gradient landscape model.

1.4 Advantages and disadvantages of the two landscape
structure models

Although the patch-mosaic model has weaknesses in the representation of
spatial heterogeneity of landscape, the model has many applications, for
instance, in human-dominated landscapes where sharp borders have been
produced by human activities. In the patch-mosaic model the number of
land cover types to be represented and the smallest patch sizes are arbitrary
(subjectively) determined. As mentioned earlier, an alternative to the patch-
mosaic model is the gradient-based model where the landscape can
sometimes be more realistically represented. The gradient-based model
appears to be appropriate to describe landscape structure where patch
boundaries cannot be defined well, such as for a savanna landscape (Price et
al.,, 2009) or where topographic features of land need to be considered
(Hoechstetter et al., 2008). In addition, this model, unlike the patch-based,
doesn’t suffer from patch delineation errors. In both models there is a need
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for a set of metrics in order to capture all aspects of landscape structure and
the choice of appropriate model depends on the landscape and the
ecological processes or species under consideration.

1.5 Scale

Landscape heterogeneity is scale-dependent (Quattrochi and Pelletier,
1990). This means that the representation of a landscape may be
heterogeneous at one scale but homogenous at another. Spatial scale has
three components; extent, grain, and minimum mapping unit (MMU).
Extent i1s defined as the total area to be studied and grain is the smallest
recognizable feature (Turner et al., 2001). MMU is defined as the smallest
area that will be mapped as a discrete unit (Fassnacht et al., 2006). Several
studies have been conducted on the characteristics of landscape structure
with changing spatial scale. Saura (2004) showed that patch density, edge
length, and mean patch size metrics are sensitive to spatial resolution (grain),
hence it is recommended that landscape metrics derived from maps with
different resolution should not be compared. Saura (2002) demonstrated that
metrics of mean patch size and number of patches are very sensitive to the
MMU. Turner et al. (1989) showed that rare (small) land cover types can be
lost as grain become bigger and that values of contagion metrics increase
with increasing extent. It is recognized that there is close relationship
between scale and classification systems (Loveland et al., 2005). Saura and
Martinez-Millan (2001) found that shape complexity metrics such as the
mean shape index is sensitive to spatial extent.

1.6 Classification

In large scale ecological surveys, categorical maps (e.g., land cover/use maps)
based on remote sensing are often used as a basis for the analysis (Kumar et
al., 2006). Since any map derived from remotely sensed data can be
associated with classification error, then any subsequent analysis, for instance
landscape structure quantification, will depend on these errors (Gergel,
2007). Several surveys have been conducted to evaluate the impact of this
error on metric values (Hess and Bay, 1997; Brown et al., 2000; Shao et al.,
2001; Shao and Wu, 2004; Langford et al., 2006; Shao and Wu, 2008). A
general conclusion is that landscape metrics can accurately be derived only
from categorical maps with high accuracy.
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Accuracy of categorical maps is commonly assessed in an error matrix.
With this matrix, misclassifications between different categories are assessed.
Accuracy is expressed in terms of user’s, producer’s, and overall accuracies.
The error matrix can also represent commission errors (error of inclusion)
and omission error (errors of exclusion). A commission error is defined an as
area into a class when it does not belong to that class and an omission error
is excluding that area from the class to which it belongs. A detailed

description of the error matrix and its potential applications can be found in
Congalton and Green (1999).
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2 Data acquisition approaches

Since landscape surveys usually deal with large areas (e.g., regional or
national levels) data acquisition is a main concern. For example, Kumar et
al. (20006) state that due to economic and time restrictions only a small
fraction of any landscape is measurable. The required data to assess landscape
structure can be obtained from a variety of sources, including field sampling,
topographic maps, aerial photos, and satellite images. As has been pointed
out, remote sensing systems are frequently used sources of data (Gergel and
Turner, 2002). Different remote sensing systems and three sampling
approaches, frequently used in forestry and ecological surveys, are briefly
described below.

2.1 Remote sensing

Remote sensing is defined as a technique of obtaining information about
objects under investigation without contact with these subjects (Schreuder
et al,, 2004; Lillesand et al., 2008). Since remotely sensed data can be
collected in multiple spatial and temporal scales it is an important data source
for landscape ecology application. Remotely sensed data along with
geographical information systems (GIS) has facilitated many studies of
landscape structure (e.g., Iverson et al., 1989; Roughgarden et al., 1991;
Narumalani et al., 2004; Yang and Liu, 2005). These tools can provide
information on size, number, type, and space between patches in a
landscape. Passive and active sensors are two commonly used remote sensing
systems. They can be mounted on either air-borne or space-borne
platforms.
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2.1.1 Passive sensors

This group of sensors detects energy (sunlight) that is reflected by the
objects on the earth. Passive sensors are dependent on weather and light
conditions (Aronoff, 2005). Aerial photographs and optical satellite images
are two typical examples of this group, which are frequently applied in
landscape structure surveys.

Satellite images

Satellite imagery is considered a very useful tool in landscape research, since
it provides a digital mosaic of the spatial arrangement of land cover types in
a landscape. Data from the Landsat and SPOT satellites have been adopted
in ecological studies (O’Neill et al., 1988; Wu et al., 1997; Turner et al.,
2001; Cardille et al., 2005; Ferraz et al., 2005; Yemefack et al., 2006).
Another satellite-based data source is QuickBird, which provides images
with high spatial resolution (0.61m) (Lillesand et al., 2008). Satellite-based
maps are consistent with tools such as FRAGSTATS, which was established
for landscape pattern analysis through landscape metrics (McGarigal and
Marks, 1995). A rapid technological advance, increasing spatial resolution,
good coverage, increased access to satellite images, the ability to
electronically store data, and high temporal resolution have contributed to
the widespread use of satellite data in natural resource monitoring programs.

