Chemosphere 196 (2018) 556—565

journal homepage: www.elsevier.com/locate/chemosphere

-

Contents lists available at ScienceDirect

Chemosphere

Chemosphere

Metal sorption to Spodosol Bs horizons: Organic matter complexes )

predominate

Check for
updates

Charlotta Tiberg *°, Carin Sjostedt ¢, Jon Petter Gustafsson * "

2 Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-750 07, Uppsala, Sweden
b Swedish Geotechnical Institute, Kornhamnstorg 61, SE-111 27, Stockholm, Sweden
¢ Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44,

Stockholm, Sweden

HIGHLIGHTS

e Organic matter complexes predomi-
nate cadmium(Il), copper(Il) and
lead(II) sorption.

e An assemblage model with default
parameter values did not succeed in
6 of 7 soils.

e The accessibility of organic matter
was low due to its interaction with
(hydr)oxides.

e Little or no lead(Il) was bound to
ferrihydrite, possibly due to allo-
phane interference.

ARTICLE INFO

Article history:

Received 26 October 2017
Received in revised form

22 December 2017

Accepted 2 January 2018
Available online 4 January 2018

Keywords:
Cadmium

Copper

Lead

Soil

EXAFS

Assemblage model

GRAPHICAL ABSTRACT

ABSTRACT

While metal sorption mechanisms have been studied extensively for soil surface horizons, little infor-
mation exists for subsoils, for example Spodosol Bs horizons. Here the sorption of cadmium(II), copper(II)
and lead(lIl) to seven Bs horizons from five sites was studied. Extended X-ray absorption fine structure
(EXAFS) spectroscopy showed that cadmium(II) and lead(Il) were bound as inner-sphere complexes to
organic matter. Addition of o-phosphate (to 1 umol 1=1) did not result in any significant enhancement of
metal sorption, nor did it influence EXAFS speciation. An assemblage model using the SHM and CD-
MUSIC models overestimated metal sorption for six out of seven soil samples. To agree with experi-
mental results, substantial decreases (up to 8-fold) had to be made for the fraction ‘active organic matter’,
fus, while the point-of-zero charge (PZC) of ferrihydrite had to be increased. The largest decreases of fys
were found for the soils with the lowest ratio of pyrophosphate-to oxalate-extractable Al (Alyyp/Alox),
suggesting that in these soils, humic and fulvic acids were to a large extent inaccessible for metal
sorption. The low reactivity of ferrihydrite towards lead(II) can be explained by potential spillover effects
from co-existing allophane, but other factors such as ferrihydrite crystallisation could not be ruled out. In
conclusion, organic matter was the predominant sorbent for cadmium(Il), copper(ll) and lead(II).
However, for lead(Il) the optimised model suggests additional, but minor, contributions from Fe (hydr)
oxide surface complexes. These results will be important to correctly model metal sorption in spodic

materials.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Knowledge on the sorption properties of soil materials is of
crucial importance for risk assessments of metal-contaminated
soils. A proper understanding of the mechanisms involved is a
prerequisite for successful use of models that predict metal sorp-
tion. In recent years, a large body of evidence has been assembled
concerning the sorption of cadmium(Il), copper(Il) and lead(Il) to
the surface horizon of soils. Some of the evidence were from so-
called ‘assemblage models’ (Groenenberg and Lofts, 2014) that as-
sume that the total metal sorption is determined by additive con-
tributions from individual sorbents (Davis et al., 1998). These
models rely on mechanistically based models that describe sorp-
tion to individual components in the matrix. Examples include the
NICA-Donnan (Kinniburgh et al., 1999), WHAM (Tipping et al.,
2011) and SHM (Gustafsson, 2001) models for organic complexa-
tion, and the DLM (Dzombak and Morel, 1990) and CD-MUSIC
(Hiemstra and van Riemsdijk, 1996) models for Fe/Al (hydr)oxide
sorption.

For cadmium(Il) and copper(ll), the models suggest natural
organic matter (NOM) to be the dominant sorbent of the surface
horizons of temperate soils (Weng et al., 2001; Gustafsson et al.,
2003; Shi et al., 2007). These conclusions were supported by re-
sults from EXAFS spectroscopy, showing a predominance of Cu-
NOM complexes in many soils (Cances et al., 2003; Flogeac et al.,
2004; Martinez-Villegas and Martinez, 2008).

Lead(Il) is bound comparatively strongly to ferrihydrite. Some
model-based papers for soils suggested iron(IIl) (hydr)oxides to be
important sorbents for lead(Il) in soils and waters (e.g. Lofts and
Tipping, 2000; Weng et al., 2001), whereas others emphasized
binding to NOM (Gustafsson et al., 2003). Most assemblage models
underestimate lead(Il) sorption (Weng et al., 2002; Cances et al.,
2003; Groenenberg and Lofts, 2014). This may be caused by a
small number of previously unrecognized binding sites with high
affinity for lead(Il) (Gustafsson et al., 2011). Most spectroscopic
studies show that organic matter is the single most important
sorbent in many soils, although there are additional contributions
from iron(Ill) or manganese(IV) oxides (Morin et al., 1999; Strawn
and Sparks, 2001; Scheckel and Ryan, 2004).

