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ABSTRACT 

Lodgepole pine is native to western North America, but it is also planted as a fast-growing alternative 
to Scots pine in Sweden. The production of these two species, when grown as native and as exotic 
species, was compared in a transcontinental two-species provenance experiment. The tests were 
planted in 1986 on five sites in northwestern Canada and two sites in Sweden, and included full-sib 
families, half-sib families, seed orchard collections and natural stand seed collections of both 
species. After 25 years, lodgepole pine produced 48% more volume (m3ha−1) and had 27% higher 
survival than Scots pine at one Swedish site, and had similar volume production and survival at a 
second. In the five Canadian sites, Scots pine produced on average 22% more volume than 
lodgepole pine. The variation between sites was, however, large. This higher volume of Scots pine in 
Canada could be due to higher survival (+28%) and less frequent damage; but higher top height for 
lodgepole pine in Canada indicated higher potential productivity. The results indicate that an exotic 
species may produce more than the native species, possibly thanks to higher survival, but it is also 
possible to increase production with successful population selection of the native species.  

 

KEYWORDS: Species interaction; exotic species; productivity; provenance transfer; competition; 
genetic correlation; stem damage  

 



Introduction 

Introduced species have long been used in forestry to enhance productivity (Tigerstedt 1993), but 

few studies have adequately tested the actual effects of the introduction relative to native species. 

The realized niche of a species is strongly affected by its evolved tolerance to climate and pests, but 

when grown as an exotic species, it may flourish in the new environment, thanks to less pressure 

from pests and pathogens (Tigerstedt 1993). There are many examples of planned introductions of 

tree species that grow and perform well as exotics (Wang et al. 2006a; Cubbage et al. 2014; 

Verhaegen et al. 2014). One example where, in addition, the productivity is much lower in the natural 

range is the introduction of Monterey pine (Pinus radiata D. Don) to large areas in Australia, New 

Zealand, Chile and Africa, where it makes a very strong contribution to the forest industry (Piirto & 

Valkonen 2005).  

Another example of an introduction of a tree species for use in forestry is the planting of the interior 

variety of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.), native to western 

North America, in northern and central Sweden. Observations from small plantations of lodgepole 

pine in Sweden and Finland from between 1910 and 1930 indicated that this exotic species could be 

more productive than the native Scots pine (Pinus sylvestris L.) (Elfving et al. 2001). In the 1960s, 

several provenance tests were established in Sweden to determine the most productive and well-

adapted provenances from North America (Karlman 1986; Lindgren et al. 1988; Rosvall et al. 1998). 

Since 1970, more than 600 000 ha in northern and central Sweden have been planted with lodgepole 

pine (Skogsstyrelsen 2013). Around 130 field experiments that have been running for between 15 

and 64 years indicate that it is on average ca. 36% more productive than Scots pine (Elfving & 

Norgren 1993; Elfving et al. 2001), probably because it has larger needle biomass at a given stem 

volume (Elfving et al., unpublished data) and larger needle area at a given stem volume (Norgren 

1996). The risks associated with introducing the species to Sweden have been thoroughly reviewed 

by Karlman (1981, 2001).  

As far as we know, there are no published, systematic cross-validations of main tree species, 

comparing the development in the home range with that under exotic conditions. To address this, we 

made use of a transcontinental reciprocal transplant experiment which was established to compare 

the productivity, survival rates and damage by pests and pathogens of Scots pine and lodgepole pine 

at five sites in western Canada and two sites in Sweden (A Joint Swedish – Canadian 1987; Lindgren 

& Lindgren 1990). The experiment was established in 1986 and included full-sib and half-sib families 

from the two species, together with seed-lots from collections in natural stands for reforestation 

(operational seed-lots). Test sites were chosen to represent a range of biotic and abiotic 

environments in western Canada and Sweden. The experiment was intended to quantify the benefits 

of using introduced lodgepole pine in Sweden and Scots pine in Canada, and to assess the potential 

spread of pests, pathogens and insects between the species. Early results from the Canadian test 

sites of this experiment have been published by Lindgren and Lindgren (1990), Van der Kamp et al. 

(1995) and Karlman et al. (1997) and further discussed by Karlman (2001). The average survival 

rates seven years after planting were 94% for lodgepole pine and 95% for Scots pine, with mean 

heights of about 1.70 and 1.45 m, respectively (Karlman et al. 1997).  
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The so-called enemy release hypothesis (Keane & Crawley 2002; Mitchell & Power2003) implies that 

a species can be more successful when used as an exotic species compared to being a native 

species, since in the new environment it does not meet the threats (pests and pathogens) that have 

evolved during its existence in its native environment. One effect of this could be higher production 

(Keane & Crawley 2002). The opposite may also occur. A new pathogen or insect may seriously 

attack the exotic species so it produces considerably less in its new environment (Garbelotto & 

Pautasso 2012). Another explanation for better success is that the biota in the new environment suits 

the introduced species better than where it is native. For lodgepole pine, for instance, Gundale et al. 

(2014) showed that the Swedish soil provides better biota than the Canadian soil, and McIntosh et al. 

