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Abstract 12 

This study presents an approach for predicting stand level forest attributes utilizing mobile 13 

laser scanning (MLS) data collected as a non-probability sample. Firstly, recordings of stem 14 

density were made at point locations every 10th metre along a subjectively chosen MLS track 15 

in a forest stand. Secondly, Kriging was applied to predict stem density values for the centre 16 

point of all grid-cells in a 5×5 m lattice across the stand. Thirdly, due to non-detectability 17 

issues a correction term was computed based on distance sampling theory. Lastly, the mean 18 

stem density at stand level was predicted as the mean of the point-level predictions multiplied 19 
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2 

with the correction factor, and the corresponding variance was estimated. Many factors 20 

contribute to the uncertainty of the stand level prediction; in the variance estimator we 21 

accounted for the uncertainties due to Kriging prediction and due to estimating a detectability 22 

model from the laser scanning data. The results from our new approach were found to 23 

correspond fairly well with estimates obtained using field measurements from an independent 24 

set of 54 circular sample plots. The predicted number of stems in the stand based on the 25 

proposed methodology was 1366 with a 12.9 % relative standard error. The corresponding 26 

estimate based on the field plots was 1677, with a 7.5 % relative standard error.  27 

Keywords: Covariogram; Detectability function; Forest management; Model-based inference. 28 

  29 
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1. Introduction 30 

Traditionally, stand level forest inventories have been based on field surveys where the 31 

surveyor allocates sample plots either subjectively or by random sampling to assess key stand 32 

characteristics such as stem density, age, and growing stock volume (Kangas and Maltamo 33 

2006). This information typically is acquired for supporting forest management decisions. 34 

However, due to high costs of field data collection, substantial research has been attributed to 35 

replacing, or improving the cost-efficiency of, field surveys using remotely sensed data during 36 

the last decades. Today, laser scanning has become a widely-used technique to support forest 37 

inventories (e.g., Næsset 2002, Boudreau et al., 2008; Andersen et al., 2011). For practical 38 

applications, airborne laser scanning (e.g., Naesset 2002, Wulder et al., 2012; Neigh et al., 39 

2013) is currently the most common approach. For variables, such as stand height, volume 40 

and biomass it can provide stand level estimates that are as precise as, or even more precise, 41 

than those obtained from traditional stand level inventories (e.g., Hyyppä & Hallikainen, 42 

1996; Hyyppä & Inkinen, 1999; Næsset, 2002; Ørka et al., 2016). Several studies also point at 43 

the potential of laser scanning for providing auxiliary data for improving large-area forest 44 

surveys (e.g., Gobakken et al., 2012; Saarela et al., 2015; Ene et al., 2017). 45 

Also, terrestrial laser scanning (TLS) has been investigated in many studies (e.g., Watt et al., 46 

2005; Ducey et al., 2013; Ducey & Astrup, 2013; Liang et al., 2016; Vaaja et al., 2016; 47 

Olofsson & Holmgren, 2016) and it has the potential to become a competitive alternative or 48 

adjunct to traditional sample plot inventories. With TLS, currently, a normal procedure is to 49 

mount a laser scanning device at several locations in a stand whereby detailed tree level 50 

information can be obtained from the measurements. Ducey et al. (2013) report that stand 51 

conditions and scanner attributes affect how well tree stems can be identified and measured 52 

and that none of the scanners evaluated in their study provided sufficiently reliable diameter 53 
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measurements to substitute field measurements. On the other hand, Olofsson et al. (2014) 54 

suggest a method which can measure stem diameters with relative root-mean-square error 55 

(RMSE) of 14%. However, with the laser scanner mounted at fixed positions (i.e. single scan 56 

mode) there is a problem that some of the trees are hidden by trees located close to the 57 

measurement device and thus are not detected. To overcome potentially negative bias due to 58 

this, Ducey & Astrup (2013) and Astrup et al. (2014) developed procedures to adjust for non-59 

detection and thus make the estimators (almost) unbiased. 60 

Terrestrial laser scanning is rapidly developing and modern measurement devices are 61 

becoming smaller, cheaper and more accurate. They can also be combined with satellite-based 62 

positioning systems, so that all the trees in the vicinity of the measurement device 63 

automatically receive a position. Terrestrial laser devices need not be stationary during 64 

measurements and, thus, mobile laser scanning (MLS) has emerged as a special branch of 65 

