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A new sampling strategy for forest inventories applied to
the temporary clusters of the Swedish national forest inventory
Anton Grafström, Xin Zhao, Martin Nylander, and Hans Petersson

Abstract: A new sampling strategy for forest inventories is presented. The most important difference from the traditional
sampling strategies is that auxiliary variables from remote sensing are incorporated into the sampling design. The sample is
selected to match population distributions of the auxiliary variables as well as possible. This is achieved by a double sampling
approach, where auxiliary variables are extracted for a large first-phase sample. The second selection is done by the local pivotal
method and produces an even thinning of the first-phase sample. Thus, we make sure that the selected second-phase sample
becomes much more representative of the population than what is possible by the use of traditional designs. The potential of
implementing the new strategy for the temporary clusters within the Swedish national forest inventory is evaluated with five
auxiliary variables: the geographical coordinates, elevation, predicted tree height, and predicted basal area. The increased
representativity that we achieve with the new strategy induces up to 95% reduction of the variance of the sample means of the
remote sensing auxiliary variables compared with traditional designs. For this reason, we conclude that the new strategy that
will be implemented in the forthcoming Swedish national forest inventory has a great potential to achieve large improvements
in estimation of many important forest attributes.

Key words: continuous population, double sampling, local pivotal method, remote sensing, sampling design.

Résumé : Nous présentons une nouvelle stratégie d’échantillonnage pour les inventaires forestiers. La différence la plus
importante par rapport aux stratégies d’échantillonnage traditionnelles est l’incorporation dans le plan d’échantillonnage de
variables auxiliaires de télédétection. L’échantillon est sélectionné de manière à correspondre autant que possible à la distribu-
tion de la population des variables auxiliaires. Cela est accompli grâce à une méthode de double échantillonnage, où les variables
auxiliaires sont extraites pour un grand échantillon lors de la première phase. La deuxième sélection est effectuée avec la
méthode du pivot local et produit une réduction uniforme de l’échantillon de la première phase. Ainsi, nous nous assurons que
l’échantillon sélectionné lors de la deuxième phase devient beaucoup plus représentatif de la population que le permet
l’utilisation des modèles traditionnels. Le potentiel de mise en œuvre de la nouvelle stratégie pour les grappes temporaires
de l’inventaire forestier national suédois est évalué à l’aide de cinq variables auxiliaires : les coordonnées géographiques, l’altitude,
la hauteur prédite des arbres et la surface terrière prédite. La représentativité accrue, que nous obtenons avec la nouvelle
stratégie, entraîne jusqu’à 95 % de réduction de la variance des moyennes d’échantillonnage des variables auxiliaires de
télédétection par rapport aux modèles traditionnels. Pour cette raison, nous concluons que la nouvelle stratégie, qui sera mise
en œuvre dans le prochain inventaire forestier national suédois suédois, a de fortes chances d’améliorer grandement
l’estimation de nombreux attributs forestiers importants. [Traduit par la Rédaction]

Mots-clés : population continue, double échantillonnage, méthode du pivot local, télédétection, plan d’échantillonnage.

Introduction
National forest inventories (NFIs) have evolved and developed,

in some cases more than 100 years, and the need for accurate
national-level information is more requested than ever (Tomppo
et al. 2010, chap. 1). Still the NFI designs normally rest on tradi-
tional area-based sampling, which spreads the sample units over
the landscape. Often the sample units are systematically distrib-
uted and organised in clusters of circular plots. NFIs in general
have a very low sampling intensity due to the large areas that need
to be covered. In such a situation, it is inevitable that forest attri-
butes vary rapidly across the landscape with respect to the low
sampling intensity. This means that spreading the sample only
geographically is not sufficient to ensure that the sample is rep-
resentative of the population. With the intention of providing a
more effective sampling design and thereby increasing the preci-

sion of estimates of forest attributes, we present a strategy for
obtaining a more representative sample by using auxiliary infor-
mation from remote sensing in the planning phase of a forest
inventory. In recent years, for example, assessments using LiDAR
techniques (light detection and ranging) can provide quite up to
date wall-to-wall coverage of remote sensing data. In some coun-
tries, such data are available even at the national scale and may be
used for distributing sample units efficiently for NFIs.