(2012) found that the nitrogen availability was better in the Swedish soil than in the Canadian since 

the latter had higher net nitrogen immobilization. With this study we want to compare the production 

of lodgepole pine and Scots pine when growing as native species and as exotic species. The results 

are discussed in the light of the “enemy release hypothesis” and possible differences in soil 

conditions between Sweden and Canada. The occurrence of diseases and insects in this material will 

be reported in a concurrent article, and the objectives of this work were (1) to compare the 

productivity after 25 years in the field between Scots pine and lodgepole pine when grown as native 

and exotic species in Canada and Sweden, (2) to provide possible reasons for the growth differences 

on the two continents, (3) to evaluate differences between provenances of both species and (4) to 

evaluate the phenotypic stability over environmental gradients of the species.  

Materials and methods 

Plant material 

Full-sib families, half-sib families, seed orchard seed-lots and operational seed-lots of lodgepole pine 

and Scots pine were used (Table 1(a,b)). Due to the young age of the lodgepole pine and Scots pine 

seed orchards resulting in reduced flower production, it was not possible to create full-sib families for 

all parents and populations. Consequently, also half-sib and polycross families had to be included, 

together with operational seed-lots. The lodgepole pine full-sib families were created in four seed 

orchards in Sweden (Norrberge, Sör Nedansjö, Lögdö and Galtström) belonging to SCA (Svenska 

Cellulosa Aktiebolaget). The orchards were composed of phenotypically selected but untested parent 

trees originating from British Columbia and Yukon, and a total of 42 parents were used to create 32 

full-sib families. Seed for lodgepole pine half-sib families was collected from selected parent trees in 

close proximity to the test sites. Seven operational lodgepole pine wild-stand seed collections were 

also included. The Scots pine full-sib families were created in several Swedish seed orchards by 

crossing among phenotypically selected but untested parent trees. Several half-sib Scots pine 

families were created by applying a pollen mix to parent trees in two seed orchards in Sweden 

(Skogsgård and Klocke, in which three and 20 pollen donors were used, respectively). Half-sib and 

full-sib families were grouped into provenances based on the location of origin of the parent trees 

(Figure 1).  
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Figure 1.   Locations of the test sites, and origins of provenances and operational control seed-lots in 

Canada and Sweden. The provenances and operational control seed-lots were collected from the 

area surrounding the point source located on the map. See Table 1 for definitions of the 

abbreviations. 

 
 

 

  



Table 1. Origins of (a) lodgepole pine (LP or L) and (b) Scots pine (SP or S) seed used in the 

reciprocal transplant experiment.  

(a) 

Origin Provenance 
Family 

structure 
No. of 

families 
Latitude 

(°N) 

Longitude 
(Can: °W, Swe: 

°E) 

Elevation 
(m) 

Southern 
group 

LP58 Full sibs 16 
56.28–
59.78 

122.74–129.57 618–1020 

Central 
group 

LP61 Full sibs 8 
60.75–
60.89 

129.52–134.80 579–926 

Northern 
group 

LP63 Full sibs 8 
62.22–
63.62 

134.90–136.67 552–1091 

Summit 
Lake 

LP55 Half sibs 

4 54.40 122.62 813 

Philip Creek 4 55.05 123.50 1020 

Saddle Hills 

LP57 Half sibs 

4 55.73 119.67 825 

Beatton 
River 

4 57.23 121.37 1010 

Fort Nelson 

LP59 Half sibs 

2 58.65 122.70 495 

Steamboat 
Mtn. 

2 58.67 123.75 630 

Fort St 
James 

L54a   Unknown 54.42 124.50 805 

Hazelton L55a   Unknown 55.33 127.50 600 

Beatton 
River 

L57a   Unknown 56.83 121.37 800 

Fort Nelson L58a   Unknown 58.63 122.70 495 

Squanga L60a   Unknown 60.50 133.75 792 

Carmacks L62a   Unknown 62.07 135.70 569 

Rusty Creek L63a   Unknown 63.50 136.57 760 



(b) 

Origin Provenance 
Family 
structure 

No. of 
families 

Latitude 
(°N) 

Longitude 
(Can: °W, 
Swe: °E) 

Elevation 
(m) 

Haradstorp SP55 Full sibs 8 
55.96–
56.22° 

13.34–14.28 15–100 

Reference 
cross 

SP60 Full sibs 1 60.68 14.68 280 

Domsjöänget SP63 Full sibs 11 
62.49–
65.33 

15.54–19.96 185–360 

Brån SP64 Full sibs 4 
63.80–
64.81 

19.96–20.14 90–355 

Östteg SP65 Full sibs 9 
64.49–
64.85 

17.51–19.61 220–435 

Skatan SP66 Full sibs 8 
65.02–
67.42 

18.20–21.30 265–390 

Skogsgård SP57 
Half sibs 
and full 
sibsb 

8 
57.42–
57.69 

14.74–15.62 140–184 

Klocke SP67 
Half sibs 
and full 
sibsb 

8 
67.16–
67.57 

19.94–21.56 363–438 

Långtora S59c Unknown 59.65 18.27 103 

Askerud S61c Unknown 60.78 13.01 364 

a 
Local lodgepole pine control seed-lots in Canadian test sites, named LPL in Tables 4 and 5, and in the text. 

b
Orchard polycrosses creating a mix of half-sib and full-sib families with 3 and 20 pollen parents, respectively. 

c
Bulk orchard collection with no family structure. There were 36 seed donors at Långtora and 43 at Askerud, and the 

pollen donors were either the clones in the orchard, or trees from outside the orchard. 