TLS. In this case the lasers are mounted on all-terrain vehicles (ATVs), on unmanned aerial 66 

vehicles (UAVs) (e.g., Jaakkola et al., 2010; Glennie et al., 2013, Forsman et al., 2016), or 67 

they may be held by or be attached to a surveyor walking through the forest (e.g., Liang et al., 68 

2014; Rönnholm et al., 2016; Lehtola et al., 2016). For MLS, promising results have been 69 

obtained by Rönnholm et al. (2016), who evaluated the quality of backpack laser scanning 70 

data by comparing them with UAV laser scanning data. Jaakkola et al. (2010) performed both 71 

automatic and manual tree finding, height determination, and automatic measurement of 72 

diameter at breast height (DBH). The tree height bias was 2 cm for manual measurement and -73 

15 cm for automatic measurement. The measurement of DBH was obtained with a root mean 74 

square error of 2.1 cm. Forsman et al. (2016) reported a root-mean-square error of 14% (3.7 75 

cm) in DBH estimation by MLS data using a line-wise intensity-based clustering method. 76 
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With MLS it is not obvious how estimation procedures should be developed in order to 77 

produce precise and unbiased estimators at the level of stands (or larger areas). There are at 78 

least three main problems that need to be addressed. These are (i) non-detection errors of 79 

similar kind as with ordinary TLS, (ii) difficulties to obtain probability samples and thus 80 

unbiased estimators, since accessibility (at least for ATVs) typically is limited in many parts 81 

of forest stands, and (iii) measurement errors at the level of single trees due to inexact laser-82 

based determination of key features such as height and diameter. 83 

The objective of this study was to develop and evaluate procedures for predicting stand level 84 

attributes from MLS data, based on previous experiences with handling non-detection in TLS 85 

surveys (Astrup et al., 2014). The developed procedures constitute one way to account for the 86 

first two issues outlined above, i.e. adjusting for non-detection errors and handling non-87 

probability samples. The study was performed in a 4.7 ha large study area in southern 88 

Norway, based on data collected from a mobile laser scanner mounted on an ATV. The 89 

estimates obtained were compared with estimates from an independent set of field sample 90 

plots from the same area. We focus on the prediction of stem number of mid- and overstory 91 

trees as a characteristic that is relatively directly available from MLS data without a need for 92 

further models for assessing characteristics such as stem volume and biomass. 93 

2. Material and method 94 

2.1.Material 95 

2.1.1. Field data 96 

The study area was the 4.7 ha Frydenhaug forest in Ås municipality, approximately 30 km 97 

south of Oslo, Norway. The forest is owned by the Norwegian University of Life Sciences 98 

and is mainly used for educational and recreational purposes. Frydenhaug is dominated by 99 

Norway spruce and Scots pine but is rather heterogeneous with some areas that are dominated 100 

Page 5 of 34
C

an
. J

. F
or

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

Sv
er

ig
es

 L
an

tb
ru

ks
un

iv
er

si
te

t o
n 

06
/1

2/
17

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



2 June 2017 

6 

by non-indigenous tree species and broadleaves. In 2014 parts of Frydenhaug were thinned 101 

resulting in some areas with very low stand densities. Frydenhaug can be viewed as a very 102 

small forest or as a large heterogeneous stand; in this work Frydenhaug is viewed as a single 103 

heterogeneous stand. 104 

As baseline data for comparison, trees on 54 sample plots on a systematic 20 × 40 m grid 105 

were measured in September-October 2015 according to the field protocol of the Norwegian 106 

National Forest Inventory for temporary plots (Landsskogtakseringen 2008). The circular 107 

sample plots had a size of 250 m2 (radius of 8.92 m) and all trees with DBH ≥ 5 cm were 108 

recorded (but note that for comparing with the MLS survey a 10 cm DBH threshold was 109 

applied in the analyses). The measured variables included DBH measured with a calliper, tree 110 

height measured using a Vertex hypsometer, and species. The frequency of DBH 111 

measurements in the field plots is shown in Figure 1. The basal area weighted mean diameter 112 

was found to be 40.2 cm and the stem density 357 trees ha-1. 113 

Figure 1 about here 114 

2.1.2. MLS data 115 

MLS data were acquired on 19 November 2014 with a Trimble MX2 system mounted on an 116 