Even though NFIs have been well developed overtime, it is still
imperative for NFIs to adopt new strategies to be cost-efficient and
increase the precision of estimates (Fridman et al. 2014). Despite
the fact that auxiliary variables from remote sensing are becom-
ing increasingly available, they are rarely used in the sampling
designs. In the Swedish NFI, for example, clusters have been dis-
tributed more or less evenly across the landscape without the use
of additional auxiliary variables.
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Auxiliary variables can be used in different ways in a sampling
design. Common use includes stratification (e.g., Särndal et al.
2003, chaps. 3 and 12), balancing (e.g., Deville and Tillé 2004), and
using unequal probabilities or achieving a good spread of the
sample (e.g., Stevens and Olsen 2004). Including the auxiliary vari-
ables in the design normally reduces the need for including the
same variables in the estimators and can allow for a simpler anal-
ysis. A sampling design that uses auxiliary variables to spread the
sample is particularly useful for multipurpose inventories, such
as NFIs (Grafström and Schelin 2014). When a multipurpose inven-
tory is planned, the choice of a robust design is especially impor-
tant. Tillé and Wilhelm (2017) discussed principles for choice of
sampling design and stated that “Indeed, if the response variable
is correlated with the auxiliary variable, then spreading the sam-
ple on the space of auxiliary variables also spreads the sampled
response variable. It also induces an effect of smooth stratification
on any convex set of the space of variables. The sample is thus
stratified for any domain, which can be interpreted as a property
of robustness.” As demonstrated by for example, Grafström and
Ringvall (2013), use of auxiliary variables in an estimator can only
partly compensate for neglecting the use of the same variables in
the design.

Grafström and Ringvall (2013) and Grafström et al. (2014) have
recently introduced different sampling designs for forest invento-
ries that are able to select spatially balanced samples, which
means that the samples are well spread in some space. We have
now developed this theoretical framework further to meet the
specific needs of forest inventories. Our framework includes us-
ing the continuous population approach, which was first pro-
posed for forest inventories by Mandallaz (1991); see also Eriksson
(1995), Barabesi (2003, 2004), Mandallaz (2007, chap. 4), and
Gregoire and Valentine (2008, chap. 10). Following Cordy (1993),
we can in this framework use a general sampling design for selec-
tion of clusters of any shape and with any prescribed sampling
intensity function. However, we focus on the selection of repre-
sentative samples, which means that we match as closely as pos-
sible the sample distribution of a set of auxiliary variables to the
population distribution. This is achieved through a double (or
two-phase) sampling, where auxiliary responses are extracted for
a very large first-phase sample of clusters. For the second-phase
sample selection, we use the local pivotal method (LPM) by
Grafström et al. (2012) to spread the sample. When using a con-
stant sampling intensity, the LPM produces representative sam-
ples (Grafström and Schelin 2014). Different implementations of
the LPM can be found in the R package ‘BalancedSampling’
(Grafström and Lisic 2016).

The new strategy is illustrated with an application, where we
select the temporary clusters for the Swedish NFI. As auxiliary
variables, we use a digital elevation model and a recent nation-
wide forest attribute map of Sweden predicted using airborne
laser scanning data and field data from the NFI (Nilsson et al.
2017). When compared with two reference strategies (indepen-
dent observations and geographically well-spread observations),
through a Monte-Carlo simulation, it is evident that the new strat-
egy succeeds in producing representative samples.

The new sampling strategy
For the new sampling strategy, a continuous population ap-

proach with double sampling is employed. In the first-phase sam-
ple, a very large number N of clusters is selected by randomly and
independently placing cluster centers in the region. For each clus-
ter, the auxiliary information of the cluster mean is derived. Ac-
cording to the Glivenko–Cantelli theorem and its multivariate
generalisations, the empirical distribution of the auxiliary vari-
ables in the first-phase sample converges uniformly almost surely
to the population distribution as the size of the sample increases
(Wolfowitz 1954; Dehardt 1971). Then, a smaller sample of size n is

selected from the N clusters by the LPM in such a way that the
distribution of the auxiliary variables in the second-phase sample
matches the distribution in the large first-phase sample very
closely. Thus, by using a very large first-phase sample, we make
sure that the distribution of the auxiliary variables in the second-
phase sample is very close to the corresponding distribution in
the population, which means that we obtain a sample that is
representative of the auxiliary variable space. In this section, the
new strategy as well as an example to illustrate the superiority of
the new strategy to the reference strategies are presented. The
general framework and the notation of a sampling strategy for
continuous populations are provided. The subsequent subsec-
tions show the framework and the notation of using auxiliary
information in a double sampling approach, introduce the defini-
tions of spatial balance, focus on the LPM that we emply for the
second-phase sample selection, and finally, provide an illustra-
tive example of the proposed strategy.