Seedlings for the Canadian sites were grown in 1985 at the Balco Nursery (now Tolko Nursery) 

situated in Kamloops (latitude 50.6°N), British Columbia, and for the Swedish sites at the Faculty of 

Forestry nursery at the Swedish University of Agricultural Science in Umeå (latitude 63.8°N). In 

Sweden, seedlings were grown indoors until early July and material from southern latitudes was 

treated with prolonged nights after July 22.  



Planting and test sites 
Seedlings were planted in the spring of 1986 on five test sites in western Canada (four in British 

Columbia and one in Yukon; site codes CAN-54, -56, -57, -59 and -61) and two test sites in Sweden 

(site codes SWE-61 and -64) (Figure 1; Table 2). The test sites were selected to represent a wide 

range of geographic and climatic conditions. The Renberget site (SWE-64) was fenced to protect 

seedlings from moose (Alces alces) and reindeer (Rangifer tarandus), and the Fort St John site was 

fenced against cattle. At Garsås (SWE-61), both Scots pine and lodgepole pine were heavily 

damaged by pine weevil (Hylobius abietis) at a young age and by moose at an older age. Thus, 

based on the criterion that the plots should have more than 20 of 64 living trees to be selected for 

evaluation, only 45% of the plots were evaluated.  

 
 
Table 2. Field tests included in the reciprocal transplant experiment with LP and SP.  

Location 
Site 
code 

Latitude 
(°N) 

Longitude(Can: 
°W, Swe: °E) 

Elevation(m) Soil type 

Fort St 
James 

CAN-
54 

54.45 124.05 855 
Sandy, some gravel 
and silt. 1–3 cm organic 
layer 

Mackenzie 
CAN-

56 
55.50 123.72 680 

Medium to coarse 
sand, some gravel. Ca. 
1 cm organic layer 

Fort St 
John 

CAN-
57 

56.60 122.37 800 
Medium to coarse sand 
with gravel. Partly thick 
organic layer 

Fort Nelson 
CAN-

59 
59.00 123.33 600 Silt clay (rather heavy) 

Whitehorse 
CAN-

61 
60.68 135.37 660 

Silt soil, medium to fine 
sand. Little or no 
organic matter 

Garsås 
SWE-

61 
60.93 14.88 205 

Sandy till. Thin organic 
layer 

Renberget 
SWE-

64 
64.25 19.80 225 

Sandy till/fine sand. 
Some stony ground 
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Experimental design 

Each site was established using a randomized complete block design with five blocks per site. At 

every site except SWE-61, blocks 1–4 were composed of 8 × 8 tree square plots with separate 

species and provenances. The number of plots (treatments) per block varied between 9 and 11. 

Block 5 was composed of single tree plots with mixed species, provenances and families. At SWE-

61, 4 × 16 tree plots were used, instead of 8 × 8 tree square plots, in blocks 1–4. A 2 m × 2 m square 

spacing was used. The number of individuals per full-sib or half-sib family at each site was 

unbalanced and ranged from 2 to 61, with most families represented by between 8 and 40 individuals 

per site. Families were planted at random within provenance plots. In general, three rows of surround 

trees were planted around each trial.  

Measurements 

The measurements were made in 2010, when active growth was nearly complete (end of June and 

beginning of July) in Canada and after completion of seasonal growth (August and October to 

December) in Sweden. The status of each tree was recorded, along with diameter at breast height 

(DBH, one measure to the nearest half centimeter at 1.3 m above the ground) in blocks 1–4 for sites 

in Canada and all five blocks for the two Swedish sites. At the Canadian sites, the largest stem of 

double stems was measured, so productivity was slightly underestimated. Tree height was measured 

to the nearest decimeter of every 10th tree from each provenance (8 × 8 tree plot) using a vertex 

hypsometer and the average of three measurements per tree was recorded (HT). When a tree that 

was preselected for height growth measurement had abnormal form (e.g. a fork or broken top) the 

closest representative tree was selected in its place. There was substantial mortality caused by 

mountain pine beetle at Fort St James and Mackenzie (CAN-54 and CAN-56, respectively). We 

preferred to estimate total productivity without considering this extreme event, so both living trees 

and trees that had recently died (1–3 years before assessment) were assessed and measured for 

diameter.  

Calculations of stem volume and top height 

Individual tree stem volumes including bark over stump height (1% of tree height) were calculated for 

all trees for which height measurements were taken. For lodgepole pine and Scots pine trees with >5 

cm DBH, volume functions presented by Eriksson (1973) and Brandel (1990) were used, 

respectively, while functions presented by Andersson (1954) were used for trees with smaller 

diameters.  