ATV. The system consists of two rotating Dynascan S250 scanning devices with a 117 

wavelength of 905 nm, a scanning rate of 20 Hz, and a pulse rate of 36 kHz. The sensor's 118 

location is determined by two global navigation satellite system (GNSS) antennas with 220 119 

channels coupled with an inertial navigation unit (Applanix IMU-42). Images from a Ladybug 120 

camera system consisting of five 6-megapixel cameras have been used to colorize the point 121 

cloud that was derived using Trimble's generic Trident software. 122 
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In Figure 2 the location of the study area in Norway, the MLS track, identified tree locations 123 

and the field sample plots are presented. 124 

Figure 2 about here  125 

2.2.Method 126 

2.2.1. Overview 127 

An overview of the procedure is provided in Figure 3. The procedure comprises four main 128 

components. Firstly, an algorithm developed by Raumonen et al. (2015) was applied to 129 

recognize individual trees from the MLS data and measure the number of stems within 10 × 130 

50 m sample plots; the width (10 m) was taken along the MLS track and the length (50 m) 131 

follows from measuring 25 m on both sides of the MLS track (Figure 4). 132 

Secondly, to overcome the problem that probability sampling was not applied (the ATV track 133 

was chosen from the point of view of where the ATV could easily pass while measuring a fair 134 

portion of the stand) we applied Kriging (e.g., Cressie, 1990; Thompson, 1992) for predicting 135 

stem number at stand level, i.e. model-based inference was applied.  136 

Thirdly, to overcome the problem of some trees being non-detected, distance sampling theory 137 

(Buckland et al., 2005; Ducey & Astrup 2013) was applied to estimate a correction factor.  138 

Lastly, Kriging predictions corrected for non-detection were averaged across the stand to 139 

obtain a stand level prediction of stem density and the corresponding uncertainty. The details 140 

of the four main components of the procedure are provided below. 141 

Figure 3 about here 142 

2.2.2. Obtaining tree level and sample plot data from MLS data 143 
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Stem bases were automatically extracted from the scanned point cloud using the method 144 

presented in Raumonen et al. (2015). In this method, the point cloud is partitioned into small 145 

subsets and for a layer near the ground the surface normals of the subsets are estimated. 146 

Potential stems are identified by selecting groups of subsets whose surface normals are nearly 147 

horizontal, indicating a vertical surface. Expanding these groups with neighbouring subsets 148 

completes the stems. Then, cylinders are fitted into sections around 1.3 m from the ground to 149 

estimate DBH. In this way, the locations of trees and their corresponding DBHs were 150 

estimated. The DBH frequency from the MLS measurements is presented in Figure 1. We 151 

applied a DBH threshold of 10 cm in the study to focus on mid- and overstory trees, but also 152 

to avoid partially unresolved problems of identifying small understory trees with the tree 153 

segmentation algorithm. The number of trees identified with the tree segmentation algorithm 154 

within the 10 × 50 m plots were counted and the corresponding stem density estimate was 155 

assigned to the centre point of each plot (Figure 4). In case a plot was located close to the 156 

stand boundary, only the 10 × 25 m subplot located entirely within the stand was used. Thus, 157 

stem density values from the tree segmentation algorithm were assigned to 87 points along the 158 

MLS track, at 10 m intervals. 159 

Figure 4 about here 160 

2.2.3. Kriging prediction of stem densities 161 

One problem with ATV-based MLS inventories of forest stands is that it would be very 162 

difficult to select probability samples and thus to apply design-based inference for estimating 163 

target parameters, such as stem density and growing stock volume, without bias. The solution 164 

we propose in this study is to allow selection of non-probability samples and use of model-165 

based inference (e.g., Gregoire 1998; McRoberts, 2010; Magnussen, 2015; Ståhl et al., 2016) 166 

for predicting the target quantities. With model-based inference we rely on certain model-167 
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assumptions. In this case our assumption, in general terms, is that values at non-sampled 168 

locations can be adequately predicted through spatial interpolation. Thus, the next step of our 169 

approach was to apply Kriging for predicting MLS-derived stem densities for each centre 170 

point in a dense (5×5 m) square lattice across the stand. Using Kriging, each cell in the lattice 171 

obtains a predicted value through spatial interpolation of the measurements so that the 172 

variance of the predictor is minimised. In our study, we applied ordinary Kriging (e.g., 173 

