
 

 

This is an author produced version of a paper published in 

Scandinavian Journal of Forest Research. 

This paper has been peer-reviewed but may not include the final publisher 

proof-corrections or pagination. 

Citation for the published paper: 

Fries, Anders. (2017) Damage by pathogens and insects to Scots pine and 

lodgepole pine 25 years after reciprocal plantings in Canada and Sweden. 

Scandinavian Journal of Forest Research. Volume: 32, Number: 6, pp 459-

472. 

http://dx.doi.org/10.1080/02827581.2016.1247463. 

Access to the published version may require journal subscription. 

Published with permission from: Taylor & Francis Group. 

Standard set statement from the publisher: 

This is an Accepted Manuscript of an article published by Taylor & Francis in 

Scandinavian Journal of Forest Research on 161103, available online: 

http://www.tandfonline.com/10.1080/02827581.2016.1247463. 

 
Epsilon Open Archive http://epsilon.slu.se 



1 
 

Damage by pests, pathogens and mountain pine beetle in reciprocally planted Scots and 

lodgepole pine in Canada and Sweden after 25 years 

 Anders Fries  

 
Umeå Plant Science Centre  

 Department of Forest Genetics and Plant Physiology,  

 Swedish University of Agricultural Sciences, 

 SE-90183 Umeå, SWEDEN. 

 Phone: +46-90-7868368,   Fax: +46-90-7868165 

 E-mail: anders.fries@slu.se 

ABSTRACT 

A combined species – provenance – family experiment with Scots pine and lodgepole pine was 

planted in Canada and Sweden. One aim of the experiment (addressed here using data collected 

25 years after establishment) was to evaluate the two species’ sensitivity to pathogens and insects 

in the non-native continent. In Canada, Scots pine had better survival than lodgepole pine, on 

average, but survival of trees from the best seed-lots was equal. The only common lodgepole pine 

pathogen in Canada that infected Scots pine to some extent was western gall rust. Mountain pine 

beetles attacked and killed Scots pine more frequently than lodgepole pine. At one of two sites in 

Sweden lodgepole pine had higher survival rates than Scots pine, both on average and among the 

best surviving seed-lots. At the other site the species’ survival rates were equal, largely due to 

extensive moose damage to lodgepole pine. Adaptation to local conditions seemed to be 

important to resist stem breakage due to heavy snowfalls. Generally the exotic species seemed to 

resist the new threats in the first generation, but serious attacks by mountain pine beetle on Scots 

pine in Canada and moose on lodgepole pine at one Swedish site demonstrate the risks of using 

exotic species.  

INTRODUCTION 

Introduced plant species have been used for a long time and for many reasons. Indeed, most 

agricultural crops are widely cultivated exotically (Tigerstedt 1993) and forest trees have been 

used to improve production in commercial forestry, in afforestation programs and to establish 

shelter plantations (Rebele 1994). Another reason for introducing exotic tree species may be to 

spread risks by increasing species variation (Burdon 2010; Rosvall 2010), and many species have 

grown and performed well following planned introductions (Jaako Pöyry Oy 1987; Wang et al. 
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2006; Cubbage et al. 2014, Verhaegen et al. 2014). Some species may have much higher 

productivity in new environments than in their natural range. For example, Monterey pine (Pinus 

radiata D. Don) grows more rapidly (and is industrially important) in areas of Australia, New 

Zealand, Chile and Africa than in its native regions of California and Mexico (Piirto and 

Valkonen 2005).  

A reason for performing better as exotic species can be that their growth is severely limited in 

their native environment by abiotic factors (e.g. climatic conditions) and/or abiotic factors 

(notably pests and pathogens). Thus, as stated by the “enemy release hypothesis”, all species are 

regulated to some degree by natural enemies (pests and pathogens) within their native ranges, so 

they may grow better than indigenous species in a non-native environment due to the absence of 

those enemies (Mitchell & Power 2003). However, if a species depends on positive biotic 

interactions within its native range, its growth in new environments may be highly restricted by 

the absence of suitable associates (Pringle et al. 2009). Hence, the presence or absence of key 

biotic interactions in the non-native range may determine the success of introduced or invasive 

species (Mitchell et al. 2006). Silvicultural measures in the new environment may also improve 

possibilities for the success after an introduction (Tigerstedt 1993, Cubbage et al. 2014).  

In experimental plantations with several exotic conifers in the 20
th

 century has lodgepole pine 

(Pinus contorta Dougl. ex Loud. var. latifolia Engelm), which is native to northwestern USA and 

western Canada, shown to be highly productive as compared to the native Scots pine (Pinus 

sylvestris L.; Elfving et al. 2001). Numerous mature field experiments indicate that it is 

approximately 36% more productive than Scots pine in Sweden, on average (Elfving & Norgren 

1993), partly due to higher specific needle biomass (Norgren 1996). Another reason for the 

interest in lodgepole pine was its superior capacity to survive in harsh climates. In contrast, Scots 

pine is not used in North American forestry, although it has been experimentally planted (van der 

Kamp & Karlman 1993). 

Despite its significant productivity benefits, lodgepole pine has been cautiously used in Sweden, 

due to uncertainties about ecological interactions, and fears of triggering outbreaks of fungal or 

insect diseases, in either the native species or the exotic species (Karlman et al. 1997). 

Accordingly, planting of lodgepole pine was reduced in the 1980s following a severe epidemic 

outbreak of scleroderris canker, caused by Gremminiella abietina Lagerb., a pathogen not native 

to western Canada, in northern Sweden (Karlman et al. 1994). Formal restrictions on its use were 
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thus imposed by the Swedish Forest Agency in 1987. Nevertheless, since 1970 areas covering 

more than 600000 ha in northern and central Sweden have been planted with lodgepole pine 

(Skogsstyrelsen 2013). The general risks associated with introducing the species to Sweden have 

been thoroughly reviewed by Karlman (1981, 2001) and Hansson and Karlman (1997). 