Aerial photography

Aerial photos are acquired from aircraft flying at altitudes typically ranging
from 500-10000 (m) and generally collect data at finer spatial resolution than
satellites. Due to the high spatial resolution, some landscape characteristics,
such as edges (i.e., border between two different land cover types), can be
accurately recorded (Naesset, 1998) and also leads to detecting detailed
information of forest patches (Holmgren et al., 1997). Aerial photographs
have been used in national environmental monitoring programs (NIJOS,
2001; Stahl et al., 2010) and it is a frequently used source of information for
mapping and other applications, such as forest inventory (Hall, 2003).
Interpretation of aerial photo data is usually performed using manual
methods, although some automated and computer-assisted approaches are
nowadays also available (Wulder et al., 2008). With manual methods,
criteria of tone, pattern, size, shape, and location are used. The results from
manual interpretation are often more accurate than those from an automated
approach that often uses mathematical algorithm (Loveland et al., 2005).



In mapping, homogenous areas are first delineated as polygons and then
these polygons are interpreted and classified into predefined categories.
Manual polygon delineation is slow and costly (Corona et al., 2004), and
skilled and experienced photo interpreters are required. Leckie et al. (2003)
say, however, that time needed for manual interpretation can considerably
be reduced through advanced digital image processing. As long as manual
interpretation is based on subjective criteria, the result may vary from one
interpreter to another (Kadmon and Harari-Kremer, 1999).

2.1.2 Active sensor

This kind of sensors generates and emits energy and measures the response.
Examples of sources of this kind are LIDAR (Light Detection and Ranging)
and imaging radar (Radio Detection and Ranging). Such systems can
provide three-dimensional information of points on the ground (Naesset et
al.,, 2004). One advantage of active sensors is that they can be operated in
many different conditions; generated energy can penetrate forest canopy,
and smoke. The LIDAR system lately has become as useful technique in
forest inventory applications. The LIDAR appears to be superior to
photogrammetric and other remote sensing systems in assessing growing
stock and tree height (Magnusson and Fransson, 2010). The system can also
provide accurate three-dimensional maps (Lefsky et al., 2002), which can be
important data for landscape pattern analysis.

2.2 Field inventory

Despite significant advances in remote sensing, field-based inventory still is a
widely used approach, for instance, in natural resource management,
ecological surveys, and monitoring programs such as National Inventory of
Landscape in Sweden (NILS) (Stahl et al., 2010). The reasons are that more
detailed and reliable information can be obtained. Field inventory can be
performed subjectively and/ or objectively and due to cost and operational
restrictions it can normally only be used on a sampling basis. Below three
frequently used sampling methods are briefly described.

2.2.1 Point sampling

Point sampling is a well-known method for estimating some population
parameters (e.g., areas) on aerial photographs, maps or directly in the field.
In point sampling, data are assessed at the sampling location. Tools such as
the global positioning system (GPS) device or a compass and tape enable
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point sampling in field surveys. Kleinn (2000) demonstrated the possibility
of measuring some patch attributes and deriving some landscape metric
using a grid of points from field-based forest inventory. In general,
estimation with a systematic dot grid in comparison to random sampling
yields more precise results (De Vries, 1986).

2.2.2 Line intersect sampling (LIS)

In line intersect sampling observations are conducted along survey lines and
objects are sampled when intersected by the line. The method is an efficient
and common procedure for surveying linear features such as logging
residues, edge lengths, ditches, and roads (Matérn, 1964; Warren and Olsen,
1964; Van Wagner, 1968; Brown, 1971; Schuerholz, 1974; Hansen, 1985;
Schreuder et al., 1993; Ringvall, 2000; Dahm, 2001; Corona et al., 2004;
Eiden et al., 2005). However, it has many other applications, for instance, it
can be used in estimating the areas of two-dimensional objects such as
polygons, and the total number of objects (e.g., Battles et al., 1996; Gregoire
and Valentine, 2008). In the estimation of total length of linear features, the
method relies on the counting of intersections between survey lines and
polygon borders (edge). LIS can be implemented either with single straight
lines or multiple-segmented transects such as the L-shape as used in Canada,
square transects as in NILS (Stdhl et al., 2010), and Y-shape transects as used
by the U.S. Forest Service and the National Forest Inventory of Switzerland
(Affleck et al., 2005). In many cases, LIS is a cost-efficient alternative to
complete assessment (Corona et al., 2004). Efficiency, in term of precision,
of line transect configuration depends on the pattern of population elements.
In a simulation study, Hazard and Pickford (1986) demonstrated that a
multiple-segmented line transect was preferred due to increase of precision
in populations where the elements tend to be oriented in the same
direction.

2.2.3 Fixed-area plot sampling

This sampling method is a widely used field-based approach in natural
resources and environmental surveys (Lindgren, 1984; DeVries, 1986;
Schreuder et al., 1993; Levesque, 1996; Thompson, 2002; Dengler, 2008;
Dengler and Boch, 2008). This method has also been conducted on raster-
based land cover maps in order to estimate some landscape metrics
(Hunsaker et al., 1994); further, it has been the dominant method in timber
oriented inventories. Depending on the survey objective, the shape of the
sample plot may vary. A circular shape is often used in field surveys,
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although other plot shapes, such as squares or rectangles, may be used (Kohl
et al., 2006). For instance, in plant species diversity assessment squares or
rectangles shapes are preferred (Keeley and Fotheringham, 2005). Fixed-area
plot sampling can be used for all kind of objects such as two-dimensional
objects (like polygons), linear features (like felled trees and edges), and
particularly when objects are represented by points (standing trees)
(Schreuder and Gregoire, 1995). For the purpose of natural resources, a
nested-plot design is frequently applied where plots with the same shape but
different sizes are often established at each sampling location (Ponce-
Hernandez, 2004; Gregoire and Valentine, 2008). The fixed-area method
has different advantages, for instance, Schreuder et al. (1987) found that the
method is more efficient, in terms of accuracy, for tree density than point
and horizontal-line sampling methods. Paulo et al. (2005) demonstrated that
fixed-area plot is preferable for estimating non-timber production like cork.
The method is recommended in continuous forest inventory and

monitoring programs since growth can readily be assessed over time (Scott,
1998).