Secondary volume functions were created for each species and site as a function of diameter (DBH) 

using the following equation:  

 

where VOL = single tree stem volume according to the volume function and b0–b2 = coefficients 

estimated by regression on the basis of sample tree data.  
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The secondary volume equations were used to calculate individual tree stem volume for all trees and 

to estimate total stand volume.  

Heights of individual trees not actually measured were estimated as a function of their diameter using 

second-degree polynomial height curves. Height curves were then used to estimate top height using 

average values for the 100 trees with the largest diameter per hectare.  

In the comparison of the exotic species and the native species, we used the two most productive 

Scots pine (SP) and lodgepole pine (LP) provenances at each site. The percentage increase or 

decrease in production resulting from using the exotic species instead of the native species was thus 

100 × (SP–LP)/LP for Canada and 100 × (LP–SP)/SP for Sweden. We also compared the two best 

provenances of the exotic species with the local material of the native species (local lodgepole pine 

(LPL) in Canada and the provenance with the nearest origin in Sweden).  

Estimates of covariances among sites 

Data for block 5 at all sites were dropped prior to the linear mixed-model analysis. Variance and 

covariance estimates were generated according to the following linear mixed model:  

 

where y is a vector of observations, τ is a vector of fixed effects, ug is a vector of random additive 

genetic effects, up is a vector of random non-additive effects, e is a vector of random residual effects, 

and X, Zg and Zp are incidence matrices for fixed, random additive genetic and random non-additive 

genetic effects, respectively. The fixed effects were composed of site, species, site-by-species 

interaction, provenance nested within species and the three-way interaction of site, species and 

provenance. The random effects (up) were composed of family (GCA), cross (SCA), block nested 

within site and the interactions of site with family and cross. Random factors were assumed to have a 

multivariate normal distribution  

 

where G is the (co)variance matrix for random effects (ug and up) and R is the (co)variance matrix for 

e. Restricted maximum likelihood (REML) analysis of the statistics software package ASReml-R 

(version 3) was used to estimate all variance and covariance components. Residuals for all traits 

were inspected visually and appeared to be normally distributed.  

To estimate (co)variances among sites for DBH, a multi-environment trial analysis was conducted for 

each species, using an approximate reduced animal model (ARAM) (Quaas & Pollak 1980) in place 

of the full animal model. The ARAM is identical to the full animal model when there is no relatedness 

among parents. Using this model reduces computing time and memory usage (White et al. 2006). 

The additive genetic (co)variance among sites was estimated using a factor analytic model (Smith 

et al. 2001; Cullis et al. 2014) with three factors and the following R-matrix:  
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where and are the residual variances for sites i and j, respectively; IN is an identity matrix of 

dimensions N × N (N = the number of trees); q = 1 to r; and r = the number of sites.  

Results 

Species productivity 

On average for all sites in Canada, SP had larger DBH and higher survival (mortality due to mountain 

pine beetle not included) and volume (5.5%, 28.4% and 22.4%, respectively), but lower top height 

(−10.4%) than LP, when all provenances were included (Table 3). SP had higher survival but lower 

top height than LP across all sites, while for volume and DBH, the ranking of species varied. At the 

Renberget site (SWE-64), the exotic species (LP) had higher top height, survival and volume (11.3%, 

27.3% and 47.8%, respectively), but lower diameter (−2.1%) than the native species (SP). At Garsås 

(SWE-61), the species produced equally much and the production was much lower than at SWE-64. 

When data for both Swedish sites were combined, the superiority of top height and volume for LP 

was reduced by 50%. The exotic species produced on average more than the native species in both 

Canada and Sweden, with the largest effect in Sweden, but the effect differed considerably between 

sites. The two best provenances of SP produced 34.6% and 13.7% more volume than the two best 

provenances of LP at CAN-56 and CAN-57, respectively, but 14.4%, 10.7% and 6.1% lower volume 

at the other three Canadian sites (Figure 2). At SWE-64, the two best LP provenances produced 

43.1% more volume than the two best SP provenances. When comparing with the LPL seed-lot, the 

exotic SP also had higher production than the native in CAN-59.  
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Figure 2.   The percent differences in volume production of the two best seed-lots of the exotic 

species compared with the two best of the native species including the operational controls (left bar 

in each pair). The difference between the two best seed-lots of the exotic species and the local seed-

lot (right bar). 

  



Table 3. Stand data and difference between the exotic and native species based on data for all 

provenances at 25 years from planting. Averages for each species (LP = lodgepole pine; SP = Scots 

pine) and difference between the exotic and native species.  