In its natural range in the interior of British Columbia lodgepole pine is susceptible to rusts and 

various other parasitic fungi, most commonly western gall rust (Endocronartium harknessii), a 

pine-to-pine rust that does not require an alternate host (van der Kamp 1989, van der Kamp et al. 

1995, Krebill 1975). Infections occur on both branches and the stem, where the fungus produces 

globose swellings (Ziller 1974). This rust and other fungi pose potential risks to Scots pine if the 

pine is introduced in Canada or the fungi occur in Sweden. Mountain pine beetle (Dendroctonous 

ponderosae) also poses a major threat, as it is considered the most destructive of all western 

forest insects (Furniss & Carolin 1977) and routinely causes widespread disturbances during 

outbreaks in North American forests. In British Columbia lodgepole pine is the most threatened 

species. Outbreaks there have been regulated by the cold winter climate, although certain life 

stages of the beetle survive (Robertson et al. 2009). However, in the last 15 years favorable 

winters and increasing spatial connections between suitable habitats in lodgepole pine stands 

thanks to forest fire suppression triggered an extreme outbreak. 

In order to evaluate risks of pests or parasites spreading from Scots pine to lodgepole pine or vice 

versa and possible epidemic outbreaks, and to compare the productivity of the species, a 

transcontinental reciprocal transplant experiment was established in five sites in western Canada 

(British Columbia and Yukon) and two in Sweden (A Joint Swedish – Canadian 1987; Lindgren 

& Lindgren 1990). The materials used in the experiment included full-sib and half-sib families of 

the two species, together with operational seed-lots. Early results from the Canadian test sites 

have been published by Lindgren and Lindgren (1990), van der Kamp et al. (1995) and Karlman 

et al. (1997).  

A previous paper addressed variations in productivity between species and sites (Fries et al. 

2015). However, few studies have adequately evaluated the damage by pathogens, insects and 

animals at a higher age and the aim with the present study was to: (1) evaluate the occurrence of 

damage by various fungi, insects and mammals on the two species as native and exotic species, 

(2) evaluate differences between provenances and between plus tree progenies and operational 

stand collections in susceptibility to those threats, and also damage by snow and wind, (3) 



4 
 

evaluate genetic differences in susceptibility to western gall rust and mountain pine beetle, and 

(4) judge the risks of severe consequences due to large-scale outbreaks of diseases or insects 

when lodgepole pine or Scots pine is used exotically in forestry in Sweden or Canada.  

 

MATERIAL AND METHODS 

The experiment is described in detail in Fries et al. (2015), and briefly summarized below. 

Plant material 

The plant material was for lodgepole pine seed-lots of plus tree progenies (designated LP) and 

seed-lots from operational seed collections in natural stands close to the test sites (designated L). 

The plus tree seed-lots were either full-sib families from controlled crosses in seed orchards or 

half-sib families from open pollinated plus trees in natural stands. The seed-lots of Scots pine 

were all plus tree progenies and designated SP. All abbreviations were followed by a number 

designated their latitudinal origin. Each seed-lot represents one provenance and the term seed-lot 

and provenance are used equally. 

Seedlings were planted in the spring of 1986 at five test sites in western Canada (four in British 

Columbia and one in Yukon) and two sites in Sweden (Fig. 1; Table 1). 

Experimental design 

The field tests had a randomized complete block design with five blocks per site. At every site 

except Garsås, blocks 1 to 4 were composed of 8×8 tree square plots with separate species and 

provenances, and block 5 was composed of single tree plots with mixed species, provenances and 

families. Blocks 1 to 4 at Garsås were 4×16 tree plots. In the present study all 5 blocks were 

included except for growth data which only used block 1-4. Spacing was 2 m×2 m.  

Measurements 

Volume 

Growth measurements presented and described by Fries et al. (2015) were used in the analyses of 

western gall rust effects on volume production. At the southern Swedish site, Garsås, both 

species were heavily damaged by pine weevil (Hylobius abietis) at a young age, then later by 

moose: only 35% of the plots had more than 20 of 64 living trees and only these plots were 

evaluated. The results from this site should thus be treated with caution. 

Survival 
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At the Ft St James and Mackenzie sites most mortality was due to mountain pine beetle. To 

assess probable survival capacity in the absence of an extreme outbreak of a pest like mountain 

pine beetle, at these sites trees killed by mountain pine beetle were included in the surviving 

trees. At the other sites the survivors were exclusively those that were still surviving at the time 

of the surveys.  

Disease and insect survey 

In 2010 (end of June/beginning of July at the Canadian sites, August and October to December at 

the Swedish sites), when the trees were 25 years old they were assessed for infection by mountain 

pine beetle (Dendroctonous ponderosae) and several conifer pathogens: western gall rust 

(Endocronartium harknessii), atropellis canker (Atropellis piniphilla), elytroderma (Elytroderma 

deformans), comandra blister rust (Cronartium comandrae) and stalactiform blister rust 

(Cronartium stalactiforme). The presence of mountain pine beetle was recorded if pitch tubes, or 

entrance and exit holes, were observed in the bark. Sometimes the bark was removed and the 

presence of mountain pine beetle was confirmed by the presence of beetle galleries. The 

occurrence of western gall rust was recorded if galls were detected on a tree’s stem or branches, 

regardless of their abundance. Atropellis canker infection was recorded if considerable resin 

exudation was observed, and confirmed by the presence of black fruiting bodies and black 

staining in the wood beneath the bark at the point of exudation. Elytroderma infection was 

recorded if elongated black fruiting bodies on needles were observed, or either excessively 

swollen branches or elongated stem cankers with rough bark and no region of cambial mortality 

(which would be characteristic of blister rust infections).  

