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A B S T R A C T

The effects of aggregating soil data (DAE) by areal majority of soil mapping units was explored for regional
simulations with the soil-vegetation model CoupModel for a region in Germany (North Rhine-Westphalia). DAE
were analysed for wheat yield, drainage, soil carbon mineralisation and nitrogen leaching below the root zone.
DAE were higher for soil C mineralization and N leaching than for yield and drainage and were strongly related
to the presence of specific soils within the study region. These soil types were associated to extreme simulated
output variables compared to the mean variable in the region. The spatial aggregation of these key functional
soils within sub-regions additionally influenced the DAE. A spatial analysis of their spatial pattern (i.e. their
presence/absence, coverage and aggregation) can help in defining the appropriate grid resolution that would
minimize the error caused by aggregating soil input data in regional simulations.

1. Introduction

Modelling agricultural production and adaptation to the environ-
ment at regional or global scales is receiving much interest in the
context of a growing food demand (Tilman et al., 2011) and climate
change (Ewert et al., 2015). Two important issues are to identify areas
with high yield potential (van Wart et al., 2013) and sustainable
management practices that would minimize environmental impacts
(e.g. soil degradation, GHGs emissions, nutrient leaching). Process-
based soil-crop models describe the flows of mass and energy in the soil-
plant-atmosphere system and have been applied and tested in many
different contexts, e.g. for CoupModel (Jansson, 2012), STICS
(Coucheney et al., 2015), APSIM (Zhang et al., 2012), DNDC (Giltrap
et al., 2010), DANUBIA (Lenz-Wiedemann et al., 2010) or CERES,
WOFOST, CropSyst, WARM, and SWAP (Confalonieri et al., 2009). As
such, they represent valuable tools for predicting agricultural produc-
tion in diverse agro-environmental contexts (e.g. Jeuffroy et al., 2014)
as well as for assessing impacts on the environment; e.g. leaching of
nitrates (Conrad and Fohrer, 2009a), changes in soil carbon (Gervois
et al., 2008) and GHGs emissions (De Gryze et al., 2011). They are also
used to make predictions in response to climate change (e.g. Tubiello

et al., 2000) and management changes (e.g. Ng et al., 2000) at the small
plot or field scales where input data are considered to be spatially
homogeneous. In this context, they are also increasingly applied at
regional (e.g. Gaiser et al., 2009) and global scales (Rosenzweig et al.,
2014). This raises new challenges related to model input data, cali-
bration and evaluation and the use of different methods of upscaling
and downscaling adds new sources of modelling uncertainties (Ewert
et al., 2011).

In regional-scale modelling, one major concern is the need to take
into account the spatial variability of the environmental conditions (e.g.
climate, soils, management practices) used as model inputs. Previous
studies showed the effects of input data quantity and quality on model
predictions (Grassini et al., 2015) or evaluated model predictions when
applied in diverse agro-environmental conditions (Balkovič et al., 2013;
Coucheney et al., 2015). Other recent studies have assessed the errors
caused by upscaling methods for a range of agro-environmental con-
texts and models (Hoffmann et al., 2016a; Kuhnert et al., 2016; Van
Bussel et al., 2011; Zhao et al., 2015a). These studies are a step further
towards the identification and development of scaling methods that
minimize these errors for particular climate, soil and management
conditions.
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Ewert et al. (2011) present different scaling methods from which
two main groups can be distinguished: those based on aggregating
model outputs (Zhao et al., 2016) and those based on aggregating in-
puts. In the latter case, the model is usually run for equal-sized grid cells
covering the region at a pre-defined resolution (Angulo et al., 2013,
2014; de Wit et al., 2005; Folberth et al., 2012; Hoffmann et al., 2015;
Hoffmann et al., 2016a, 2016b; Jégo et al., 2015; Kuhnert et al., 2016;
Zhao et al., 2015a). The challenge is then to generate input data for
each grid cell (see Zhao et al., 2015b) from data sources available at
finer (‘upscaling’) or coarser (‘downscaling’) resolutions and which re-
sult in the smallest errors in comparison to simulations carried out for
each single cell of the grid. Studies of this type have focused mainly on
the effects of upscaling climate and soil input data on the predictions
for a range of models.

While uncertainties in radiation and precipitation are recognised as a
major source of uncertainty for crop yield prediction, de Wit et al. (2005)
concluded that average unbiased estimates of weather data are sufficient
for predicting yield at the regional scale. Similarly, Angulo et al. (2013,
2014) found that aggregating climate and soil input data from 10 to
100 km had a small effect on barley yields in the south of Finland si-
mulated with four different crop models. Limited data aggregation effects
were also obtained when aggregating climate input for simulations of
yield and net primary productivity of wheat and maize under water-
limited conditions in western Germany using several crop models
(Hoffmann et al., 2015; Kuhnert et al., 2016; Zhao et al., 2015a). The
DAE related to soil input data were larger in the same region (Hoffmann
et al., 2016a). Olesen et al. (2000) and Jégo et al. (2015) found that fine
resolution data for both precipitation and soil properties was important
for predictions of representative wheat and maize yields in Denmark and
southern Quebec respectively. In the latter region, one reason for this
was a high pedo-diversity and a strong spatial correlation between soil
type and the rainfall data used in the model simulations. DAE are
therefore highly dependent on the region. The small effect of weather
data aggregation in the German study regions might be due to limited
spatial variation in climate combined with a moderate response of
modelled yield to those variations (Angulo et al., 2013; Zhao et al.,
2015a). Zhao et al. (2015a) further showed that the DAE due to climate
aggregation differed among output variables, being positively correlated
with the spatial heterogeneity (variation) of the variables concerned.
Zhao et al. (2015b) concluded that a high spatial resolution of climate
data is desired for regions with high environmental heterogeneity. In line
with this, Kuhnert et al. (2016) found a higher impact of climate ag-
gregation on simulated NPP for single years when extreme events such as
drought occurred, because model outputs varied spatially more in these
years compared with long-term average values. In addition, Hoffmann
et al. (2015) showed that the DAE differed among models and identified
the climate variables that had the most influence. This study highlighted
the importance of also considering the sensitivity of model outputs to the
input data (e.g. Hoffmann et al., 2016a). The question arises as to
whether the DAE for a specific model and given output variables can be
predicted given the spatial distribution of input data and the model
sensitivity to the input. For example, variation in altitude was found to
be a good proxy of climate DAE for the LINTUL-SIMPLACE model ap-
plied in Germany (Zhao et al., 2015b).

Soil properties such as texture, bulk density, porosity and organic
matter content strongly influence the soil hydraulic properties (Schaap
and Leij, 1998) and biogeochemical processes (Riffaldi et al., 1996).
These impact crop growth and its sensitivity to climate under limiting
water and nutrient conditions significantly (Kravchenko and Bullock,
2000). Soil variability is therefore one of the most important factors
underlying spatial variability in crop yields (Wassenaar et al., 1999).
Soil data aggregation may also have a strong impact on simulations of
other variables apart from crop yield, such as soil organic carbon stocks
(Zhang et al., 2014) or water and N dynamics (Kersebaum and Wenkel,
1998). Furthermore, the importance of soil properties for yield pre-
dictions depends not only on the climate (e.g. Timlin et al., 1998) but

also on management practices such as fertilization. For example,
Folberth et al. (2016) showed that the variability in yield related to soil
type may exceed weather-related variability in scenarios characterized
by low fertilization and irrigation amounts. DAE may therefore be
larger in regions with a high pedodiversity (i.e. high spatial variation in
soil types; Jégo et al., 2015) and in climates or under certain man-
agement practices that lead to high water and nitrogen stress.