So far, most metal sorption studies in soils have dealt with
surface horizons, whereas subsoils, such as the Spodosol Bs hori-
zon, have received relatively little attention. However, subsoil ho-
rizons can be important for risk assessments as they delay the
transport of metals to ground and surface waters. Spodic materials
are conceptually interesting as they contain large amounts of
poorly crystalline iron(IIl) (hydr)oxide phases as well as allophane/
imogolite (Karltun et al., 2000). The few studies made on metal

sorption to Spodosol Bs horizons include the ones of Lumsdon
(1996, 2004), who investigated Cd adsorption to some Scottish
Spodosol B (probably Bs) horizons, and of Gustafsson et al. (2003),
who included three Bs horizons in their modelling of metal sorp-
tion in Swedish soils. The latter authors found that in two of the B
horizons the used assemblage model overestimated sorption, and it
was hypothesized that humic substances were inactivated through
adsorption to the oxide components. Until now, however, no sys-
tematic study has been undertaken to study the metal sorption
properties of Spodosol Bs horizons.

Hence, the main objective of this work was to identify the
predominant sorbent for added cadmium(Il) and lead(Il) in Spo-
dosol Bs horizons, and to investigate whether assemblage models
developed for surface horizons may be applicable also for Spodosol
Bs horizons. An additional objective was to find out whether the
presence of PO4—P (o-phosphate) could enhance metal sorption to
Spodosol Bs horizons. In earlier work, we found that cadmium(II),
copper(Il) and lead(Il) form ternary surface complexes with PO4—P
and the surface of ferrihydrite under acidic conditions, which
enhance metal binding (Tiberg et al., 2013; Tiberg and Gustafsson,
2016). To address these issues, EXAFS spectroscopy was used to
unravel the binding mode of cadmium(Il) and lead(Il) in the Bs
horizons. After a set of batch experiments, we also tested whether it
was possible to simulate the sorption of cadmium(Il), copper(II)
and lead(Il) correctly by use of assemblage modelling.

2. Materials and methods
2.1. Soils

Seven Bs horizon samples from five sites in south central Swe-
den were used in the investigation (Table 1). All sites were char-
acterised by coniferous forest (Picea abies Karst. and/or Pinus
sylvestris L.), and the soils were Typic Haplorthods (Soil Survey Staff,
2014). Kloten 1 Bs2, Risbergshojden 1 Bs2, and Romfartuna Bhs
were sampled in 1998 for a previous study (Gustafsson et al., 2003).
In 2012, new samples were taken from Kloten and Risbergshojden
sites (Kloten 2Bs and Risbergshojden 2Bs), and samples were
collected also from the Risfallet and Tarnsjo sites.

Immediately after collection, the soil samples were sieved
(<4 mm) and homogenized in their field-moist state. They were
stored in a cold room (+5 °C) until further use. Subsamples for
characterization were air-dried for a week at 30 °C. Batch experi-
ments were carried out on the field-moist soils within six months
of collection.

To quantify the concentrations of poorly crystalline Fe and Al
(hydr)oxide phases, the soils were characterised by oxalate and

Table 1
Selected soil chemical properties of the spodic B horizons studied®.
Sample Location Soil pH Org. C Aloy Feox Alpyp Fepyp PSO4 Clay DOC PO4—P
% mmol kg~! % mg L' pg L1
Kloten 1 Bs2 59.91°'N 4.83 3.86 790 219 349 102 8.45 9 1.8 nd
Kloten 2 Bs 15.25°E 5.03 2.56 647 144 280 70 4.18 4 1.8 <1
Risbergshojden 1 Bs2 59.72'N 5.94 0.80 519 74 43 13 8.56 5 <1 nd
Risbergshéjden 2 Bs 15.05'E 4.62 2.58 534 119 175 29 4.55 4 4.2 <1
Risfallet Bs 60.34'N 4.64 2.30 265 151 168 86 1.29 7 4.2 <1
16.21°E
Romfartuna Bhs 59.75'N 4.73 2.05 151 90 110 49 0.77 4 5.1 nd
16.59'E
Tarnsjo Bs 60.14'N 5.00 0.73 118 45 65 15 0.78 2 1.6 33
16.92°E

2 The soil pH was measured in 0.01 M NaNOs (1:15 soil:solution ratio), Al,y = oxalate-extractable Al, Feox = oxalate-extractable Fe, Al,y, = pyrophosphate-extractable Al,
Fe,y, = pyrophosphate-extractable Fe, PSO4 = phosphate-extractable SOy, the given concentrations of DOC and PO4—P are the concentrations measured in 0.01 M NaNOs at

the soil pH, nd = not determined.



558 C. Tiberg et al. / Chemosphere 196 (2018) 556—565

pyrophosphate extractions (van Reeuwijk, 1995). The total organic
C content was determined using a LECO CHN analyzer. Adsorbed
SO4 was determined after extraction with 0.02 mol L1 NaH;PO4
(Gustafsson et al., 2015).