Comandra and stalactiform blister rusts were identified by the presence of stem cankers which 

often included a region of cambial mortality in the centre. The fungi were distinguished by size 

and shape with comandra cankers having a height to width ratio of one while the ratio for 

stalactiform cankers was much higher than one.  

Stem form and animal damage 

Tree top damage and stem form abnormalities were assessed by recording the propensity to fork. 

Two classes of stem forks were recorded, <1.3 m and > 1.3 m above the ground. In addition, at 

the Ft. Nelson site trees with broken tops and uprooted trees were recorded. Signs of animal 

damage beside attacks by mountain pine beetle were also recorded.  

 Statistical analysis 
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Microsoft Excel 2010 was used for frequency calculations. For other statistical analyses 

procedures implemented in SAS Enterprise version 4.3, including Proc TTest, were used, except 

for estimates of variance components and heritabilities (for which restricted maximum likelihood 

analysis, REML, was applied, as implemented in ASReml-R version 3 software). Fixed effect 

models were applied to the data in the analysis of genetic parameters. The genetic parameters for 

western gall rust were calculated using the following model where provenance (or prov) 

corresponds to seed-lot:  

[1] Yijk = μ + blocki + provj + blocki×provj + fam(prov)k + blocki×fam(prov)k + eijk , 

Where   

Yijk  = individual observation of each trait of the ijk
th

 plant position, 

blocki  = fixed effect of the i
th

 block, i  = 1-4, 

provj  = fixed effect of the j
th

 provenance: for lodgepole pine j =1-10 (Ft St James, Ft St 

John, Mackenzie and Ft Nelson) and 1-11 (Whitehorse); for Scots pine j =1-8 (Ft 

St James, Ft Nelson and Whitehorse), 1-6 (Ft St John) and 1-7 (Mackenzie) 

fam(prov)k  = random effect of the k
th

 family within-provenance: for lodgepole pine k =1-30 

(Ft St James), 1-36 (Ft St John, Ft Nelson and Whitehorse) and 1-34 (Mackenzie); 

for Scots pine k =1-32 (Ft St James, Mackenzie and Whitehorse), 1-24 (Ft St 

John), and 1-33 (Ft Nelson), 

eijk   = random residual (res) (assuming normal independent distribution) with different 

σ
2

e for each site and species, ijk = 1-n,  according to Table 8.  

Mountain pine beetle is known to attack trees with a large diameter (Björklund & Lindgren 

2009). Thus, the following model including DBH as a random effect was used for mountain pine 

beetle attacks: 

[2] Yijkl = μ + blocki + provj + blocki×provj + fam(prov)k + blockifam(prov)k + DBHl + eijkl  

where   

DBHl  = random effect of stem diameter at breast height on individual stem observations 

of the ijkl
th

 plant position.  

As the data for the analysed traits were binary (living/dead, attack/no attack or occurrence/no 

occurrence) the “logit” function in ASReml (Gilmour et al. 2002) was used (see also Yanchuk et 

al. 2008). Using this method narrow-sense individual heritability was calculated as follows:  

[3]  
2ˆ
ih  = 4

2

)(
ˆ

provfam / (3.29 +
2

)( × 
ˆ

provfamblock + 
2

)(
ˆ

provfam ) . 
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RESULTS            

Survival    

In Canada there were no significant differences in survival rates between the plus tree seed-lots 

(LP) and operational seed-lots (L) of lodgepole pine, thus pooled data were used in the 

comparisons with Scots pine. As shown in Table 2a, survival rates were, with the exception of 

Whitehorse, significantly higher for Scots pine than lodgepole pine (p<0.05-0.001). Furthermore, 

if the two southernmost provenances (SP57 and SP59) are excluded, survival rates of Scots pine 

were also higher at Whitehorse (p<0.01). When comparing the ‘best’ seed lots (those with >10% 

higher than mean survival rates; Table 2b), Scots pine had significantly higher survival rates than 

lodgepole pines at only two sites: Mackenzie and Whitehorse (p<0.05) (note: if no seed-lot met 

this criterion, the three best were used, except at Ft Nelson, where one with >10% higher than 

mean survival and the second best were used). At the Renberget site lodgepole pine had 

significantly higher survival, only when comparing the ‘best’ provenances, and at Garsås 

survived Scot pine slightly better. 

Stem damage 

Forking 

At the Canadian sites there were neither below nor above 1.3 m significant differences in forking 

frequencies between plus tree seed-lots and operational seed-lots of lodgepole pine (Table 3). 

Frequencies of forking at >1.3 m differed significantly between the species only at Ft Nelson and 

Renberget, where forking was more frequent among lodgepole pines than Scots pines (p<0.05 

and 0.01, respectively).  

Scots pine had significantly more forks <1.3 m than lodgepole pine at the four southern sites in 

Canada (45-58% for Scots pine compared to 2-33% for lodgepole pine; p<0.01). In Whitehorse, 

however, there was no significant difference between the species and the frequencies were low. 