The present study explores soil DAE on simulated yields of winter
wheat, drainage, N leaching and C mineralisation in the region of North
Rhine-Westphalia (NRW) in western Germany (Hoffmann et al.,
2016a). Simulations were run with a process oriented soil-vegetation
model (the CoupModel; Jansson, 2012) for gridded soil data and a
spatially uniform climate to ensure that the spatial variability in out-
puts is related only to variation in soil properties. The soil data was
aggregated by selecting the dominant soil at each coarser resolution
(i.e. the soil mapping unit covering the areal majority is selected at each
coarser scale). The objective of this study was to investigate the con-
tribution of specific soils and their spatial distribution to the DAE for
the selected model outputs. We hypothesize that specific combinations
of soil properties (‘key soils’) generate extreme model outputs and that
the spatial distribution (e.g. coverage, spatial aggregation) of these
critical soils within the region strongly influences the spatial variation
of the model outputs and therefore the DAE. To test this hypothesis we
propose and apply an approximation of the DAE as a function of these
key soils and their spatial coverage in the region. In addition, the in-
fluence of the degree of spatial aggregation of these key soils within an
area was investigated with respect to four sub-areas of NRW.

2. Material and methods

2.1. Study area

The study area, the state of North Rhine-Westphalia (NRW, 6 E–9.5
E, 50 N–52.5 N, Fig. 1), is located in west-central Germany with a
temperate humid climate. Half of the region (34,098 km2) is covered by
flat plains and the topography rises from the northeast towards the
southeast with a maximal elevation of 843 m. Agricultural land re-
presents> 60% of the area, with winter wheat and silage maize as the
main crops.

The whole climate and soil data used in the study can be obtained
from Hoffmann et al. (2016b), a brief description is given below.

2.1.1. Climate data
Gridded 1 km × 1 km daily weather data on maximum, minimum

and mean temperature, daily rainfall, solar radiation and wind speed
over the 29-year period from 1982 to 2011 were obtained by combining
daily data from> 200 local weather stations with gridded (1 km)
monthly data from the German Meteorological Service (DWD, 2014; see
Siebert and Ewert, 2012; Zhao et al., 2015a for precise descriptions).
The regional average annual temperature was 9.1 °C and mean annual
precipitation was 802 mm with a spatial coefficient of variation of 9.3%
and 18% respectively.

2.1.2. Soil data
Gridded 300 m× 300 m soil data (texture, soil layers, depth, C

content) were obtained by aggregating mapping units by areal majority
using a soil map at a scale of 1:50,000 obtained from the Geological
Service North-Rhine Westphalia (Geological Service NRW, 2004), see
Angulo et al. (2014) for a more detailed description. The soil data were
complemented by soil physical parameters (e.g. water holding capacity)
estimated from the texture class by applying pedo-transfer functions
developed for German soils (Eckelmann et al., 2005). Topsoil organic
carbon and pH were taken from the database FIS StoBo (LANUV, 2014),
while the organic carbon content and C:N-ratio of subsoil layers was
approximated using pedotransfer functions (Angulo et al., 2014;
Eckelmann et al., 2005). Each soil is characterized by a unique set of
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parameters, including its soil class according to the German soil clas-
sification system (Eckelmann et al., 2005), soil horizons and their re-
spective thickness, texture, organic carbon content and water holding
capacity. The prevailing soils are Cambisols, Luvisols and Stagnosols
(FAO key reference soil groups; Hoffmann et al., 2016a). Soil depth was
recorded up to 2.3 m and the soil depth varies from 0.4 m to> 2.3 m.
The SOC in the topsoil varied between 1.1 and 15.0% with an average
value of 2.3%. The soils also showed a wide diversity of texture, from
sandy soils (with up to 92% sand in both topsoil and subsoil) to clay
soils (with up to 55% clay in topsoil and up to 75% clay in subsoil).

2.2. Model description

CoupModel 5.0 is a dynamic one-dimensional process-based eco-
system model simulating heat, water, carbon (C) and nitrogen (N)
transfer in the soil-plant-atmosphere system (Jansson and Moon, 2001;
Jansson, 2012; see Jansson and Karlberg, 2013, for a detailed de-
scription). The model accounts for soil C and N turnover and N trans-
port linked to the vertical flow of water and heat, in a layered soil
profile. Soil water and heat flows are calculated with the Darcy and
Fourier equations. Soil C and N are partitioned between two compart-
ments classified as litter (undecomposed crop residues, dead roots and
microbial biomass) and humus. The model simulates soil temperature,
soil moisture and water flow, and plant development and growth in
response to daily weather (e.g. solar radiation, rain, wind speed and
mean air temperature). The simulated physical conditions in the soil in
turn regulate evapotranspiration, decomposition of soil organic matter
and nitrogen dynamics. Feedbacks between the biotic system and the
physical environment are simulated on a daily basis.

The main model options and parameters used in this study are
presented in Appendix 1 and are the same as those used for the
CoupModel simulations in the multi-model scaling exercise presented
by Hoffmann et al. (2016a). Most parameters were assumed to be
spatially uniform, either set to their default values (Jansson and
Karlberg, 2013), taken from previous applications representing arable
land in North Europe (Conrad and Fohrer, 2009a; Gustafsson et al.,
2004) or in a few cases adjusted to fit mean regional observations (see
Appendix 1 on model parameterisation). Other parameters varied spa-
tially depending on soil properties and based on the information in the
NRW soil database.

2.3. Model application

2.3.1. Reference simulations with high grid resolution inputs
Soil data was spatially aggregated in order to obtain grids of 1 km

resolution by selecting the dominant soil present at 300 m resolution
(Hoffmann et al., 2016a). Thereafter, reference model simulations were
run with the resultant soil input data at 1 km resolution. For each of
these 34,168 grid cells, one simulation was performed representing a
monoculture of winter wheat during a 29-year period (1982–2010).
The regional climate data series was used as driving data for all model
runs. The same management was applied in all cells, with the winter
wheat sown every year on October 1st, and fertilised three times with
mineral fertilisers according to amounts typically applied in the region
(Table in Appendix 1). The harvest date was simulated by the model.
Straw was removed but stubble was left on the field (10% of above-
ground biomass plus roots). Ploughing occurred on August 31st.

2.3.2. Aggregation of soil data for coarse grids simulations
Soil data was further spatially aggregated in order to obtain grids of

10, 25, 50 and 100 km resolution which correspond to 410, 80, 25 and
9 grid cells, respectively. The model was run for each of the coarser grid
cells in a similar way as explained above. This means that the same soils
were present at the different resolutions but in different proportions
and that many of the soils present at a resolution of 1 km disappeared at
coarser resolutions. Fig. 2 shows the areal coverage of the dominant
soils at different resolutions (note that only the 223 most abundant
dominant soils at a resolution of 1 km are shown, whereas a total of
2646 dominant soils were found at this resolution). The number of
dominant soils at resolutions 10, 25, 50 and 100 km were 223, 65, 23
and 8 respectively. Fig. 2 further illustrates that the most common
dominant soil at one resolution does not necessarily remain the most
common after aggregation to a coarser resolution.

2.3.3. Selected model output variables
Four typical output variables representing the soil-plant system

were used to evaluate the DAE. These were (i) the annual drainage
(mm) and (ii) annual nitrate leaching (kg N ha−1) at a depth of 1.5 m,
or in the case of shallower soils, at the bottom of the soil profile, (iii)
annual soil organic C mineralisation in the whole soil profile (g C m−2)
and (iv) winter wheat grain yield (estimated from the grain C content at

Fig. 1. The NRW region divided into 4 sub-areas
(‘a’, ‘b’, ‘c’, ‘d’) and the spatial distribution of the 12
soil clusters sharing similar soil properties (i.e.
thickness, texture and SOC of three distinct soil
layers: topsoil, root zone and subsoil) that are the
ones used as input data to the CoupModel.
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the date of harvest; t DW ha−1). For each of these outputs, we calcu-
lated the regional mean and the between-grid cell variation (CV, %) of
the period average (i.e. mean of 29 years).

