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Measuring and Modelling Parameters from Hyperspectral 
Sensors for Site-Specific Crop Protection 

Abstract 
This thesis sought to optimise systems for plant protection in precision agriculture 
through developing a field method for estimating crop status parameters from 
hyperspectral sensors, and an empirical model for estimating the required herbicide 
dose in different parts of the field. 

The hyperspectral reflectance measurements in the open field took the form of 
instantaneous spectra recording using an existing method called feature vector based 
analysis (FVBA), which was applied on disease severity. A new method called 
iterative normalisation based analysis (INBA) was developed and evaluated on 
disease severity and plant biomass. The methods revealed two different spectral 
signatures in both disease severity and plant density data. By concentrating the 
analysis on a 12% random subset of the hyperspectral field data, the unknown part 
of the data could be estimated with 94-97% coefficient of determination.  

The empirical model for site-specific weed control combined a model for weed 
competition and a dose response model. Comparisons of site-specific and 
conventional uniform spraying using model simulations showed that site-specific 
spraying with the uniform recommended dose resulted in 64% herbicide saving. 
Comparison with a uniform dose with equal weed control effect resulted in 36% 
herbicide saving. 

The methods developed in this thesis can be used to improve systems for site-
specific plant protection in precision agriculture and to evaluate site-specific plant 
protection systems in relation to uniform spraying. Overall, this could be beneficial 
both for farm finances and for the environment. 
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Dedication 

Till Victor, Josef och Ella 

If you can not measure it, you can not improve it. 
Lord Kelvin 
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Introduction 

Background 

The protection of a growing crop against weeds and diseases is an important 
task in today’s agriculture in order to achieve efficiency in production with 
respect to production costs and yield and to minimise the environmental 
impact. Weeds in the crop compete for resources such as water, plant 
nutrients and light, and plant pathogens feed on and destroy crop biomass. 
The most common plant protection method in a growing arable crop is 
spraying plant protection products, for example herbicides against weeds, 
fungicides against fungal pathogens and insecticides against insects. In a 
historical perspective, the use of plant protection products was one of the 
main factors in the rationalisation of agriculture after the Second World 
War, which allowed the productivity to be increased to such an extent that 
in 2009 1.2% of the economically active population produced the entire 
agricultural output of Sweden (Statistics Sweden, 2010). 

There are concerns both in the general public and in the research 
community about using artificial chemical agents in the production of food. 
This has led to initiatives to devise agricultural production forms where 
chemical plant protection products in principle are prohibited, or where 
there is safe, effective and integrated use of pesticides in conventional 
agriculture. 

The work in this thesis examines the use of plant protection products in 
agricultural arable production. The most common plant protection products 
used in Sweden are chemical pesticides, i.e. containing a synthetically 
produced active ingredient. Statistics on the quantities of synthetic active 
substances sold in Sweden show the annual use of pesticides to be 1 million 
hectare doses (Swedish Chemicals Agency, 2009). Sweden has about 2.6 
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million hectares of arable land, of which 1.25 million hectares are used to 
grow the major annual crops: cereals, leguminous plants, oilseed crops, 
potatoes and sugar beet (Statistics Sweden, 2010). 

Alternatives to synthetically produced chemical pesticides include 
biological plant protection products (Copping, 2004) or physically acting 
plant protection products, e.g. soap or acetic acid (Hall & Barry, 1995). 
Available figures on the amounts of biological plant protection products sold 
in Sweden (Swedish Chemicals Agency, 2009) show an annual use much 
less than 1% in relation to the total usage of plant protection products. 

The work in this thesis can be applied to the use of plant protection 
products in general, irrespective of whether the active ingredient is a 
chemical agent, a biological organism or a physically acting substance. The 
only part of this thesis that involves a choice of a specific plant protection 
product is the field trial in Paper IV, where a synthetic herbicide was used. 

Work on decreasing the risks involved with the use of pesticides has been 
intense during recent decades. One important part is the work carried out 
by the Swedish Chemicals Agency (Kemikalieinspektionen) on minimising use 
and assessing the environmental risk of the chemical agents allowed for use 
in areal production in Sweden. In the 1980s, the use of chemical products in 
agriculture emerged on the political agenda and an intention was expressed 
to decrease the amount of chemical plant protection products (Bernson & 
Ekström, 1991). Since then, the total amount of active ingredients sold in 
relation to the 1983-1985 mean value has been monitored. A few years in 
to the programme, the quantities sold decreased rapidly but the amount of 
active ingredients sold from 1991 until 2008 has remained fairly steady, at a 
mean value of around 1600 tons per year (Swedish Chemicals Agency, 
2009). 

Despite the fact that the use of pesticides has not decreased during the 
past few decades, farmers have a number of reasons to minimise their use of 
pesticides. The cost of spraying a field involves not only the cost of the 
pesticides, but also the labour, machine and timeliness costs, i.e. the cost of 
delaying other operations in the field while occupying labour and machines 
for plant protection. Minimising the consumption of plant protection 
products per unit area is also desirable, in order to minimise transport and 
refilling time. 

When using conventional spraying techniques, an obvious priority is to 
target any unnecessary and careless use of pesticides, i.e. spraying where the 
actual need for plant protection is very low or the use of excessive doses. 
Experienced farmers with great knowledge about the control of diseases and 
weeds know that if their sprayer equipment is maintained and used correctly 
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and spraying is carried out under optimal conditions, the dose can often be 
reduced considerably in relation to general recommendations. For those 
highly competent farmers who take great care in optimising their arable 
production, there may not be much margin left to decrease doses or number 
of sprayings without jeopardising the economic outcome of their business. 
For this category an important limiting factor is the technology available for 
applying pesticides in the field. 

One technological advance that has the potential to further reduce 
pesticide usage is to apply pesticides site-specifically instead of uniformly, or 
in other words, applying precision agriculture to plant protection. For 
example in the case of weed control, the herbicide dose would then be 
adjusted according to differences in the total competitiveness of the weed 
flora relative to the crop as expressed by the yield. 

Precision agriculture, in the sense of varying actions and means of input 
according to site-specific variations in requirement within fields in order to 
further optimise arable production through more efficient use of resources, 
has been developing since the introduction of the first satellite-based global 
navigation system (GNS) in the late 1980s. In the early development of 
methodology for Site-Specific Agriculture (SSA), which in this case might 
be a more proper term to use, most attention was focused on the site-
specific application of mineral fertiliser using historical maps of yield and soil 
properties to estimate the variations in potential yield increase with respect 
to nitrogen application rate. 

In the case of plant protection, yield potential indicators such as historical 
yield maps or soil properties might not be equally suitable for use for 
estimating variations in e.g. weed density or fungal infection within a field. 
There are seasonal variations in the presence and distribution within fields of 
weeds and fungal pathogens, depending on weather, preceding crop, 
cultivation, time of drilling, etc. Systems for site-specific plant protection 
would preferably include estimations of the need for plant protection based 
on measurements in the crop at, or just prior to, the time of the actual plant 
protection operation. 

An approach suitable for this is measuring reflected light from the crop in 
the open field. This can be carried out either with spectral sensors, where 
radiometric measurements are made with the focus on high spectral quality 
and resolution, or with imaging sensors, allowing analysis of geometry. 
There are of course advanced measuring systems where the two principles 
are combined, but these generally come at a high cost for development and 
use in conventional arable production. Measuring reflected light has several 
advantages: The measurements can be made relatively rapidly, covering 
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large areas, and the sampling is non-destructive. The sensors that can be 
used have generally been developed in sectors other than agriculture, and 
instrumentation is often available at a relatively low cost. 

In order to use optical sensing technology as a measuring method in 
precision crop protection, appropriate agronomic variables such as weed 
density and fungi disease severity have to be estimated from basic sensor 
readings, which in this case is the measured light intensity. 

The choice of site-specific input for a plant protection operation, for 
example the site-specific dose within the field, is basically an optimisation 
problem where the most effective input is to be made on each location with 
regard to the cost of the operation and the yield income across the field. 
Looking at the concept of site-specific plant protection per se, as opposed to 
the conventional uniform plant husbandry where a constant input intensity 
is used across the whole field, it is also important for the farmer to know 
whether site-specific plant protection would result in an economic benefit 
in the first instance. Conversion to site-specific farming requires investment 
in equipment and machinery in order to apply a variable rate of input in the 
field and obtain and handle information about the status of the crop in fields 
on the farm. This additional investment cost has to be covered by increased 
income from the conversion from uniform to site-specific plant protection. 
Evaluating site-specific plant protection from practical experiments covering 
entire fields is expensive and difficult. Another method is to compare site-
specific and uniform cropping systems using a simulation model. If a field 
and the yield depending on the crop protection operation can be modelled, 
the result from site-specific and uniform strategies can be compared under 
exactly the same field and weather conditions and any site-specific and 
uniform strategy can be simulated. 

The two areas described above, the development of empirical methods 
for measuring site-specific crop protection and the simulation of site-specific 
plant protection strategies, have been identified as important research needs 
for the development of site-specific plant protection in Sweden and they 
were the main focus of the work in this thesis. 
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Literature review 

Optical sensors in plant protection 

Using measurements of reflected light as a method to investigate crop status 
in agricultural fields has advantages associated with its non-destructive nature 
and the fact it is possible to record reflected light quickly and cheaply. 

Techniques for recording reflected light have been available for more 
than a century using the photographic camera. For example, Brenchley 
(1968) and Wallen et al. (1975) used a photographic camera to track the 
occurrence and spread of potato late blight disease in areal images. 

Remote sensing, where large areas can be included in a single image, has 
the potential to be used for tasks such as field crop inventory, crop 
monitoring and yield forecasting. Numerous scientific reports on the subject 
of remote sensing have been published since the 1970s as a result of the 
launch of earth observation satellites with the ability to record multispectral 
images of the earth’s surface, beginning with Landsat 1 in 1972 (Morain, 
1998). 
From an agricultural point of view, the disadvantages with satellite remote 
sensing are that the time and frequency of the remotely sensed image data 
are limited to the satellite’s predefined time of overpass. The timing of crop 
protection operations in agricultural fields is often a matter of days and the 
cost of delayed spraying of pesticides can be significant. The possibility to 
record image data in visible and near infrared wavelength bands is also 
restricted by atmospheric conditions such as the presence of clouds. An 
alternative would be to use aerial image data from conventional airplanes or 
helicopters, but the timing of the image data would still be dependent on 
availability of the aircraft and weather conditions. In economic terms, the 
cost of using satellite or aerial image data for site-specific application of 
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pesticides, at least for single agricultural fields, would be relatively high 
compared with the potential profit. 