Thompson 1992) based on a covariogram model estimated from the 87 observations of MLS-174 

derived stem density along the ATV track. A negative exponential covariogram model, 175 

assuming isotropic conditions (i.e. that the spatial autocorrelation is the same in all 176 

directions), was applied, i.e. 177 

��������	,����	 = 
���|�|� �     (1) 178 

Where ��������	,����	 is the covariance, as a function of distance, between two stem density 179 

values �����	 and �� separated by the distance �; � and 
 are model parameters. A simple 180 

covariance estimator was employed in this study 181 

��������	 ,����	 = 	 ��� ∑ ������	 − �� ���!� ��� − ��	     182 

where the summation is over the distinct pairs of stem density values from locations along the 183 

scanning track, that are distanced � apart from each other; and "� is the number of such pairs. 184 

Then, the covariogram model (Eq. 1) was fitted using nonlinear least squares. The statistics of 185 

the fitted model are presented in Table 1. 186 

Table 1 about here 187 

The fitted model and the observed data are presented graphically in Figure 5. In the figure it 188 

can be seen that the covariance is close to zero at distances greater than 60 m. Using this 189 
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covariogram we applied Kriging to predict (MLS-derived) stem densities for each centre point 190 

in the square lattice. The Kriging predicted value was obtained as a weighted average across 191 

the "#$% = 87 original observations as 192 

�(� = ∑ )*�+,-*!� �*     (2) 193 

where �(� is the predicted stem density at location t, �* is the predicted stem density value at 194 

the .�/ location along the scanning track, and )* is the corresponding weight. The weights 195 

)�, )0, … , )�+,- are obtained as (cf. Cressie 1990) 196 

2 = 3�� 45 + 7���7839:57839:7 �;      (3) 197 

where the vectors 2 and 5 are  198 

2 = < )�)0⋮)�+,-
>,  5 = < ?��?0�⋮?@ABC�

>    (4) 199 

with ?��, ?0�, … , ?@ABC� being covariances between the D�/ location and the different locations 200 

with observations along the scanning track. The covariance values are estimated using the 201 

negative exponential covariogram model (Eq. 1). The matrix 3 is  202 

3 = < ?�� ?�0 ⋯ ?��+,-?0� ?00 ⋯ ?0�+,-⋮?�+,-� ⋮?�+,-0 ⋱⋯ ⋮?�+,-�+,-
>

�+,-×�+,-
  (5) 203 

each element of which is a covariance value between different locations along the track (the 204 

diagonal contains variances). 205 

Figure 5 about here 206 

2.2.4. Adjusting for non-detection 207 

In a standard case of applying Kriging for predicting stem density at stand level an average 208 

over the lattice level predictions are computed and the corresponding uncertainty assessed 209 

(e.g., Cressie 1990; Thompson 1992). (Note that we speak of predicting rather than estimating 210 
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stem density at stand level, since in model-based inference this quantity is assumed to be a 211 

random variable rather than a fixed parameter.) However, in the MLS-based approach several 212 

trees remain non-detected within the rectangular sample plots mainly because they are at least 213 

partly hidden by other trees. Thus, there is a need to adjust for non-detection to obtain an 214 

unbiased predictor of stand level stem density (in the model-based sense). We applied 215 

distance sampling theory (Buckland et al., 2005) to compute a correction factor, which was 216 

subsequently applied to all the MLS-derived values that were predicted according to the 217 

description in section 2.2.3. Distance sampling in this case is based on an assumption that the 218 

probability that an object of interest will be detected decreases with the distance from the 219 

survey line (or point) according to a detectability function. The detectability function is 220 

assumed to be well defined within certain conditions, such as those within a forest stand. 221 