2.3 Combination of remote sensing and field methods

A combination of field-based inventory methods and remotely sensed data
are frequently applied in practice. This combination is termed multi (e.g.,
two)—stage or two phase sampling design (DeVries, 1986; Schreuder et al.,
1993; Corona and Fattorini, 2006). In such procedures the first stage
typically is a sample of remotely sensed data (e.g., aerial photos), and in the
second stage one or more field sampling methods described previously can
be used within each first stage sampling unit (Stihl et al., 2010). For
instance, line intersect sampling was conducted on sampled aerial photos by
several authors (Hansen, 1985; Eiden et al., 2005; Esseen et al., 2006) to
assess linear features in the landscape. LIS was also applied on aerial photos
to estimate area of gaps in a forest landscape. Hunsaker et al. (1994) applied
large plot sampling on satellite-based land cover maps in estimating
landscape metrics. The advantage of this type of sampling design,
particularly in a large scale survey, is that it may provide estimates of a given
precision at less cost (Freese, 1962).

In general, in sample surveys a small fraction of the target population is
sampled for the estimation of population parameters such as total and mean.
The survey can be conducted objectively and/or subjectively. Whereas the
latter is usually surveyor-dependent (Stahl, 1992) the former one relies on
statistical theory and thus it is possible to estimate the precision of estimates.
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For a given parameter there may be several sampling strategies (sampling
design and type of estimator) and from a statistical point of view the strategy
with low variance and an unbiased estimate is preferable. Variance refers to
the mean squared deviation of all possible estimates and expected values, and
unbiasedness means that the difference between true and expected values is
zero (Raj, 1968; Wonnacott and Wonnacott, 1990). Monte-Carlo
simulation is an appropriate approach to assess statistical performance of
estimators. The simulation has frequently been applied to study the statistical
performance of sample based estimators of parameters of relevance for the
management and monitoring of natural resources (e.g., Stihl, 1998; Kleinn
and Vilcko, 2006). Units of sampling such as points, lines and plots can be
distributed systematically and or completely at random over the area of
interest.

Sample survey has several advantages, for instance, it takes less time than
a complete census; it is possible to achieve more accurate results using highly
trained staff, careful supervision, and a in well-designed and executed sample
survey; data can be acquired and analyzed faster, in particular at large scales
such as a National Forest Inventory (NFI) (Raj, 1968; Cochran, 1977).
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3 Objectives

The main objective of this thesis was to investigate the efficiency of using
sampling methods to derive landscape metrics. Further, it was to be
explored what sampling methods are preferable, in terms of cost and
accuracy, for selected landscape metric. These metrics have been used in
several studies and found to be of ecological relevance. Thus, this thesis
focuses on sampling properties of selected metric estimators without
assessing the ecological significance of the metrics. In the different studies
the specific objectives were:

» In paper I the objective was to review previous literature about sample-
based assessment of landscape metrics.

» In papers II-1II the statistical performance (in terms of RMSE and bias) of
Shannon’s diversity and edge length/density estimators were evaluated.
Two basic sampling methods, point sampling and line intersect sampling
(LIS), were applied.

» In paper IV the main objective was to develop a new definition of
contagion for vector-based data. Also, the properties of the new
definition were investigated.

» In paper V the objective was to assess statistical properties (RMSE and
bias) of the contagion estimators for different point sampling designs.
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4 Summary of papers

4.1 Material and methods

4.1.1 Paper |

This literature review was carried out in order to assess previous experiences
of advantages and disadvantages of sampling based approaches for assessing
landscape metrics. Papers published in international journals indexed by
Web of Knowledge (WoK) were searched for. The search criteria were
“landscape metrics”, “sampling methods”, and “quantifying landscape
pattern” in the title, abstract, and key words in the papers. The search was
also conducted in the reference lists of available papers. The review largely
encompasses papers from the two past decades; the first paper on sample
based assessment of landscape metrics was published in the 1990’s. Much
attention has been paid to point, line intersect, and plot sampling methods.
Findings of previous studies and some theoretical assessment are given in the
result section.

4.1.2 Paper lI-lll

In the sampling experiment studies (i.e., in papers II, III and V) in order to
assess statistical properties of metric estimators a large number of samples
were taken on already delineated maps. Sampling simulation (Monte-Carlo)
was performed for different combinations of factors depending on selected
metric and the sampling method employed. Below details of the
combinations are described.

In studies II and III the objective was to examine statistical properties
(RMSE and bias) of Shannon’s diversity and edge length/density estimators.
In these studies, 50 1km’ already delineated quadrats from NILS, the
National Inventory of Landscape in Sweden, were used. The landscapes
quadrats were distributed across Sweden and were selected from different
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landscapes (see Fig. 1). Both true and estimated values of these metrics were
calculated through a computer program which was written (in
FORTRAN) specifically for this purpose. A study about time required to
measure patch attributes was conducted on a few randomly selected, non-
delineated (raw) aerial photographs. For this purpose a skilled photo
interpreter from the NILS program was employed. These quadrates were
used in papers II to V.

Figure 1. Illustration of distribution of 50 NILS’s quadrates and an example of 1 km? aerial
photograph and corresponding delineated map.