For plant protection actions such as conventional spraying of pesticides to 
control weeds, fungal diseases or insects, viewed as a system, ground- or 
vehicle-based sensor technology has several advantages, compared with 
aerial or satellite remote sensing: 
 The current status of the crop at the time of the actual plant 

protection input can be determined by measuring the crop status 
prior to the crop protection action or even by using sensors on the 
sprayer controlling the dosage in real time without being dependent 
on the availability of equipment, time of overpass for remote 
sensing platforms or atmospheric conditions.  

 The sensors can be optimised specifically for the crop protection 
action, both with respect to cost and efficiency. 

 Using close range sensing, at about 1-2 m above the ground, it is 
possible to use image analysis, i.e. imaging sensors (cameras) and 
analysis of geometric properties to enable, for example, the 
detection of weeds. 

Typical systems where sensors are intended for use include weed and fungi 
control by site-specific application of plant protection products. 

Spectral vegetation index sensors 

Using spectral sensors to detect the presence of any vegetation in the field, 
as opposed to bare soil or dead plant residues, can be useful in a situation 
where all remaining plants are regarded as weeds to be controlled, for 
example after harvest in the autumn or before seedbed preparation in a set-
aside field. The detection of vegetation is a fairly easy task. The spectral 
reflectance profile of vegetation has distinct characteristics, with generally 
low reflectance in visible wavelengths, where an absorption peak can be 
found in the red (R), and high reflectance in the near infrared (NIR) region 
from about 750 nm to 1300. Bare soil, on the other hand, has a rather 
featureless spectral characteristic in the visible NIR region, which can be 
described as a flat, constant increase in reflectance through the visible up to 
the near infrared wavelength regions (Guyot, 1990). This can be seen in 
Figure 7 in this thesis, where bare soil and vegetation spectral features are 
found at 0% and 100% plant biomass densities, respectively. 

A common way to quantify vegetation using spectral characteristics is to 
calculate a spectral vegetation index using ratios between reflectance in 
bands in the visible region, often in the red (R) and near infrared (NIR), 
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such as the ratio vegetation index: RVI = NIR/R (Jordan, 1969) or the 
normalised difference vegetation index: NDVI = (NIR-R)/(NIR+R) 
(Rouse et al., 1973). The intention with using RVI and NDVI was 
originally to cancel out variations due to sun angle or atmospheric 
conditions (Jordan, 1969; Rouse et al., 1973). Tucker (1979) evaluated red 
and NIR reflectance together with several forms of vegetation indices (RVI, 
NDVI, NIR and red difference and sum). He also included the 
corresponding indices using the green and red reflectance instead of the 
NIR and red band. Overall, the NIR and red reflectance combinations had 
the highest correlation to green leaf area and green leaf biomass. The index 
showing the highest significance was NDVI, followed by RVI. 

Spectral vegetation sensors where these spectral vegetation indices are 
produced can be constructed using optical filters and electronic light 
detectors. Such an optical construction is a fairly straightforward level of 
technology and components were developed and gradually became readily 
available at decreased cost from the 1970s onward. 

Hooper et al. (1976) constructed such a sensor which illuminated the 
ground and registered the response in two spectral bands in the near infrared 
and the visible wavelength range. Using electronic circuitry, a simple ratio 
spectral vegetation index was calculated. The intended use of the sensor was 
to detect occurrences of plants in row crops in order to implement 
automatic thinning of the crop. The sensor was mounted on a tractor, above 
the crop row in a field, and the signal was used for thinning operations in 
lettuce, cabbage and sugar beet. 

Haggar et al. (1983) used the same concept of a simpler and cost-effective 
design for a spectral sensor that measured outdoor natural light spectral 
vegetation reflectance ratio. In that study the sensor was mounted adjacent 
to the nozzle on a knapsack sprayer, and an electronic control unit switched 
on the flow to the spray nozzle when the spectral vegetation index exceeded 
a threshold value. In this way spraying was targeted to patches of vegetation, 
as opposed to bare soil. Further research by Haggar et al. (1984) showed that 
the sensor reading was highly correlated to green leaf biomass, showing 
variations in seedling density or development stage in the field, while 
measurements in different plant species showed small differences. Shropshire 
et al. (1991) evaluated an RVI sensor for quantifying and detecting weeds 
between field soybean rows. The results were promising, but the sensitivity 
to weed density and robustness was inadequate for use of the device as a 
targeting sensor for weed spraying. 

The sensors used by Haggar et al. (1983), Hooper et al. (1976) and 
Shropshire et al. (1991) only recorded radiance from the ground. The 
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method of using the ratio between a red and an NIR spectral band, instead 
of the absolute responses from the individual spectral bands, was said to 
decrease the influence of variations in sun elevation or the presence of 
clouds on the sensor response. However, investigations have shown that 
ambient conditions do affect the measured ratio vegetation index (see 
review by Tucker, 1980). 

In the search for spectral ratio vegetation sensors for estimating and 
detecting green vegetation density in the field, Mayhew et al. (1984) 
developed a cost-effective design using the latest advances in 
optoelectronics. Tests with this sensor showed that variations in ambient 
conditions, including cloud cover, were the greatest source of error for the 
technique. They concluded that it was necessary to make reference 
measurements on standardised ‘white’ plates in order to correct the sensor 
reading for variations in ambient conditions. 

Felton et al. (1991) took the concept of controlling herbicide spraying to 
aggregated weed patches using a spectral vegetation sensor together with a 
conventional agricultural sprayer, by mounting a spectral sensor in front of 
each nozzle on the boom. The sensor system measured both radiance from 
the ground at each sprayer nozzle and incident light from the sky in the 630 
to 670 nm band (R) and in the 835 to 870 nm (NIR). In this manner, the 
reflectance with respect to the ratio between radiance from the crop and 
irradiance from the sky could be determined. Using a threshold on the 
spectral sensor’s output, calculated as the ratio vegetation index (RVI), each 
nozzle was turned on when a weed patch was detected. In this way, 
spraying was eliminated in field areas with no or very sparse weed incidence. 

The system described by Felton et al. (1991) underwent further research 
and was developed into the commercial system Detect Spray for weed 
control on set-aside land or from harvest up to emergence of the crop (Duff, 
1993; Felton, 1995; Blackshaw et al., 1998). 

Using the sun as an external light source in sensor systems for plant 
protection (e.g. Felton et al., 1991) enabled a relatively simple and cost 
effective design. The disadvantage with these so-called passive systems was 
that the use was limited to the presence of daylight. Sensor systems for plant 
protection at night-time require active sensors that use an internal light 
source. 

Wartenberg and Dammer (2000) constructed such a weed sensor for 
crop-free situations, which used an internal light source and a line sensor for 
scanning a transverse line on the ground with relatively high resolution. The 
WeedSeekerTM and the GreenSeekerTM, from NTech Industries Inc. USA, 
are commercialised sensor systems for spot or patch spraying weeds (Barrett, 
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1996) and for detection of crop nitrogen stress (Inman et al., 2005) that use 
technologies with an internal source of modulated light, i.e. emitting light 
pulses with high frequency and measuring the reflection in the same 
frequency. Another system that also registers spectral vegetation ratio index 
using a system for internal modulated light is the CropCircleTM from 
Holland Scientific (Holland et al., 2004; Lamb et al., 2009). 

Merritt et al. (1994) also evaluated a system for controlling spraying of 
weed patches in the field which, like that of Felton et al. (1991), had R and 
NIR band spectral sensors mounted in front of each nozzle on a boom 
sprayer. However, this sensor calculated the normalised difference 
vegetation index (NDVI) instead of the simple ratio vegetation index (RVI). 
In an evaluation of reflectance vegetation indices by Nitsch et al. (1991), the 
normalised difference index (NDVI) was determined to be more suitable for 
estimating green vegetation cover in the field in comparison with using the 
RVI index. Each sensor developed by Merritt et al. (1994) also consisted of 
five individual ‘sub sensors’ arranged in an array along the boom. This 
enabled the weed detection to be carried out with a resolution of 5 pixels 
instead of one unary area in front of each nozzle. The advantage was that 
the detection threshold was lower than in e.g. the system devised by Felton 
et al. (1991). This could be important in weed control because, at least for 
the case of foliar-acting herbicides, the objective would be to prevent the 
growth of any small weed seedlings that would otherwise continue to grow 
and cause significant yield loss. 

Another technique to improve the ability to detect small weeds is to scan 
the ground in transverse lines rather than an area like the system described 
by Wartenberg and Dammer (2000) and Barrett (1996).  

Field multispectral sensors 

Taking the development of crop sensors a step further from using one-
dimensional spectral vegetation indices, research has been done on designing 
sensors using several spectral bands. Such sensors, with up to 10   spectral 
bands, are generally referred to as multispectral sensors. Much of the 
scientific work has focused on the proper choice of spectral bands and on 
enabling the device to transform the spectral readings to usable biological 
properties, such as weed density or the level of fungal infection. 

Brown et al. (1994) measured hyperspectral reflectance within the range 
400 to 900 nm, with 2.5 nm c-c spectral bands, in field stands of seven weed 
species. Using these weed species classes, statistical analysis showed best 
separability for the green reflectance band, centred at 550 nm, and within 
the near infrared region. In a choice between available optical filters, Brown 
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et al. (1994) selected four spectral bands at 440, 530, 650 nm and above 760 
nm. They then used the optical filters to acquire multispectral images from a 
video camera at about 10 m above the ground using a ground-based 
platform and at 500-750 m altitude using an aircraft. Weed patches in the 
digital images could be separated using supervised classification. 

Vrindts and de Baerdemaeker (1997) measured reflectance spectra within 
the 200-2000 nm wavelength range from leaves of potato, beet and maize 
crops and from several weed species. They selected up to four spectral bands 
in the spectral range and showed high correlation using linear band 
combinations. 

Broge and Leblanc (2000) compared and evaluated a number of 
previously reported spectral vegetation indices for estimation of leaf area 
index and chlorophyll content. Reviews of earlier reports on spectral 
vegetation indices can be found in Baret and Guyot (1991) and Bannari et 
al. (1995). 

Wang et al. (2001) investigated the choice of spectral band reflectance in 
a data sample of five crops and 30 weed species in a laboratory setup. 
Through statistical analysis between classes of crop, weed and soil, they 
selected five spectral wavelengths bands to be used in a weed sensor design. 
From these spectral bands four normalised difference indices were 
calculated, basically equivalent to NDVI, using the two spectral band 
combinations at {614;546}, {676;546}, {676;496} nm and {752;676} nm. 
Using a training dataset, the discrimination levels in a validation dataset 
between classes of weed, crop and soil were shown to be generally high.  