Although ideally data should be acquired through probability sampling when distance 222 

sampling methods are applied (Buckland et al., 2005), we used the MLS-derived data from 223 

the 87 rectangular sample plots along the ATV track to estimate a detectability function for 224 

our study stand. A half-normal model was applied, i.e. we used the model 225 

H��	 = 	 �I�:J��K�JL     (6) 226 

where H��	is the detection function, M is a scale parameter, and � is the perpendicular 227 

distance from a detected tree to the ATV track. The maximum likelihood estimator (MLE) for 228 

the parameter M is 229 

M(0 = �#∑ �*0#*!�      (7) 230 

Page 11 of 34
C

an
. J

. F
or

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

Sv
er

ig
es

 L
an

tb
ru

ks
un

iv
er

si
te

t o
n 

06
/1

2/
17

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



2 June 2017 

12 

where N is the number of detected trees obtained by pooling the data from the 87 10 m line 231 

transects, and �*  is the perpendicular distance from the .�/ detected tree to the corresponding 232 

line transect. In Figure 6, the observations and the fitted detection function is shown.  233 

Figure 6 about here 234 

Using the detection function, a correction factor to be multiplied with each MLS-derived stem 235 

density estimate is  236 

O = 	PQ        (8) 237 

where R = 25	m is the half-length of our MLS plots, and U is the effective half-length, which 238 

is estimated as (e.g., Buckland et al., 2005) 239 

Û = WM(0 X0      (9) 240 

2.2.5. Prediction of stand level stem number 241 

As the final step the stand level stem number was predicted as the average predicted (non-242 

adjusted) stem density across the Y = 1875 points in the square lattice, multiplied by the 243 

factor O and by the stand area, i.e. 244 

[̂#$% = O\ ]̂ ∑ ∑ )�*�+,-*!� �*�̂!� = O\ ]̂ ∑ �(��̂!� = _O\�(�   (10) 245 

where O\  is an estimated correction factor based on Eqs. (8) and (9), _ = 46963 m2 is the area 246 

of the stand in square metres, �(* is the predicted stem density for the D�/ point in the square 247 

lattice using Eq. (2), and �(� is the average of predicted stem densities across the Y points. 248 

Page 12 of 34
C

an
. J

. F
or

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

Sv
er

ig
es

 L
an

tb
ru

ks
un

iv
er

si
te

t o
n 

06
/1

2/
17

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



2 June 2017 

13 

While the prediction of stem number is straightforward once the values for the lattice centre 249 

points are predicted using Kriging, and corrected for non-detection, the uncertainty of the 250 

prediction is more difficult to assess. The reason is that it involves several sources of 251 

uncertainty: uncertainty due to the Kriging prediction and due to adjusting for non-detection 252 

(estimation of the correction factor O). In our derivation of the variance of the predictor of 253 

stem number we accounted for these two uncertainty sources, but not for the uncertainty 254 

related to the estimation of the covariogram model, partly since including the latter would 255 

lead to substantial difficulties, partly since it is common practice in Kriging applications to 256 

assume that this source of uncertainty is small (e.g., Thompson 1992). Thus, the variance of 257 

[̂#$% is 258 

d�[̂#$%	 = d�_O\�(� = _0d�O\�(�  

Using the formula for the variance of the product of two independent random variables (e.g., 259 

Goodman 1960), we can develop the expression further  260 

d�[̂#$%	 = _0e�(�0d�O\ + O\0d��(� + d�O\ d��(� f    (11) 261 

By replacing the variances of O\  and �(� with their corresponding estimators we obtain an 262 

estimator of d�[̂#$%	. 263 

We first derive the variance estimator d\��(� . Recall that �(� = �̂ ∑ ∑ )�*�+,-*!� �*�̂!� ; thus, the 264 

variance of �(� can be written as  265 

d��(� = 	 1Y0 gg��� hg )i*
�+,-
*!� �*, g )j*

�+,-
k!� �*l^

j!�
^

i!� = 1Y0 gg g g )i*)jk�����* , �k	�+,-
k!�

�+,-
*!�

^
j!�

^
i!�  

(12) 266 
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The covariances �����*, �k	 are estimated using the covariogram function based on distance; 267 

by replacing �����*, �k	 with its estimator ���m ��*, �k	 in Eq. (12) we obtain the estimator 268 

d\��(� . 269 

The variance of O\  can be written as 270 

d�O\ = d �PQn� = R0d ��Qn�     (13) 271 

where the variance d ��Qn� depends on the number of detected trees N and is given by Quinn & 272 