2.4. Identification of functional soil types

To evaluate if the DAE were related to the presence and spatial
distribution of sensitive functional soil types (Cécillon and Barré, 2015),
we first allocated soils of the NRW database to clusters of soils sharing
similar combinations of soil properties (Section 2.4.1). Second, a model

sensitivity analysis for the different soils present in the region was used
to identify which of these clusters were associated with extreme values
of simulated yield, drainage, C mineralisation or N leaching. Hereafter,
these key functional soil types are denoted as “key soils” (Section 2.4.2).

2.4.1. Allocating soils to clusters of similar soils
Soils sharing similar combinations of soil properties were allocated

to clusters by a k-means clustering analysis. To do so, four soil prop-
erties in three distinct layers of the soil profile were considered:
thickness (m), texture (clay and sand content, %) and organic C content

Fig. 2. Number of grid cells covered by individual soil profiles
present in the NRW soil database at different resolutions when
aggregating by areal majority. Each soil profile represents a soil
mapping unit. Soils are ordered from highest spatial coverage
(left) to lowest spatial coverage (right) at 1 km resolution. Soils
only present at resolution 1 km are not represented.
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(%). The three soil layers were topsoil (the uppermost layer recorded in
the database), the root zone (zone between the base of the topsoil and
the maximal rooting depth of the plant, here 1.5 m) and subsoil (below
the root zone). The k-means clustering method was based on the dis-
similarities (calculated as ‘Euclidean distances’) of the 12 soil variables
(i.e. 4 soil properties × 3 soil layers) standardized to a mean value of
zero and a standard deviation of 1. This was done using the ‘k-means’
function of the package ‘stats’ of R (download at https://www.r-project.
org/) and the Hartigan-Wong algorithm (Hartigan and Wong, 1979). To
pre-select the number of clusters, we used the subjective elbow method
(Thorndike, 1953), which evaluates the improvement of the within-
cluster sum of squares (WSS) when one cluster is added. In other words,
we did 99 preliminary k-means clustering with an increasing number of
clusters, from 2 to 100, and the resulting WSS values were plotted
against the number of clusters (results not shown). The WSS decreased
much more slowly when the number of clusters increased above 10. The
number of clusters was then fixed to 10 and the algorithm was run with
a maximum iteration of 20 and using the best possible result after 500
random starts.

2.4.2. Identification of key functional soil types
To identify soil types (key soils) to which the simulated outputs are

sensitive, the model was run once with each of the soils present in the
NRW region (i.e. n = 2646 simulations). The means and standard de-
viations of the four simulated output variables (S and σallsoils Sallsoils) were
compared with the corresponding values calculated for each soil cluster
(Sscx and σSx). This comparison allowed (1) estimation of the deviation
from the average of ‘all soils’ simulations ( = −D S Sscx scx allsoils ) and (2)
identification of highly variable clusters with the condition σSx > σSallsoils.
Clusters for which Dscx was more than twice the standard deviation of
the ‘all soils’ simulations were considered to be associated with extreme
simulated values and to belong to a group of ‘key soils’ (labelled ‘ks’) for
the variable concerned; Dscx for these ‘key soils’ is hereafter denoted Dks.
This was done separately for each selected simulated variable. There
can be more than one group of key soils per variable (or none) and
different variables can share the same key soils. The influence of the key
soils can be either negative or positive.

Highly variable clusters (i.e. σSx > σSallsoils) were further divided into
two sub-clusters based on the soil input variables (if any) that were
significantly correlated to the highly variable simulated output. The
resulting new clusters were then tested, in the way described above, to
determine whether they belonged to a group of ‘key soils’ or not. All soil
clusters that did not deviate from the ‘all soils average’ were considered
as redundant soils and are hereafter denoted ‘non-key soils’.

2.5. Soil spatial diversity and spatial pattern of key soils

To test the effects of soil spatial patterns and diversity on DAE, the
NRW region was divided into four approximately equally-sized sub-
areas (‘a’, ‘b’, ‘c’, ‘d’; Fig. 1), by north-south and east-west transects
through the approximate centre of the NRW.

We calculated three different normalized Shannon indices
(Ramezani, 2012) of soil diversity at 1 km resolution in the NRW region
and in the four sub-areas, based on the relative distributions of (1) all
soils defined in the database (n= 2646; Hs), (2) of the soil clusters (Hc)
and (3) of the key soils versus non-key soils (Hks which is referred to
hereafter as the uniformity index for key and non-key soils) by:

∑= −
=

H p ln p ln S( )/ ( )
i

S

i i
1 (1)

where S is the number of soils or soil clusters (S = 2 when considering
key soils versus non-key soils) and pi the areal coverage of the soil i (or
cluster or key/non-key soils) in the NRW region or in the sub-areas. This
normalized index, which varies between 0 and 1, depends uniquely on
the relative distribution of soils and not on their total coverage. It is

close to zero if one soil dominates the whole area, whereas it is close to
1 if all soils are equally represented. We used this index to compare soil
patterns in the four sub-areas with each other and with that of the
whole region. We also investigated the extent to which these indices
could be related to the DAE of model simulations.

The spatial distribution of key soils in NRW and the four sub-areas at
the reference resolution was characterized by (i) the total spatial cov-
erage (%) estimated as the fraction of 1 km2 grid cells covered by key
soils, and (ii) by spatial aggregation assessed by Joint Count Analysis
(JCA, Cliff and Ord, 1973) using the function ‘joincount.test’ of package
‘spdep’ of R (Bivan et al., https://cran.r-project.org/web/packages/
spdep/index.html). This function quantifies the extent to which the
spatial pattern of soils is aggregated. If it is not significant, then the key
soils are considered to be randomly distributed within the area. The grid
cells covering the region were colour-coded grey (G) for the key soils
and white (W) for the non-key soils (Fig. 3). The number of G-G (i.e. one
edge of a grey-coloured 1 km2 grid has a neighbour 1 km2 grid that also
is grey), W-W and G-W connections were determined and compared
with the number of connections that would be expected with a random
distribution of G and W. When the pattern was significantly aggregated
(P < 0.05), we further quantified the degree of spatial aggregation
with the normalized aggregation index (AI) defined by He et al. (2000).
It varies from zero (no spatial aggregation) to one (maximal degree of
spatial aggregation).

The spatial coverage of key soils and non-key soils (respectively Grey
and White in Fig. 3) at coarser resolutions than the reference resolution
was also assessed. For an area covered by key soils at a coarse resolution
(Fig. 3A), we distinguished the part of this area that was already cov-
ered by key soils at a resolution of 1 km (G to G) from the remaining part
that was covered by non-key soils (W to G, a0 in Fig. 3). Similarly, for an
area covered by non-key soils at the coarser resolution (Fig. 3B), we
distinguished the part of this area that was converted to non-key soils
from key soils (G to W; aks in Fig. 3).

2.6. Evaluation of DAE

The DAE was quantified in terms of the discrepancies between
model outputs from simulations with soil data aggregated to 10, 25, 50
or 100 km (‘coarse resolutions’; Sc) and the outputs from the reference
simulations with soil data at 1 km resolution (‘true values’; Sr; Zhao
et al., 2015a). This was done with two different metrics.

Firstly, a regional bias for the simulated variables at coarser re-
solutions was calculated as the relative difference between their ar-
ithmetic mean values (Sc ) and the corresponding mean values for the
reference simulations at 1 km resolution (Sr ):

= −Bias S S S(( )/ ) 100c r r (2)

Secondly, a regional mean error of the simulations at coarse re-
solutions compared with the reference simulations was calculated as
the normalized and area-weighted Root Mean Square Error (rRMSE; %,
see Eqs. (3)–(7) in Table 1a of Appendix 2). In contrast to the regional
bias, this second DAE metric accounts for spatial differences in ag-
gregation errors among coarse grid cells and is also not affected by
compensating effects between cells.