8.5 
 

DBH over bark
a
 (mm)  Top height (m) Survival

b
 (%)  VOL (m

3
ha

−1
)  

LP SP 

Exotic 
vs. 

native 
species 

(%)
c
 

LP SP 

Exotic 
vs. 

native 
species 

(%)
c
 

LP SP 

Exotic 
vs. 

native 
species 

(%)
c
 

LP SP 

Exotic 
vs. 

native 
species 

(%)
c
 

CAN-54 163 170 4.3 10.7 9.0 −15.9 93 96 3.2 141 126 −10.6 

CAN-56 136 134 −1.5 8.7 8.0 −8.0 58 93 60.3 44 66 50.0 

CAN-57 158 182 15.2 10.4 9.5 −8.7 68 91 33.8 70 130 85.7 

CAN-59 172 191 11.0 11.8 10.1 −14.4 68 88 29.4 102 120 17.6 

CAN-61 98 89 −9.2 6.6 6.2 −6.1 59 75 27.1 12 10 −16.7 

Average 
CAN 

145 153 5.5 9.6 8.6 −10.4 69.1 88.7 28.4 73.7 90.2 22.4 

  LP SP 

Exotic 
vs. 

native 
species 

(%)
d
 

LP SP 

Exotic 
vs. 

native 
species 

(%)
d
 

LP SP 

Exotic 
vs. 
native 
species 
(%)

d
 

LP SP 

Exotic 
vs. 
native 
species 
(%)

d
 

SWE-61 170 173 −1.7 11.4 11.5 −0.9       99 102 −2.9 

SWE-64 183 187 −2.1 12.8 11.5 11.3 84 66 27.3 170 115 47.8 

Average 
SWE 

176 180 −2.0 12.1 11.5 5.2 67 62 8.1 135 108 24.2 

Weighted 
average 
CAN+SWE 

154 161   10.3 9.4   68.5 81.1   91.1 95.4   

 

a
DBH is the average DBH of the 100 tallest trees per hectare (trees with heights estimated by diameter included), that 

is, top height; VOL is volume production per hectare. 
b
Trees recently killed by mountain pine beetle were included among living trees (see materials and methods). 

c
Species difference based on all provenances in Canada, (SP-LP)/LP (%). 

d
Species difference based on all provenances in Sweden, (LP-SP)/SP (%). 

 

At the SWE-64 site, LP produced 229 m3ha−1 and SP 110 m3ha−1 (108% higher production for LP) 

when planted in the block where the species, provenances and families were mixed (block 5), while 

in the uniform 64-tree plots (blocks 1–4), the corresponding volumes were 173 m3ha−1 for LP and 118 

m3ha−1 for SP (47% higher production) (data not shown).  



Provenance variation 

Among the LP provenances planted in Canada (excluding local seed-lots, LPL), LP57 had the 

highest volume at all sites, and its relative volume production compared with LPL ranged from −26% 

to +25% (Table 4). LPL had the highest production in two sites (CAN-57 and CAN-59) and 4–20% 

lower than the top provenance in the other three. The SP provenance from 63° latitude (SP63) had 

the highest volume production of all provenance materials at the three northern sites in Canada, 

where its relative volume production compared with LPL ranged from −20% to +42%. The top SP 

provenance at site CAN-54 was SP59 (−11% compared to LPL), while at CAN-56 SP61 performed 

best (+59%). In Sweden, the LP provenance with the most southern origin (LP55) had the highest 

volume at both sites. For SP, SP63 had the highest volume at the southern Swedish site (SWE-61) 

and SP65 the highest volume at the northern site (SWE-64). At CAN-59, heavy snowfall caused 

considerable stem damage in the spring of the year of measurement. The LPL operational control 

seed-lot (LPL), which had the highest volume, had less damage than transferred LP provenances, 

but the least damage occurred on SP (Table 5).  

 

Genetic correlations among sites 

Type B genetic correlations (genetic correlations among sites) were calculated for DBH. For LP in 

Canada, the four southern sites had rather high correlations, which increased with decreasing 

distance between the sites (from 0.69 to 0.99) (Table 6; Figure 3). CAN-61 was poorly correlated with 

the southernmost Canadian site (CAN-54), but also here the correlation increased with decreasing 

difference in latitude (from 0.24 to 0.70). There was no correlation between CAN-61 and the Swedish 

sites. Growth of LP in the two Swedish sites was highly correlated (0.82) and it was relatively highly 

correlated with the two southern Canadian sites. For SP, the four southern Canadian sites were all 

highly correlated. CAN-61 had very low correlations with the four southern Canadian sites and SWE-

61, but rather high correlation with SWE-64. The two Swedish sites were highly correlated with each 

other (0.96). SP in the Swedish sites showed similar correlations with the four southern Canadian 

sites, but with generally lower correlations for SWE-64 than for SWE-61.  
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Table 4. Volume production (m3ha−1) of different provenances of LP and SP in blocks 1–4 at indicated 

test sites in Canada (CAN) and Sweden (SWE).  