A sampling strategy for continuous populations
Consider a surface F that is assumed to be a subset of the Eu-

clidean plane R2 with its surface area ℓ(F). For a finite population
consisting of NT objects (e.g., trees) located in F, the NT objects are
represented by points. Let U = {1, …, i, …, NT} be the identifiers for
the NT objects, and let ST � U denote the probability sample of
identifiers for the selected objects. The inclusion probability of ob-
ject i to be sampled is defined as �i = Pr(i � ST). The variable of
interest, which is generally nonnegative and bounded, is denoted by
yi. An important objective of a forest inventory is the estimation of
the population total Y � �i�Uyi. For forest inventories, since the
sampling frame is indeterminable for the units in U, the objects
cannot be sampled directly. Instead, we select our sample from a
continuous population on F as described in, e.g., Mandallaz (2007).

A sampling design on F is defined by a joint distribution of n
random variables. Denote the random sample of n locations
within F as SF � �X1, X2, ..., Xn�. The (prescribed) sampling inten-
sity is ��X� � � i�1

n fi�X�, where fi�X� is the marginal probability
density function of Xi and moreover, ��X� � 0 for X � F and
��·� � 0 outside F. The sampling intensity plays the same role as
the inclusion probabilities play in finite population sampling. We
have n � �F ��X�dX for a design of a fixed size n.

When using clusters with a given configuration and a fixed
orientation, the inclusion zone Ki � F for a tree i on location Xi can
be expressed as Ki � K�Xi� � �X � F : Xi � C�X��, where C�X� is a clus-
ter centered on X. Figure 1 shows an example of the inclusion zone
of a tree close to the forest boundary.

Fig. 1. An example of an inclusion zone. The inclusion zone K for
the tree consists of the darker circles intersected by the surface of
the forest; the circles connected with dots represent a cluster. Any
cluster C�X� with its center X within K, such as the one in the figure,
includes the tree in one of the plots. [Colour online.]
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There exist several ways to formulate the density function Y�X�
of the target variable. For this article, we define the density func-
tion as a weighted sum of yis over the objects that are selected:

(1) Y(X) � �
i�U

Ii(X)yi

ℓ(Ki)

where the weight is the inverse of the area of the inclusion zone of
the tree, Ii�X� � 1 if X � Ki and 0 otherwise. The density function 1
has been used by, e.g., Mandallaz (2007). The density function is
constructed in such a way that Y � �F Y�X�dX is identical to the
corresponding finite population total Y ��i�U yi, which follows from

(2) Y � �
F

Y(X)dX � �
F
�
i�U

Ii(X)yi

ℓ(Ki)
dX � �

i�U

yi

ℓ(Ki)
�

F

Ii(X)dX � �
i�U

yi

Cordy (1993) proposed a continuous version of the Horvitz—
Thompson estimator of the population total Y as well as the vari-
ance of the estimator in Sen–Yates–Grundy form. They are given by

Ŷ � �
X�SF

Y(X)
�(X)

VSYG(Ŷ) �
1
2��

F

[�(X)�(X′) � �(X, X′)] × �Y(X)
�(X)

�
Y(X′)

�(X′)
	2

dXdX′

where ��X, X′� is the second-order sampling intensity for a pair of
points �X, X′�.

Double sampling approach to achieve spatial balance and
select representative samples

If Y�X� is well explained by the auxiliary variables, then it is
efficient to select a sample whose empirical distribution of the
auxiliary variables matches the population distribution of the
auxiliary variables. By well explained, we mean that points with a
small distance in auxiliary space in general have more similar
values on the target variable than points farther apart.

Normally, auxiliary information from remote sensing is avail-
able at a grid-cell level with different resolutions. To utilize such
auxiliary information for the selection of spatially balanced sam-
ples, we need to implement double sampling.

To obtain the prescribed sampling intensity ��X� � n/ℓ�F� and a
spatially balanced second-phase sample of size n, we first select a
large sample SF1

of size N with independent observations over F,
where N �� n, with the sampling intensity �1�X� � N/ℓ�F�. Then we
extract the auxiliary variables for each cluster. For the second
selection, we propose the use of the LPM with equal probabilities
n/N. Then we achieve a representative and well-spread second-
phase sample with the prescribed sampling intensity ��X�.