Field hyperspectral spectral sensors 

As developments in electronics and optics progressed, the instrumentation 
for measuring reflectance with increased spectral resolution became 
successively more portable and affordable. The term hyperspectral is used 
here for sensors and data with more than 10 spectral bands. 

Munakata and Shibayama (1985) constructed a spectroradiometer system 
for field measurements using a monochromator, a rotating prism, which 
could measure the wavelength region from 400 to 2500 nm at a speed of 
100 nm per minutes. This experimental measuring system was quite heavy 
and it had to be mounted on substantial machinery or a crane. Using double 
light inputs, both reflected light and incident natural light reflected on a 
white standard plate could be measured for each wavelength. Measurements 
at 50 nm intervals of one spectrum from 500 nm to 2200 nm in a rice crop 
took 25 minutes (Shibayama and Munakata, 1986a). Shibayama and 
Munakata (1986b) used the spectrometer to make measurements at 20 nm 
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wavelength intervals. Shibayama et al. (1986) developed a more portable 
spectrometer, with a monochromator sensor system, with improved field 
usability. The spectral range of measurement was 400 to 1200 nm in 10 nm 
steps. The time consumption for one spectra measurement was 50-60 s. 

Later, more portable and cheaper instrumentation became available 
where hyperspectral reflectance could be measured using technology that 
allowed faster spectral scanning without moving mechanical parts (see for 
example Müller et al., 2008). 

One common hyperspectral analysis method is to search hyperspectral 
data for narrowband spectral vegetation indices (SVI) where a single or two 
or three band combinations, using ratios or linear combinations, are analysed 
and compared with regard to high correlation to field experimental data. 

Such analysis carried out by Müller et al. (2008) in oilseed rape identified 
the ratio of bands 740 to 750 nm and 740 to 780 nm for use to describe 
biomass and development-related variables. Shwetank et al. (2010) reviewed 
hyperspectral SVI methods used for analysing rice biomass and 
discriminating rice cultivars. Zhang et al. (2009) followed crop development 
in a cotton and soybean field using hyperspectral vegetation indices, while 
Thenkabail et al. (2000) used hyperspectral indices to predict biomass, leaf 
area index, plant height and yield in cotton, potato, soybeans, corn and 
sunflower. 

Hyperspectral SVI studies have also been carried out on plant disease 
severity. Apan et al. (2003) tested numerous published and new spectral 
vegetation indices, mostly normalised difference ratios using two or three 
spectral bands against a sugarcane fungi disease. Laudien et al. (2004) used 
hyperspectral remote sensing data to detect fungal disease in sugar beet, 
while Delalieux et al. (2009) showed a correlation between hyperspectral 
index and apple scab infection. 

Similar studies using narrowband indices on other symptoms showing 
nitrogen and water status have been reported by Strachan et al. (2002) and 
Yao et al. (2010). 

Analysis based on the selection of significant bands from a hyperspectral 
reflectance dataset does not utilise the whole spectral range of the data. A 
method for analysing the entire spectral range of hyperspectral crop 
reflectance is ‘spectral unmixing’. This method has been used for the analysis 
of stress in wheat (Lelong et al., 1998) and cotton (Fitzgerald et al., 2004). 
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Evaluation of site-specific plant protection 

Evaluation in terms of efficiency and resource usage of systems for site-
specific plant protection systems versus conventional uniform field 
operations can be done in two principally different ways: either by 
evaluating the performance of an actual executed site-specific field 
operation; or by using a model to estimate or simulate site-specific plant 
protection. Most studies on the evaluation of site-specific plant protection 
have been done on weed control. 

Regarding the use of spectral vegetation index sensors developed for 
controlling spraying to weeds in a situation where all green vegetation can 
be regarded as the object of control (for example between crop rows, before 
emergence of the crop, on set-aside land, or after harvest of an arable crop) 
such as those reported by Hooper et al. (1976), Haggar et al. (1983) and 
Felton et al. (1991), the evaluation of herbicide use and weed control 
efficiency is a relatively straightforward task. Applications of spectral 
vegetation index weed sensors can result in significant herbicide reductions: 
Biller (1998), using the DetectSpray system (see above), reported 48% 
average herbicide reduction for weed control on 30-70% of a 
conventionally tilled field, while Felton (1995) reported herbicide 
reductions of up to 90%. 

Dammer and Wartenberg (2007) evaluated the use of the weed sensor 
reported by Wartenberg and Dammer (2000) over a four year period. The 
sensor was actually used to control the herbicide dose in cereal and pea 
crops by directing it at the crop-free tramlines, and assuming the same weed 
density in the neighbouring crop. An average herbicide reduction of 24% 
was found for a minimum dose representing 50% of the standard rate. 

The detection or quantification of the in-field variation in weeds is an 
important part of a system for site-specific weed control, but not the only 
one. For the case of conventional agriculture, the actual parameter to decide 
before spraying is the herbicide dose. In the case of weed spraying in a crop-
free situation as described above, a straight-forward method is to use a 
threshold on the weed sensor signal to turn the spraying on or off. At least 
for the decision of the site-specific herbicide dose when spraying in a 
growing crop, a more appropriate way would be to estimate the effect of 
the dose on the final yield. 

Christensen et al. (2003) developed and tested a model for site-specific 
dose estimation based on weed species composition and weed density using 
a competition model, a dose response model and a model for economic 
optimisation. In field trials, they did not find any significant yield reduction 
on reducing the herbicide dose from 34 to 55%. 
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Lamastus-Stanford and Shaw (2004) used a decision support model to 
compare uniform and site-specific weed control and found that the latter 
resulted in an increased net return. 

Kim et al. (2002) used a dose response model together with a weed crop 
competition model in order to estimate recommendations on uniform 
herbicide dose.  

Concluding remarks 

One area not entirely covered in previously published studies is the 
estimation of crop status in site-specific systems for plant protection using 
hyperspectral reflectance. This includes in particular objective analysis of 
hyperspectral reflectance data in a way that takes the whole spectra into 
account instead of selecting a few spectral bands in a high spectral resolution 
dataset. 

Another topic where there is a need for additional research is the 
development and use of models for site-specific plant protection. One task 
would be to estimate the required site-specific dose within a field. Another 
important use of a simulation model is the objective and unrestricted 
evaluation of site-specific plant protection in order to estimate the potential 
profitability of site-specific plant protection in comparison with 
conventional uniform application of plant protection products. This is 
important to know in order to motivate investments in machinery and 
information when converting to site-specific application of plant protection 
products.     
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Objectives 

The overall objective of this thesis was to increase knowledge on how to 
optimise site-specific plant protection in arable production with respect to 
minimised use of inputs, while maintaining a high yield level. The approach 
involved developing methods for measuring crop status parameters and 
modelling a system for site-specific plant protection. 

The scope of this thesis is limited to developing methodology for 
estimating the site-specific minimum need for plant protection products 
based on optical measurements in the field. 

Specific objectives 

Specific objectives of this work were to: 
 Develop a method for instantaneous measurement of hyperspectral 

reflectance, using two diode array spectrometers to simultaneously 
measure solar irradiance from the sky and the radiance reflected 
from the crop (Paper I). 

 Use and evaluate a multispectral analysis method called Feature 
Vector Based Analysis (FVBA) to quantify the fungal disease severity 
in a wheat crop (Paper II). 

 Present and evaluate a multivariate method based on an iterative 
normalisation procedure, further developed from FVBA, for 
objective hyperspectral analysis in the examination of how different 
parts of the reflectance spectrum are affected by crop parameters 
such as disease severity and aboveground plant density (Paper III). 

 Present a model with which the differences between site-specific 
and uniform application of plant protection products can be 
estimated in such a way that the potential profitability of using site-
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The underlying motives for this work were to improve the economic 
outcome for the farmer and to minimise the negative impact on 
surrounding ecosystems and the environment through reducing the use of 
artificial pesticides and energy. 

The definition of plant protection in this study is conventional 
agricultural production using plant protection products to control weeds and 
fungal infection. Although most plant protection products used in 
conventional agriculture are based on synthetic chemical agents (pesticides), 
the results presented in this thesis are applicable to plant protection products 
based on other types of active ingredients: biological organisms and natural 
or physically acting substances. 

The work on quantifying the optimal input and evaluating uniform and 
site-specific strategies for plant protection were specifically intended for 
conventional farming using pesticides. However, the definition of plant 
protection system in this work could also be extended to other weed control 
measures such as mechanical or thermal weeding, as long as these involve 
direct field operations in the crop. 

Structure of the work 

The work in this thesis deals with different parts of the site-specific plant 
protection system. Site-specific plant protection is defined here as a system 
where crop status is measured, whereupon the required dose is estimated 
and then applied in the field. In this work a spectral sensor was used to 
measure the site-specific crop status. This involved recording  hyperspectral 
reflectance in the field, combined with hyperspectral analysis in order to 
estimate crop status, e.g. degree of plant disease severity. Using the estimated 
crop status and a model on how the competitive effect on the crop depends 
on the plant protection dose, the site-specific dose within the field can be 
decided. The next stage is to apply this dose in the field. Methods for 
applying doses site-specifically in the field were not examined in this thesis.  

Looking at these components of the site-specific plant protection system, 
estimation of site-specific crop status and decision-making on the site-
specific dose were identified as essential parts of the system. 

Knowing what dose to apply on each spot in the field is fundamental for 
the whole concept. The technology to apply a varying dose across a field 
already exists, and developing technology to estimate the required dose 
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within the field would give more incentives to develop technologies and 
methodologies for applying plant protection products at varying rates in  the 
field. Papers I-III deal with site-specific measurements in the crop. Paper I 
deals with instantaneous measurement of hyperspectral reflectance in the 
open field, while Papers II and III cover the hyperspectral analysis to 
estimate crop status from the measured hyperspectral reflectance values.  
Paper IV deals with decision-making regarding the site-specific dose based 
on measured crop status using a model developed for site-specific plant 
protection across the field (Figure 1). 

Converting from conventional farming, where plant protection products 
are applied uniformly across the field, to site-specific application of 
pesticides would require investments in machinery and technology and 
increase the cost of advisory and information services. These costs are 
assumed to be outweighed by increased income or decreased production 
costs. Having a tool to evaluate site-specific plant protection in comparison 
with conventional uniform application of pesticides would be a valuable 
tool for farmers and the advisory services. Paper IV presents a method, based 
on the model developed here for site-specific plant protection, for objective 
comparisons between site-specific and uniform plant protection. 