2.2. Batch experiments

In all experiments, 2 g field-moist soil (3 g for Kloten 1 Bs2) was
mixed with 30 cm® solution in a polypropylene centrifuge tube
with a screw cap. The centrifuge tubes were shaken for 6d in a
thermostat-controlled shaking water bath at 8 °C (Kloten 1 Bs2,
Risbergshojden Bs2, and Romfartuna Bhs) or in an end-over-end
shaker at 20°C (other soils). In all systems, 0.01 molL~! NaNO3
was used as a background electrolyte. Varying additions of
0.03 mol L~ HNO3 or 0.03 mol L~! NaOH were made to produce a
set of samples with different final pH values covering a range of pH
from 4 to 6.5. Additions of metals were made using stock solutions
of 15 mmol L~! Cd(NO3),, Cu(NO3), and Pb(NOs),. For Kloten 1 Bs2,
Risbergshojden Bs2 and Romfartuna Bhs, metals were added
separately in different sets of experiments, whereas for the other
soils they were added together. The final concentrations of added
metal ranged from 0.038 to 0.33 mmol kg~ for Cd, from 0.38 to
1.64 mmol kg~ ! for Cu, and from 0.34 to 1.64 mmol kg~! for Pb (c.f.
details in Table S1 in Supplementary material).

To investigate the influence of PO4—P on metal sorption, PO4—P
(from a 15mmolL~! NaH,PO, stock solution) was added in a
separate set of experiments to give a dissolved PO4—P concentra-
tion of 1 pmol L' after 6 d of shaking. This concentration level was
chosen to represent a forest soil solution with a naturally high (but
not very high) P concentration. The amount added P (shown in
Table S1) was determined after preliminary experiments to obtain
the PO4—P sorption isotherm.

After 6 d of shaking, each tube was centrifuged, and the pH value
was determined on the supernatant with a Radiometer combina-
tion electrode at the experimental temperature. The remaining
supernatant was filtered through a 0.2 pm single-use filter (Acro-
disc PF) prior to analysis for major cations and metals (ICP-MS using
a Perkin-Elmer ELAN 6100 instrument), DOC (using a Shimadzu
TOC-5000 Analyzer), PO4—P (using a Seal Analytical AA3 Auto-
analyzer), and SO4 (using a Dionex, 2000i ion chromatograph).

2.3. EXAFS spectroscopy — sample preparation and measurements

Soil samples for EXAFS spectroscopy were prepared using
identical procedures as described above, except that (i) the addi-
tions of cadmium(Il) and lead(Il) were slightly higher to ensure
high-quality EXAFS results, and that (ii) the metals were not added
together, but separately to different samples. For cadmium(II) the
additions to the Kloten 2 and Risfallet samples were around 2 mmol
Cd kg~!' ( Table 2), which means that the molar ratio of Cd to
organic C was close to 0.001. For lead(Il) two different additions
were made to the Kloten 2 sample, 2.3 and 4.5 mmol Pb kg~ (
Table 3 ), equivalent to Pb:organic C ratios of 0.001 and 0.002,
respectively. In both cases, PO4—P was added to separate samples
using the same concentration levels as in the batch experiment.
Additional samples were prepared in which As(V) as NaHAsO4 was
added instead of PO4—P. The idea was that any second-shell
contribution of As to the EXAFS spectra would be easier to iden-
tify, as As is a heavier element than P.

To facilitate interpretation of soil spectra, standard spectra of
0.5molL~! and 15 mmol L' Cd(NO3), solution and cadmium(Il)
bound to FA (Suwannee River Fulvic Acid, IHSS, St Paul, MN) were
collected. The latter sample was prepared by mixing a stock solu-
tion of Cd(NOs3), with dissolved FA. The pH of the mixture was
adjusted to pH 6.3 with 0.1 M NaOH, and was then left to equilibrate

for 24 h at the beamline until EXAFS analysis. This solution con-
tained 8 mM Cd and 8 gL~! FA. A similar procedure was used to
produce a standard spectrum of lead(Il) bound to FA, except that
the final solution contained 3 mM Pb and 8 gL~! FA. The final pH
was 5.75.

The procedures for EXAFS measurements have been described
in detail in previous papers (Tiberg et al., 2013 for Pb; Tiberg and
Gustafsson, 2016 for Cd) and are therefore only briefly reiterated
here. The EXAFS measurements at the Cd K edge at 26,711 eV were
performed at beamline B18, Diamond Light Source, UK, for the soil
samples, and at beamline X-11A, National Synchrotron Lightsource
(NSLS), Brookhaven Laboratory, US, for the Cd solution standards
and for the Cd-FA standard. Measurements were performed in
fluorescence mode, internal energy calibration was made with a foil
of metallic cadmium, and between 3 and 10 scans were collected
per sample. Both beamlines were equipped with a Si[311] double
crystal monochromator and with a 9-element Ge fluorescence
(Diamond) or with a PIPS (NSLS) detector. For lead(Il), the EXAFS
measurements were made at the Pb L3 edge at 13,035eVat
beamline 4-1, Stanford Synchrotron Radiation Lightsource (SSRL),
US. Measurements were performed in fluorescence mode, internal
energy calibration was made with a foil of metallic lead, and be-
tween 10 and 20 scans were collected per sample. The beamline
was equipped with a Si[220] double crystal monochromator and
with a 13-element Ge fluorescence detector.