Suppose we have p auxiliary variables available from any source
that provides wall-to-wall data. They are defined as Z′�X� �


Z1
′�X�, …, Zp

′�X��T � Rp. Let Z′�X� be the single point response for
the auxiliary variables (i.e., the value for the grid cell that contains
the point). Thus, all single point responses within one grid cell
have the same value for the auxiliary variable. To preserve the
relationship between the auxiliary and the target variables, it is
ideal to derive the auxiliary response in a similar way as Y�X�.

The point response of the cluster C�X� is here defined as

(3) Z∗(X) � �
X′�F

I[X′ � C(X)]Z′(X′)

ℓ[K(X′)]
dX′

Then, in a similar way as for the target variable (e.g., see eq. 2), we
obtain

(4) �
X�F

Z∗(X)dX � �
X�F

�
X′�F

I[X′ � C(X)]Z′(X′)

ℓ[K(X′)]
dX′dX

� �
X′�F

Z′(X′)

ℓ[K(X′)]
�

X�F

I[X′ � C(X)]dXdX′� �
X′�F

Z′(X′)dX′

Equation 4 means that the total of the cluster response equals
the total of the single point response.

Measuring the spatial balance for continuous populations
When the auxiliary space is multidimensional, spatial balance

can be used as a measure to check if the empirical distribution of
a sample fits the sampling distribution. Stevens and Olsen (2004)
proposed to use a statistic based on Voronoi polytopes to describe
the spatial balance. The polytope pi for a point Xi in the sample
includes all points in the population closer to Xi than to any other
sample point Xj, j ≠ i. If a sample is well spread, there should be an
approximately equal amount of probability mass in each poly-
tope. This implies that if a constant intensity is applied, then all
polytopes should optimally be of equal size. The spatial balance of
a sample from a continuous population can be expressed as

B �
1
n �

i�s

(vi � 1)2

where vi � �pi
��X�dX is the total probability mass within the

polytope pi. Additionally, all the vis should be close to 1 for a
spatially balanced sample. Hence, B is a measure of the variance of
the total probability mass within the polytopes. Obviously, the
smaller the value of B is, the better the sample fits the sampling
distribution. A simulation to find the expected value of B under a
design reveals how well the design succeeds in producing spa-
tially balanced samples.

Local pivotal method
The LPM has been shown to be one of the most effective meth-

ods in regards to spreading the sample in auxiliary space (e.g.,
Benedetti et al. 2015, chap. 7). By employing the LPM, we can select
samples whose empirical distribution matches the population
distribution of the auxiliary variables. Such samples are spatially
balanced in the auxiliary space, leading to an approximate bal-
ance for any target Y�X� well explained by those auxiliary vari-
ables (Grafström and Lundström 2013). Thus, for such targets, we
achieve Ŷ ≈ Y. When applying the LPM, spatial balance is achieved
by successively updating the inclusion probabilities for nearby
units until they become inclusion indicators, i.e., 0=s and 1=s,
where the 0=s indicate exclusions of the units and the 1=s indicate
inclusions of the units.

In one step of the LPM, we randomly select one unit i and find its
nearest neighbour j. The pair of nearby units will compete with
the (possibly updated) inclusion probabilities 0 < �i < 1 and
0 < �j < 1. The winner takes as much inclusion probability as
possible from the loser. Thereafter, the winner has an updated
inclusion probability �W = min(1, �i + �j), while the loser has the
new inclusion probability �L = �i + �j – �W. Thus, if �i + �j ≥ 1, then
�W = 1 and the winner is included in the sample. If �i + �j < 1, then
�L = 0 and the loser is excluded from the sample. A final decision
is made for at least one unit each step. The procedure for the
competition is given by

Grafström et al. 1163
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��i
′, �j

′� � �(�W, �L) with probability
�W � �j

�W � �L

(�L, �W) with probability
�W � �i

�W � �L

where ��i
′, �j

′� denote the new and updated probabilities for the
pair. When nearby units compete for inclusion, they are unlikely
to be included simultaneously, which forces the sample becoming
well spread. Figure 2 shows an example of the competition proce-
dure for one step in a two-dimensional space.