 

Agricultural crop 

Measuring 
hyperspectral 
reflectance 

Paper I 

Hyperspectral 
analysis - estimating 

crop status 

Paper II, III 

Estimating the 
required site-
specific dose 

Paper IV 

Applying the 
required site-
specific dose 

 

 
Figure 1. Subject area of Papers I-IV in the system for site-specific plant protection. 
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Materials and methods 

The general approach was to develop measurement and analysis methods 
that can be used in decision-making and evaluation of rational and efficient 
site-specific use of plant protection products in agricultural arable 
production. 

The work in this thesis consisted of developing: 
 A method for instantaneous crop reflectance measurements 
 Multispectral analysis methods for the estimation of fungal infection 
 A model for deciding the dose of the plant protection product and 

for evaluation of site-specific weed control 

One of the defined situations of end use of the work in this thesis is the 
direct measurement of hyperspectral reflectance in a growing crop within a 
relatively limited period prior to the time of the plant protection input. This 
influenced the choice of methodology in each part of the thesis to those that 
enable fast and automatic implementation. The expected time frame from 
reflectance measurement to application of the plant protection product is 
from one week up to a real time with fraction-of-a-second implementation 
of the system from reflectance measurement to the application of the plant 
protection product. 

The final part of this thesis was to develop an objective method for 
comparing site-specific and uniform application of plant protection 
products. This affected the choice of methods used, especially for comparing 
the weed control effect of the two approaches. 

A method for reflectance measurement in the open field 

Using a sensor to record reflected light, which in this thesis is defined as 
electromagnetic radiation in the wavelength range 360-900 nm, has obvious 
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advantages compared with alternative sampling methods such as physical 
sampling or estimations through visual assessment. Compared with other 
objective sampling methods, the reflectance sensing method is non-
destructive and it is possible to construct cheap and fast measuring systems. 

The hyperspectral reflectance measuring sensor system constructed in this 
thesis (Paper I) allows instantaneous crop reflectance measurements in the 
open field. Its main electro-optical components consist of products readily 
available on the market. 

The measuring system for hyperspectral reflectance consists of both 
instrumentation and signal processing methodology. The system was 
developed here to fulfil the following requirements to enable automatic and 
instantaneous reflectance spectra recordings to be used to estimate crop 
biophysical and stress status: 
 A spectral range covering the visible and adjacent infrared 

wavelength range (Aparicio et al., 2000; Kumar et al., 2002) 
 Instantaneous recording of spectral data 
 Correction for variations in irradiation intensity 
 Full utilisation of the radiometric range of measurement 

Instrumentation 

In order to measure the radiated spectra in a sufficiently fast manner, in the 
order of fractions of a second, the main components of the instrument were 
two rapid spectra-scanning diode array spectrometer modules. The spectral 
range for the spectrometer modules was 360-900 nm, which covered the 
wavelength region of visible continuing into the near infrared region, 
covering many of the significant wavebands regions as reported in the 
literature review. These off-the-shelf spectrometer modules had a fibre cable 
light input and an electronic signal interface where radiometric spectra could 
be acquired and output. The internal optoelectronics consisted of a grating 
which projected light onto a diode array enabling the recording of 
radiometric spectra without any moving mechanical parts. The time 
consumption for each spectral recording was mainly limited by the 
integration time, i.e. the time of light exposure (around 70 ms in clear 
daylight for the complete sensor developed here). The time consumption 
for analogue to digital conversion, data transfer, signal processing and 
reflectance calculation depends on the choice of hardware and data transfer 
procedure, but in this case was of less significance. 

The method developed for crop reflectance measurements was based on 
passive measurements, i.e. measurements were made with no other light 
source apart from prevailing ambient light. In order to measure the 
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reflectance in an instantaneous procedure, radiance from the ground and 
irradiance from the sky were recorded simultaneously using one upwards 
directed spectrometer module (upsensor) to record global hemispherical 
irradiance, together with another downwards directed spectrometer module 
(downsensor) to record radiance from the crop in the field.  

A sensor (see Figure 2A) was constructed which included the described 
upsensor and downsensor and circuitry (Figure 2E) for spectrometer module 
control, signal processing, analogue to digital conversion and 
communication interface. 

To measure the global hemispherical irradiance, the upsensor collimator 
consisted of an opal glass mounted at the light input of the fibre cable 
(Figure 2C). The downsensor collimator consisted of a lens which projected 
the radiance from the ground on the light input of the other spectrometer 
module fibre cable, restricting the field of view (FOV) to about 20° (Figure 
2D). 

For the control of the spectrometer modules, the analogue to digital 
conversion and the communication to and data transfer from the 
spectrometer sensor system, a software program was written for a personal 
computer (PC) platform (see Figure 2F), which was connected to the 
communications interface of the sensor.  

The measurement of reflectance spectra from crops received some 
attention, because of the varying radiometric response in the spectral range 
from 360 nm, at the start of the visible waveband range, to 900 nm in the 
near infrared. A typical vegetation reflectance spectra is normally around 5% 
in the visible range, because of photosynthetic activity, while the reflectance 
in the near infrared can reach 60% (Guyot, 1990). Because of these 
radiometric differences in measured spectra, the radiometric resolution will 
affect the measurement uncertainty more where the reflectance is low, i.e. in 
photosynthetically active bands. The maximum level of radiometric 
resolution, on the other hand, is defined from the maximum radiometric 
value in the spectra, which in the case of vegetation spectra are found in the 
near infrared. To minimise the risk of insufficient utilisation of the range of 
measurement when using unary integration time, especially in the low 
reflecting visible spectral bands, the spectral bands with the highest 
radiometric response should utilise as much of the whole radiometric range 
of measurement as possible. In this case, a procedure programmed in the 
digital control software connected to the sensor with the spectrometer 
modules automatically changed the integration time if necessary to maintain 
utilisation of the range of measurement between a defined percentage, 
normally between 90% and 100%. 
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Reflectance calculation 

Using simultaneous measurements of irradiance and radiance, the reflectance 
R is defined by: 


Rad

Irr

I
R

I
  [1] 

where IIrr is the irradiance from the sky, in this case recorded by the 
upsensor, and IRad is the radiance from the ground, recorded by the 
downsensor. The reflectance R is a vector {R1, ..., Ri, ..., Rn} where i is the 
spectral band. 

In order to calculate the reflectance from the spectral raw data in the first 
place, the upsensor and downsensor have to be calibrated to each other. 
Otherwise Equation [1], using the ratio downsensor and upsensor readings, 
would not be valid. The calibration procedure included measurements of a 
constant light source with both the upsensor and downsensor in a manner 
that made measurements from the upsensor and downsensor independent of 
the choice of integration time. This procedure is described in detail in Paper 
I. 

The centre wavelength λd

i of the spectral channel i for the downsensor is 
not equal to the corresponding central wavelength λu

i of the upsensor 
channel. In order to calculate the reflectance in channel i of the downsensor, 
it is therefore necessary to interpolate irradiance readings between two 
upsensor spectral bands, in order to estimate the irradiance for the 
corresponding central wavelength (λd

i) of the downsensor. Therefore 
calculating the reflectance from downsensor and upsensor readings is not as 
straightforward as indicated in Equation [1]. 

To calculate the reflectance from spectral downsensor and upsensor 
readings, Equation [2] was used: 
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where λd

i is the central wavelength in the downsensor channel i, ui and di are 
radiometric raw data from the corresponding upsensor and downsensor, and 
t is the integration time. The other parameters in Equation [2] are constants; 
{u0, ph, pl, d0, kh, kl} are derived from the calibration procedure and q is 
calculated as: 
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where λu

n and λu

n+1 are the closest central wavelengths under and over that of 
the downsensor λd

i. 
Thus, to calculate the reflectance R(λd

i) in Equation [2], the only variables 
that need to be recorded at the time and location of the reflectance sampling 
are u, d and t. The derivation of Equation [2] is explained in further detail 
in Paper I. 

Field experimental dataset 

In order to show and validate the functionality of the spectrometer sensor 
system, measurements of hyperspectral reflectance in the open field were 
made in spring wheat (Tríticum aestívum L.) on 24 July in Uppsala, Sweden. 
The sensor was held at about 2 m height above the ground, at nadir 
position, which gave a circular target area on the ground of about 0.25 m² 
(with a diameter of about 70 cm). Reflectance measurements were made 
within a couple of hours before and after noon. The reflectance 
measurements, using the procedure and instrumentation described above, 
resulted in 164 spectral bands ranging from 360 to 900 nm. 

The development stage of the spring wheat crop according to scale 
developed by Zadoks et al. (1974) was defined as early dough, decimal code 
83. In a 1.5 m by 1.5 m plot, the crop was manually thinned to produce 
different plant density levels.  Randomly selected shoots in the plot were cut 
at ground level, removed from the canopy and weighed between reflectance 
measurements. 
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FOV: 180°

C 

 
Figure 2. The spectroradiometer sensor system. The external sensor (A) comprises the 
spectrometer modules (B) with fibre optic inputs connecting the upwards directed sky 
irradiance collimator (C) and the downwards directed crop radiance lens system (D), both 
with defined field of view (FOV). The signals from the spectrometer modules were 
connected to an electronic board (E) for signal processing and communication with a 
personal computer (F). 

Estimation of fungal infection using multispectral analysis  

Although a spectrometer sensor system such as that described in the previous 
section produces an online measurement within a fraction of a second, it 
measures reflected light while the desired quantity would be the least 
required pesticide dose. One of the most important parameters for a sensing 
system estimating the site-specific need for a pesticide dose is the ability to 
estimate the presence of the object of control, i.e. weed frequency or the 
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level of fungal disease severity in the crop. The economic value of a plant 
protection field operation is ultimately very much dependent on the effect 
on crop yield. A valid strategy would be to use estimated economic 
threshold, measured e.g. as weeds per m² or the severity of symptoms on 
leaves from fungal infection, as in the conventional uniform spray/not spray 
decision, but on a site-specific scale. 

Field experiments were conducted in which data on hyperspectral 
reflectance (using the spectrometer method described in the previous 
section), leaf area of fungal infection and plant mass were collected. This 
work is described in Papers II and III.  

Field experiments 

The field experimental data used in the development of the multispectral 
analysis method originated from two field trials, both near Uppsala, Sweden 
(59o53’N, 17o38’E), one in spring wheat (Tríticum aestívum) in 1998 and one 
in barley (Hordeum dístichon) in 2003. 