2.4. EXAFS data analysis

All EXAFS spectra were treated in the Athena software (version
0.8.061) (Ravel and Newville, 2005). Energy calibration, averaging
and background removal were performed as described by Kelly
et al. (2008). The background was removed using the AUTOBAK
algorithm with a k-weight of two or three for the background
function and Rbkg =1 for Cd and Rbkg = 1.1 for Pb.

For the k3-weighted Cd K-edge EXAFS spectra, wavelet trans-
form (WT) analysis was performed (Funke et al., 2005; Chukalina,
2010) to differentiate between light (e.g. O, C, S) and heavy (e.g.
Fe) elements (back-scatterers) in higher shells. The parameter
combination k =7 and ¢ = 1 was employed, using a range of R + AR
from 2 to 4A (corresponding to interatomic distances of about
2.5-4.5A). The k-ranges were the same as in the EXAFS fitting
procedure.

The Artemis program (version 0.0.012) (Ravel and Newuville,
2005) was used for final data treatment. Theoretical scattering
paths were calculated with FEFF6 (Zabinsky et al., 1995). The
amplitude reduction factor (S3) was set based on fitting of the first
coordination shell. Several combinations of scattering paths were
tested in the fitting procedure before deciding what paths to use.
These included contributions from backscatterers in the first and
second shells as well as multiple scattering paths.

Values of CN were chosen to give reasonable values of 6. Cd---C
paths were calculated using FEFF6 (Zabinsky et al., 1995) based on a
5-member chelate ring structure. Possible second-shell contribu-
tions of Fe, As and P were considered (Tiberg et al., 2013; Tiberg and
Gustafsson, 2016). The fitting was performed on the Fourier
transform (FT) real part between 1 and 4 A (for Pb between 1.1 and
4 A) using a Hanning window (dk = 1) and optimization was over k-
weights of 1, 2 and 3. Refined models were evaluated by the R factor
in Artemis (goodness-of-fit parameter).

2.5. Geochemical modelling
The geochemical modelling platform Visual MINTEQ, version 3.1

(Gustafsson, 2016), was used. Speciation in solution was made with
Visual MINTEQ's default thermodynamic database for aqueous
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complexation, using the Davies equation for activity correction. To
consider complexation to NOM, the Stockholm Humic Model
(Gustafsson, 2001) was used, with modifications for solid-solution
partitioning (Gustafsson and Kleja, 2005; complexation constants
shown in Table S3). For lead(ll) we considered the presence of
specific high-affinity ligands in the solid phase (Gustafsson et al.,
2011; Shi et al, 2013), but with one modification: instead of
assuming a concentration of the high-affinity ligands of 0.2% of the
total sites on HA (humic acid) and on FA, we calculated this number
as 0.01% of the total organic C content. The resulting fits are similar
to the ones presented by Gustafsson et al. (2011) for the data sets
treated in that paper, and is in better conceptual agreement with
the assumption that these ligands reside on a non-humic organic
component.

In the modelling we assumed that there was no temperature
effect on the metal-organic complexation reactions considered, i.e.
that the reaction enthalpy was set to 0. There is an almost complete
absence of data on the temperature dependence of these reactions
(Tipping, 2002). The few data that exist suggest the thermody-
namically induced temperature effect to be small (Rate, 2010).

We used the CD-MUSIC model as parameterized for ferrihydrite
(Tiberg et al., 2013; Tiberg and Gustafsson, 2016) to simulate metal
binding onto this soil component. Although allophane and other Al
(hydr)oxide-type components are present in Spodosol Bs horizons
(see, e.g. Karltun et al., 2000), they possess higher PZC:s (points-of
zero charge) and in general they would be less likely to bind metals
such as cadmium(II), copper(Il) and lead(Il); in addition there is no
well-established surface complexation model for these sorbents.

To consider metal complexation to NOM using the SHM, it was
assumed that 50% of the ‘active’ NOM in the solid phase consisted of
HA, and 50% of FA. The dissolved organic matter (DOM) was
considered fully active, consisting only of FA (e.g. Gustafsson and
Kleja, 2005; Gustafsson et al., 2011). As a starting point in the
modelling it was assumed that fys, i.e. the fraction of solid-phase
NOM that was active with respect to ion binding, was 0.55 (mean
value of the soils studied by Gustafsson et al., 2003).

When using the CD-MUSIC model for ferrihydrite (complexation
constants shown in Table S4), the content of ferrihydrite was
calculated from oxalate extraction (Table 1), and the specific surface
area was assumed to be 650m? g~ as for freshly prepared 2-line
ferrihydrite (Tiberg et al., 2013). As a starting point in the model-
ling we also assumed a PZC of 8.1 for the pure soil ferrihydrite phase
(PZC(Fh)=8.1), in agreement with freshly prepared ferrihydrite
(Hiemstra, 2013). The surface charge characteristics of soil ferri-
hydrite may, however, be influenced by its co-occurrence with
allophane in Spodosol Bs horizons. Karltun et al. (2000) reported
that in two Bs horizons, there was a close intergrowth between
ferrihydrite and a magnetically neutral material, probably allo-
phane. In such associations, there may be a spillover of positively
charged potential from the allophane component, which has a
higher PZC (~10; Gustafsson, 2001). In one set of simulations we
accounted for this effect in a simplified way, by changing the log K:s
of the proton binding reaction (equal to the PZC) (Table S4).