Example for a one-dimensional auxiliary space
To illustrate the proposed strategy, we provide an example for a

one-dimensional auxiliary variable space. Let the auxiliary vari-
able distribution be Z � N(0,1). We perform a simulation of 1000
random samples of size n = 350 with independent observations
and compare with 1000 first-phase samples of size N = 100 000
with independent observations followed by a selection of second-
phase samples of size n = 350 using the LPM with probabilities �i =
n/N, i = 1, 2, …, N.

The results of the comparisons are presented in Fig. 3 for vari-
ation of sample mean, spatial balance, and maximum distance.
The maximum distance is the maximum distance between the
empirical distribution function and the reference distribution,
which was calculated by employing the one-sample Kolmogorov–
Smirnov test.

For the LPM with a second-phase sample of size 350, the vari-
ance of the sample mean corresponded approximately to the vari-
ance of the sample mean of 35 000 independent observations.
Thus, for the mean of the auxiliary variables, such balanced sam-
ples of size 350 are as good samples of size 35 000 with indepen-
dent observations. The mean of the spatial balance of the LPM was
0.065 and the mean of the maximum distance was 0.007 com-
pared with 0.499 and 0.046 for independent random sampling
(IRS), respectively.

As we can see from Fig. 3, the sampling method that has a lower
value of spatial balance also has a lower value of maximum dis-
tance. In fact, for the 1000 selected samples, even the “worst”
samples resulting from the LPM fit the sampling distribution
much better than the “best” samples selected by IRS. When the
auxiliary variable space is multidimensional, we can use the spa-
tial balance to measure how well a sample represents the sam-
pling distribution (and hence the population in the case of a
constant sampling intensity).

An approximate variance estimator of the LPM was derived by
Grafström and Schelin (2014). The continuous version of the esti-
mator can be expressed as

V̂LPM(Ŷ) �
1
2 �

X�SF

�Y(X)
�(X)

�
Y(X′)

�(X′)
	2

In the auxiliary space, X′ is the nearest neighbour to X in the
random sample with n locations SF. The nearest neighbours are
identified by the Euclidean distance on standardized variables.

Swedish NFI and the current sampling strategy
The current Swedish NFI follows the strategy developed by

Ranneby et al. (1987). The country was divided into five strata with
decreasing sampling intensities towards the north. Within each
stratum, clusters of circular plots are sampled. The clusters were
quadratic or rectangular in shape, with a side length varying from
300 to 1800 m between different parts of the country. The circular
plots were located along the sides of the cluster with fixed dis-
tance between plots within stratum. The within-stratum fixed
distance between plots increased by latitude. The design was mo-

tivated by assumed autocorrelation for relevant forest variables
such as stem volume. In other words, the landscape changes more
rapidly in the south with mixed species forests, while the boreal
conifer forests in the north are more homogenous and often dom-
inated by one species. Thus, longer distances between plots was
needed in the north to obtain new information.

Two kinds of clusters are used: temporary ones and permanent
ones. The temporary clusters are mainly intended to capture the
current state of the forest and are only surveyed once, whereas
permanent clusters primarily aim to capture changes and are
resurveyed regularly (Tomppo et al. 2010, chap. 35). The selections
in different strata are independent, and the estimation for target
variables is required at the stratum level. A sample of the survey
clusters, systematically distributed over the whole country, is
measured annually from early May to mid-October. A 5 year in-
ventory cycle is used, using five consecutive yearly inventories,
and the estimates are calculated as a 5 year moving average. Sep-
arate estimators are used for each year and each cluster type, and
a weighting is used to calculate averages of both cluster types.
Details about the estimators used in the Swedish NFI can be found
in Ranneby et al. (1987) and Fridman et al. (2014, appendices A–C).

The current sampling strategy (2013–2017) of temporary clusters
is based on the R Package “spsample” using an unaligned system-
atical sampling design. This specific systematic design is used
mainly to spread the sample geographically and thus also avoid
the risk of overlapping sample units.