Gallucci (1980, Eq. 13) 273 

d ��Qn� = �0X�o0�N	d ��pn�     (14) 274 

where o�N	 = W0# Γ �#0� Γ 4�#��	0 ;r  is a bias correction factor for 
�pn, and Γ�∙	 is the gamma 275 

function. The bias factor o�N	 is close to 1 for N > 50 (Quinn & Gallucci, 1980); hence, in 276 

our study we used the approximation o�N	 = 1. The variance of  
�pn is given by Quinn & 277 

Gallucci (1980, Eq. 11) 278 

d ��pn� = 4 +�+9J	� :vJ�+	;pJ       (15) 279 

By replacing M with the estimator M( [Eq. (7)] we obtain an estimator for d ��pn�; employing 280 

Eqs. (13) and (14) we obtain an approximation for d\�O\ : 281 

d\�O\ ≅ R0 �0X� 4 +�+9J	��;pnJ      (16) 282 

Finally, an approximately unbiased variance estimator d\�[̂#$%	 is obtained as: 283 
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d\�[̂#$%	 ≅ _0 x�(�0R0 y2z{ I
N�N − 2	 − 1LM(0 + O\0 1Y0 gg g g )i*)jk���m ��* , �k	�+,-

k!�
�+,-
*!�

^
j!�

^
i!�

+R0 y2z{ I
N�N − 2	 − 1LM(0 1Y0 gg g g )i*)jk���m ��*, �k	�+,-

k!�
�+,-
*!�

^
j!�

^
i!� | 

(17) 284 

2.2.6. Comparing with estimates from fixed area plots  285 

The circular plots were used to make an independent estimate of stem number for purposes of 286 

comparison. We applied the fixed area sampling approach (e.g., Gregoire & Valentine, 2008, 287 

p. 215). The population total of the forest attribute parameter was estimated as (Gregoire & 288 

Valentine, 2008, Eq. 7.3a, p.216):  289 

[̂}~ = ���� ∑ [̂}~����*!�      (18) 290 

Where "}~ = 54 field plots and [̂}~� = ∑ ��X�i∈� , � denotes the sample of "}~ field plots, �i is 291 

the attribute for the ��/ tree, zi = ��]  is the probability of including the ��/ tree in the sample, 292 

and )i is the inclusion zone of the ��/ tree. 293 

The variance was estimated as (Gregoire & Valentine, 2008, Eq. 7.6a, p. 216): 294 

d\�[̂}~	 = ����������	∑ �[̂}~� − [̂}~ 0���*!�     (19) 295 

2.2.7. Relative standard error and confidence interval 296 

Relative standard errors (RSEs) were computed as 297 
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��� = 100% �����(	�(       (20) 298 

The prediction interval (PI) in the case of stem number prediction based on MLS data was 299 

estimated as  300 

��m = [̂ ± �� 0r �d\�[̂#$%	     (21) 301 

and the confidence interval (CI) in the case of stem number estimation based on field plot 302 

measurements only was estimated as 303 

��m = [̂ ± �� 0r �d\�[̂}~	     (21) 304 

where �� 0r  is the standard normal distribution’s critical value, which equals 1.96 for � =305 

0.05, i.e. for 95% confidence. 306 

3. Results 307 

The predicted number of stems (with DBH>10 cm) based on MLS data and the estimated 308 

number of stems based of field data, their corresponding estimated RSEs, and the PI and the 309 

CI, are presented in Table 2. It can be seen that the PI (based on MLS data) covers the stem 310 

number estimate using field data and that the CI (based on field data) covers the stem number 311 

prediction using MLS data. 312 

Table 2 about here 313 

In Table 3 the estimated detection model parameter M(, the estimated correction factor O\ , its 314 

variance d\�O\ , the average predicted stem density �(�, and its variance d\��(�  are presented. It 315 
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can be noted that the correction for non-detection is substantial, i.e. the stem density based on 316 

trees detected with MLS data is increased with 54%.  317 

Table 3 about here 318 

Figure 7 shows a map of predicted stem densities for each 5×5 m grid-cell across the stand. 319 

Figure 7 about here 320 

In Figure 7 it can be observed how patches of denser and sparser stem densities were 321 

allocated along the MLS track. Further, areas far from the MLS track obtained predicted 322 

values equal to the mean stand density, since the spatial autocorrelation was zero at distances 323 

greater than about 60 m. 324 

4. Discussion 325 

Airborne laser scanning has emerged as a very useful technique for forest inventories (e.g., 326 