In the modelling, the geochemically active metal concentration,
as estimated by extraction with EDTA or dilute HNO3 (Table S2), was
considered. However, as these concentrations were very low in the
studied soils, the results were of little significance for the model
results. The effect of major cations and anions (Ca’*, Mg?*, K*,
S07~) was considered by fixing the total dissolved concentrations
at their measured values. Moreover, the effect of Fe3t and AP
competition was considered by assuming equilibrium with respect
to ferrihydrite (log *Ks = 2.69 at 25 °C, AH; = —100.5 k] mol~!; Liu
and Millero, 1999) and AI(OH)3(s) (log *Ks=8.29at 25°C,
AH; = —105.0 kf mol~'; Gustafsson et al., 2001), and by use of the
van't Hoff approximation to recalculate these equilibrium constants

to 8 °C and to 20 °C, as needed.
3. Results and discussion
3.1. EXAFS spectroscopy

The EXAFS spectra for cadmium(II) adsorbed to Kloten 2 Bs and
Risfallet Bs were very similar in shape (Fig. S1, Supplementary
materials), regardless of whether phosphate or arsenate was
added or not. They also resembled the spectrum for cadmium(ll)
adsorbed to fulvic acid (Cd-FA), indicating that the cadmium(II) was
bound in a similar way in all samples. The spectra of Cd adsorbed to
ferrihydrite (Cd-Fh and Cd—P-Fh in Fig. S1) had a slightly different
shape, for example at k = 7—8. Shell fitting of the EXAFS spectra was
consistent with cadmium(Il) being coordinated to six oxygens in
the first shell (Table 2). The WT of the spectra (Fig. S2) was similar
for data and models, suggesting that the model used was correct
and that heavy elements such as P, Fe and As in the second shell
could be excluded. Second-shell contributions were well modelled
with 1.5 carbon atoms between 3.09 and 3.16 A, implying that the
bulk of the sorbed Cd was bound to NOM predominantly to oxygen-
containing ligands such as carboxylate groups.

These results are comparable to the ones of Karlsson et al.
(2005), although these authors claimed a significant involvement
of thiols to the Cd coordination on NOM. However, in the current
study there were no evidence for a significant first-shell contribu-
tion from S at ~2.5 A, as shown both by shell fitting (Table 2; Fig. S1)
and by the WT results (Fig. S2). Moreover, if thiols are significant
contributors to Cd binding, the FT real part is affected (Fulda et al.,
2013). The FT real part was, however, well described by the model
(Fig. S3), and the patterns were similar to the one for carboxylate-
bound Cd by Fulda et al. (2013). Hence, multiple evidence suggest a
predominance of Cd bound as an inner-sphere complex to
carboxylate ligands, although a minor contribution from thiol-
bound Cd cannot be ruled out.

As is often the case, the quality of the Pb L3 EXAFS spectra only
allowed a relatively small k range to be modelled, leading to results
that are somewhat less clear than those for Cd. However, also for
lead(Il) the EXAFS spectra were consistent, suggesting an important
role of organic ligands for lead(Il) binding in the Kloten 2 Bs sam-
ples, also for those samples to which PO4—P or As(V) had been
added. The Pb L3 EXAFS spectra of the soil samples were similar in
shape to those of the Pb-FA standard, but different from the ferri-
hydrite standards (Fig. S4), and shell fitting showed no clear evi-
dence of heavy backscatterers such as P, Fe and As (Table 3). Instead,
for the soil samples, there was a second-shell contribution from O,
or more probably, C, at around 3.08 A. This agrees with the second-
shell Pb---C distance of the soil studied by Strawn and Sparks
(2001). Interestingly the Pb---C distance of Pb-FA was slightly
longer, i.e. 3.25 A. This path length agrees with earlier studies in
which lead(Il) was reacted with HA or FA (Xia et al., 1997; Xiong
et al., 2013). The Pb—O and Pb---C distances observed are consis-
tent with a predominance of strong Pb-NOM inner-sphere com-
plexes in all studied soil samples (Xia et al., 1997; Strawn and
Sparks, 2001). The difference in Pb---C path length could indicate
a difference in lead(I)-NOM coordination between soil and FA, but
the poorly resolved nature of the Pb---C interaction does not allow
clear conclusions. Hence, the EXAFS results show a predominance
of organic matter complexes also for lead(Il). However, given the
relatively poor quality of the Pb L3 edge EXAFS spectra, it cannot be
excluded that Pb bound to Fe and Al (hydr)oxide phases was pre-
sent to a minor extent.