2.7. Approximation of the DAE based on key soils

An approximation of the DAE expressed as the regional mean error
was made based on the spatial coverage of key soils and non-key soils at
the coarse resolution and at the reference resolution (rRMSE* see Eqs.
(3) & (8)–(11) in Table 1b of Appendix 2 and Fig. 3). For this, we
distinguished two types of errors for a single coarse grid cell, denoted e1
and e2 (Eqs. (10a) & (10b)), depending on whether the dominant soil of
the coarse grid was a key soil (ks; grey in Fig. 3A) or a non-key soil (s0;
white in Fig. 3B). To calculate rRMSE*, any grid cell covered by a non-
key soil is allocated the mean simulated value for all soils (Sallsoils ), while
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any grid cell covered by a key soil is allocated the value +S D( )allsoils ks

(Eqs. (10)–(11)), where Dks (see Section 2.4.2) represents the absolute
aggregation error associated with areas that are either converted from
non-key soils to key soils (a0; Fig. 3A) or from key to non-key soils (aks;
Fig. 3B). Similarly, the average value of an output variable at the 1 km
resolution within one coarse grid cell (Sr c, ) was approximated as a
function of the fractions of 1 km2 grid cells that were non-key and key
soils (a0 and aks respectively; Eqs. (10)–(11) in the Appendix 2). Finally,
for simulated variables with more than one group of key soils, the errors
caused by the different key soils were summed in the calculation of the
RMSE*.

3. Results and discussion

3.1. Reference simulations with inputs at 1 km2 resolution

The CoupModel generated outputs that were representative of the
multi-model ensemble previously applied within the NRW region
(Grosz et al., 2017; Haas et al., 2015; Hoffmann et al., 2015, 2016a;
Kuhnert et al., 2016; Zhao et al., 2015a). The regional average yield of
winter wheat for the simulated period was 7.1 DM/ha (Table 1) and the
median value was 7.3 t DM/ha, which is within the range of observed
values in the region and represents a simulated yield gap of 20%. The
coefficient of variation in simulated yields for 1 km2 grid cells caused

Table 1
Regional mean of the period average and the within grid cells variation, expressed as a CV, % of annual simulated variables over the 29-years period (1982–2012) obtained at resolution
1 km, as well as data aggregation effects (DAE) for the respective variables (crop yield, water drainage, C mineralization and N leaching) at resolutions 10, 25, 50 and 100 km in NRW.
Absolute regional bias> 3.5 % are highlighted in bold.

Variables

Data Aggregation Effects (DAE)

29-years period

average

Regional Bias (Bias)

Eq. 2 in 2.6

Mean Regional Error (rRMSE)

Eqs. 3-7 in Appendix 2

Regional
Mean

Spatial 
var.

10
km

25
km

50
km

100
km

10
km

25
km

50
km

100
km Mean

Yield 7.1 t ha-1 8 % 0.2 % -0.8 % 1.1 % -1.0 % 4.4 % 5.9 % 7.0 % 8.5 % 6.5 %

Drainage 429 mm 14 % 0.4 % 0.2 % 0.4 % 1.5 % 7.3 % 5.9 % 7.4 % 10.0 % 7.7 %

C mineralization 125 g m-2 21 % -1.5 % -4.3 % 3.8 % -0.6 % 12.0 % 14.2 % 21.7 % 11.1 % 14.8 %

N leaching 83 kg ha-1 29 % -1.9 % -1.0 % 3.6 % 5.6 % 19.0 % 22.8 % 33.3 % 20.2 % 23.8 %

Mean (rRMSE) 10.7 % 12.2 17.3 12.5 13.2 %

Fig. 3. Approximation of the DAE defined as the
Regional Mean Error and calculated with rRMSE
(Sections 2.6 & 2.7 and Table 1a & 1b in Ap-
pendix 2) based on the spatial coverage of key
soils (‘ks’; grey grids) and non-key soils (‘s0’; white
grids) with respect to one coarse grid cell (A. and
B.) or to the whole region (C. and D.).

• Ac is the area of one coarse grid and is de-
noted Aks when key soil is dominant (A.) and
A0 when non-key soil is dominant (B.).

• Dks is the difference in a simulated variable
between the value associated with a key soil
and the average value of all soils (Sallsoils).

• a0 and aks are the area covered by non-key
soils inside a coarse grid ‘ks’ (A.) and by key
soils inside a coarse grid ‘s0’ (B.) respectively.

• AT is the total area of the NRW region and Nks

and N0 are the numbers of coarse grids in the
region where key soils are dominant (C.) and
where non-key soils are dominant (D.), re-
spectively.
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by soil variability was 8%, which is smallest of the four simulated
output variables (Table 1).

The regional annual average drainage for the period was 429 mm
which represents about half the average annual precipitation in the
region. The variation among 1 km2 cells (CV of 14%, Table 1) was
slightly higher than for the yield. The variations in C mineralisation and
N leaching (CV> 20%, Table 1) were much higher than for yield and
drainage due to their strong dependence on soil properties, especially
the SOC content. The regional annual C mineralisation was in the range
of observed values for conventional croplands on Cambisols in a tem-
perate climate (Merino et al., 2004) and represented an annual loss of
about 0.8 ± 0.2% of the initial soil C storage (125 g m−2, Table 1).
Mean annual N leaching (83 kg ha−1, Table 1) represented 26 ± 8%
of the total amount of N added by fertilisers in the model (317 kg ha−1,
Table Appendix 1).

3.2. Functional soil types

3.2.1. Soil input data variation and clusters of similar soils
We defined 10 clusters of soils sharing similar soil properties

(Section 2.4.1). However two of these clusters were associated with
highly variable model outputs and were therefore additionally split into
two groups (Section 2.4.2). First, shallow clay-rich soils were separated
from other shallow soils and second, SOC-rich sandy soils were sepa-
rated from the other sandy soils. This resulted in a total of 12 clusters
(Table 2). The between-cluster variation accounted for 68% of the total
variation in the soil data, while the within-cluster variation varied be-
tween 0.6 (cluster 8) and 5.4% (cluster 7). Sandy soils were found in
clusters 2 to 7 and silt loam soils were found in clusters 8 and 9. The
soils in clusters 10 and 11 were characterized by a shallow profile depth
(< 0.8 m, Table 2).

The twelve soil clusters covered from 1 to 27% of the area of the NRW
region at the finest resolution (Fig. 1) and included between 22 and 436
individual soils (Table 2). Clusters 10, 9 and 3 were the most dominant
ones and covered 27, 19 and 15% of the NRW region respectively.

3.2.2. Identification of key functional soil types
The simulated yields were highest for sandy soils (clusters 3 to 7),

intermediate for silt loam and clay loam soils (clusters 8 to 10; Fig. 4A)

and lowest for the shallow soils (clusters 11 and 12). The lower yields
on shallow soils (< 0.8 m) were due to the limited root depth on these
soils which induced more severe or more frequent water and/or N
stresses. Drainage was slightly higher in the sandy soils than in the silt
loam soils and significantly lower in clay and clay loam soils, mainly
because more water was lost via surface runoff, especially for shallow
clay soils. However, within-cluster variation in drainage was high for
the clay soils (clusters 10 and 11; Fig. 4B). C mineralisation and N
leaching (Fig. 4C & D) were highest in SOC-rich soils (> 7.7% in top-
soil; clusters 1 and 2; Table 2), but the within-cluster variation was also
high. C mineralisation was lower in shallow soils (clusters 11 and 12) as
they contained less SOM in total, whereas N leaching was higher than
for other non SOC-rich soils.