In the case of point sampling (paper II), for both metrics, sampling
simulation was conducted for all combinations of four sample sizes (49, 100,
225, and 400), two sampling designs (random and systematic), and two
classification systems (7 and 20 classes). In addition, for edge length,
simulations were implemented for five (virtual) bufter widths (5, 10, 20, 40,
and 80 m) where the width of the buffer generated around patches was used
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as a means for measuring edge length. The classification systems with two
levels are described in Table 1.

Tablel. Classes according to the two different classification systems (with 7 and 20
classes)

Level 1 (Seven classes) Level 2 (Twenty classes)

1- Forest 1-1- Coniferous-Dense
1-2- Coniferous-Sparse
1-3- Deciduous-Dense
1-4- Deciduous-Sparse
1-5- Mixed-Forest- Dense
1-6- Mixed-Forest- Sparse

2- Urban 2-1- Housing-Areas
2-2- Urban-Green-Areas
2-3- Urban-Forest

3- Cultivated fields 3-1- Crop fields
3-2- Grassland

4- Wetlands 4-1- Bog
4-2- Fen
4-3- Mixed-Wetland

5- Water 5-1- Open-Water
5-2- Water-Vegetation

6- Pasture 6-1- Open- Pasture
6-2- Pasture-Sparse-Trees
6-3- Wooded-Pasture

7- Other land 7- 1- Other land
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The estimator of Shannon’s diversity index, H , was

> p,-In(p))
H = _ % (13)

Bl In(s)

where s is the total number of land cover types considered (assumed to be
known) and

N R .
P; =—Z Y, is the estimator of area proportion of the Jth land cover

i=1
type; Y; takes the value 1 if the ith sampling point falls in the j th land cover

type and O otherwise.

To estimate the edge length of a certain land cover type or total edge
length, rectangular (virtual) buffers with fixed width d were generated
around patch borders on both sides (Fig. 2). The proportion of sampling
points within the buffer area can be utilized for edge length estimation, as
shown below. If a sampling point was located within distance d from an
edge, then this was recorded together with the land cover type of the patch
on the other side of the boundary.

Figure 2. Patch borders and generated buffer on both sides. This layout illustrates the method
used for the estimation of edge length and edge density.
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For a given land cover type J, the buffer area B;inside area A, can be

estimated by
éj = f)j -A (14)

where p jis the estimator of the buffer area proportion. The length L jof the

edge of the land cover type j is then estimated by

. B A

The estimator L j underestimates the true length since parts of rectangles

close to the map border are outside the map, and no sampling point will fall
there. In order to eliminate or reduce the bias three methods were used; 1)
Richardson extrapolation (Freese, 1962), i1) Reflection method (Schreuder
et al., 2004), and 1ii1) External buffer zone (Gregoire and Valentine, 2008).

In the LIS case (paper III) sampling simulation was conducted for all
combinations of five line intersect configurations (Fig. 3), two sampling
designs (random and systematic), two classification schemes (7 and 20
classes), four sample sizes (16, 25, 49, and 100), two transect orientations
(fixed and random), and three different lengths of the total sampling lines
per configuration (37.5, 75, and 150 m).

L Y A []

Figure 3. Illustration of the five line transect configurations applied in this study

For LIS, estimation of Shannon’s diversity was based on the proportion
of the length of line transects within a certain land cover type to total length
of all line transects. The edge length estimation was based on the method of
Matérn (1964) where edge length can be estimated without bias by simply
counting the number of intersections between patch borders and line
transects.
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According to Matérn (1964), the total edge length estimator T (m ha™),
using multiple sampling lines of equal lengths, is given by
_|:=10000-7z-m (16)
2-n-1
where m is the number of intersections, n is the number of sampling lines,
and [ is total sampling line length.

In both papers II and III the statistical properties of the estimators were
extracted using a large number of independently simulated samples (i.e.,
Monte-Carlo simulation). The expected value was estimated by the mean
over simulations

EV) =23, (17)

where Y, is the estimated value of the ith simulation and M is the number

of simulations. The root mean square error, RMSE, was estimated by

M
RMSE = [> (Y, -Y)*/M (18)
i=1

where Y'is the true value.

In the line intersect sampling case (paper III) the following mixed model
was used to study the rate of decrease of RMSE with increasing sample size
and/or line length

zy, = p+c +aln(n) + AIn(l) + Au, +e;, (19)

Here Zj is the logarithm of the RMSE for quadrate i, sample size j, and

line  length &k  Njand I, are sample size and length;
u; =(n(n;) —m_)(In(l,) —m,) where m_ and m are the means of
In(n;) and In(l,) over the data set; Cjis a random quadrate effect and &y is

a random error. In paper II a similar model was used.
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4.1.3 Paper IV

In this study the aim was to develop new contagion metric which could be
applied on vector-based or sample data as opposed to raster-based maps.
Both unconditional and conditional definitions of the contagion were
considered. The vector-based unconditional contagion metric is defined as

S py (d)-In(p, ()
C,(d) =1+ 212 (20)
21In(s)

where [J;; is the probability that two randomly chosen points at distance d

belongs to the classes i and j, and s is the number of land cover types
considered or the number of classes present.

The conditional contagion metric is defined as

373 b, (d)-In(p,, (d))
=1+ 22 (1)

C,
sin(s)

where the conditional probability pj,i(d) equals (d)/ p;(d), where

S
p,(d) = Z P; (d). Conditional probability is the probability that the
-1
“second point” in a randomly chosen pair of points at distance d belongs to
class j, given that the “first” point belongs to class i. Both contagion
formulas above (Eqs 20 and 21) are derived from the existing raster-based
definitions but are functions of the distance d between points.