Although only the Kloten 2 Bs soil was analysed by Pb L3 edge
EXAFS, it should be noted that this sample had a relatively high
content of oxalate-extractable Fe and Al (Table 1) and that,
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Table 2
Summary of shell fit results: cadmium(Il) K-edge EXAFS of soil samples and standards. Parameters in italics were constrained during fitting.
Sample Path CN R(A) o2 (A?) AE (eV) S R-factor (%)
Kloten 2 Cd Cd-0 6 2.28 (0.01) 0.010 (0.000) 1.92 (0.81) 0.90 0.48
2.3 mmol kg~ cd cd---C 15 3.13 (0.04) 0.018 (0.005)
pH 6.12 Ccd—0-0 18 4.71 (0.06) 0.020 k-range 3.5-9.5
Kloten 2 Cd+P cd—0 6 2.28 (0.01) 0.010 (0.000) 2.19 (0.63) 0.90 033
2.3 mmol kg ' cd cd---C 15 3.16 (0.03) 0.012 (0.004)
11.4mmol kg~! P Ccd——0-0 18 4.79 (0.05) 0.020
pH 5.85 k-range 3.5-9.5
Kloten 2 Cd+As Cd-0 6 2.27 (0.01) 0.012 (0.000) 1.92 (0.74) 0.90 0.33
2.3 mmol kg~ cd cd---C 15 3.09 (0.04) 0.014 (0.004)
11.4mmol kg~ ! As(V) Ccd—0-0 18 4.65 (0.06) 0.020
pH 6.15 k-range 3.5-9.5
Risfallet Cd Cd-0 6 2.28 (0.01) 0.009 (0.000) 2.54 (0.78) 0.90 0.49
1.9 mmol kg~' Cd cd---C 15 3.15 (0.04) 0.013 (0.005)
pH 5.64 Ccd—0-0 18 4.70 (0.06) 0.019 k-range 3.5-9.5
Risfallet Cd+As Ccd—0 6 2.28 (0.00) 0.009 (0.000) 2.11 (0.49) 0.90 0.20
1.9 mmol kg~ ! Cd cd---C 15 3.15 (0.02) 0.008 (0.002)
4.8 mmol kg~! As(V) cd—0-0 18 4.73 (0.04) 0.019
pH 6.15 k-range 3.5-9.5
cd(iny(aq) 0.5 Cd-0 6 2.27 (0.006) 0.008 (0.000) 2.87 (0.58) 0.65 0.70
0.5 M Cd(NO3), Ccd—0-0 18 4.40 (0.033) 0.017
Cd—0---0 24 3.70 (0.10) 0.025 k-range 3-10
Cd(Il)(aq) 0.015 Cd—-0 6 2.27 (0.01) 0.008 (0.000) 0.70 (0.62) (0.47) 1 0.66
15 mM Cd(NOs), Ccd—0-0 18 4.43 (0.03) 0.017
Cd—0---0 24 3.72 (0.10) 0.025 k-range 3-10
Cd-FA cd—0 6 2.27 (0.005) 0.007 (0.000) 1.57 (0.64) 0.80 0.39
8 mM Cd cd---C 3.12 (0.03) 0.013 (0.04)
SgL’1 FA Cd—0-0 18 4.67 (0.05) 0.014
pH 6.32 k-range 3.4—10
Cd-Fh Ccd—0 6 2.26 (0.01) 0.009 (0.001) ~0.37 (0.61) 0.75 0.7
30 uM Cd*+ Cd---Fel 05 3.26 (0.05) 0.006 (0.006)
0.3 mM Fe Cd---Fe2 1 3.74 (0.04) 0.006 (0.005)
pH 7.42 Ccd—0-0 18 4.55 (0.05) 0.018 k-range 2.6—9.5
Cd—P-Fh Cd-0 6 2.27 (0.01) 0.010 (0.000) —0.10 (0.47) 0.85 0.4
30 uM Cd?*, 60 uM P cd---P 1 3.38 (0.04) 0.012 (0.007)
0.3 mM Fe Cd---Fe2 1 3.80 (0.05) 0.013 (0.008)
pH 7.42 Ccd—0-0 18 450 (0.04) 0.020 k-range 2.6-9.5

CN = Coordination number; R = Atomic distance; o2 = Debye-Waller factor; AE = Energy shift parameter; S3 = Passive amplitude reduction factor; R = R-factor = Athena
goodness-of-fit parameter. Uncertainties of fitted parameters as given in Artemis (Ravel and Newville, 2005).
Added concentrations of cadmium(II), phosphate and arsenate are listed below the sample name.

The o2 (A?) of Cd—0—0 (multiple scattering paths) were defined as 2*c?

(A?) for the Cd—O paths.

For each sample the 2 (A%) of Cd—O---O (multiple scattering paths) were defined as 3*? (A?) for the Cd—O paths.

probably, the involvement of Fe and Al in the second shell was
relatively more likely than in most of the other samples.

3.2. Batch experiments and modelling

Sorption of cadmium(Il), copper(Il) and lead(II) was weakest at
low pH, as could be expected (Fig. 1, Fig. S6 and Fig. 2). For copper(II)
and lead(Il) the sorption decreased again at high pH, likely because
of dissolution of NOM-organic complexes (Gustafsson et al., 2003).
Generally, there were no or small effects on metal sorption after the
addition of PO4—P (Fig. S5), implying that a P-related enhancement
of metal sorption did not occur to any great extent.