 

Broken stems and uprooting 

At the Fort Nelson site heavy snowfalls resulted in considerable frequencies of broken stems and 

uprooting in the spring of the measurement year, and both types of damage were more frequent 

among plus tree seed-lots of lodgepole pine than among the Scots pine seed-lots (p<0.01; Table 

4). In addition, stem breakage was significantly more common than uprooting in lodgepole pine 

(p<0.05). Among operational seed-lots of lodgepole pine, frequencies of broken stems were 
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lower for origins from the same region as the site (L57 and L58; cf. Fig 1) than for more distant 

origins and plus tree seed-lots (3.15% on average, versus 20.7% and 12.8 %, respectively). The 

frequencies of Scots pines with broken stems were similar to those of lodgepole pines originating 

from local seed-lots. Frequencies of uprooting did not differ significantly between species and 

not between trees originating from local and more distant operational seed-lots. Among Scots 

pine the southernmost seed-lot had significantly higher frequencies than the others (p<0.001) 

(11.3% compared to 2.6%, data not shown). 

At Renberget were frequencies of uprooted trees higher among plus tree seed-lots of lodgepole 

pine than among operational stand seed-lots and among Scots pine (14.8% uprooted compared to 

2.2% and 6.6%, respectively; p<0.001 for both comparisons) (data not shown). The latter differed 

also significantly (p<0.05).  

Western gall rust  

Western gall rust was observed at all Canadian sites, although at very low frequencies at the most 

northern site, Whitehorse, and none at the Swedish sites. Lodgepole pine was significantly more 

frequently infected than Scots pine at the four southern Canadian sites (p<0.001). For lodgepole 

pine varied the occurrence of western gall rust between 19 and 100% (average 78%) among seed-

lots, while the range for Scots pine was 0-30% (average 10.4%) (Table 5). There were no 

significant differences in frequency of infections between plus-tree seed-lots and operational 

seed-lots of lodgepole pine. The operational seed-lot L57 had lowest infection rate at all sites. At 

the four southern sites 49.2% of trees of seed-lot L57 were infected, compared to 81.2% for those 

originating from other operational seed-lots. Based on the production data reported by Fries et al. 

(2015), western gall rust caused ca. 25% growth reductions of both lodgepole and Scots pine 

trees (Table 6). 

Other pathogens 

Stalactiform blister rust was observed in Ft St James and Mackenzie. In Ft St James seven of 10 

seed-lots of lodgepole pine had infections (range 0-7%, average 1.2%; not shown in table), and at 

Mackenzie six out of nine seed-lots had infections (range 4-20%, average 6.3%). Infections on 

Scots pine occurred on only one and two trees, respectively. Comandra blister rust was also 

detected at these sites (and at Whitehorse), but in very low frequencies and not on Scots pine. 

Atropellis canker was recorded on all seed-lots of lodgepole pine in Ft St James and in six out of 

ten seed-lots of lodgepole pine in Mackenzie (range 7-81%, average of 40.2% and range 4-24%, 
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average 12.3%, respectively; not in table). Infections were more frequent on southern origins. In 

addition were a few lodgepole pines infected at Whitehorse. Notably, at Ft St James 26% (6 of 

23) of the trees originating from one Scots pine seed-lot, SP60, were infected by atropellis 

canker. Otherwise, infections were only observed in single Scots pine trees.  

Elytroderma occurred only in Mackenzie and there all lodgepole pine seed-lots except two 

(represented with very few plants) were infected (range 10-72%, average 42.7%; not in table). 

Infected was recorded on only one Scots pine tree.  

Mountain pine beetle 

Numerous trees of both species were attacked by mountain pine beetle at Mackenzie, and 

substantial numbers at Ft St James. At both sites significantly higher proportions of Scots pines 

than lodgepole pines were attacked (p<0.01) while there were no significant differences between 

plus tree seed-lots and operational stand seed-lots of lodgepole pine (Table 7). At Mackenzie the 

frequencies among Scots pines seed-lots ranged from 85 to 100% (average 95%), while 

frequencies among lodgepole pine plus tree seed-lots or operational seed-lots ranged from 0 to 

100% (average 59%). At the time for inventory, 40% of the attacked lodgepole pines were dead 

and 90% of the Scots pines. At Ft St James the frequencies of attacks were lower among both 

Scots pine seed-lots (28-88%, average 53%) and lodgepole pine seed-lots (3-57%, average 21%). 

Mortality at inventory was 70 and 85%, respectively. There was no latitudinal trend among seed-

lots in attack frequency by mountain pine beetle and there were no among-seed-lot correlations 

between Ft St James and Mackenzie in attack frequency. 

Animal damage 

Damage caused by animals except mountain pine beetle was negligible at Ft St James and 

Mackenzie, but sapsuckers (Sphyrapicus spp.) damaged substantial numbers of trees at Ft St John 

and Ft Nelson, and mammals (deer, porcupine or hare) in a few cases (less than 1%) stripped 

bark, browsed and rasped shoots at Whitehorse. Significantly higher (p<0.001) proportions of 

Scots pines than lodgepole pines were damaged by sapsucker (54% and 1.1%, on average, 

respectively). At Garsås both species were equally much damaged by pine weevil (Hylobius 

abietis) at a young age, then later by moose: only 35% of the plots had more than 20 of 64 living 

trees.  At the time for inventory moose damage was identified on 45% of the lodgepole pines but 

only 2% of the Scots pines (data not shown). Renberget was fenced and had very limited damage 

from animals. 
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Genetic parameters 

For both species was the block effect on western gall rust infection larger than the family effect at 

the three southern sites, but lower at Ft Nelson (Table 8). The heritabilities were similar for both 

species: h
2
=0.14-0.26 except for lodgepole pine at Ft Nelson (h

2
=0.05) and Scots pine at 

Mackenzie (h
2
=6.7×10

-8
).  