Hyperspectral crop reflectance in the field experiments was measured 
using the sensor and method described in the former section, in 164 bands 
in the spectral range 360-900 nm. Reflectance measurements were made 
within three hours before and after noon. 

The spring wheat trial consisted of an area in the field of 100 m ×50 m 
where 0.25 m² circular test areas were randomly selected for spectral 
measurements and assessments of disease severity on 17, 27 and 30 July and 
10 and 17 August. In total, 120 observations were made. In the disease 
severity sample, 30 fully developed shoots per observation were randomly 
selected in the 0.25 m² test areas and visual assessments were made of the 
percentage necrosis of the three top leaves. The mean value was calculated 
for these three leaves on all shoots. The field was naturally infected and the 
predominant fungal pathogen was Drechslera tritici-repenti, which causes tan 
spot disease. 

In the barley trial, reflectance measurements were made and 
aboveground plant mass (fresh weight) collected on 23, 25 and 26 June. A 
thinning procedure was used where about half the standing shoots were 
evenly selected and cut at ground level within a 0.88 m² area between 
reflectance measurements. The number of sample areas on each date was 10 
to 15. In the last cut, all remaining shoots were removed from the sampling 
area. Hyperspectral reflectance and corresponding plant mass from each 
sample spot were recorded for four levels ranging from 100% plant coverage 
to 100% bare soil exposure. Each spot was measured several times at each 
plant density level. The total number of reflectance measurements was 820. 
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The crop was at stem elongation development stage (before booting stage). 
Spectral measurements were made during both sunlit and overcast sky 
conditions. In about 29% of all reflectance measurements, the sun was more 
or less covered by clouds. 

Hyperspectral analysis method 

The hyperspectral analysis method consisted of two phases, a training and a 
classification phase. In the training phase a random subset of the 
hyperspectral field data was used to create a classification model. In the 
classification phase, the classification model was used on new hyperspectral 
reflectance measurements to estimate disease severity. 

Two hyperspectral analysis methods were included in this thesis:  Feature 
Vector Based Analysis (FVBA) and Iterative Normalisation Based Analysis 
(INBA). FVBA was used on the data from the wheat trial and INBA on the 
wheat data and the barley data. The FVBA method was first developed by 
Hamid Muhammed (2001) and Hamid Muhammed et al. (2001). FVBA had 
not been applied on field hyperspectral measurements prior to Paper II in 
this thesis. 

Hamid Muhammed (2005) describes the use of a slightly different FVBA 
method on the same disease severity dataset used in Paper II in this thesis. 
The normalisation procedure in Hamid Muhammed (2005) comprised three 
consecutive normalisations instead of two. INBA was a new method for 
hyperspectral analysis presented in Paper III. 

Training phase 

Feature vector based analysis (FVBA) was used to analyse disease severity in 
the wheat dataset. The FVBA analysis training procedure consisted of a 
procedure with: 
 Pre-processing of the hyperspectral data using a normalisation 

procedure, i.e. transformation to zero mean and unit variance 
 Extraction of the spectral linear component that best describes the 

influence of disease severity on the normalised hyperspectral 
reflectance using PCA and ICA. 

The normalisation procedure in the pre-processing step, also called 
whitening, enabled optimal functionality in the following extraction of ICA 
and PCA components. The variance in measured crop reflectance in spectral 
bands can differ significantly between different wavelength regions. The 
normalisation procedure takes the measured differences in all spectral bands 
of the same magnitude in the analysis. In principle the normalisation can be 
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done in two ways, spectral or band-wise. The spectral normalisation 
subtracts each measured spectra from its mean value, and divides the result 
by the corresponding standard deviation. The band-wise normalisation does 
the same procedure, but within each spectral band. For the FVBA analysis, 
two combinations of normalisation were used: spectral followed by band-
wise, or vice versa. 

Principal component analysis (PCA) and independent component 
analysis (ICA) were used to extract linear components from the normalised 
hyperspectral dataset. The PCA and ICA analysis extracts the directions and 
magnitude of the vectors that describe the main variability in the dataset. In 
the case of PCA, all the components are perpendicular. ICA is a similar 
linear transformation analysis, also called blind source separation, where the 
components do not have the restriction of perpendicularity. The 
implementation of ICA used in this analysis was Fast ICA. 

A genetic optimisation algorithm was used to find optimal linear 
combinations of the PCA and ICA components. This algorithm simply tries 
a number of linear combinations chosen according to a mechanism that 
imitates biological genetic evolution (see Goldberg (1989) for details about 
genetic algorithms). The resulting spectral component acted like a signature 
of the spectral characteristics of the stress effects caused by the disease.  

The principal steps in the two FVBA analysis methods are shown in 
Figures 3 and 4, where procedures are identical with the exception of 
having the input dataset arranged with measured spectra in rows for the 
spectral normalisation and spectral bands in rows for the band-wise 
normalisation approach. 
In the iterative normalisation based analysis (INBA), the pre-processing 
procedure was a normalisation procedure where the hyperspectral data were 
transformed to zero mean and unit variance, as in the pre-processing step for 
FVBA described above. However, the normalisation procedure in the 
INBA case consisted of a sequence of altering spectral and band-wise 
normalisations. This was simply performed by transposing and re-
normalising the hyperspectral dataset a number of times, until a stationary 
result was obtained (Figure 5). The last step in the training phase for INBA 
consisted solely of the creation of a reference dataset using the iterative 
normalisation procedure on the training dataset. To visualise the spectral 
signature, corresponding to the FVBA case, a first order linear 
transformation model between the hyperspectral reference dataset and the 
disease severity in the training dataset was estimated. 
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Figure 3. FVBA on input data of spectra y1 , y2 ... ym using the spectral normalisation 
approach 
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Figure 4. FVBA on input data of spectra y1 , y2 ... ym using the band-wise normalisation 
approach. 

 

 

Normalisation 
(rows) 

Spectras: 
y1   y2    ym 

In
p

u
t 

d
at

a 
s

am
p

le
s 



 

Transposing 

 

Reference 
dataset 



y1 
y2 
: 

ym 

Input data samples 

S
p

ec
tr

as
 

 
Figure 5. INBA on hyperspectral dataset using an iterative normalisation procedure with 
altering spectral and band-wise normalisations of the hyperspectral dataset 

Classification 

To classify new hyperspectral measurements, using either FVBA or INBA, 
the first step was to apply the corresponding normalisation procedure in 
exactly the same way as in the training phase for the corresponding analysis 
method. This involves using the same coefficients derived when performing 
the normalisation on the training data. 
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In FVBA, the correlation between normalised unknown hyperspectral 
data and the spectral signature component was used to estimate disease 
severity from new hyperspectral reflectance measurements. 

To estimate the disease severity and plant biomass density in the INBA 
case, a classification procedure using nearest neighbour analysis of unknown 
hyperspectral measurements in relation to the reference dataset was used. In 
the nearest neighbour classifier, where each hyperspectral measurement in 
the reference dataset was compared with the unknown data vectors, the 
correlation coefficient (COR) and the sum of squared differences (SSD) 
were used as distance measures. Nearest neighbours were those with 
maximum COR or with minimum SSD. 

A model for site-specific weed control 

Given that yield loss inducing organisms in the crop, such as weeds or fungi, 
can be measured, the optimal site-specific pesticide dose becomes an 
optimisation problem where the outcome of the cost of pesticide application 
and the income from the harvested crop is maximised.  

In order to make objective evaluations of site-specific weed control with 
respect to total herbicide usage in comparison with uniform herbicide 
spraying, an empirical model for site-specific weed control was developed to 
estimate the competitive effect of the weed population on the crop for three 
weed species (Paper IV). 

Field experiment 

The field experiment was carried out in spring barley at a location just 
outside Uppsala, Sweden. In order to study the weed competition 
behaviour in a dose response perspective, four different plots were sprayed 
using the herbicide Ariane S (40 g L-1 Fluroxypyr, 20 g L-1 Clopyralid, 200 g 
L-1 MCPA; DowElanco) at four different uniform doses. The doses were 
chosen relative to the recommended dose in Sweden (1.75 L ha-1), in order 
to include both a range around 20-40%, where most of the transition from 
zero to maximum effect was expected to take place, and a dose between 90 
and 100%, where the weed control effect should have been practically 
maximum. 

The plots in which the herbicide doses were sprayed were 100 m long 
and 4 m wide. Each plot received a constant uniform herbicide dose 
according to the plan, and each treatment was repeated in four plots. The 
herbicide spraying was carried out when the crop had 3-4 leaves unfolded. 
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The experimental sprayer had a 4 m boom equipped with eight 
conventional flat fan nozzles with 110° top angle and 50 cm spacing. 

The weed population was sampled at 50 predefined positions every 2 m 
along the plots, both one day prior to spraying and 30 days after spraying. 
On the first occasion, just prior to spraying the field trial, weed plant density 
was recorded by visual inspection in each of the 600 weed sampling subplots 
in the field experiment. 

The second weed population sampling was performed 30 days after 
spraying in the same weed sampling subplots used in the sampling procedure 
just prior to spraying. This time, weeds were cut at ground level and fresh 
weed biomass for each weed species was recorded. 

The model for simulating site-specific weed control 

The weed biomass 30 days after spraying was used as an estimation of the 
weed population’s competitive effect on the crop. In order to estimate the 
weed competitive effect depending on the initial weed density and the 
herbicide dose, a simulation model was constructed using a weed 
competition model and a dose response model. 

Based on a hyperbolic weed competition model by Swinton et al. (1994), 
the following model was used for estimating the weed competitive effect 
defined as the total weed biomass: 
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where w is the total sum of weed biomass [g m-2], wi is the biomass for each 
weed species (i) [g m-2] and fi is the initial weed density at the time of 
spraying [m-2]. The parameters Ii [g] and A [g m-2] describe the weed biomass 
growth depending on its initial weed density fi. At low weed densities 
towards zero, the weed biomass for an individual weed species i increase 
linearly with weed density: wi = Ii·fi. At high frequencies towards infinity, 
the weed density approaches an asymptotic limit which in the single weed 
species case would be equal to parameter A. 

 
An increased herbicide dose would decrease the values of the parameters 

I and A in Equation [4]. To describe the relationship between herbicide 
dose d and the response R on the weed population, a dose response function 
(Seefeldt, et al., 1995) was used: 
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where R0 and R1 are the values of R when d=0 and d→∞ respectively, and a 
and b describes the shape of the dose response function with respect to the 
position and the "sharpness" of the transition in effect from level R0 to R1 
along the dose axis. 