Key functional soil types were identified in five of the clusters and
were classified into three distinct groups:

1. SOC-rich soils (> 7.7% in the topsoil or> 0.8% in the root zone) in
clusters 1 and 2 were associated with the highest C mineralization
and N leaching.

2. Clay soils (> 25%) in clusters 10 and 11 were associated with the
lowest drainage.

3. Shallow soils (< 0.8 m) in clusters 11 and 12 were associated with
the lowest yields, low C mineralisation and high N leaching.

These key soils and their specific characteristics are highlighted in
Table 2. Fig. 4 shows in relative terms (%) the deviations in the average
simulated variables associated with these key soils (i.e. Dks; Section
2.4.2) from the overall mean. These three groups of soils contained
2.2% (i.e. 58 out of 2646 soils), 14.9% (393) and 4.6% (123) respec-
tively of the total soil population of soils in the NRW region database
(Table 2).

3.3. Soil spatial diversity and spatial pattern of key soils

The functional diversity of the 2646 individual soils of the NRW
region was limited (Hs = 0.32; Eq. (1)), whereas the diversity of the soil
clusters was rather high (Hc = 0.83). This is because many of the soils
covered a very small part of the region, while a few others dominated,
while the distribution of the relative coverage of the 12 clusters was

Table 2
Soil clusters based on input data of soils present in the NRW region at 1 km resolution. Between-cluster variation equalled 68.6% and within-cluster variation varied between 0.6 and
5.4%. N is the cluster number and Nb is the number of soils inside the cluster. Mean value ± standard deviation of input variables for three soil layers are presented; key soils associated
with extreme values of at least one output are highlighted in bold (Section 2.4.2 and Fig. 4).

Soil

profile

Soil type
SOC 
rich

Sandy 
SOC Sandy Silt loam Clay Shallow 

Clay Shallow

N Clusters 1 2 3 4 5 6 7 8 9 10 11 12

Nb. soils 36 22 432 48 301 298 298 436 312 342 51 72

Topsoil

Thick. (m) 0.3 +/- 0 0.3 +/- 0 0.3 +/- 0 0.3 +/- 0 0.3 +/- 0 0.3 +/- 0 0.3 +/- 0 0.3 +/- 0 0.3 +/- 0 0.3 +/- 0 0.3 +/- 0.1 0.3 +/- 0.1

Clay (%) 11 +/- 7 8 +/- 9 5 +/- 3 10 +/- 4 5 +/- 2 18 +/- 7 12 +/- 6 19 +/- 4 23 +/- 7 26 +/- 8 39 +/- 5 20 +/- 6

Sand (%) 60 +/- 21 73 +/- 28 83 +/- 10 62 +/- 16 82 +/- 10 42 +/- 14 57 +/- 13 16 +/- 7 19 +/- 8 20 +/- 9 19 +/- 8 24 +/- 18

SOC (%) 8.6 +/- 2.2 2.6 +/- 0.5 2.3 +/- 0.4 2 +/- 0.2 2.2 +/- 0.4 2.4 +/- 0.4 2.1 +/- 0.2 2.1 +/- 0.3 2.1 +/- 0.3 2.1 +/- 0.2 2.1 +/- 0.3 2.2 +/- 0.2

Root 

zone

Thick. (m) 1.2 +/- 0 1.2 +/- 0 1.2 +/- 0.1 1.2 +/- 0 1.2 +/- 0.1 1.2 +/- 0 1.2 +/- 0 1.2 +/- 0 1.2 +/- 0 1.2 +/- 0 0.3 +/- 0.1 0.4 +/- 0.2

Clay (%) 9 +/- 4 7 +/- 8 5 +/- 2 8 +/- 3 7 +/- 4 13 +/- 5 19 +/- 8 20 +/- 4 21 +/- 7 33 +/- 7 37 +/- 3 29 +/- 6

Sand (%) 68 +/- 14 77 +/- 25 85 +/- 8 71 +/- 11 75 +/- 12 61 +/- 11 48 +/- 10 18 +/- 6 30 +/- 12 23 +/- 8 27 +/- 6 29 +/- 12

SOC (%) 0.7 +/- 0.3 1.0 +/- 0.2 0.3 +/- 0.1 0.5 +/- 0.1 0.3 +/- 0.1 0.3 +/- 0.1 0.4 +/- 0.1 0.3 +/- 0.1 0.4 +/- 0.1 0.4 +/- 0.1 0.5 +/- 0.4 0.6 +/- 0.5

Subsoil

Thick. (m) 0.6 +/- 0.1 0.5 +/- 0.1 0.5 +/- 0.1 0.5 +/- 0.1 0.5 +/- 0.1 0.5 +/- 0.1 0.5 +/- 0.1 0.5 +/- 0.1 0.6 +/- 0.1 0.6 +/- 0.1

Clay (%) 9 +/- 5 7 +/- 9 4 +/- 2 5 +/- 2 16 +/- 10 6 +/- 3 30 +/- 9 24 +/- 9 7 +/- 4 35 +/- 8

Sand (%) 76 +/- 14 83 +/- 20 86 +/- 6 84 +/- 7 50 +/- 14 84 +/- 10 36 +/- 11 28 +/- 13 80 +/- 12 31 +/- 10

SOC (%) 0.1 +/- 0.2 1 +/- 0.2 0.1 +/- 0.1 0.5 +/- 0 0.2 +/- 0.1 0.1 +/- 0.1 0.2 +/- 0.1 0.2 +/- 0.1 0.2 +/- 0.1 0.2 +/- 0.1
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relatively more uniform.
The four sub-areas differed in the diversity and patterns of the soils

present, but all the soil clusters were represented in all four sub-areas,
with the exception of SOC-rich soils in area ‘d’ (Table 3). The north-west
area (‘a’) had the highest soil diversity while the south-east area (‘d’)
had the lowest diversity (Table 3). This difference in diversity was more
pronounced when considering the distribution of soil clusters. The di-
versity in soils and soil clusters was similar in sub-regions ‘b’ and ‘c’
(Table 3).

The key soils were unevenly distributed among the four sub-areas.
Shallow soils were mostly present in the southern part of the region
(sub-areas ‘b’ and ‘d’), while SOC-rich soils were concentrated in the
north-west (‘a’) and clay soils were dominant in the south-east (‘d’). The
distributions of key soils were spatially aggregated with the exception of
SOC-rich soils in area ‘b’ where they covered< 1%. The degree of
spatial aggregation (AI, Section 2.5; Table 3) was highest for the
shallow soils in area ‘c’ and for the clay soils in ‘d’, where the latter were
also more abundant. Even though the aggregation index (AI) accounts

for differences in coverage, it was positively correlated to the soil
coverage and to the uniformity index (Hks).

3.4. DAE on the coverage of key soils

Fig. 5 illustrates the coverage of key soils in NRW at the different
data resolutions. In relative terms, the coverage of SOC-rich soils was
most affected by the data aggregation, with an increase of 130% at a
resolution of 50 km and a decrease of 100% at a resolution of 100 km
compared to the reference. However, they covered< 2% of the total
area in the reference simulations. In absolute terms, the coverage of
clay soils and shallow soils was affected more, varying by up to 4–5%
which in relative terms represents changes of 17% and 50% respec-
tively (Fig. 5). The sum of the partial areas that were converted be-
tween key and non-key soils (aks and a0, checked colours in Fig. 5) as a
result of data aggregation was highest for the clay soils in absolute
terms (Fig. 5B), but highest for the SOC-rich and shallow soils in re-
lative terms (Fig. 5A and C). Fig. 6 shows that the spatial patterns of key

Fig. 4. Variation in simulated outputs within and between the 12 soil clusters. The horizontal lines show the average value for all soils present in the database (Sallsoils); dotted circles show
the identified clusters containing ‘key soils’ (Section 2.4.2). The relative boxplot widths are proportional to the number of soils included in each cluster (see also Table 1).