To calculate contagion for each map a sample of first points was laid out
systematically in each polygon, with random start. The number of points in
the polygons was based on polygon area. With the point as centre of a circle
with radius d, the relative lengths of the circumference within all polygons
were determined. The mean of all such relative lengths over the systematic
sample estimates the local Py s for the given polygon, and the final global p;;

was determined by weighting overall all polygons of class i. The study was
conducted on 50 vector-based maps of real landscapes and some simulated
ones. Point pairs with nine distances 2, 5, 10, 20, 30, 60, 100, 150, and 250
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meters were used to assess the statistical behavior of the contagion
estimators. Also a non-linear regression analysis was employed to develop
an empirical model for the unconditional contagion function.

4.1.4 PaperV

In this study the aim was to assess the statistical properties (RMSE and bias)
of the contagion estimators using point sampling. Monte-Carlo sampling
simulation was applied. Similar to papers II and III this study was conducted
on the 50 1km” quadrates from NILS (National Inventory of Landscape in
Sweden), for which true values where calculated in paper IV. Estimated
values of these metrics were calculated through a computer program, which
was written in FORTRAN specifically for this purpose.

The contagion functions are those defined by Egs (20) and (21) in paper
IV. The probabilities P; (d)and p i ;i(d)are estimated from a sample of

randomly chosen point pairs at distance d in the landscape; (d)is
estimated by the frequency of points in classes i and j and pj”(d) is
estimated according to its definition. The estimators ﬁij (d)and bj/i(d) are

inserted into the defining expressions (20) and (21) to obtain estimators
éu (d) and éc (d) of the contagion functions.
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Sampling simulation was performed for all combinations of five sample
sizes (25, 49, 100, 225, and 400), two sampling designs (random and
systematic), the two classification systems (7 and 20 classes), and nine point
distances (2, 5, 10, 20, 30, 60, 100, 150, and 250). Estimates were calculated
for all classes in the system (7 and 20) and for the number of classes present
in the landscape, and with unconditional and conditional contagion
definitions. Figure 4 shows an example of the random distribution of point
pairs on NILS map.

Point distance

. 50(m)

NOTA

Figure 4. Tlustration of random distribution of point pairs on a 1 km® NILS vector-based map

4.2 Results and discussion

4.2.1 Paper |

The literature review revealed that derivation of landscape metrics through
sampling data has potential advantages and disadvantages. Advantages
include, for instance, that some metrics can be extracted at a low cost; that
there is the possibility of using existing data materials from ongoing large
scale inventories such as National Forest Inventories (NFI); and that there is
the possibility of providing more reliable information of landscape structure
and to estimate metrics through very careful assessments of a small number
of sampling units such as lines in comparison to traditional polygon
delineation approach. Disadvantages include that some metrics cannot be
estimated; that some metrics may be estimated with bias, particularly ratio-
based metrics for patch attributes; and that sample-based assessments require
new skills for the practitioner. In general, the review done for Paper I
indicates that sampling data seem to be a promising alternative to wall-to-
wall mapping. However, very few relevant papers were found, with the
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reason being that wall-to-wall mapping is the predominantly used data
source in the calculation of landscape metrics.

Further studies are needed for the following areas: (i) optimization of
sample based inventories from the point of view of landscape metric
estimation, (i) comparisons of different sampling based approaches and wall-
to-wall based approaches, where all relevant error sources and costs are
included, and (iii) further studies to evaluate if metrics can be redefined to
better suit sampling based assessments. Table 2 provides the estimators and
type of estimate of a set of metrics using three sampling methods. In general
in sample survey, landscape metrics can unbiasedly be estimated when their
components can be estimated without bias. In some cases, however, the
metric estimator may still be biased despite the components are estimated
without bias, for instance, metrics which are a ratio of the components.
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Table 2. Estimators of landscape metrics

Name of Sampling
Definition Estimator Property
metric methods
p; a Proportion D,L,P p, = A Unbiased
A A
D A Unbiased
n Patch density PD = —
PD = — A
A L
~ é
L P ED = A Unbiased
e Edge
ED = —
A density . Unbiased
~ é nbiase
D ED = A under certain
assumption
>
1 = \/;I Megn shape D.L.P . 1 Almost
MSI = = index MSI == .
4 n 4 A Unbiased
i (L) Mean < |A,
— perimeter- D,L,P . . (57) Almost
MPAR == 0 ! area ratio MPAR = IZIT' Unbiased
A 2. In(
2 ingy | e wEp = 23500 | i
MFD = 72 ! fractal D,L, P n = In(&;) Unbiased
n = In(&) dimension




Table 2. Continued

Name of Sampling
Definition Estimator Property
metric methods
n n
- a R zai Almost
— =l =
MPS = n Mear} patch D,L, P MPS = A Unbiased
size
> piInp N , s
H=_iz Shannon’s Z p, In p, Biased (even
In(s) . ) [ if p,
iversit D,L, P !
Y T In(s) unbiased)
S S
Ins+> p,Inp, Ins+>p; Inp,
— i=1 D=— =1 | Biased (even
In(s) Dominance D, L, P In(s) if P;
unbiased)
by p;; In B,
2.2 pyInp; : ==
C o1y 2= Contagion D,L, P C ,1+T Biased
21In(s)
Lpl = maxi(@) 44 Largestpacch | D, L, P | LPI =1 @) 100 -
index A

Note: D = Dot grid, L = Line intersect sampling, P = Plot sampling
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4.2.2 Paper I

The RMSE and bias of Shannon’s diversity for different sample sizes and for
two sampling designs is given in Figure 5. Both RMSE and bias decreased
with increasing sample size and systematic sampling design showed less
RMSE and bias than did random sampling.