Implementation of the new strategy in Sweden
To evaluate the potential improvement in efficiency by intro-

ducing the new sampling strategy in Sweden, a simulation was
performed for selecting the positions of temporary clusters of the
Swedish NFI. The efficiency of alternatively using two reference
sampling strategies was compared with the new sampling strat-
egy. The new sampling strategy, denoted LPM-5 (LPM using five
auxiliary variables), is in many ways similar to the previous strat-
egy. We use the same geographical stratification and the same
number of clusters. The main difference is that the new strategy
uses auxiliary information in the sampling design to ensure that
the selected clusters are more representative. As the first refer-
ence sampling strategy, we use IRS where the clusters are ran-
domly and independently distributed over the area. The second
reference sampling strategy (LPM-xy) is the LPM with geographical
spread, which represents a proxy for the current strategy. The
reason for including IRS is that we then can see also the effect of
geographical spread.

We selected Region 3 in the middle of Sweden as our study
region (see Fig. 4). In this region, the clusters consist of 12 circular
plots of 7 m radius. The plots in a cluster are placed along a square

Fig. 2. One step in the local pivotal method for a pair of nearby
units i and j. The intensity of the colour correlates with the
inclusion probability. (a) If �i + �j > 1, then the winner receives
probability 1 and will definitely be included. (b) If �i + �j < 1, then
the loser receives probability 0 and will definitely be excluded.
[Colour online.]
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formation with a side length of 1500 m and with 500 m between
plots. Five auxiliary variables were used simultaneously with
equal weights to spread the sample for the new strategy. These
variables were geographical coordinates of the cluster center, the
mean elevation of the cluster, the cluster mean tree height, and
the mean basal area. Elevation was derived from a digital eleva-
tion model, while tree height and basal area were derived from
remote sensing information from airborne laser scanning data,
which were collected between 2009 and 2015. The forest variables
were estimated by regression models combining NFI plot data
with airborne laser scanning data metrics and were available on a
nationwide map (Nilsson et al. 2017).

For the first-phase sample, a 100 000 clusters were indepen-
dently selected. For each such cluster of plots, the cluster response
of the five auxiliary variables was derived. Then a subset of size
360 of clusters was selected by the LPM-5 and the two reference
designs, respectively. Spatial balance, design effects, and estima-
tors for the auxiliary variables were compared by a Monte-Carlo
simulation.

Equation 3 can be employed to calculate the value of auxiliaries
for the point response of a cluster. However, it is unpractical to
use the expression of Z∗�X� directly, since it is difficult to integrate
the function in the equation. As we match the distribution of the
derived auxiliary response, we are free to introduce any approxi-
mation to the auxiliary response.

The inclusion zones for a point within a plot vary less than they
vary within a cluster. Hence, it is natural to set an equal value of
the area of the inclusion zone for all points in the same plot. Then,
the response of the cluster can be calculated by a weighted sum

over the plots. To achieve this, we introduce an approximation
by assuming all points in a plot have the same inclusion zone as
the plot center. The cluster response 3 can then be approxi-
mated as

Z∗(X) � �
i�1

nC �
X′�Ci(X)�F

Z′(X′)

ℓ[K(X′)]
dX′ ≈ �

i�1

nC

1
ℓi(X) �

X′�Ci(X)�F

Z′(X′)dX′ � Z(X)

where Ci�X� is plot i in the cluster centered at X, nC is the number
of plots in a cluster, and ℓi�X� is the surface area of the inclusion
zone of the center point of plot i in the cluster. The integral

Fig. 3. Results for the one-dimensional example. Box plots for sample mean, spatial balance, and maximum distance for independent
random sampling and the local pivotal method, respectively. All of the results are based on a simulation of 1000 samples of size 350, and for
the local pivotal method, we used a first-phase sample of size N = 100 000. [Colour online.]

Fig. 4. Illustration of the selected region. [Colour online.] Fig. 5. Illustration of how we derive the plot total of auxiliaries for
a 7 m radius plot. Each cell receives a weight proportional to the
area of its intersection with the plot, which correlates with the
intensity of the colour in the figure. (a) An example for the tree height
and the basal area, which are available on a 12.5 m × 12.5 m grid. (b) An
example for elevation, which is available on a 2 m × 2 m grid.
[Colour online.]

Table 1. Design effect for five auxiliary variables with respect
to reference designs.