For mountain pine beetle attacks the effect of stem diameter (DBH) was negligible in Ft St James 

and Mackenzie, and heritabilities were low for Scots pine (h
2
= 0.12 and 0.053, respectively) and 

negligible for lodgepole pine. 

DISCUSSION      

Survival 

Survival rates of the exotic species were higher than those of the native species at most sites. This 

is consistent with the “enemy release hypothesis” (Mitchell and Power 2003), i.e. that an exotic 

tree species in a new environment may have higher fitness than an indigenous species due to the 

absence of restrictive pests and pathogens endemic in its native range. However, the exotic 

species have less clearly superior survival rates when the 10% best seed-lots are compared, 

indicating that it may be possible to find sufficiently well adapted materials of either exotic or 

indigenous species to ensure good survival and also production rates (Fries et al. 2015).  

At Renberget, the Swedish site where development was acceptable, lodgepole pine seemed to 

cope with very long northern transfer, as survival rates for material of all origins were 80-90%, 

indicating that for lodgepole pine similarity of climatic conditions between source and transfer 

sites is more important than similarity of light climate. A northern transport is possible since 

lodgepole pine stands lower temperatures during the growth period (Christersson et al. 1987) and 

becomes hardy earlier in the autumn (Lindgren & Nilsson 1992). Its better survival at Renberget 

can probably also be attributed to the fewer potential threats to lodgepole pine. At Garsås, the 

high mortality rates were caused by outbreaks of pine weevil and later damage by moose. Moose 

seems to prefer Scots pine over lodgepole pine at fertile sites, but prefer lodgepole pine at poor 

sites (Niemelä & Danell 1988). Top height, stem diameter and volume production were all lower 

at Garsås, despite its more southern location than at Renberget (Fries et al. 2015) indicating that 

Garsås is a relatively poor site, which may explain the frequent damage on lodgepole pine. It also 

shows that exotic species may get considerable damage by unexpected agents, suggesting that 

their use should be extended cautiously. 
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Stem damage   

Forking below breast height was more common in the exotic species at all Canadian and Swedish 

sites except Whitehorse, and lodgepole pine was more frequently forked above breast height than 

Scots pine in Sweden (Table 3). This may have been at least partly due to the exotic lodgepole 

pine having greater mean heights (see Fries et al. 2015) and longer, more vulnerable top shoots. It 

also allocates smaller amounts of the biomass to the stem (Elfving et al. 2001).  There were no 

significant differences in frequency of broken stems between operational seed-lots and plus tree 

seed-lots, except that frequency of stem breakage was considerably rarer in local operational 

seed-lots than in distant operational seed-lots and plus tree seed-lots at Ft Nelson (Table 4). The 

area where the site is located has a relatively more maritime climate with heavy and wet snow. 

Thus, local adaptation to these conditions may have been a key factor for avoiding stem damage 

and the limited damage to Scots pine may reflect its adaptation to the more maritime climate in 

Scandinavia and at Ft Nelson.  

In Sweden, uprooting was significantly more common among plus tree seed-lots of lodgepole 

pine than among operational seed-lots of lodgepole pine and Scots pine. Plants originating from 

seed orchards generally grow well in early stages, due to the high quality of seeds. A 

consequence of this for lodgepole pine is a risk of spiral roots developing in the plant containers, 

a well-documented problem in Sweden during the years when this experiment was established 

(Lindström & Rune 1999). Such spiraling affects the later development of the roots, and reduces 

their stability, as also shown for jack pine (Pinus banksiana Lamb.) by Chapman & Colombo 

(2006). 

Western gall rust  

Western gall rust occurred at all sites except Whitehorse in both 2010 and 1993 (Karlman et al. 

1997). Significantly higher proportions of lodgepole pines than Scots pines were infected, but 

there was no difference in this respect between operational seed-lots and plus tree progenies of 

lodgepole pine (Table 5). The incidence on lodgepole pine had increased since the registrations in 

1993; the average frequency of infected trees increased from 45-49% in 1993 to 60-94% in 2010 

at the three southern sites (cf. Karlman et al. 1997) and at Ft Nelson only 4.5% of the trees were 

attacked in 1993 while 68% had been attacked in 2010. Furthermore, a tendency for fewer trees 

of northern origins to be attacked, recorded in 1993, had disappeared in 2010. Clearly, infections 

by western gall rust can continue for at least nearly 30 years and relatively resistant materials can 
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be infected if the infection pressure is high enough. Nevertheless, the operational seed-lot L57 

had the lowest infection rate at all four sites indicating higher resistance. 

For Scots pine there was only a limited increase in western gall rust infection frequencies, from 

less than 5% in 1993 to nearly 10% in 2010, and it remained low at Ft Nelson (5%). Although 

conditions for infections of western gall rust were favorable, as manifested by the increase in 

numbers of infected lodgepole pines, infection frequencies remained low in Scots pine. However, 

since infection by western gall rust may occur at any age (cf. 

https://fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5341326.pdf  [May 2015]) additional 

infections of Scots pine may occur in the future. Still, the severity of future infections should 

decrease with increasing age since the likelihood of stem-encircling infections, which can girdle 

the trees, should decline (Blenis & Duncan 1997). 

Trees infected by western gall rust had 25% lower volume than uninfected trees (Table 6). This 

may have been at least partly due to the rust tending to infect small trees more frequently, but 

infections (especially stem infections) are also likely to depress growth rates as they cause the 

death of water-conducting tissues. Stem infections were also reported to reduce growth of 

Monterey pine (Zagory 1979). The observed growth reductions are large compared to previous 

reports, for example Bella and Navratil (1988) detected reductions in volume of 3-15%. Woods et 

al. (2000) also observed a small negative effect of western gall rust alone, but a stronger effect 

(up to 7% reductions) in combination with comandra blister rust. Differences in site productivity 

and exposure (Bella and Navratil 1988; Woods et al. 2000) may contribute to the variations in 

observed effects.  