Seven classes
0 200 400
Bias (%) O : '
1 -
_2 4
_3 4
4 —e— Systematic sampling
5 1 —a&— Random sampling
_6 4
-7 -
Sample size
Seven classes
RMSE 0,06 -
0,04 -
0,02 -+
0 T |
0 200 400
Sample size

Figure 5. An example of relationships between bias (top) and RMSE (bottom) of Shannon’s
diversity estimator for different samples sizes.
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Similar to Shannon’s diversity, the RMSE of the edge length estimator,
at a given bufter width decreased as sample size increased and bufter width
increased. This resulted in larger bias due to the increased impact of
boundary conditions. This effect was shown to be independent of sample
size (Fig. 6).

Seven classes (systematic)
RMSE(%) 60 A

50 -
40 -
30 -

20 4

Buffer width (m)

Seven classes (systematic)

Bias (%) 0 1 T T T )

20 40 60

-1 A

-2 A

Buffer width (m)

Figure 6. An example of relationships between RMSE (top) and bias (bottom) of the total
edge length estimator and buffer width with different samples sizes.

A low accuracy of edge length estimates was obtained in highly
fragmented landscapes where the patches had complex shapes. In contrast,
high accuracy was obtained in landscapes comprising polygons with simple
shapes. The estimators of both metrics produced negative bias. For
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Shannon’s diversity the bias is due to the nonlinearity in the definition of
the estimator. In the case of edge length and density, estimators in theory
should provide estimates without bias, although practical concerns introduce
boundary-induced bias. In Figure 7 is shown bias of corrected and
uncorrected estimators of the total edge density.

Bias (%) 1

B 20 40 60 80 100

) —— Uncorrected method
—&— Method- 1

-3 —¥— Method- 2

_4 —&— Method- 3

-5

-6 Buffer width (m)

Figure 7. A comparison of bias of the total edge density estimator between the uncorrected
method and the three correction methods with different bufter widths.

RMSE vs. cost (time needed to measure patch attributes from aerial
photographs) of total edge density, for different buffer widths, is given in
Figure 8. The RMSE decreased with increasing bufter width at a given cost.
This was true for Shannon’s diversity and edge density per certain land
cover type estimators.

—%—5 (m)

RMSE (%) 60 - 10 (m)

50 - —&— 20 (m)

40 —8— 40 (m)

30 —6—380 (m)

20 -~

10 A

0 T T T T )
0 0,5 1 1,5 2 2,5
Time (h)

Figure 8. Relationship between time (cost) and the RMSE of the total edge density estimator.
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Point sampling can be conducted with high accuracy at a reasonable cost
for both metrics. In the case of edge length, the cost was a function of
sample size and bufter width, whereas in the case of Shannon’s diversity it
was just a function of sample size. Times needed were largely dependent on
landscape complexity and wide buffer widths were found to be more
efficient than narrow ones in estimating edge density.

This sampling method can readily be applied over remote sensing data
and in field-based forest inventory (Kleinn, 2000). Furthermore, it is
recognized that a given landscape metric can be estimated through several
sampling methods such as line intersect sampling (LIS) and plot sampling
(Hunsaker et al., 1994; Corona et al., 2004). The efficiency of the sampling
method depends on the selected metric.
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4.2.3 Paper Il

An example of relative RMSE and bias of Shannon’s diversity estimator for
different sampling line lengths and configurations is illustrated in Fig. 9. The
magnitude of RMSE and bias decreased when the number and/or length of
lines per configuration was increased.

n=49
Bias (%) 0,0 . . r r . )

25 50 75 100 125 175

I | | |
S b=
(e} w [} w
L L L L

-3,5 -
Sampling line length per configuration (m)
n=49 —— Striaght line
RMSE (%) 16 7 —e—1 shape
—&— Y shape
14 4

—%— Triangle shape

129 —6— Square shape

10 A

/

6 T T T T T ]
25 50 75 100 125 150 175

Sampling line length per configuration (m)

Figure 9. Relative bias (top) and RMSE (bottom) of the Shannon’s diversity estimator for
different sampling line lengths and transect configurations in the systematic sampling design,
for sample size 49.
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An example of relative RMSE of total edge length and edge density of
the forest class estimators for different sampling line lengths and
configurations is shown in Fig. 10. The magnitude of RMSE decreased with
increasing number and/or length of lines per configuration.

n=25
RMSE (%) 70 -

60 -
50 +
40 ~
30~

20 T T T T T ]
25 50 75 100 125 150 175

Sampling line length per configuration (m)

n=25 (forest class) —&— Straight line
RMSE (%0) 80 -

—@— - shape
70 1 Y- shape
60 - === Triangle shape
50 A —=6— Square shape
40 -

20 ]
25 50 75 100 125 150 175

Sampling line length per configuration (m)

Figure 10. Relative RMSE of the total edge length (top) and edge density of forest class
(bottom) estimators for different sampling line lengths and transect configurations in the

systematic sampling design, for sample size 25.

For both metrics the systematic sampling design was superior to the
random one with respect to RMSE. In all combinations considered, the
straight line configuration resulted in the lowest RMSE and bias. The reason
is that the straight line has the least compact form and thus avoids the
negative effects of spatial auto-correlation. The random orientation of line
transects gave slightly lower RMSE than the fixed one and this was true for
all five configurations, three different sampling line lengths and four sample
sizes. The small difference between random and fixed orientations is due to
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a systematic trend in some landscapes. The results of a statistical model for
RMSE demonstrated that the effect of line length is larger for both designs
for the two edge parameters than for Shannon’s diversity. For the sampling
strategy used there is no bias in the edge length estimator, but in practice,
where only parts of lines within the image are considered, the
corresponding estimator is ratio type and will have some bias. However, this
bias is negligible when the study area is large in relation to sampling line
length.