Table 3
Diversity of soils and spatial pattern of key soils in the four sub-areas of NRW: normalized Shannon Index of diversity for soils (Hs) (as well as total number of soils into brackets), for soil
clusters (Hc) and for key soils (Hks, uniformity index) which varies from 0 (low values associated with dominance of one soil) to 1 (all soils tend to have equal coverage) as well as the
spatial coverage (cov, %) and the normalized index of spatial aggregation of key soils versus non-key soils AI which varies between 0 (total dispersion) to 1 (maximal aggregation); refers to
Section 2.5.

All soils or key soils West (a, b) East (c, d)

Diversity
[0–1]

Coverage
[0–100]

Uniformity
Hks [0–1]

Aggregation
AI [0–1]

Diversity
[0–1]

Coverage
[0–100]

Uniformity
Hks [0–1]

Aggregation
AI [0–1]

North
(a, c)

Soils Hs 0.88
(1001)

0.83
(705)

Clusters Hks 0.85 0.76
SOC rich 05.9% 0.32 0.85 1.3% 0.10 0.64
Clay 06.5% 0.35 0.81 22.1% 0.72 0.94
Shallow 02.6% 0.17 0.59 04.6% 0.27 0.77

South
(b, d)

Soils Hs 0.80
(694)

0.68
(435)

Clusters Hks 0.79 0.47
SOC rich 0.6% 0.05 0.00 00.0% 0.00 –
Clay 16.7% 0.70 0.93 71.7% 0.86 0.98
Shallow 18.3% 0.69 0.91 09.7% 0.46 0.85
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and non-key soils in the reference map at 1 km resolution influenced the
size of these converted partial areas, which we hypothesize to be mostly
responsible for the DAE. The converted areas increased linearly with
the uniformity index for the key soils (Hks) and exponentially with the
degree of spatial aggregation (AI).

3.5. DAE on model simulations

3.5.1. Regional bias and regional mean error
The regional bias caused by data aggregation was relatively small

(Bias, Eq. (2) in 2.6) for all regional simulated variables. The absolute
regional bias for yield and drainage simulated at 10, 25, 50 and 100 km
resolutions was< 1.5% (Table 1) and was only slightly higher for C
mineralisation and N leaching (< 6%). There was no clear trend in bias
with respect to data resolution. This result is in line with previous
modelling studies on crop yields in the same region (Angulo et al.,
2014; Hoffmann et al., 2016a) and on water flow and N leaching in
another region of Germany (Kersebaum and Wenkel, 1998). However,
regional bias does not explicitly account for spatial differences within
the region and compensating errors might occur (Zhao et al., 2015a).
Thus, local discrepancies might still be large at the different resolutions.
This highlights the importance of exploring the spatial patterns of the

output variables in regional-scale modelling (Steffens et al., 2015;
Vereecken et al., 2016).

The DAE expressed as the regional mean error (rRMSE, % in 2.6 &
Table 1a of A2) was larger for C mineralisation (15%) and N leaching (24%)
than for yield and drainage (< 8%), at all resolutions (Table 1). This is in
line with the results of multi-model comparison studies carried out for NRW
with respect to SOC changes (Grosz et al., 2017) and N dynamics (Haas
et al., 2015) compared with yield (Hoffmann et al., 2016a) and NPP
(Kuhnert et al., 2016). Both C mineralisation and N leaching depend
strongly on C stocks which varied widely among soils (4–73 kg m−2), so
coarse resolution soil data can lead to large biases in simulations of SOC
(Zhang et al., 2016, 2016b). Only small differences in the DAE were found
among the different resolutions, except for C mineralisation and N leaching,
where it was much larger at a resolution of 50 km.

Expressing the regional bias as absolute values and considering all
output variables and all resolutions together, the two DAE metrics were
significantly correlated with each other. The average rRMSE calculated
across the four resolutions (6.5%, 7.7%, 14.8%, 23.8% for yield, drai-
nage, C mineralization and N leaching respectively) was exponentially
correlated to the spatial variability of the variables (y = 3.6 e0.07x;
R2 = 0.97; not shown) as previously shown by Zhao et al. (2015a) and
Zhao et al. (2015b).

Fig. 5. Spatial coverage (% in labels) of the three key functional soil types (‘key soils’) at the different resolutions (full colour: area that remains key soils + gridded colour: area converted
to key soils a0 – because it was locally dominant), as well as the area where key soils were converted to non-key soils aks - because they were not locally dominant (rutted white).

Fig. 6. Effect of the spatial pattern of key soils versus non-key soils (coverage uniformity A. and degree of spatial aggregation B.) in the reference (i.e. at resolution 1 km) on the % area
that was either converted from key soil to non-key soil or from non-key soil to key soil (i.e. sum of ∑aks/∑Aks and ∑a0/∑A0); see also Fig. 3) when aggregating data from resolution 1 km
to resolution 10 km. The labels ‘a’, ‘b’, ‘c’ and ‘d’ denote the four sub-areas of the NRW region (see also Fig. 1). The slope of the linear regression (A.) and the exponential coefficient (B.)
were higher at resolutions 50 and 100 km than at resolutions 10 and 25 km. The linear regressions (A.) had coefficients R = 0.96; 0.94; 0.83 and 0.70 (P < 0.05) respectively for data
aggregated at 10, 25, 50 and 100 km (data not shown for 25 to 100 km resolution). The respective values for the exponential regressions (B.) were R = 0.98; 0.84; 0.94 and 0.85
(P < 0.05).
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3.5.2. Approximation of the DAE based on key soils
Generally, the presence of certain soils (‘key soils’) in the NRW re-

gion or in sub-areas of the region was important for the DAE expressed
as the regional mean error (rRMSE; Table 1a in Appendix 2). Con-
sidering all variables and resolutions together, the DAE was sig-
nificantly correlated with its approximation rRMSE* (R2 = 0.96;
n = 16). This was also the case when considering differences in DAE
between the sub-areas of NRW and between variables (Fig. 7B;
R2 = 0.78 when considering all variables, sub-regions and resolutions
together – n = 64). rRMSE* captured slightly less of the difference in
DAE between sub-areas than between variables and resolutions.

The approximation generally overestimated the DAE in the sub-
areas, whereas it underestimated the DAE for the whole NRW region
(slopes of the regressions are 1.4 and 0.8 respectively), especially in the
case of N leaching. The overestimation for the sub-areas was especially
high for C mineralisation and N leaching in the north-west area (‘a’),
which has the highest coverage of SOC-rich soils. In the whole region,
the underestimation might be caused by differences within and between
soil clusters of the non-key soils lost in the approximation of the DAE.
The distributions of soils are more homogeneous in the sub-areas than
in the whole region because of the spatial correlations of soil properties
(see e.g. Meersmans et al., 2008). As a result, the variation in soil
properties was less in the sub-areas, as were the differences between key
soils and non-key soils. Consequently the calculated deviation (Dks) was
most likely overestimated in the sub-regions.

The DAE was higher at resolutions for which the change in the
coverage of key soils compared with the reference simulations was
greatest. For example, the DAE for N leaching and C mineralisation was
highest at a resolution of 50 km where the spatial coverage of the SOC-
rich soils was more than twice that in the reference (Figs. 5 & 7). Si-
milarly, the change in the spatial coverage of shallow soils was greatest
at a resolution of 100 km, intermediate at resolutions of 25 and 50 km
and minimal at a resolution of 10 km (Fig. 5). This was mirrored by the
variation in DAE for the yield in NRW (Fig. 7A).