Heritabilities for infection by western gall rust were similar for both species and varied between 

0.14 and 0.27, except for two sites where heritabilities were very low. Similar heritability 

(h
2
=0.21) was obtained in a trial involving inoculating lodgepole pine with western gall rust 

(Kojwang 1994) and fusiform rust (Cronartium quercum f.sp. fusiforme) (Kayihan et al. 2010). 

However, Wu & Ying (1997) obtained higher estimates of heritability for western gall rust 

(h
2
=0.50), and slightly lower estimates for stalactiform blister rust (h

2
=0.32). Inoculation tests 

reported by Hoff (1991) have also indicated high heritability (h
2
=0.76) for resistance to the 

disease in ponderosa pine (Pinus ponderosa Laws.). It is obvious that there is a potential for 

genetic improvement of lodgepole pine in resistance against rust fungi. 

Other pathogens 

https://fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5341326.pdf
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Atropellis canker occurs on the bole below the crown base and is more common in dense than in 

widely spaced stands (Stanek et al. 1986). Unlike comandra and stalactiform blister rust, it seems 

to be capable of infecting mature trees, as well as young trees (van der Kamp 1994). Beside 

killing trees at high infection rates it may cause reductions in their modulus of elasticity (Nevill et 

al. 1990). Atropellis was frequent at two sites, Ft St James and Mackenzie, at which stalactiform 

and comandra blister rust also occurred, and thus seem to be in an area with generally high 

infection pressure. Despite the high atropellis infection rates at these two sites it was not detected 

in the other sites, presumably because its dispersal over long distances requires transportation of 

plant material, while it can spread over short distances via aeciospores, which are mostly 

dispersed by wind and rain (EFSA 2014). The finding that northern materials were more resistant 

indicates that trees that are under climatic stress may be more susceptible to the fungus. It is also 

noteworthy that these rust fungi occurred in sites of attacks by mountain pine beetle. The 

apparent associations between atropellis canker and mountain pine beetle and stalactiform and 

comandera blister rusts are consistent with statements regarding lodgepole pine infections by 

Rocchini et al. (1999). They found that such associations could be due to the fungus wounding 

the bark, which increases the possibility of insect attack. However, given the enormous outbreak 

of mountain pine beetle in British Columbia starting around year 2000 (Robertson et al. 2009; 

Chen 2014), is this cause–effect process however probably not the determining factor here. 

Elytroderma was quite frequent on all seed-lots of lodgepole pine except two, so our data provide 

limited scope for drawing conclusions regarding optimal provenances. However, Wallis et al. 

(2010) claim that exposed populations develop genetic resistance to elytroderma over time, and 

material from areas where lodgepole pine is not a dominant species were generally more 

susceptible. This hypothesis is supported by findings by Wallis et al. (2010) that trees’ capacity 

to resist elytroderma is connected to foliar levels of defense-associated compounds (lignin, 

phenolics and tannins), amounts of which are genetically determined (Fries et al. 2000). 

At the Renberget site in Sweden the survival of lodgepole pine at age 9 was 92% which was 

much higher than for Scots pine (69%). In Canada seven years after planting were, however, the 

average survival rates of both species nearly 95%. The low survival for Scots pine in northern 

Sweden is well documented (Näslund 1986). A probable reason for the higher survival of 

lodgepole pine in northern Sweden is its ability to avoid or survive attacks by some of the pests 

and pathogens that cause mortality in Scots pine. They include snow blight (Phacidium infestans) 
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(Fries 1993), pine twisting rust (Melampsora pinitorqua) and resin top disease (Cronartium 

flaccidum) (Näslund 1986). Indeed, lodgepole pine growing in Sweden, in consistence with the 

‘enemy release hypothesis’, has less pathogen infection than in most stands in Canada. 

Noteworthy, however, is that it was seriously affected by the outbreak of scleroderris canker 

caused by Gremminiella abietina Lagerb. (Karlman et al. 1994).  

Mountain pine beetle 

Attacks by mountain pine beetle were frequent at Ft St James and even more frequent at 

Mackenzie. This was expected since both sites are located in areas where lodgepole pine was the 

dominating conifer and the most intensive attacks occurred in 2007-2008 (Chen 2014). In 

contrast, Ft St John is located close to the boundary of attacks in those years, and no attacks were 

recorded there in 2010. Contributing to this may be that the area around this site not is dominated 

by lodgepole pine, which is likely to reduce the probability of attack.  At Ft St James and 

Mackenzie the beetle attacked Scots pine more frequently than lodgepole pine (Table 7), which 

could be explained by the rougher bark of Scots pine. Thus, Ferrenberg & Mitton (2014) found 

that beetle attacks were considerably more frequent on rough bark than on smooth bark of P. 

flexilis. Findings presented here indicate that genetic factors weakly influence mountain pine 

beetle resistance; narrow-sense heritabilities were negligible for lodgepole pine and only 0.12 and 

0.053 for Scots pine at Ft St James and Mackenzie, respectively. However, the mating design in 

this study covered limited relationships, which reduces the efficiency for estimating genetic 

parameters. Thus, Yanchuk et al. (2008) obtained higher heritabilities for occurrence and number 

of pitch tubes of hi
2
=0.26 and 0.15, respectively, from a trial with open-pollinated progenies. Wu 

& Ying (1997) found similar heritability for frequency of attack (h
2
=0.21) by another insect, 

pitch moth (Synanthedon sequoiae). One genetically regulated factor that may contribute to the 

difference in attack frequency between the species is the abundance of resin ducts and amounts of 

wood extractives; Ferrenberg et al. (2014) found that resistant trees generally have considerably 

more resin ducts and Franceschi et al. (2005) emphasizes the genetic component in this aspect. 