The RMSE vs. time (cost) of total edge density estimator is given in
Figure 11. The magnitude of RMSE decreased with increasing cost, and
with a given sampling budget longer sampling lines resulted in lower
RMSE.
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Figure 11. Relationships between cost and RMSE of the edge density estimator for the forest

class for two sampling line lengths (37.5 and 150 m).

The time study revealed no large differences in interpreting time
between short and long line lengths, which favors the latter alternative with
respect to cost-efficiency. In the case of Shannon’s diversity, for a given
sampling budget, there was no difference between short and long lines.
Efficiency, in term of cost-accuracy, of point and line intersect sampling
methods was compared for the total edge length estimator. The result shows
that to obtain a given RMSE LIS is the cost-efficient alternative.

Corona et al (2004) found that to estimate the total edge length LIS is
more efficient than the traditional polygon delineation approach. It is
recognized that a single sampling method is not efficient for all metrics. For
instance, point sampling appears to be more efficient to estimate area of land
cover types and thus Shannon’s diversity (Ramezani et al., 2010). LIS also
have been found to be an efficient method to assess population parameters
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of sparse populations (Ringvall and Stihl, 1999) and to estimate area
proportion of two-dimensional objects such as polygons (Gregoire and
Valentine, 2008).

4.2.4 Paper IV

The results focus on the behavior of the contagion function and are based
both on theoretical findings and empirical values and comparison between
them.

Mathematical properties

(a) Unconditional contagion can be rewritten as

S o @In(p; ) D P () P, (@), (d))
Cu (d) :1+ i=1 + i=1 j=1
21In(s) 21In(s)

and the conditional contagion as

> W3 Py (A)In(p,,(d)
C.(d)=1+21 13

In(s)

Hence the inner sums of the double sum have equal weights (1/s) for the
conditional contagion, while the small classes have small weights (p,(d)) for

the unconditional.
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(b) When the distance d tends to 0, for unconditional contagion we get

>a In(a,)

c,(d)—»>1+=——=1-H/2
21In(s)
where H is Shannon’s diversity index. In the case of conditional contagion
we get
C.(d)y—1

(c) For long distances and under the unconditional definition we get,
assuming long distance independence,

> pi(d)In(p,(d))
C,(d) ~1+5
In(s)

Under the conditional definition we get

> R (@)n(p, @)
C (d)~1+L.1=
S In(s)

Comparison between theoretical and empirical values

Comparisons were made between theoretical (items (b) — (c)) and
empirical contagion values. The agreements were in general very good as
shown in Table 3.
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Table 3. Difference between empirical and theoretical values for conditional and unconditional contagion
for small and large distances d for the two cassification systems. Figures show mean values of absolute
values of the differences for the 50 maps. Numbers in parentheses show the number of positive differences
of the expression given within the absolute sign. H is Shannon’s diversity index, s is the number of
classes (7 or 20) and r is the number of classes actually present. Extrapolation means that the empirical
values for 2 and 5 meters were used for a linear extrapolation tod =0 .

7 classes 20 classes

la—H/2)—C,(d) |

d =0.05 0.0006 (50) 0.0007 (50)
Short distance d=2 0.0170 (50 0.0201 (50
o - 0170 (50) 0201 (50)
Extrapolation 0.0048 (47) 0.0048 (50)
|1-C.(d) |
d =0.05 0.0016 (50) 0.0010 (50)
Short distance d=2 0.0486 (50 0.0319 (50
(d —>0) = 0486 (50) 0319 (50)
Extrapolation 0.0160 (49) 0.0093 (50)
|C,(d)—@—H) |

Long distance

e d =250 0.0137 (47) 0.0152 (47)

|C.(d)-@A-r-H/s)|

Long distance

(d — ) d =250 0.0227 (34) 0.0230 (40)

The values indicate that the 2 and 250 meters distances are small and
large enough to cover the range of values of the contagion functions. The
nine distances used to calculate the contagion should thus be sufficient. For
long distances d the empirical result also supports the assumption in item (c)
of long distance independence.
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A proxy function _for the unconditional contagion function

For all the landscapes studied, the unconditional contagion function was a
convex and decreasing function of distance (within the range studied). It
was found that the relationship between the contagion function value and

distance d could be described by C (d) ~ f (d), where
f(d)=c+a-e™

The fit of the model was good. Figure 12 shows two examples for the 7
class classification system, one for a landscape with average standard
deviation around the function and the other landscape with the highest
standard deviation among the 50 studied.
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Point distance (m)

Figure 12. Mlustration of two contagion functions with average (top) and highest (bottom)
standard deviation around the function for the 7 class classification system.

Simulated landscapes with extreme cases were generated and the fit of
the proxy function for the unconditional contagion was fairly good even for
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these landscapes. In Figure 13, a simulated landscape, treated as vector based,
with its unconditional contagion and proxy function is shown.
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Figure 13. Illustration of a simulated landscape and its unconditional contagion values and
proxy functions.

In general, the proposed metric can be used to quantify landscape
structure. Thus, there is no need for raster-based maps. Two main
conclusions are: 1) the unconditional contagion cannot be interpreted
without considering the Shannon’s diversity and 2) the parameter b, “rate of
contagion change”, of the proxy function provides, for unconditional
contagion, most of the information about the spatial distribution or
fragmentation. For conditional contagion no simple proxy function was
found. For some landscapes the function had a minimum value while for
other it decreased monotonically. By a visual inspection of the landscapes it
was found that the former type occurred for landscapes with one
dominating and several small fragmented classes. This is in line with
mathematical property (a) above, saying that small classes are as important as
large ones for the conditional contagion. For unconditional contagion the
contribution of the small classes is negligible.