Gregoire et al., 2016) and there is much promise in using TLS for the same purpose (e.g., 327 

Raumonen et al., 2013; Astrup et al., 2014). However, several issues related to identifying 328 

and measuring trees and setting up adequate sampling protocols remain to be solved before 329 

the latter technique will be operational. In this study, we propose an approach for making use 330 

of MLS data obtained from subjectively selected MLS tracks in a forest stand. We applied 331 

Kriging (e.g., Thompson 1992) to handle the issue that a non-probability sample was selected. 332 

With MLS it is possible to select large samples from forest stands and provided that there is 333 

significant spatial autocorrelation not all parts of a stand need to be visited. In this study we 334 

found that the covariance between plot level stem densities remained non-zero up to about 60 335 

m. Thus, in case measurements are obtained through traversing a stand in a manner that leaves 336 

few parts further than 60 m away from the survey line, Kriging can compensate for the 337 
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subjective sample selection and make the stand level predictions model-unbiased (e.g., 338 

Thompson 1992). A second issue addressed in this study was to compensate for non-detected 339 

trees. To achieve this we followed an approach suggested by Ducey & Astrup (2013), i.e. we 340 

used distance sampling theory (e.g., Buckland et al., 2005) to adjust for non-detection. By 341 

multiplying the stand level average stem density estimated from MLS data with a correction 342 

factor and multiplying it with the study area size we obtained a predicted value of stem 343 

number at stand level and its corresponding variance. Assessing the error components 344 

contributing to the total variance in the case study, we found that the variance due to Kriging 345 

was the major component. We also made comparisons with an independent field sample plot 346 

survey within the same stand and found the results to be quite similar. Studying the map of 347 

predicted stem densities (Figure 7), patches of denser and sparser densities along the MLS 348 

track tend to have smooth shapes due to the spatial interpolation. While sharp boundaries may 349 

not be captured, we argue that this is less important when the main objective is to make 350 

predictions at stand level. Further, the variance of the grid-cell level stem density predictions 351 

was found to increase rather rapidly with distance from the MLS track.  352 

The approach we suggest has many shortcomings, and it is easy to make a long list of topics 353 

that need further attention. In the bullet list below we suggest some important topics to be 354 

addressed in future research studies for improving the methodology. 355 

• The probability of detecting trees most likely depends on the trees’ DBH, and thus it 356 

may be advisable to fit detection functions by DBH size groups, or to use DBH as a 357 

covariate (e.g., Ducey & Astrup 2013). However, in this study we focused on mid- and 358 

overstory trees and used a common detection function for all trees larger than 10 cm. 359 

 360 
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• How large should the MLS plots be? Perhaps 10×50 m is too large, considering that 361 

stands are often relatively small and that large plots will often cross stand boundaries. 362 

Within the design-based inventory framework for conventional field plots, procedures 363 

for handling plots near the boundary (and trees whose inclusion zones cross the 364 

boundary) are well-developed (e.g., Gregoire 1982; Ducey et al., 2004). In general, 365 

more work is needed for determining how boundary issues should be treated in MLS 366 

surveys. In this study the width (10 m) was chosen to be rather narrow because this 367 

made it possible to approximate the ATV track with a straight line.  368 

 369 

• What detection function should ideally be used in MLS-based surveys? In this study, 370 

we used the half-normal model, but we did not account for the right-truncation of the 371 

detection function in the parameter estimation. Although the literature suggests that 372 

this type of truncation has minimal effect on the estimates (e.g., Feller 1971) it would 373 

be advisable to study this issue further in case the half-normal model is used. Also, 374 

since there cannot be any trees in the ATV track it might be appropriate to let the zero 375 

distance in estimating the detection function be located some short distance away from 376 

the ATV path. No such correction was employed in the current study, as can be 377 

observed in Figure 6. 378 

 379 

• More studies are needed for optimizing the MLS path, considering what spatial 380 

autocorrelation can be expected. In our study we found that the distance beyond which 381 

the covariance was close to zero was about 60 metres. Thus, the ATV should probably 382 

have aimed at traversing the stand in a manner so that only few parts of the stand were 383 