Furthermore, Rosner & Hannrup (2004) recorded generally high broad sense heritabilities at four 

sites with Norway spruce clones (H
2
=0.28, 0.81, 0.77 and 0.71) for abundance of resin ducts and 

resins, Fries et al. (2000) presented high heritabilities in Scots pine for amounts of resin acids 

(h
2
=0.55-0.60) and Ott et al. (2011) showed that amounts of terpenes and terpenoids are under 

strong genetic control in lodgepole pine (h
2
=0.12-0.58, average 0.28). All these substances are 
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important for defense against beetle attacks by acting both as hydrophobic barriers and 

fungitoxins (Hart 1981; Pearce 1996; Ferrenberg et al. 2014).  

Summary 

When comparing lodgepole pine and Scots pine as exotic and native species the pattern was that 

survival was higher for the exotic species both in Canada and Sweden. There were, however, 

exceptions. At one Swedish site pine weevil and moose caused equal mortality, and at the site in 

Canada with the harshest climate was survival also equal. Furthermore, the differences between 

the exotic and native species were limited when comparing the origins with the highest survival. 

The infection rate on Scots pine of the native pathogens in Canada was very low, although they 

frequently attacked lodgepole pine. Earlier data has shown high mortality at low age for Scots 

pine in Sweden which was largely due to the native pathogens. They did however not seem to 

affect the exotic lodgepole pine. The low infection rates of Scots pine in Canada and lodgepole 

pine in Sweden are consistent with the “enemy release hypothesis” (Mitchell and Power 2003), 

i.e. that an exotic tree species in a new environment have higher fitness than an indigenous 

species due to the absence of restrictive pests and pathogens. 

There were however important exceptions with the native pathogen or animal preferring the 

exotic species. The more severe outbreaks of mountain pine beetle on Scots pine than on 

lodgepole pine and the considerable moose damage on lodgepole pine at one Swedish site, and 

also the serious damage by scleroderris on lodgepole pine in Sweden in the 1980s are example of 

risks associated with species introductions. Noteworthy is also the higher frequency of damage 

by sapsucker on Scots pine than on lodgepole pine in Ft St John (54% compared to 1.1%) 

indicating preference of the exotic species.  

The study presents results from first generation introductions before mid-rotation age and there is 

certainly a risk that the diseases in future adapt to attack also the introduced species. E.g. may the 

registered infections by western gall rust of Scots pine be a basis for an adaptation and increase in 

pathogeny. 
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Table 1. Field tests included in the reciprocal transplant experiment with lodgepole pine and 

Scots pine. 

Location Latitude 

(°N) 

Longitude 

(Can: °W, Swe: °E ) 

Elevation   

(m)     
Canada    

Fort St. James 54.45 124.05 855 

Mackenzie 55.50 123.72 680 

Fort St. John 56.60 122.37 800 

Fort Nelson 59.00 123.33 600 

Whitehorse 60.68 135.37 660 

Sweden    

Garsås 60.93 14.88 205 

Renberget 64.25 19.80 225 
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Table 2. 

Survival rates, in terms of percentages of surviving trees. The “surviving trees” at Ft St James 

and Mackenzie include trees recently attacked and killed by mountain pine beetle. LP, L and SP 

refer to lodgepole pine plus tree progeny, lodgepole pine originating from operational seed-lots 

and Scots pine plus tree progeny, respectively. Mv is mean values, and figures followed by 

different letters are significantly different. a) All seed-lots; b) The ‘best’ seed-lots (see text for 

definition of ‘best’).  

 

  

Ft St 

James 

Ft St 

John 

Macken-

zie 

Ft 

Nelson 

White-

horse 

Garsås 

Ren-

berget 

Mv 

Can      Swe 

a)          

LP 88.95a 59.98a 57.38a 66.88a 59.06a 50.47a 84.00a 64.45 49.82 

L 88.03a 63.78a 59.37a 62.70a 71.00a   68.98  

SP 96.00b 88.60b 92.03b 80.38b 76.48a 58.12a 66.25b 86.70 54.25 

b)          

LP+

L 

98.17a 82.96a 76.89a 85.01a 77.24a 60.54a 88.90a 84.054 67.89 

SP 98.26a 91.64a 95.41b 88.47a 87.97b 69.14a 76.71a 92.350 72.21 

 

  



23 
 

Table 3.  

Frequencies of forking above and below breast height (1.3 m). Abbreviations: see Table 2. 

 Ft St 

James 

Ft St 

John 

Macken-

zie 

Ft 

Nelson 

White-

horse 

Garsås Renberget  Mv 

Canada 

Mv 

Sweden 

>1.3m           

LP 3.45 a 3.00 

a 

3.07 a 3.22 a 10.94 

a 

4.18 a 3.89 a  4.74 a 4.03 a 

L 2.55 a 6.20 

a 

5.81 a 1.43 a 

B 

16.35 

a 

─ 23.89 b  6.47 a 23.89 b 

SP 1.91 a 1.93 

a 

1.68 a 0.52 b 

 

10.86 

a 

 

1.77 a 0.72 c  3.38 a 1.25 c 

<1.3m           

LP 9.95 a 22.84 

a 

20.54 a 16.68 

a 

3.82 a 29.55 a 3.51 a  14.77 a 16.53 a 

 L 1.88 a 29.56 

a 

33.34 a 12.70 

a 

4.06 a 

 

 

 

 

 

 

 

 

 

 

 

 

─ 3.24 a  16.31 a 3.24 b 

SP 45.48 b 57.61 b 54.61 b 52.18 

b 

1.88 a 2.63 b 1.26 b  42.35 b 1.94 c 

 

Table 4.  