Auxiliary variable

Design effect

V̂LPM-5/VIRS V̂LPM-5/V̂LPM-xy V̂LPM-xy/VIRS

x-coordinate 0.030 5.104 0.006
y-coordinate 0.032 5.107 0.006
Elevation 0.036 0.303 0.121
Tree height 0.036 0.061 0.589
Basal area 0.035 0.059 0.603

Note: First-phase sample size is 100 000, second-phase sample
size is 360, and 10 000 samples were generated. LPM-5, local pivotal
method with all five auxiliary variables; LPM-xy, local pivotal method
with only xy-coordinates; IRS, independent random sampling. The
variance ratios presented are called design effects.
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(5) �
X′�Ci(X)�F

Z′(X′)dX′

is the total of the single point response on plot i in the cluster. We
obtain this plot total if we multiply cell values with respect to
intersected area of the plot. Figure 5 is an example of how we
weight the grid cells to calculate equation 5 of auxiliary variables
derived from airborne laser scanning and digital elevation model,
respectively. The values of auxiliary variables for each grid cell
were available beforehand (e.g., see Nilsson et al. 2017). The reso-
lution of the grid cell is 12.5 m × 12.5 m for the airborne laser
scanning data and 2 m × 2 m for the elevation. The radius of each
plot is 7 m.

Table 1 and Fig. 6 demonstrate variance for the estimator of the
five auxiliary variables with respect to the three designs. Com-
pared with IRS, the reduction of the variance was more than 95%
for all five auxiliary variables when using LPM-5. We have also
reduced variance by more than 90% for mean tree height and
mean basal area, even compared with the design that spreads
geographically (LPM-xy). We can clearly see from the table, if we
just spread the samples geographically, that the reduction of the
variance was less than 45% of mean tree height and mean basal
area compared with IRS. The mean of the spatial balance was
0.144, 0.242, and 0.306 for LPM-5, LPM-xy, and IRS, respectively.

Conclusion and discussion
We proposed a new sampling strategy that uses auxiliary infor-

mation in the sampling design in a continuous frame. Based on a
simulation study, we illustrated that the new strategy performed
better than the reference strategies for selecting the temporary
clusters within the Swedish NFI. For the new NFI design (LPM-5),
each selected sample is representative of the auxiliary space. The
spatial balance indicates a very good fit of the multivariate distri-
bution, and as a consequence, the variances for the sample means
of the auxiliary variables are significantly reduced (which implies
the potential to reduce the variances for the target variables re-
lated to the auxiliary variables).

The approximation Z�X� introduces only very slight distur-
bance to the auxiliary response (and only for the response close to
the forest borders). Far enough from the boundary, all points in a
plot have the same inclusion zone, which means that there is no
approximation for such a cluster, i.e., Z�X� � Z∗�X�. The overall
approach is purely design based and provides unbiased estimators
for the target variables, no matter how the auxiliary variables are
derived. We want to derive them in a similar way as the targets to
not lose strength in the possible relationship and thus maximize
the efficiency for estimation of target variables related to the
auxiliary variables.

For the application study of the new strategy in Sweden, the
auxiliary variables that we used for the sampling design are re-
lated to most of the target variables of NFIs. Therefore, adapting
the NFI to the proposed strategy will lead to visible improvements
for the estimation of the related target variables. If a variable is
not related to the auxiliaries, the new strategy will not make their
estimation worse.

The observed potential of using the new sampling strategy con-
firms the claims from earlier studies. In the article by Grafström
and Ringvall (2013), another sampling design called the local cube
method confirmed the advantages of selecting spatially balanced
samples. However, the LPM tends to produce slightly better spread
than the local cube method, and we chose to prioritize a better
spread due to the multipurpose nature of NFIs.

According to Henttonen and Kangas (2015), the optimal sam-
pling strategy depends heavily on the purpose of the inventory;
thus, prioritizing the forest characteristics is also needed if an
optimal strategy is to be determined. For multipurpose forest
inventories, when the number of characteristics of interest is large,
the task becomes more complicated. To choose a proper sampling
strategy while using the auxiliary variables in the design, we need
to consider the relationship between the auxiliary variables and
the target variables, e.g., balanced samples are optimal for linear
relationships and spatially balanced samples perform better for
nonlinear relationships (Grafström and Lundström 2013). The en-
couraging results of this study have led to a decision to implement

Fig. 6. Box plots of spatial balance and estimators for the five auxiliary variables. LPM-5, local pivotal method with all five auxiliary variables;
LPM-xy, local pivotal method with only xy-coordinates; IRS, independent random sampling. [Colour online.]
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this sampling strategy in all regions for the selection of temporary
tracts within the Swedish NFI, starting from 2018.
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