Using Equation [5], replacing R with the parameters A and I in Equation 
[4], a function for the total weed biomass w 30 days after spraying can be 
expressed: 
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The corresponding dose response parameters in Equation [5], {R0, R1, a, 
b}, for each of the parameters A and Ii was estimated numerically by 
minimising the square error between the estimated weed biomass w in 
Equation [6] and actual samples of weed biomass from the field experiment. 

Thus having all parameters: {I0i, I1i, aIi, bIi, A0, A1, aA, bA} (i = 1, 2, 3) 
defined, Equation [6] can be used to estimate the weed competitive effect, 
in terms of weed biomass growth after spraying, from the herbicide dose and 
an arbitrary mixture of weed population densities at the time of spraying. 

In this study, Equation [6] was used as a model to simulate site-specific 
weed control using the weed density dataset sampled at the time of spraying 
in the 0.7 ha field trial. Using this simulation model, uniform and site-
specific herbicide spraying could then be compared under exactly the same 
conditions.  

Comparison between site-specific and uniform weed control 

Using the simulation model described above based on Equation [6] and the 
weed frequency at the time of spraying, the resulting weed competitiveness 
from site-specific and uniform herbicide application was simulated. The site-
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specific dose used in this comparison was based on a predefined minimum 
weed control effect defined as the resulting total weed biomass 30 days after 
spraying. Assuming a maximum weed biomass, the least required site-
specific dose over a field area was calculated using the simulation model, i.e. 
Equation [6], and data on the weed density at the time of spraying. Site-
specific and uniform weed control, i.e. applying herbicides either minimised 
to the least required dose at each location in the field area or applied 
uniformly over the whole field area, were then compared in terms of the 
herbicide saving. 

The comparison between site-specific and uniform spraying depended on 
the value of the uniform dose. Two strategies for choosing the uniform dose 
were evaluated: 1) the recommended dose; and 2) the dose that resulted in 
the same weed biomass as in the site-specific case. The latter alternative with 
equal weed control effect required some attention, as it is not obvious how 
to compare the resulting weed biomass after site-specific spraying on one 
hand and uniform spraying on the other. Uniform spraying will result in 
both under- and over-dosage, which will induce a high degree of variation 
in weed biomass. 

One alternative would be to calculate the average weed biomass for 
uniform spraying. However, one could argue that the simple averaging of 
the weed control effect from uniform weed control would not be 
appropriate for use in the comparison with site-specific weed control, 
because the relationship between herbicide dose and crop yield loss is 
generally not linear, i.e. the crop yield loss does not decrease continually 
with increased dose. 

Instead, the dose response relationship of yield loss might be better 
described as a sigmoid curve, where most of the transition between the 
unsprayed crop yield loss and zero crop yield loss takes place within a 
limited dose interval. This dose response function, as mentioned earlier, can 
be described by Equation [5]. Figure 6 illustrates a fictive dose response 
relationship for crop yield loss. Full details of how this yield loss dose 
response relationship was obtained are given in Paper IV. 

On the dose response curve in Figure 6, a uniform dose was defined 
where most of the yield loss had been reduced. At this dose, it can be seen 
that there is a higher risk of crop yield losses from under-dosage on the 
‘high weed density’ areas in relation to the potential crop yield increase 
from over-dosage on the ‘low weed density’ areas (Figure 6). Over-dosage 
from this relatively low level of crop yield loss does not result in any greater 
crop yield increase. The weed density cannot be decreased much further if 
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the level is already near zero. In the case of under-dosage, there are no such 
technical limits on increased weed density. 

Instead of using the average weed effect from uniform herbicide dose, it 
would be more appropriate to calculate the uniform dose where a target 
weed biomass has been reached on the majority of the field. 

Thus, the comparison between site-specific and uniform herbicide weed 
control in this study was based on both a maximum weed biomass growth, 
representing a minimum weed competitive effect, and a proportion of the 
field area in the uniform application case, where the defined weed biomass 
threshold must be achieved. 
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Figure 6. Influence of variations in weed population density on yield loss. 
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Results 

Instantaneous measurement of field reflectance 

Using the portable spectroradiometer instrumentation system developed, 
configured as shown in Figure 2, spectral measurements were made in 
spring wheat with different plant densities. The time span of the spectral 
sampling was between 10:00 and 14:00 hours, during cloud-free sunlit 
conditions. 

The programmed procedure for integration time adjustment resulted in 
90-100% utilisation of the digital radiometric range of measurement, 
irrespective of sky irradiance and ground radiance conditions. During 
spectral measurements in cloud-free conditions at noon in June, the 
integration was automatically adjusted to about 70 ms. During stable 
weather conditions, few or no integration time adjustment iterations were 
made for subsequent reflectance measurements over field surfaces with 
similar crop characteristics, once the maximal radiometric output from the 
upsensor and downsensor was set within the desired range of utilisation. The 
time consumption for each spectral measurement was mainly limited by the 
integration time, and each scan was done in a fraction of a second. 

The calibration procedure, using the sun as a constant light standard, was 
performed once. Using Equation [2] the reflectance could then be calculated 
from instantaneous measurements of raw data {u, d, t} from the sensor. 

Figure 7 shows eight reflectance spectra for biomass densities ranging 
from the original unthinned crop, set to 100%, down to bare soil, 0%. The 
shape and behaviour of the reflectance spectra are in accordance with earlier 
studies (e.g. Deering, 1989). As the plant density decreases, the reflectance in 
the near infrared plateau, about 750 nm and higher, decreases and the 

 43 



reflectance under 700 nm, which covers the visible domain 400-700 nm 
where leaf absorption occurs, increases (Guyot, 1990). 
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Figure 7.  Reflectance spectra for a spring wheat crop, manually thinned to produce different 
plant density levels; , unthinned 100%; , 77.9%; , 57.8%; , 45.4%; 

, 31.9; , 18.1%; , 7.9%; , 0% 

Estimation of fungal infection using multispectral analysis  

The two datasets consisted of 120 and 823 hyperspectral crop reflectance 
data vectors of 164 spectral bands, with the corresponding measurements of 
disease severity and plant density, respectively. Only 12% of each of the 
datasets was randomly chosen to run the hyperspectral analysis procedure 
and build a reference dataset, to be used to classify the remaining data 
vectors. Figure 8 shows four hyperspectral data samples from the disease 
severity dataset, from about 0.6% up to about 76.1% leaf area necrosis, and 
five hyperspectral data samples from the plant density dataset. 
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Figure 8. Original hyperspectral data samples from the disease severity (left) and the plant 
density (right) dataset. 

FVBA                        

In the FVBA training phase, the randomly selected hyperspectral training 
dataset was first normalised, either using the ‘spectral + band-wise’ approach 
or the ‘band-wise + spectral’. Then PCA or ICA was applied, followed by 
the extraction of optimal combinations of the linear components. 

Figure 9 shows the resulting spectral signatures from the linear 
transformation model in the training phase, for the ‘spectral + band-wise’ 
approach and the ‘band-wise + spectral’ approach, when applying ICA to 
the hyperspectral data. Using these spectral signatures in the classification of 
new hyperspectral data gave the results shown in Figure 10, where the data 
are sorted with respect to disease severity. ICA and PCA gave approximately 
the same results. 

  
(a)                                                    (b) 

Figure 9. Spectral signatures resulting from the training phase: (a) the ‘spectral + band-wise’ 
approach; (b) the ‘band-wise + spectral’ approach. 
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(a)                                                             (b) 

Figure 10. Measured and estimated relative disease severity values: (a) the ‘spectral + band-
wise’ approach; (b) the ‘band-wise + spectral’ approach; , field measurements; , training 
data; o, results using training data;   (thick black), results using independent component 
analysis (ICA);  (thin black), results of polynomial fitting using one second order 
polynomial (polynomial fitting 1);   (grey), results of polynomial fitting using two second 
order polynomials (polynomial fitting 2). 

 
Figure 10 also shows the results of polynomial fitting of the ICA-based 
FVBA estimates to the corresponding field measurements of disease severity, 
using one second order polynomial (Figure 10: Polynomial fitting 1), and 
using two second order polynomials (Figure 10: Polynomial fitting 2); one 
polynomial for disease severity values which are less than 0.20 and another 
one for values greater than 0.20. In other words, the estimates are 
‘corrected’ by mapping them using certain polynomials. These polynomials 
are determined using only the training dataset by fitting the correlation 
results, between the resulting spectral signature from the training phase and 
the hyperspectral training data vectors, to the corresponding field 
measurements of disease severity. 

Figure 10 indicates that the ‘band-wise + spectral’ approach results in a 
more binary-shaped response than the ‘spectral + band-wise’ approach. In 
comparison, the results using the ‘spectral + band-wise’ approach, which are 
sorted in ascending order with respect to the corresponding field 
measurements, seem to form the same main curve shape as the field 
measurements (Figure 10). 

A comparison of the correlation coefficients, R2, when comparing the 
results of the various approaches using ICA or PCA with the corresponding 
field measurements, is presented in Table 1. Note that the same results are 
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obtained when using ICA and PCA. The results improved on using one 
polynomial fitting and normalising (i.e. whitening) the hyperspectral 
reflectance vectors, both spectral and band-wise, as can be seen from Table 
1. The highest correlation coefficient, 95.7%, was obtained using the 
‘spectral + band-wise’ approach and then mapping the results using two 
second order polynomials, one for values less than 0.20 and another for 
values greater than 0.20. However, the improvement resulting from using 
two-polynomial fitting seems to be caused just by increasing the degrees of 
freedom, since 100% fit can be achieved by simply using more polynomials. 

Table 1. Coefficients of determination R2 when comparing the results of FVBA classification to the 
corresponding disease severity. The results are presented for the one, two and no polynomial fitting cases 

Approach Number of polynomials 

  Nil One Two 

Spectral + band-wise 90.8 94.8 95.7 

Band-wise + spectral 92.3 94.4 94.4* 

Band-wise 88.6 88.6 93.5 

Spectral 88.2 88.4 88.4* 

: no additional improvement 

If a threshold of 0.20 is used in Figure 10 to distinguish between healthy and 
diseased crops, only two misclassifications are obtained for the ‘band-wise + 
spectral’ approach, i.e. the misclassification rate is less than 2%. Only one 
misclassification is obtained when using a threshold of 0.20 for the results of 
the ‘spectral + band-wise’ approach followed by 1-polynomial fitting. No 
misclassifications are obtained in the other cases in Figure 10. Moreover, in 
Figure 10a, despite the fluctuations in the results when compared with the 
corresponding field measurements, it seems possible to determine the 
relative values of disease severity. To discriminate between higher or lower 
relative disease severity, the ‘band-wise + spectral’ approach followed by 
correction using 2-polynomials fitting was used. Ignoring relatively small 
fluctuations, which have little influence on the general shape of the resulting 
curve, 80% accuracy was achieved. Note that in only about 8% of the 
observations, there is a deviation of about 0.15 from the corresponding field 
measurements. The deviation for the rest of the observations is less than 
0.05, i.e. relatively small, and can therefore be considered negligible. 