Mean percentages of broken or uprooted trees at the Fort Nelson site among lodgepole pine and 

Scots pine plus tree progenies, and trees originating from both local operational seed-lots (L57 

and L58) and those with more distant origins (L60-L63). Abbreviations: see Table 2. 

 

 

Fort Nelson 

(59.00°N)  
Broken Uprooted 

L57 3.70 0 

L58 2.6 6.3 

L60-

L63 

20.67 3.91 

LP 12.76 a 7.65 a 

SP 2.67 b 3.73 b 
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Table 5. Percentages of trees originating from indicated seed-lots infected by western gall rust at 

indicated sites. Abbreviations: see Table 2. 

      

 Ft St 

James  

54.45
o
 

Ft St 

John      

56.60
o
 

Mackenzie 

55.50
o
 

Ft Nelson      

59.00
o
 

Whitehorse      

60.68
o
 

L
o
d
g
ep

o
le

 p
in

e P
lu

s 
tr

ee
 s

ee
d

-l
o
ts

 LP55 69.7 92.3 91.4 79.2 0.5 

LP57 54.5 79.3 71.7 55.6 0.9 

LP59 78.9 99.3 93.9 59.5 0.0 

LP61 77.4 100.0 82.4 83.0 0.6 

LP63 78.7 97.6 100.0 92.4 0.0 

       

O
p
er

at
io

n
al

 s
ee

d
-l

o
ts

 

L54 75.3 100.0 92.3 ─ ─ 

L55 68.0 100.0 92.8 ─ ─ 

L57 19.2 66.9 70.0 40.9 0.0 

L58 43.3 88.9 76.5 57.0 0.0 

L60 91.7 89.3 92.3 60.9 0.6 

L62 ─ ─ ─ 76.2 0.0 

L63 ─ ─ ─ 77.8 0.0 

        

S
co

ts
 p

in
e 

 

P
lu

s 
tr

ee
 p

ro
g

en
ie

s 

SP55 11.6 ─ 3.6 ─ ─ 

SP57 6.5 8.9 11.9 4.3 0.0 

SP59 7.7 15.7 11.2 4.8 0.6 

SP60 30.4 ─ ─ ─ ─ 

SP61 11.7 14.1 9.2 13.1 0.0 

SP63 7.2 9.4 9.8 5.5 0.0 

SP64 3.4 6.9 3.7 0.0 0.0 

SP65 4.6 10.4 5.3 4.2 0.0 

SP66 ─ ─ ─ 9.4 1.4 

SP67  ─  ─  ─ 1.9 0.0 

  Mean 

LP 

71.9 a 93.7 a 87.9 a 73.9 a 0.4 a 

  Mean 

L 

59.5 a 89.0 a 84.8 a 62.6 a 0.1 a 

  Mean 

SP 

10.4 b 10.9 b 7.8 b 5.4 b 0.3 a 
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Table 6.   

Mean volumes of lodgepole pine (LP) and Scots pine (SP) trees infected with western gall rust 

(WGR) and uninfected trees at the four southern Canadian sites. Only trees in block 1-4 are 

included since growth was not measured in block 5. 

 

Species Mean volume, dm³ Volume reduction 

 without with by WGR 

 WGR (a) WGR (b) (1–b/a),% 

LP 56 42 25.0 

SP 48 36 25.0 
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Table 7.  

Frequencies of trees attacked by mountain pine beetle of indicated seed-lots. Abbreviations: see 

Table 2. 

       Ft St 

James  

54.45
o
 

Mackenzie 

55.50
o
 Lodgepole 

pine 

P
lu

s 
tr

ee
 p

ro
g
en

ie
s LP55 13.0 69.8 

LP57 21.4 77.5 

 
LP59 15.1 54.6 

 
LP61 3.2 36.7 

 
LP63 4.3 0.0 

     

     

 

O
p
er

at
io

n
al

 s
ee

d
-l

o
ts

 L54 5.4 100.0 

 
L55 36.0 45.2 

 
L57 46.2 100.0 

 
L58 56.7 87.5 

 
L60 8.3 16.7 

     

Scots 

pine 

P
lu

s 
tr

ee
 p

ro
g
en

ie
s 

SP55 45.0 100 

 
SP57 47.9 97.6 

 
SP59 60.9 96.1 

 
SP60 52.2 ─ 

 
SP61 88.3 95.4 

 
SP63 52.8 88.5 

 
SP64 48.3 100.0 

  
SP65 27.7 84.9 

Mean LP    11.4 a 47.7 a 

Mean L   30.5 a 69.9 a 

Mean SP    52.9 b 94.6 b 
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Table 8.  Genetic parameters for infection by western gall rust (WGR) and attacks by 

mountain pine beetle (MPB). Prov, Provenance; Fam, family; Var.comp, variance component; 

stdev, standard deviation; h
2
, narrow-sense heritabilities; N, number of plants; DBH, stem 

diameter at breast height. a) Western gall rust; b) mountain pine beetle. 

a) WGR     
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b) MPB Lodgepole pine Scots pine 
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Figure 1.  

Locations of the test sites, and origins of provenances and operational control seed-lots used in 

the multi-species transcontinental family provenance trial established in Canada and Sweden. The 

provenances and operational control seed-lots were collected from the areas surrounding the 

point sources shown on the map. See Table 2 for definitions of the abbreviations. 

 