 

Provenance 
CAN-

54 
CAN-

56 
CAN-

57 
CAN-

59 
CAN-

61 
CAN 

SWE-
61 

SWE-
64 

SWE 

LP55 
154 
(2) a 

52 
(18) 
bcd 

85 
(−35) 

bc 
  

8 
(−33) 

  133 194 a   

LP57 
157 
(4) a 

52 
(18) 
cd 

115 
(−12) 

ab 

141 
(−26) 
abc 

15 
(25) 

  94 
177 
ab 

  

LP59 
101 

(−33) 
d 

26 
(−41) 

e 

69 
(−47) 

bc 

124 
(−35) 
bcd 

15 
(25) 

  80 
176 
ab 

  

LP61     
20 

(−85) 
d 

33 
(−83) 

e 

11 
(−8) 

  76 
171 
abc 

  

LP63     
5 

(−96) 
d 

22 
(−88) 

e 

10 
(−10) 

    
134 
abcd 

  

LPL 151 ab 44 d 130 a 191 a 12         

SP55 
121 

(−20) 
cd 

          82     

SP57 
132 

(−13) 
abc 

66 
(50) 
abc 

122 
(−6) a 

      87     

SP59 
135 

(−11) 
abc 

69 
(57) 
ab 

138 
(6) a 

140 
(−27) 
abc 

6 
(−50) 

  100     

SP61   
70 

(59) a 
132 
(2) a 

144 
(−25) 

ab 
      89 d   

SP63 
125 

(−17) 
bcd 

65 
(48) 
abc 

140 
(8) a 

152 
(−20) 

ab 

17 
(42) 

  125 
123 
bcd 

  



Table 4, cd.          

Provenance 
CAN-

54 
CAN-

56 
CAN-

57 
CAN-

59 
CAN-

61 
CAN 

SWE-
61 

SWE-
64 

SWE 

SP65 
116 

(−23) 
cd 

59 
(34) 
abcd 

116 
(−11) 

ab 

120 
(−37) 
bcd 

9 
(−25) 

  94 
137 
abcd 

  

SP66       
88 

(−54) 
cd 

11 
(−8) 

    
105 
cd 

  

SP67       
75 

(−61) 
de 

8 
(−33) 

    
121 
bcd 

  

Mean (excl. 
LPL) LP 

137.5 
(−9) 

58.4 
(33) 

43.3 
(−67) 

79.7 
(−58) 

11.8 
(−2) 

  95.5 170.3   

Mean (incl. 
LPL) LP 

140.8 43.5 70.7 102.2 11.8   95.5 170.3   

SP 
125.9 
(−17) 

65.9 
(50) 

129.6 
(0) 

119.9 
(−37) 

10.1 
(−16) 

  97.5 114.8   

Two best 
(incl. LPL) LP 

155.6 52.0 122.2 165.7 14.7 102.4 113.0 185.4 149.2 

Two best SP 
133.2 
(−12) 

70.0 
(59) 

139.0 
(6) 

148.0 
(−23) 

13.8 
(15) 

100.8 112.4 129.6 121 

 

Notes: Figures followed by different letters are significantly different and numbers within brackets are percent 

differences from the LP operational control seed-lots (LPL). For the CAN-61 and SWE-61 test sites, no differences 

were significant. 

 

Table 5. Stem damage for LP, the local operational seed-lot (LPL) and SP at Fort Nelson (CAN-59).  

Provenance Percent broken stem Percent toppled Sum 

LP57 – LP63 16.3 9.3 25.5 

LPL 2.9 7.0 9.9 

SP59 – SP67 1.4 3.2 5.9 



 

 

 
Figure 3.   Scatterplots for genetic correlations between sites for DBH of LP (above diagonal) and SP 

(below diagonal). The x- and y-axes indicate DBH of the seed-lots in the sites each plot refers to. 

 
  



Table 6. Genetic correlations between sites (type B genetic correlations) for DBH of LP (above 
diagonal) and SP (below diagonal).  
 

  CAN-54 CAN-56 CAN-57 CAN-59 CAN-61 SWE-61 SWE-64 

CAN-54   0.93 0.76 0.69 0.24 0.96 0.77 

CAN-56 0.90   0.94 0.90 0.47 0.86 0.68 

CAN-57 0.91 0.84   0.99 0.66 0.63 0.47 

CAN-59 0.72 0.74 0.94   0.70 0.55 0.40 

CAN-61 0.11 –0.28 0.25 0.21   0.09 0.03 

SWE-61 0.86 0.60 0.90 0.76 0.59   0.82 

SWE-64 0.72 0.36 0.74 0.57 0.77 0.96   

 

Discussion 

Exotic vs. native species 
Based on the two best producing seed-lots, the exotic species (LP) had higher production than the 

native SP in one of the Swedish sites (SWE-64), while it was equal in the other (SWE-61) (Table 4; 

Figure 2). SWE-61 was, however, severely damaged by pine weevil, which caused a high mortality at 

an early age. At the latitude of SWE-61, the expected survival of local material of SP is ca 68% 

(Eriksson et al. 1980). The low survival in this site and comparatively slow height growth in our 

inventory, only 45% of the plots had more than 20 of 64 surviving trees, are quite exceptional. In 44 

replicated Swedish experiments with both species examined by Elfving and Norgren (1993), LP 

survived better in most experiments and grew faster in 43 of them. The considerably higher 

production of LP compared to SP at SWE-64 may, however, be a result of the release of Canadian 

pathogens, but contributing factors could be a higher growth capacity and that the Swedish soil has 

shown to provide better biota for LP than the Canadian soil (Gundale et al. 2014) and that the 

Swedish soil has lower net nitrogen immobilization than soils in Canadian LP stands (McIntosh et al. 