The modelling with Visual MINTEQ was performed in steps.
First, default parameters were used for fys and for the SSA of fer-
rihydrite (0.55 and 650 m? g~ !, respectively). Under these condi-
tions NOM complexes dominated for cadmium(Il) and copper(II),
whereas for lead(Il) ferrihydrite was important. For all soils except
Romfartuna Bhs the modelled adsorption edges were displaced to
the left of the observations, showing that the default parameters
overestimated sorption (Fig. 1 and Fig. S6). We investigated

whether an improved description could be made with a decreased
fus value, reflecting an ‘inactivation’ of soil HA and FA as a result of
their coordination onto Fe and Al (hydr)oxides including allophane
(Gustafsson et al., 2003). This was done for cadmium(Il) and cop-
per(ll) as the binding to HA and FA dominated for these metals, and
was carried out by trial-and-error until the model described the
adsorption edges for both copper(Il) and cadmium(IIl) well (Fig. 1,
Fig. S6, right column). The optimised fys values ranged from 0.062
to 0.25 for different soils (Table 4).

Still however, the model with the adjusted fys values was not
able to describe lead(Il) sorption, which was still strongly over-
estimated (again with the exception for Romfartuna Bhs; see Fig. 2,
left column). Moreover, under these conditions ferrihydrite was the
dominant sorbent for Kloten 2 Bs, which was not in agreement with
the EXAFS results. It was therefore concluded that the used model
setup resulted in too strong lead(Il) adsorption to the soil ferrihy-
drite, except in the case of Romfartuna Bhs. To deal with this, a
number of approaches was tested. Of these, two were successful in
simulating the observed lead(Il) adsorption. First, it was assumed
that the specific surface area (SSA) was too high, and that this
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Table 3

Summary of shell fit results: lead(Il) L3-edge EXAFS of soil samples and standards. Parameters in italics were constrained during fitting.

Sample Path CN R (A) a2 (A?) AE (eV) S R-factor (%)
Kloten Pb low Pb—01 2.0(0.2) 2.32(0.01) 0.012 (0.002) -10.9 (0.9) 1 0.6
2.3 mmol kg~! Pb Pb---0/C2 1.1(0.2) 3.08 (0.21) 0.01

pH 5.40 k-range 2.3—8

Kloten Pb+P low Pb—01 2.1(0.5) 2.34(0.03) 0.011 (0.004) -10.6 (1.7) 1 0.8
2.3 mmol kg~! Pb Pb---0/C2 1.3 (0.5) 3.07 (0.04) 0.01

11.4 mmol kg~! P

pH 5.19 k-range 2.3—7.2

Kloten Pb+As low Pb—0O1 3.1(04) 2.37 (0.01) 0.022 (0.002) -8.4(1.0) 1 0.6
2.3 mmol kg~! Pb Pb---0/C2 0.5 (0.2) 3.12 (0.04) 0.01

11.4 mmol kg~! As(V)

pH 5.40 k-range 2.3—8

Kloten Pb high Pb—01 2.3(0.3) 2.34(0.01) 0.014 (0.003) -10.4 (0.9) 1 0.9
4.5 mmol kg~ ! Pb Pb---0/C2 1.0 (0.3) 3.09 (0.03) 0.01

pH 4.91 k-range 2.3—8

Kloten Pb+P high Pb—01 2.9(0.3) 236 (0.01) 0.019 (0.002) -10.1(0.7) 1 0.4
4.5 mmol kg~! Pb Pb---0/C2 0.8 (0.2) 3.09 (0.03) 0.01

114 mmol kg~! P

pH 4.89 k-range 2.3—8

Pb-FA Pb—01 3.9 (0.4) 2.37 (0.01) (0.006) 0.021 (0.002) -8.8(0.9) 1 0.5
3mMPb, 8gL ' FA Pb---C 2 3.23 (0.04) 0.019 (0.006)

pH 5.75 k-range 2.3—8

Pb-Fh Pb—01 2 2.36 (0.03) 0.011 (0.003) -1.1(2.5) 1 4.2
30 uM Pb2* Pb—02 4 2.62 (0.04) 0.026 (0.008)

0.3 mM Fe Pb---Fe 1 3.40 (0.04) 0.013 (0.005)

pH 5.16 k-range 2.3—9

Pb—P-Fh Pb—O1 2 2.33(0.05) 0.011 (0.004) -8.1(32) 1 15
30 uM Pb%*, 60 uM P Pb—02 4 2.56 (0.07) 0.006 (0.008)

0.3 mM Fe Pb---Fel 0.4 (0.4) 3.36 (0.10) 0.013

pH 4.68 Pb---Fe2 0.6 4.03 (0.10) 0.010 (0.020) k-range 2.25-8

Pb-Alox Pb—01 2 2.28 (0.02) 0.007 (0.003) ~5.7 (1.5) 1 1.1
50 uM Pb** Pb---Al 1 3.34 (0.05) 0.019 (0.009)