INBA                        

Following the iterative normalisation described in the training phase, the 
resulting normalised spectral dataset converges towards a certain final result, 
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which depends on whether the first normalisation was band-wise or spectral. 
This means that as in the FVBA case, there are two different final 
normalisation results. 

Figure 11 shows the best classification outcome for the disease severity 
case study, while Figure 12 shows the best classification outcome for the 
plant density case study. The results indicate that the same performance is 
achieved when using COR or SSD if the last normalisation used is spectral. 
The results are sorted in ascending order with respect to the corresponding 
field measurements in order to facilitate comparison and evaluation. The 
best results are obtained when using the ‘spectral + band-
wise + ... + spectral’ approach (‘SBS…BS’), with a coefficient of 
determination (R2) of 96.9% and 94.3% for the plant disease and the plant 
density case study, respectively. The results of the second ‘band–
wise + spectral + ... + spectral’ approach (‘BSB…BS’) have corresponding 
coefficients of determination (R2) of 91.9% and 93.6%. Table 2 presents 
these results, which are the mean values of 50 different classification tasks 
using different reference datasets, as well as the percentage of the 
classification results with certain minimum absolute errors (when comparing 
the results with the corresponding field measurements for each of the case 
studies). 

 
Figure 11. Best results of the disease severity case study (only one classification task) when 
starting with band-wise (left) and spectral (right) normalisation in the pre-processing step. 
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Figure 12. Best results of the plant density case study (only one classification task) when 
starting with band-wise (left) and spectral (right) normalisation in the pre-processing step. 

Table 2. Coefficients of determination (R2,%), and percentage (%) of the results with certain minimum 
absolute errors (error, %), when comparing the results with the corresponding field measurements. The 
values shown are the mean values of 50 different classification tasks using different reference datasets 

Percentage results with 
Approach R2,% 

error  5% error  10% error  20% 

‘SBS…BS’ 94.3 24.1 13.5 10.7 Disease severity  
case study ‘BSB…BS’ 93.6 28 15.1 12 

‘SBS…BS’ 96.9 22.5 4.5 0.9 Plant density 
case study ‘BSB…BS’ 91.9 28.3 12.8 4.1 

Figures 11 and 12 show different plant density and disease severity specific 
signatures obtained using linear transformation. Note that for a particular 
normalisation approach, similar signatures are obtained when using COR or 
SSD in the nearest neighbour classifier. Depending on the pre-processing 
normalisation procedure used, a unique signature is obtained. In the disease 
severity case study this describes some of the effects of increased fungal 
infection on the spectral properties of the investigated crop, while in the 
plant density case study it describes some of the effects of increased plant 
density on the spectral properties of the crop. 
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A model for site-specific weed control 

The field trial was sprayed on 11 June with the uniform doses at 19%, 38% 
and 94% relative to the recommended dose in treatments B, C and D 
respectively, leaving treatment A unsprayed. 

The three main weed species in the weed biomass sample taken 30 days 
after spraying the field trial were Sinapis arvensis, Galeopsis spp. and 
Chenopodium album, which together represented 77% of the total weed 
biomass at that time. The weed density of these weed species within the 
field trial area at the time of spraying is shown in Figure 13. 

The weed density (g m-2) in the plots, as a measure of the weed 
population status at the time of herbicide application, was sampled on 4-6 
June. The weed population biomass was sampled again 30 days later by 
cutting all weeds at ground level inside a circular frame with a diameter of 
54 cm. 

From the field experimental dataset it could be seen that the herbicide 
was relatively efficient, which motivated the assumption of zero weed 
biomass growth 30 days after spraying for infinitely high doses. The value of 
the infinite dose response parameter R1 in Equation [5] for the Ii and A 
parameters in the competition function in Equation [4] was therefore set to 
zero. 

An iterative procedure was then used to estimate the remaining model 
parameters in Equation [6]  {I0i, aIi, bIi, A0, aA, bA} (i = 1, 2, 3) by minimising 
the square error between {w1, w2, w3} from Equation [6] and the weed 
biomass for each weed species sampled in the field experiment. This implied 
a relatively large number of parameters to be estimated simultaneously. It 
was important to choose proper start values and to estimate the optimal 
iteration step carefully. This procedure is further described in Paper IV. 

The dose response curves for parameters A and I are shown in Figures 14 
and 15, respectively. The parameter values in these dose response functions 
made it possible to estimate the weed biomass for the three selected weed 
species for any herbicide dose and any initial weed population using 
Equation [6] 
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Figure 13. Weed density at the time of spraying for the three main weed species.  
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Figure 14. Estimated parameter A in the model as a function of herbicide dose. 
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Figure 15.  Estimated parameter I in the model as a function of herbicide dose for the three 
main weed species tested. 

Using the model based on Equation [6] and the weed density data across 
the field area, it was possible to calculate the optimal site-specific dose 
within the field with respect to a weed biomass threshold, i.e. so that the 
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actual weed biomass within the field 30 days after spraying did not exceed a 
certain threshold level. This can be seen in the solid line in Figure 16. 
Uniform spraying of the same average dose as in the site-specific case is 
plotted with respect to the mean resulting weed biomass in the dashed line 
in Figure 16. However this line coincides more or less with the site-specific 
case. 

As mentioned earlier, using a uniform dose involves both under-dosage 
and over-dosage because of varying weed frequencies in the initial weed 
population within the field. Here it was assumed that it would be desirable 
to avoid under-dosage due to the risk of yield losses. As a result, the choice 
of uniform dose then involved both the definition of a weed biomass 
threshold together with the proportion of the field where the weed biomass 
(30 days after spraying) had to be equal to, or less than, the defined weed 
biomass threshold. This uniform dose spraying strategy can be seen as the 
dotted lines in Figure 16. Several lines are shown with percentages 
representing different proportions of the field on which the weed threshold 
have been achieved. Note that the 50% field area proportion coincides with 
the case of site-specific weed control and the uniform spraying of the site-
specific average dose. However, when the proportion of the field area 
where the resulting weed biomass is less than the threshold increases, the 
required dose increases over the entire scale of the weed biomass threshold. 
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Figure 16. Simulations of the required dose within the field with respect to weed 
competitiveness, measured as weed biomass, for optimum site-specific spraying, uniform 
spraying with the site-specific total dose and uniform spraying with the weed biomass 
achieved on different proportions of the field. 
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Examining the resulting weed biomass 30 days after spraying for the two 
highest dose levels (treatments C and D) supported the use of 50 and 100 
g m-2 as limits of a representative range of weed biomass thresholds. The 
herbicide savings in this threshold range for the site-specific dose in relation 
to the recommended dose of 1.75 L ha-1 were 53 and 76%. The 
corresponding savings in relation to the uniform dose with the field area 
proportion of 80% were 31 and 33%, while for the field area proportion of 
90% they were 39 and 43% respectively. 
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Discussion 

Measuring crop status from hyperspectral reflectance 

The method for hyperspectral reflectance measurements developed and 
presented in Paper I was used to measure hyperspectral data in Paper II and 
III. This hyperspectral reflectance measuring method was also intended for 
use in systems for precision agriculture. In the scope of this thesis, this use 
was defined as the estimation of crop status in systems for site-specific plant 
protection. 

Instantaneous recordings of hyperspectral field reflectance measurements 
will be required in systems for site-specific plant protection. Hyperspectral 
data can be recorded in the field in a separate operation prior to application 
of the plant protection product. Even if the time frame is a couple of days, 
the collection of hyperspectral field data must be reasonably efficient. In a 
real-time implementation with spectral sensors on the sprayer, the time 
frame will be fractions of a second. 

The configuration of the system for hyperspectral reflectance 
measurements using two spectrometer sensors made it possible to record all 
the necessary raw data for reflectance calculation instantaneously. One 
‘upsensor’ measured irradiance from the sky and one ‘downsensor’ measured 
radiance from the crop. Duff (1993), Felton (1995) and Blackshaw et al. 
(1998) used similar configurations with simultaneous measurements of 
radiance and irradiance. In contrast to the sensor developed here, they did 
not measure hyperspectral reflectance and only a few spectral bands were 
used. Similar instrumentation introduced on the market in recent years 
(Müller et al., 2008) has the same type of spectrometer module configuration 
as in the measuring method presented here. However, no information is 
provided on whether the instrumentation used by Müller et al. (2008) has 
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any functions regarding automatic adjustment of the range of measurement 
or on how the raw data are processed. 

Once the calibration constants have been determined, Equation [2] can 
be used to calculate hyperspectral reflectance from the radiometric raw data. 
Using the high quality spectrometer modules in the hyperspectral sensor 
presented, the experience from practical use is that no more than one or 
two calibrations are needed each year. 

Equation [2] is a relatively complex formula compared with the basic 
definition of reflectance in Equation [1]. The main reason for this is that the 
spectral bands of the downsensor do not have the same wavelength centres 
as the upsensor. This band shift originates from differences in the 
manufacturing of spectrometer modules. The upsensor readings were 
interpolated in Equation [2] in order to get radiance and irradiance values 
within the same spectral band. This interpolation would not be necessary if 
the spectral bands in the irradiance and radiance raw data were exactly the 
same. As a rule, the type of spectrometer modules used in this sensor will 
have shifts in spectral bands. On the other hand, implementing Equation [2] 
in the software in the measurement system takes care of this problem 
automatically. 

The recorded irradiance will vary to some degree owing to variations in 
sun elevation and in the possible presence of clouds. This can lead to 
problems relating to utilisation of the range of measurements in the analogue 
to digital conversion. Spectral bands where the upper limit in the range of 
measurement has been reached lose all useful information and poor 
utilisation of the range of measurement can lead to increased measurement 
uncertainty. To overcome these problems, a method for automatic 
adjustment of the range of measurement was introduced in the system. The 
range of measurement can be changed by the software in the measurement 
system adjusting the integration time t. The reflectance from Equation [2] is 
independent of the absolute value of the integration time. 