In contrast to Wickham et al. (1996), by using the proposed version of
contagion there is no need to delineate borders between polygons, which in
turn can avoid potential errors in polygon delineation.

The definition of the contagion functions, with point pairs, bears some
resemblance with concepts in geostatistics, i.e., spatial autocorrelation (e.g.,
Cressie, 1993). However, in our case the observations are categorical
variables (on a nominal scale) and not continuously varying over the
landscape.

The method developed here also provides a basis for sampling-based
estimation of contagion metrics. Metric estimation from sample data is
recognized as a cost efficient alternative to wall-to-wall mapping approach
(Corona et al., 2004; Ramezani et al., 2010) and it also is possible to derive



some metrics from field-based inventories as was demonstrated by Kleinn
(2000).

4.2.5 PaperV

In this study the aim was to investigate the statistical properties of the
contagion estimator. Comparison of contagion estimators in simple random
and systematic sampling showed that the systematic design resulted in
slightly smaller RMSE and bias. Figure 14 shows bias and RMSE of the
unconditional estimator for a point pair distance of 20 m and the data with 7

classes.
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Figure 14. Bias (top) and RMSE (bottom) of the estimator of unconditional contagion using
a 20 m point distance, average over the 50 landscapes using the 7 classes system, and all classes
(s=7).

Both contagion estimators were biased. Bias and RMSE of the

conditional estimator were much larger than for the unconditional
estimator. In Figure 15 is shown the relationship between bias (left) and
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RMSE (right) and sample size for the unconditional and conditional
estimators, for point distance 20 m, and for all classes.
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Figure 15. Relationship between the bias (top) and RMSE (bottom) with sample size of the
contagion estimators, for point distance 20 m, the 7 classes system, and all classes (s=7).

The reason for the large bias of the estimator of conditional contagion is
that, in contrast to unconditional contagion, both small and large classes
have equal weight in its definition and also in its estimator. Hence, missing a
small class, with small area proportion, affects the conditional contagion
much more than the unconditional (Ramezani and Holm, 2010).

In a sample survey, statistical properties of contagion were assessed by
Hunsaker et al. (1994). However, the study was conducted on raster-based
map using (hexagonal) plot sampling and due to a different definition a
direct comparison is not possible. In contrast to the vector version of
Wickham et al. (1996), with the new vector version there is no need to
delineate borders between polygons.
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The results show that the contagion estimators are biased. Bias from
sampling can be explained by ratio estimators p, (d) and p,,(d) and also

the number F of classes observed in the sample. The bias is fairly small for
reasonable large sample sizes.
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5 Conclusions and recommendations

This thesis addresses the use of probability sampling methods for assessing
landscape metrics. A main conclusion is that many metrics can be estimated
with high accuracy at sample sizes that would be affordable in practice.
However, it is also clear that for some metrics, e.g. conditional contagion,
very large sample sizes would be needed in order to obtain reliable results.
Also, due to the definition of some metrics, they cannot be estimated based
on sample data. In general, a prerequisite for unbiased metric estimation is
that the components of metrics, such as size, number, and edge length of
landscape units, can be estimated without bias. However, this is a necessary
but not sufficient condition since in metrics such as Shannon’s diversity and
contagion, non-linear transformations of the components imply that the
metrics will be biasedly estimated although the individual components are
not.

The review study (Paper I) showed that sample-based assessment of
landscape metrics is a field where research studies have commenced only
rather recently and to this date relatively few studies exist. However, most
of these studies indicate that sampling is a cost-efficient alternative to
traditional wall-to-wall mapping.

In studies II and III the statistical properties of estimators of the Shannon
diversity index and edge length are investigated by using point and LIS
sampling methods. Both methods were found to be cost-efficient
alternatives to wall-to-wall mapping. Further, it was found that systematic
sampling designs are more efficient than simple random designs. In LIS, long
line transects and straight line configurations gave the best results. The
results are consistent with findings in previous studies.

In study IV a new definition of the contagion metric was developed in
order to meet vector format data; the definition is a function of point
distances. A proxy function for the unconditional contagion metric, with
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point distance as independent variable, was proposed and demonstrated to
work well in all kinds of landscapes. Through this function, a landscape can
be characterized through two parameters: one related to area proportions of
different land cover types and the other related to spatial arrangement over
cover types. The proposed contagion definition can be used as a basis for
sample based estimation of contagion.

In study V, sampling simulation was applied to assess contagion according
to the new definition. This was found to work well for unconditional
contagion, while for conditional contagion very low accuracy was obtained
for sample sizes that would be relevant in practice.

In sample-based assessments of landscape metrics the efficiency of a given
sampling method depends on what metrics are estimated. For instance, point
sampling appears to be efficient for metrics involving area proportions, such
as Shannon diversity, and LIS appears to be efficient for edge—dependent
metrics, such as edge density. Thus, in sample-based approaches to landscape
metrics estimation it is likely that several sampling methods should be
combined in order to set up cost-efficient data acquisition schemes.

In studies IV and V the contagion metric was slightly redefined so that it
would suit a sample based framework. Similar adjustments of the definitions
should be possible in other cases as well.

Since sample based assessment of landscape metrics is a new and
promising approach, further studies would be motivated. Important topics
include:

e Further evaluation of statistical properties of sample based
estimators of landscape metrics.

e Further comparison of cost-accuracy relationships when using wall-
to-wall mapping and sampling, considering also potential
classification and delineation errors.

e  Further studies to develop metrics that are suitable to estimate from
sample data (without sacrificing ecological meaning).

e Further studies to investigate the possibility of estimating currently
used metrics or to develop new metrics from existing sample based
field inventories, such as national forest inventories.

e Further studies to test whether landscape metrics from sample data
are sensitive enough to detect landscape changes over time.
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