located more than 60 metres away from the track. 384 

 385 

• The variance estimation procedures we propose are not entirely straightforward to 386 

apply. An alternative could be to apply jackknifing or spatial bootstrapping (e.g., 387 
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Anselin, 1990; Tomczak, 1998; McRoberts et al., 2011). During the study, we made a 388 

simple initial test of jackknifing for the variance estimation and obtained a smaller 389 

value compared to the variance estimate reported in Table 2. Also, methods to account 390 

for the uncertainty due to the estimation of the covariogram model should be 391 

developed.  392 

 393 

• Additional auxiliary data, such as remotely sensed data from digital air photos (e.g., 394 

Bohlin et al., 2012; Breidenbach & Astrup 2012; Puliti et al., 2017) or satellites (e.g., 395 

Tomppo et al., 2002; McRoberts et al., 2011) could be incorporated into the prediction 396 

procedures, in which case cokriging (e.g., Myers 1983) would be applied. 397 

Whereas studies such as those by Lin et al. (2012) and Forsman et al. (2016) focus on 398 

obtaining accurate tree-level measurements from the MLS point cloud, the present study is a 399 

first step towards utilising MLS data for obtaining stand level estimates once the problems 400 

related to tree level measurements are solved. Such applications would potentially be very 401 

valuable for obtaining accurate stand level data for forest management purposes. We focused 402 

on stem number prediction; however, other tree-based attributes such as basal area, growing 403 

stock volume and mean DBH would also be possible to predict from reliable tree level data 404 

along the ATV track, perhaps building on the work by Astrup et al. (2014) for conventional 405 

point-based TLS. Given the fast development of laser technology, we think that procedures 406 

like the one we suggest in this study has great potential for providing accurate stand level 407 

information at low cost in the future. 408 

5. Conclusions 409 

MLS coupled with adequate sampling protocols and computational algorithms has a potential 410 

to become an efficient tool for stand level forest inventories. This would not require any 411 
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traditional field measurements at all, or MLS might be operated in tandem with field 412 

measurements when those are sparse. However, further studies addressing many remaining 413 

uncertainties are needed before MLS-based stand level surveys could become operational. 414 
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Figure 1: The DBH frequency for trees measured in the field sample plots is indicated with red colour, the 
DBH frequency for trees identified from the MLS point cloud using tree extraction is indicated with blue 
colour, the violet colour shows the intersection of these frequencies. The number of trees are shown per 

hectare.  
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Figure 2: Frydenhaug study area and its location within Norway. Note: the tree locations are identified by 
the tree detection algorithm using MLS survey data.  
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Figure 3: An overview of the procedure to predict stem number at stand level.  
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Figure 4: Spatial distribution of the rectangular plots every 10 m along the MLS track. Note: the tree 
locations are identified by the tree detection algorithm using MLS survey data.  
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Figure 5: Empirical covariance values (black dots) and the fitted negative exponential covariogram model 
(red curve) as a function of distance for trees of DBH > 10 cm.  
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Figure 6: Empirical detection probability values (black bars) and the fitted detection function (red curve).  
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Figure 7: Stem density predictions across Frydenhaug study area.  
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19 April 2017 

1 

Table 1: The fitted negative exponential covariogram model’s characteristics for trees with 

DBH > 10 cm. 

Model 

parameter 
Estimate  

Standard 

Error 
t-value p-value 

� 14.22 5.68 2.57 0.012 

� 1.24×10
-4
 4.49×10

-5
 2.50 0.0060 

Residual standard error: 5.72×10
-5
 

 

Table 2: The estimated total number of trees, and the corresponding estimated RSE, PI values 

based on MLS and CI values based on field data. 

Based on �̂ [trees] ��� [%] �	/�	�
��� 
[trees] 

�	/�	����� 
[trees] 

MLS data only 1366 12.86 1020 1712 

Field data only 1677 7.46 1431 1923 

 

Table 3: The estimated detection function parameter, the correction factor and its variance, 

and the estimated average of predicted stem density across � = 1875 points and its variance. 

Kriging prediction of stem densities Adjusting for non-detection 

��� �������  � !�  ���!�� 

1.88×10
-2
 4.77×10

-6
 12.90 1.54 7.18×10

-3
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