3.5.3. Influence of the spatial pattern of key soils
The north-west area (‘a’) showed the highest DAE for C miner-

alization and N leaching, mainly as a result of the concentration of
almost all SOC-rich soils in this area (Fig. 7B and Table 1). In contrast,

the DAE was lowest for yield and drainage in this area (Fig. 7B, Table 1)
as a result of smaller values of the uniformity index for shallow soils
and clay soils (Hks; Table 3). The eastern area (‘c’ & ‘d’) associated with
a dominance of clay soils, had the highest DAE for drainage (Fig. 7B and
Table 1).

The global differences in the DAE between sub-areas (i.e. con-
sidering all variables and resolutions together) did not correlate with
differences in the diversity indexes for soils or soil clusters (Table 3).
Moreover, the approximation of the DAE predicted the lowest DAE in
area ‘b’, but failed to predict the highest DAE found in sub-area ‘c’.
Instead the approximation predicted the highest value in area ‘a’, where
the difference between the DAE and its approximation was greatest.
One possible explanation for this mismatch between DAE and the soil
spatial patterns is that differences between the sub-areas were too
small. Furthermore, the two indicators used to describe spatial diversity
(coverage and aggregation) were highly correlated, which made it
difficult to isolate their individual effects on the DAE. Larger values of
the DAE were obtained for sub-regions where key soils covered a larger
part of the area.

The normalized Shannon diversity index (uniformity index) based
on the relative distribution of key soils versus non-key soils may be a
better indicator of the effects of soil spatial pattern, as it does not dis-
tinguish between which of these two groups is dominant (key soils or
non-key soils). However, this hypothesis could not be properly tested as
key soils were dominant only in the case of Clay soils in the sub-area ‘d’,
so that the difference between the coverage of key soils and the Shannon
index was small. Nevertheless, the Shannon index was positively cor-
related with the partial areas converted between key and non-key soils
when aggregating to coarser resolutions (Fig. 6A), which, in turn, in-
fluences the DAE.

3.6. Implications for regional crop modelling

Our analysis showed that a few soils generated large upscaling er-
rors in model simulations when aggregating soil data based on the
“dominant soil concept” (selecting the soil with largest areal coverage).
The pedodiversity of a region is generally regarded as an important
factor influencing the effect of soil data aggregation on model simula-
tions (Jégo et al., 2015). Our results suggest that the pedodiversity per

Fig. 7. Approximated DAE (rRMSE*_%) in NRW using key soils (2.7.3 and Table 1b in A2) against the true DAE (rRMSE_%; 2.7.2 and Table 1a in A2) calculated for the different simulated
variables: (A.) individual values obtained at the different soil data resolutions (10, 25, 50 and 100 km) in the whole NRW region and (B.) mean values and standard deviation of the four
different resolutions (10, 25, 50 and 100 km) in the four sub-areas of NRW (a, b, c and d; see also Fig. 1).
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se (Costantini and L'Abate, 2016) may be less critical than its effect on
soil-crop processes (the functional diversity of soils) for estimating the
DAE. Similarly, decision-makers are more interested in the accuracy of
maps of land quality which show the response of environmental vari-
ables to soil variability than of the underlying soil maps themselves
(Hennings, 2002; Takoutsing et al., 2017). The functional diversity of
soils was assessed here by a model sensitivity analysis to different
clusters of soils (sharing similar soil properties) present in the region
and by isolating clusters of soils (‘key functional soil types’) that gener-
ated extreme outputs. The identification of critical soil properties de-
pends on environmental conditions such as climate and management
practices (Folberth et al., 2016). Therefore, even though the key func-
tional soil types identified here are likely to be relevant elsewhere, they
are at least partly specific to the regional context (pedo-climatic con-
ditions and cropping systems) and to the modelling approach applied
(model structure and parameterisation). However, to reduce the po-
tential aggregation errors and also the computational time when ap-
plying soil-crop models at regional scales, the methodology developed
here for screening functional groups of soils and sensitive soils (in re-
lation to the modelling approach chosen) should prove useful and could
be applied in other environmental contexts and with other models.

4. Conclusions

Our results suggest that the grid resolution in regional-scale simu-
lations of cropping systems should be adapted to soil variability and to
the target output variables. A screening method of the spatial dis-
tribution of critical functional soil types (for which the target variable is

sensitive) should help in designing an optimal variable mesh: where do
we need a fine resolution and where can we use a coarse resolution? For
example, areas without these critical soils may be simulated at much
coarser scales than areas where they are present. If these soils cover
only a very small fraction of the region, their influence on simulations
at the regional scale will most likely be negligible, although they may
have significant impacts locally. Our results further suggest that the
influence of the spatial pattern of these key (e.g. spatial aggregation)
soils should be considered when designing the grid resolution in re-
gional-scale simulations. However, relevant spatial pattern indicators
that can be linked to DAE still needs further development.

Acknowledgements

The study was conducted in the frame of the FACCE JPI ‘Modelling
European Agriculture with Climate Change for Food Security’
(MACSUR - BB/N004922/1). It was supported by The Swedish research
council for Environment, Agricultural Sciences and Spatial Planning
(220-2007-1218), the strategic funding “Soil-Water-Landscape” from
the faculty of Natural Resources and Agricultural Sciences (Swedish
University of Agricultural Sciences, SLU) and the German Federal
Ministry of Food and Agriculture (BMEL) through the Federal Office for
Agriculture and Food (BLE), grant no. 2851ERA01J.

We thank all colleagues of the MACSUR scaling group (http://www.
scale-it.net) for collaborative designing of the multi-model ensemble
experiment (Hoffmann et al., 2016a) and for fruitful discussions. We are
also very grateful to Professor Nicholas Jarvis (SLU, Uppsala) for va-
luable comments on the manuscript.

Appendix 1. Model options and parameterisation

1.1. Crop growth

Plant growth was modelled using a radiation use efficiency approach combined with response functions for unfavourable temperature, N and
water conditions, including effects of simulated soil temperature and water and nutrient availability as influenced by soil properties and weather.
The allocation parameters for winter wheat growth were taken from Conrad and Fohrer (2009c). Thereafter, a few parameters were further adjusted
to fit the model predictions to target (observed) values for a regional time averaged actual annual yield (DM) of 7.2 t ha−1 (average for 1982–2010
in the NRW region), a harvest date on the August 1st and an assumed yield gap of ca. 15–20%. Firstly, sowing and emergence were set at the fixed
days given by Hoffmann et al. (2015). Secondly, the temperature sum needed for achieving maturity was adjusted to fit the regional harvest date
using a regional averaged climate. Thereafter, the radiation use efficiency and the parameters governing leaf area index development were fitted to
achieve a regional and period averaged potential yield (DM) of 9 t/ha (estimated as actual yield divided by yield gap). Before adjusting simulated
actual yield, the maximum root depth was set to 1.5 m according to Hoffmann et al. (2015). Thereafter, parameters regulating crop growth as limited
by water (CritThresholdDry, Table 1 - Plant Growth) and N uptake (Flexibility Degree) by the roots were manually fitted to reach the regional actual
yield.

1.2. Soil hydraulic functions and bottom boundary conditions

The Brooks-Corey-Mualem model was used to describe soil water retention and hydraulic conductivity (Brooks and Corey, 1964; Mualem, 1976).
The model parameters were estimated with the Rawls and Brakensiek pedotransfer functions (Rawls and Brakensiek, 1989) from the clay and sand
contents, total soil porosity and water content at wilting point from the soil database. A coupling between the NRW-soil database and the CoupModel
was developed to facilitate the multiple model-runs required to cover the large number of grid cells over the region. The water flow from the bottom
layer was calculated from the unsaturated conductivity of the bottom layer, assuming a unit hydraulic gradient (i.e. gravity-driven flow). Field
drainage systems, macropores flows and groundwater flows were not considered.