Having obtained the hyperspectral reflectance data, the next step in the 
system of site-specific plant protection is to estimate crop status. This part is 
covered in Paper II, which presents the Feature Vector Based Analysis 
(FVBA) method, and in Paper III, which presents the Iterative 
Normalisation Based Analysis (INBA) method. The concept of the 
multispectral analysis method in this thesis is the objective analysis of the 
entire spectral range of measurement. The FVBA method has been 
presented prior to Paper II (Hamid Muhammed, 2001; Hamid Muhammed 
et al., 2001), but these reports do not include any implementation of FVBA 
on hyperspectral reflectance in areal crops. The modified FVBA method 
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reported by Hamid Muhammed (2005) used up to three normalisations in 
the pre-processing phase. The INBA method performed the number of 
normalisations required to obtain a stationary result. 

The use of a few wavelengths bands, for example to calculate NIR/Red 
ratios, has been shown to produce a relatively high correlation to various 
plant biophysical variables (see literature review). It is also the case that 
single or two band vegetation indices would involve technical 
simplifications when constructing spectral sensors. However, developing 
measuring methods with the practical use in view would require a more 
unrestricted analysis. In this perspective, selecting one or two spectral bands 
and discarding other high resolution spectral data can be considered 
unsound. 

The analysis procedures in this thesis were unrestricted and objective. 
The whole spectral range in the data was used in the analysis. The 
hyperspectral signatures of the crop status were determined solely from the 
field data. In the case of unmixing analysis, as reported by Lelong et al. 
(1998) and Fitzgerald et al. (2004), the hyperspectral reflectance of the end-
members must be known. In the case of FVBA and INBA no such 
information is needed. 

The resulting spectral signatures from FVBA and INBA show the 
influence of disease severity and plant biomass density in hyperspectral 
reflectance in an educational way. For example, it can be seen how 
increased disease severity affects the hyperspectral reflectance over the whole 
spectral range. 

FVBA and INBA appear to reveal and enhance significant changes in the 
hyperspectral reflectance. How the analysis does so is not intuitively easy to 
understand. In the so-called pre-processing procedure the hyperspectral data 
are normalised in order to transform the data to zero mean and unit 
variance. Normalisation is often preferred when using PCA or ICA. 
However, in this case the normalisation was carried out in both the band-
wise and spectral direction. This makes all of the normalised data dependent 
on all initial data. 

Despite this complexity, the results from the hyperspectral analysis can be 
explained to some degree. Two different spectral signatures are produced. 
The final signature depends on whether the first normalisation was 
performed in band-wise or spectral way. Using an initial band-wise 
normalisation produces a spectral signature much like the typical reflectance 
of a healthy dense crop. The initial band-wise signatures in Figures 9b and 
11a are similar to the 100% crop biomass density reflectance in Figure 7. 
Disease severity will produce a reversed vegetation signature. In this case, 
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the basic relationship between crop status and reflectance seems to be 
preserved. An initial spectral normalisation results in a different spectral 
signature. Normalising along each hyperspectral observation will reorder the 
reflectance data within each spectral band. This will shift the focus of the 
analysis to alternative modes of change. For example, the initial spectral 
normalisation analysis is sensitive to the slope in the near infrared region 
rather than the absolute level (Figures 9a and 11b). 

A desired quality of the hyperspectral analysis methods would be to 
produce different spectral signatures for different objects in the crop. This 
has not been demonstrated in this thesis. The INBA analysis was performed 
on both the disease severity and the plant biomass dataset. The two different 
spectral signatures can be seen in both datasets. 

In the FVBA method, the normalisation procedure consisted of two 
consecutive normalisations followed by extraction of the spectral signatures 
using PCA or ICA. Optimal linear combinations of the PCA or ICA 
components were finally selected. The INBA method was mainly based on 
a procedure where normalisations were iteratively performed in altering 
directions until a stationary result was obtained. No extraction of linear 
components was made in the INBA case. The normalisation procedure in 
the analysis methods is clearly significant for the performance of the analysis 
methods. 

The FVBA and INBA method were used on a random training dataset. 
The rest of the unknown hyperspectral data were then classified. The 
classification resulted in coefficients of determination from 94% to 97% 
using only 12% of the total hyperspectral dataset. This can be considered to 
be a relatively good result. However, a proper test of the method would be 
a field-scale evaluation where crop status is estimated over a whole field. 

It is fairly straightforward to implement an analysis model like this in a 
fully automatic on-vehicle system that is trained on a reference dataset, for 
example on crop disease. New hyperspectral crop reflectance data can then 
be acquired and the site-specific disease severity can be estimated. 
Furthermore, the actual effects of the investigated disease on the crop 
reflectance do not have to be exactly known or examined. 

A model for site-specific weed control 

Papers I, II and III deal with measuring crop status. The next step in the 
process is to estimate the required dose of the plant protection product. In 
Paper IV, a method to estimate the required herbicide dose was 
implemented in a model for site-specific weed control. The weed control 
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effect, defined as weed biomass growth, was estimated using a weed 
competition model and a dose response model. The required herbicide dose 
could then be calculated from the weed control effect and the weed density 
at the time of spraying. 

The simulation model in this thesis was used to evaluate systems for site-
specific weed control in relation to conventional uniform spraying. This 
would reflect a situation where the farmer is considering investing in 
machinery for site-specific weed control. The choice of field machinery can 
have a significant influence on farm finances. An important question is 
whether the investment will be repaid by the increased income. Using a 
simulation model, systems for site-specific weed control can be evaluated 
objectively and site-specific and conventional weed control can be 
compared under exactly the same conditions. 

The site-specific required dose within the field with respect to the weed 
control effect (Figure 16) is the theoretical optimal site-specific dose. It was 
assumed here that any dose can be applied across the field but in practice 
there would be limitations, e.g. in maximum and minimum dose levels. 

Having the site-specific dose defined, the comparison will depend on the 
choice of uniform dose. One way is to use recommended dose in this 
comparison, in which case the result will depend on the expected weed 
control effect. The required dose increases when the expected remaining 
weed biomass deceases. Consequently, the herbicide savings will decrease. 
Examining the field trial data, a practical level of weed biomass after 
spraying was 50 to 100 [g m-2]. This resulted in 53 and 76% herbicide 
savings. This can be seen as a considerable reduction in the total herbicide 
dose. 

Assuming that the farmer knows how to minimise the herbicide dose, 
e.g. from experience and field inspections, then by using a conventional 
sprayer applying the herbicides uniformly, the herbicide dose can still be 
reduced. A lower uniform dose in the evaluation of site-specific weed 
control will result in less herbicide saving. The result of the comparison 
between site-specific and uniform weed control will depend on the choice 
of uniform dose. The theoretical limit for reduced dose would be the 
uniform dose with the same weed control effect. The corresponding 
herbicide saving in this case is lower, 31-43%. However, if the variations or 
patchiness of the weeds are higher than in Figure 13, the herbicide saving 
for site-specific spraying would be higher. 

Work on weed competition models usually focuses on yield loss (see 
Paper IV for details), but in this case weed biomass was used. The reason 
was that the yield is dependent on factors other than weed control, for 
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example available N in soil and weather conditions. In this work, site-
specific weed control was evaluated in relation to uniform spraying. In this 
case the absolute value of the weed control effect in terms of yield loss is not 
important. Even if the yield had been modelled instead of weed biomass, the 
remaining weed population could be an important factor. Modelling weed 
biomass provides the additional option of reducing weed biomass under 
maximum allowable levels.  

The dose and the weed control effect in the model developed for site-
specific weed control are defined on a continuous scale. The HADSS model 
in the study by Lamastus-Stanford and Shaw (2004) made a spray or no 
spray decision. This resulted in a no spray decision for a uniform field 
treatment, while the corresponding site-specific decision resulted in spraying 
51% of the field. 

The DAPS model (Christensen et al., 2003) applied a dose response 
model between weed competitiveness and grain yield. The model reported 
in this thesis included the dependence of herbicide dose in the weed 
competition function variables. 

The model for estimating weed control effect presented by Kim et al. 
(2002) is similar to the model reported here, but their objective was to 
calculate the uniform conventional required dose. The present work used 
the model to compare site-specific and uniform conventional herbicide 
weed control, including a method to compare these two approaches to 
weed control based on equal effect. 
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Conclusions 

The work presented in this thesis provides further knowledge on 
optimisation of systems for site-specific plant protection. Methodology for 
the estimation of crop status from reflected light in the open field was 
developed and a method was devised to estimate the required dose of a plant 
protection product from crop status data. 

The knowledge obtained in this work can potentially lead to a defined 
system for site-specific plant protection. The specific parts in this process 
are: 
 Measuring crop reflectance 
 Estimating crop status 
 Estimating dose of plant protection product. 

The data presented in this thesis can also assist in making objective 
evaluations of site-specific plant protection systems. For example, before 
investing in field machinery for site-specific plant protection, it is 
fundamental to estimate the expected increase in income. Using the 
simulation model in this thesis, site-specific plant protection can be 
compared with uniform conventional plant protection under exactly the 
same conditions. 

The results presented can also increase the possibilities to use resources 
more efficiently in arable production. The farmer would be able optimise 
production by minimising the use of plant protection products. This would 
lead to decreased discharge of hazardous chemical substances into the 
surrounding ecosystems. 
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Specific conclusions 

The studies on hyperspectral reflectance measuring and analysis methods 
produced a number of findings that are beneficial for site-specific plant 
protection systems. These include: 
 Fast and optimal measurement of hyperspectral reflectance in the 

open field 
 Accurate, objective and conceptually simple hyperspectral analysis of 

the entire spectra 
 Potential to separate different causes of measured spectral differences 

from two separate modes of influence on the reflectance spectra. 

The model for site-specific plant protection presented here: 
 Was constructed from mathematical functions allowing both weed 

competitive effect for several weed species and the influence of the 
herbicide dose to be simulated 

 Has a relatively limited number of variables and low complexity, 
allowing fast and potential real-time execution 

 Can evaluate site-specific weed control based on herbicide saving 
both with regard to recommended uniform dose and uniform dose 
with equal weed control effect. 

 

Overall, these findings could be beneficial for both farm finances and the 
environment. 
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Future research 

Possible areas for future research include: 
 The further development and evaluation of hyperspectral analysis 

methods 
 The development of simulation models for site-specific plant 

protection 

The next step for the hyperspectral analysis based sensor technology is to 
make field-scale experiments and estimate site-specific crop stress induced 
by plant pathogens, and spray e.g. fungicides site-specifically after sensor 
readings. 

The model for site-specific weed control presented here should be 
further developed to include the actual yield, the economic output from a 
farmer’s field production. Furthermore, it would be of interest to develop a 
similar model for site-specific fungi control. 
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