2012).  

In Canada the sites CAN-54 and CAN-56 were attacked by mountain pine beetle prior to 

measurements, and SP was considerably more damaged than LP (53% compared to 21% and 95% 

compared to 53% in CAN-54 and CAN-56, respectively). The trees killed by mountain pine beetle 

were included when production was calculated and their potential growth 1–3 years prior to 

measurements was thus not included. Therefore, their estimated productivity was somewhat 

underestimated and since SP was more frequently killed by mountain pine beetle, calculated 

production in those sites became more reduced for SP than for LP. Based on the two best seed-lots 

of each species, exotic SP produced more than the native LP in two sites (CAN-56 and CAN-57), 

http://www.correct-online.com/TANDF/articles/xml/SFOR1221990/FirstProof/Author/SFOR1221990_web.html#T0004
http://www.correct-online.com/TANDF/articles/xml/SFOR1221990/FirstProof/Author/SFOR1221990_web.html#F0002
http://www.correct-online.com/TANDF/articles/xml/SFOR1221990/FirstProof/Author/SFOR1221990_web.html#CIT0008
http://www.correct-online.com/TANDF/articles/xml/SFOR1221990/FirstProof/Author/SFOR1221990_web.html#CIT0006
http://www.correct-online.com/TANDF/articles/xml/SFOR1221990/FirstProof/Author/SFOR1221990_web.html#CIT0010
http://www.correct-online.com/TANDF/articles/xml/SFOR1221990/FirstProof/Author/SFOR1221990_web.html#CIT0023


while LP grew better in three. Based on all seed-lots, the exotic SP had higher production at CAN-59 

and on average produced more than LP. LP had higher top height in Canada (Table 3), which 

indicated higher production potential, but the higher production potential is not obvious here and one 

reason could be the more damage it suffers, which thereby reduces its growth. Thus, the 

simultaneous inventory of diseases showed that in Canada all pathogen species occurring on LP 

except western gall rust were missing or occurred only in single infections on SP (Fries unpublished 

data). The same situation could sometimes occur for LP in Sweden: its superiority in production in 

SWE-64 and often in Sweden (Elfving & Norgren 1993) could be because the native SP is more 

severely affected by pests and pathogens occurring in Sweden. We suggest thus that the result in 

some sites in the present study may follow the “enemy release hypothesis” described in Mitchell and 

Power (2003) and Mitchell et al. (2006). The higher production of LP than SP at three of the 

Canadian sites shows, however, that it is possible to find native well-adapted materials with high 

production.  

The much larger mortality among SP due to mountain pine beetle in two Canadian sites 

demonstrates the risks with species introduction. Furthermore, in general the risk with disease or 

insect attack may in future increase due to adaptation of the disease or insect to also attack the 

exotic species (Karlman 2001; Garbelotto & Pautasso 2012). A similar example to mountain pine 

beetle is attacks by Gremmeniella abietina on LP in parts of northern Sweden. After severe snow 

conditions in the winter 1993/94, infection of Gremmeniella was very frequent and caused high 

mortality on LP, while SP suffered much less (Hansson & Karlman 1997). On the other hand, in the 

same study snow blight (Phacidium infestans) infected the native SP to a considerably higher degree 

than LP. These opposite results for LP demonstrate not only the potential risks, but also possibilities 

with introduced species.  

Block five, with mixed species and provenances, was only measured at SWE-64. In this site 

monocultural blocks with LP produced 47% more than those with SP. In block five the volume of LP 

was 108% larger than that of SP. This indicates that when planted together, LP will have a significant 

competitive advantage over SP.  

Provenance variation 
The climate in northern Sweden has a substantial maritime influence originating from the west from 

the Gulf Stream of the Atlantic Ocean west of Norway and, to a minor extent, from the Gulf of Bothnia 

to the east. In Sweden, LP is therefore planted in sites with a less continental climate than east of the 

Coastal Mountains in Canada from where much of the LP is taken. Further south in British Columbia, 

the climate is milder. Provenances from these areas had higher volume production in the site in north 

Sweden (SWE-64) than provenances from more northern latitudes. This indicates that climatic 

similarities, rather than latitude or elevation, are more suitable for matching provenances in Canada 

with breeding zones in Sweden (cf. Kreyling et al. 2015). This is also consistent with 

recommendations in Sweden for the selection of LP provenances (http://www.kunskapdirekt.se 

/sv/KunskapDirekt/Alla-Verktyg/Planters-guide-2/ [July 2016]).  

British Columbia has considerable environmental and climatic variation (Pojar et al. 1987), which 

according to Mátyás (1996) result in steep genetic clines for the native species. Large geographic 

transfers often result in a high degree of stress and increased susceptibility to damage, pests and 

pathogens (Karlman 2001; La Porta et al. 2008). This has resulted in large population-level variation 

for LP, with specialized adaptation to local biotic and abiotic factors, and maladaptation is probably a 

reason for the greater snow damage on the non-local lodgepole pine than on the local seed-lot at 
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CAN-59 (Table 5). This highlights the importance of local adaptation of the species in Canada. 