1.3. Soil C and N

The initial C and N content of the soil organic pools (litter and humus) were set according to soil C content values in the NRW database and based
on the assumption that 1.2% of the total C consisted of litter and the remaining part was humus and that the C-N ratios of litter and humus were 25
and 10, respectively (giving a total soil C-N ratio of 10.5). The rate coefficient for the decomposition of soil organic matter and the potential
denitrification rate were fixed to a unique value for all soils, since no data on variation among soils were available. The decomposition rate was
adjusted manually to 6 × 10−5 d−1 to obtain ‘reasonable’ average C losses when using the dominant soil of the region (original value was 7
10−5 d−1; Johnsson et al., 1987). The nitrification specific rate was taken from Johnsson et al. (1987) and the denitrification potential was adjusted
from Conrad and Fohrer (2009b).
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Table Appendix 1
Model options and parameters changed from default values used in this study.

Model options and parameters (O, P) References

Climate data – plant interactions
P Latitude 50.3269 Input data
P Reference height 1.5 m – for air temperature, humidity and wind speed Input data
P Albedo dry 23% – albedo of a dry soil Gustafsson et al., 2004
P Ra Increase With LAI 28.9016 s m−1 – contribution of LAI to the total aerodynamic resistance from

measurement height
Gustafsson et al., 2004

Plant growth
O Growth Radiation use efficiency –
O Plant stress All multiplicative – response functions for water, heat and nitrogen
O Plant type Explicit big leaves – separation between transpiration and evaporation
O Initial plant conditions As nitrogen –
P Specific Leaf Area (SLA) 0,038 g m-2 – parameter to convert leaf C mass into leaf area Adjusted
O Plant development Start = f (Temp Sum) – start of growth stages is a function of temperature sums.
O Harvest day Simulated (when maturity occurs) –
O Root input Simulated –
O Root distribution with depth Exponential –
P Root lowest depth −1.5 m (or the depth of soil if soil < 1.5 m) Input data
P Flexibility degree 0.5 (no unit) Adjusted
P CritThreshold dry 200 cm – critical pressure head for reduction of potential water uptake Adjusted

Soil profile and hydraulic properties
P Number of model layers &

thickness
18 (soils > 1.2 m: 0.05 m× 2, 0.1 m× 8, 0.2 m× 4, 0.3 m × 2) or 9
(soils ≤ 0.8 m: 0.05 m × 2, 0.1 m × 7)

–

O Hydraulic conductivity Mualem equation –
O Soil water flow input Simulated – soil water flow is simulated –
O Soil water input Simulated – soil water content is simulated –
O Hydraulic functions Brooks & Corey –
O Soil infil input Simulated – soil water infiltration is simulated –
O Soil drainage input Not used – no drainage is considered –
O Deep percolation input Simulated – values are simulated –
O Ground water flow Off –
O Lower boundary unsaturated Unit gradient gravitational flow –
O Brooks-Corey Rawls & Brakensiek pedotransfert function –

Soil organic matter and nutrients
O Soil organic processes Separated litter and humus pool –
O Initial carbon conditions As nitrogen and carbon –
O Nitrogen and carbon Dynamic interaction with abiotics –
P Denitrification potential rate 0.27 g m2 d−1 Adjusted from Conrad and

Fohrer, 2009b
P Specific nitrification rate 0.2 d−1 Johnsson et al., 1987
P Rate coefficient for humus

decomposition
6 ∗ 10−5 d−1 Adjusted from Johnsson

et al., 1987
P Initial mineral-N

concentration
Nitrate-N = 10 mg l−1 & ammonium-N = 10 mg l−1 Default values

P Initial organic C & N Calculated by the CoupModel based on soil inputs data Input data

Management practices (Hoffmann et al., 2015)
P Sowing DayNo 274 (Day Of Year; DOY) Input data
P C seed 10 g m−2 – carbon content in seeds Input data
P Emergence DayNo 280 (DOY) Input data
P N fertilization 3 – number of fertilisation events Input data
P Fert DayNo 60, 105, 152 (DOY) Input data
P N Fert rate 13, 5.2, 2.6 g m−2 d−1 Input data
O Irrigation Off Input data
P Ploughing DayNo 244 Input data
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Appendix 2. Metrics for soil Data Aggregation Effects (DAE)

Table 1a
Calculation of the DAE expressed as the regional mean error presented in Section 2.6.

DAE as regional mean error

rRMSE
(%)

rRMSE = (RMSE/Sr ) 100 (3) • Sr is the regional average of the reference
simulations (at resolution 1 km)

∑= ⎛
⎝

− ⎞
⎠=

rRMSE A S S A S( ( ) )/ / 100
i

N
ci ci r c T r1 ,

2c (4) • Eq. (4) is the developed equation for rRMSE
and the different terms are presented below

RMSE
Area-weighted

= ∑ =RMSE A e A( )/i
N

ci i T1
2c (5) • Nc is the number of coarse grids

• Aciis the area of the coarse grid i

• AT is the total area of the NRW region
ei

Error associated to one coarse grid i
= −ei S Sci r c, (6) • Sci is the true simulated variable

Sr c,

Mean simulated variable at
resolution 1 km within the coarse
grid i

= ∑ =S S n/r c j
n

ri j, 1 1
1 (7) • Srij is the simulated variable in one grid cell j of

the reference resolution (1 km)

• n1 is the number of 1 km2 grid cells inside the
coarse grid i

Table 1b
Approximation of the DAE based on key soils, expressed as the regional mean error and presented in Section 2.7.

Approximated regional mean error

rRMSE*
(%)

rRMSE* = (RMSE*/Sr ) 100 (3) • Sr is the regional average of the reference
simulations (at resolution 1 km)

= ⎛
⎝

∑ + ∑ ⎞
⎠

∗
= =( )rRMSE a D A a D A A S( ) / ( ) / / / 100i

N
ks ksi j

N
ks ks j T r1 0

2
1

2 0
ks

i j
0 (8) • Eq. (8) is the developed equation for

rRMSE* and the different terms are
presented below

RMSE*
Area-weighted

= ∑ + ∑∗
= =( )RMSE A e A e A1 2 /i

N
ksi i j

N
j j T1

2
1 0

2ks 0 (9) • Nks and N0 are the number of coarse grids
in the region that are key soils and non-key
soils respectively
• Aksiand A0jare the respective area covered
by key soils and non-key soils within the
coarse grid i and j respectively
• AT is the total area of the NRW region

e1i and e2j

Error associated to
one coarse grid i
or j

= − = + − =∗ ∗ ∗e S S S D S D a A1 ( ) /c r c allsoils ks r c ks ks, , 0i

= − = − = −∗ ∗ ∗Se S S S D a A2 /r,cc r c allsoils ks ks, 0j

(10a)
(10b)

• Sci is approximated by +S D( )allsoils ks in
the case of e1 (i.e. coarse grid is a key soil)
and Scj by Sallsoils in case of e2 (i.e. coarse
grid is non-key soil)
• Sallsoils is the average of the simulations
with all soils from the database and Dks is
the deviation in simulated variable
between the key soils and the average of all
soils (2.6.2)
• a0 and aksare the number of 1 km2 grid
cells within the coarse grid that are non-key
soils and key soils respectively

∗Sr,c

Mean simulated
variable at
resolution 1 km
within the coarse
grid i or j

= + +∗S a A S a A S D( / ) ( / ) ( )r c c allsoils ks c allsoils ks, 0

= +S a A D( / )allsoils ks c ks

(11) • Ac = aks + a0 is the area of the coarse
grid i or j
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