Nevertheless, SP seems to be even better adapted to heavy snow (Table 5), a trait that has probably 

evolved under the maritime climate in Sweden. The larger needle biomass of LP compared to SP 

making it more sensitive to snow and wind may, thus, reduce the potentially higher productivity of LP. 

Furthermore, the different SP provenances show similar relationships to the LPL at the different sites, 

indicating that the species has higher phenotypic stability over environmental gradients than LP.  

In regions with significant environmental heterogeneity, a policy to use local seed-lots for 

reforestation will exploit local adaptation to minimize the risk of damage by biotic and abiotic factors, 

but may not allow the optimization of volume production. However, with adequate information from 

well-designed provenance tests and multispecies trials, it should be possible to optimize volume 

production through species and population selection. In the current study, at three sites in Canada, 

CAN-56, CAN-57 and CAN-61, the best performing seed-lot was a SP seed-lot. Their average gain in 

volume over the local seed-lots (LPL) was 36% (Table 4). At one site (CAN-54), the best performing 

seed-lot was a transferred LP provenance with a volume gain of 4%, and at one site (CAN-59), the 

local seed-lot had the highest volume production of all LP and SP seed-lots (26% higher production 

than the second best). Furthermore, the use of the optimum LP seed-lot instead of the local 

operational seed-lot (LPL) would have resulted in an average gain in volume of 9.4%. This agrees 

with modeling with LP by Wang et al. (2006b), suggesting that seed-lot selection can be used to 

mitigate the negative impacts of climate change and optimize volume production in LP; it was 

reported that an increase in volume of 14–36% can be achieved with seed-lot selection and 

moderate levels of climate change. In addition, our data show that if SP seed-lots are included for 

selection, the potential gain could be 23%.  

These results after 25 years are of course only indicative. Final conclusions cannot be drawn before 

optimum rotation age, which can vary between 70 and 100 years for the different sites and species in 

the study. The heavy attack by mountain pine beetle has destroyed a meaningful continuation of this 

experiment and demonstrates the difficulties to evaluate forest productivity by long-term field 

experiments. Long-term evaluation of productivity must be based on growth modeling.  

Correlations between sites and phenotypic stability 
Given the pattern of the genetic correlations between sites (type B genetic correlations) for LP in 

northwestern Canada (Table 6), there is a need for multiple breeding zones in Yukon and Canada. 

The northernmost zone should be the Whitehorse area (CAN-61). The clinal increase in correlation 

with decreasing distance between the other four sites did, on the other hand, not indicate any clear 

boundary, with the possible exception of a boundary between the Mackenzie and Fort St John area 

(CAN-56 and CAN-57). The more stable type B genetic correlations for SP than LP between 

Canadian and Swedish sites indicated that SP is less affected by changes in the climatic, biotic and 

abiotic factors across northern British Columbia. Seven out of 10 correlations between the Canadian 

and Swedish sites were 0.60 or higher and with a total variation of between 0.36 and 0.90 for SP, 

while 5 out of 10 correlations for LP in Sweden were 0.60 or higher (total variation 0.03–0.96). This 

suggests a higher degree of phenotypic stability of SP than of LP, which may be the result of 

adaptation to lower variation in the biotic environments in Sweden (Mátyás 1996) than in western 

Canada. CAN-54 was the site in Canada with the highest type B genetic correlation with SWE-64 for 

LP. This indicates that there are similarities between southern locations in western Canada and 

regions in northern Sweden. Thus, selection results from the CAN-54 site and the CAN-56 site are 

most appropriate for supporting the LP breeding program in northern Sweden.  
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Conclusions 
One goal of this transcontinental reciprocal transplant experiment was to compare the overall 

productivity of LP and SP in their native and exotic environments. In some sites, the introduced 

species (LP in Sweden and SP in Canada) provided higher volume production than the native 

species, but in others the native species produced more. The higher production of LP than SP in one 

Swedish site, and frequently in Swedish forestry, may be due to its higher production capacity but 

contributing is probably that damage by pathogens and insects are fewer, thus in accordance with 

the so-called enemy release theory. Also, the Swedish soil seems to provide better biota and 

nitrogen availability for LP than the Canadian soil.  

Despite higher production of the exotic SP than LP in some sites in western Canada, there are many 

LP populations that can be utilized to maximize productivity on managed forest lands. Good 

performance of the less continental southern provenances of LP in the Swedish sites demonstrates 

that climatic similarities, rather than latitude or elevation, should be used for matching provenances in 

Canada with breeding zones in Sweden. High correlation between Canadian and Swedish sites for 

SP indicates its relatively high phenotypic stability. More severe damage by mountain pine beetle on 

SP than on LP in Canada, together with previous outbreaks of Gremmeniella on LP in Sweden, 

indicates, however, risks with species introductions.  
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