1 mM Al

pH 5.92 k-range 2.25—8

CN = Coordination number; R = Atomic distance; ¢® = Debye-Waller factor; AE = Energy shift parameter; S§ = Passive amplitude reduction factor; R = R-factor = Athena
goodness-of-fit parameter. Uncertainties of fitted parameters as given in Artemis (Ravel and Newville, 2005).
Added concentrations of lead(Il), phosphate and arsenate are listed below the sample name.

parameter could be adjusted for individual Bs horizons. This
resulted in very good fits (not shown), but the adjusted SSA:s of the
Kloten and Risbergshdjden samples were as low as 100m?g ",
implying a low reactivity of the accumulated ferrihydrite. However,
this does not agree with other observations for Kloten 1 Bs2 and for
similar soils, showing that the adsorption of SO~ and As(V) was
strong, which required a relatively high SSA in the anion adsorption
model (Gustafsson, 2006). Therefore the second option, which also
resulted in very good fits, was chosen for further study: the
adjustment of PZC to higher values to reflect the spillover effect
from allophane, as explained above.

Thus, in the second step of the modelling the PZC(Fh) was
increased until the modelled lead(Il) adsorption edges were in
agreement with the observations. The optimised PZC:s ranged from
8.1t09.1 (Table 4). The model was now able to describe also lead(II)
sorption well (Fig. 2, right column). The final model indicated that
for cadmium(Il) and copper(ll), the sorption was dominated by
complexation to NOM, whereas for lead(Il) most of the sorption was
governed by NOM, although ferrihydrite was partly responsible for
sorption (example shown in Fig. S7). Hence the final model, with its
adjusted fys and PZC(Fh) values, agreed (at least in a qualitative
sense) with the EXAFS results for both cadmium(Il) and lead(II).

Finally, the model was applied to investigate whether it could
mimic the results of the batch experiment with added PO4—P. For
cadmium(Il) and copper(ll) no effects of P were seen (data not

shown), which was expected given the near complete dominance
of NOM complexes both according to the EXAFS results (for cad-
mium) and to the modelling. However, also for lead(Il), for which
sorption to ferrihydrite was more important, the model only pre-
dicted a very modest enhancement of lead(Il) sorption similar to
observations (Fig. 3). Why, then, was PO4—P found to have a much
smaller effect on lead(Il) sorption in this study compared to the
ferrihydrite systems of Tiberg et al. (2013)? A detailed interpreta-
tion of the model result highlighted the following three factors as
being of importance: (i) a large part of the sorbed lead(Il) was
bound to NOM, not to ferrihydrite; (ii) the equilibrium concentra-
tion of PO4—P was much lower in the current study than in the one
of Tiberg et al. (2013), and (iii) the presence of initially adsorbed
SOg4, which had decreased the net (positive) surface charge of the
ferrihydrite. This limited the electrostatic effect of the added PO4
ions, and at the same time the adsorbed SO4 favoured formation of
the bidentate (FeOH),Pb™ complex relative to the ternary surface
complex (FeO),HPbPO3HC.

3.3. Possible reasons for the low reactivity of organic matter and
ferrihydrite

The low optimised values of fys and PZC of ferrrihydrite show
that default model parameters, derived for soil surface horizons,
cannot be used to predict metal sorption in many Bs horizons.
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Fig. 1. Cadmium(II) adsorption as a function of pH. Points are observations and lines are

PZC(Fh) = 8.1. Right column: Model fits with adjusted parameters (see Table 4).

There appears to be a relationship between fys and the ratio of
pyrophosphate-to oxalate-extractable Al (Table 4 and Fig. S8). At
low ratios, the fys values are very small, whereas when the Alyyp/
Aloy ratio is high, as for Romfartuna Bhs, fys is in better accordance
with default parameters. The low fys values in soils with low Alpy,/
Alox ratios may be explained by strong sorption of the NOM
carboxylate groups to Fe and Al (hydr)oxide surfaces, reducing the
number of available carboxylate groups. This leads to a negative
deviation from additivity, as shown for the Cd-HA-hematite system
under low-pH conditions (Vermeer et al., 1999). Possibly the rela-
tionship to the Alpyp/Alox ratio may be used to predict the fys value
for a given Bs horizon, but additional data from other Bs horizons
are required for confirmation.

Moreover, the model results suggest that the observed lack of
importance of ferrihydrite for lead(Il) sorption may in part be due to
surface charge effects from allophane, which made lead(Il)
adsorption thermodynamically less favourable as compared to
freshly precipitated, “pure” ferrihydrite. The amounts of ferrihy-
drite and allophane can be estimated from their oxalate- and py-
rophosphate concentrations, i.e. from Fegx and Alpx —
respectively (Gustafsson, 2001). In Bs horizons in which the
amount of ferrihydrite was much smaller than that of allophane (as
reflected in the Feox/(Feox + Alox — Alpyp) ratio), the optimised
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model fits. Left column: Model fits assuming default parameters, i.e. fiis=0.55 and

PZC(Fh) tended to be higher (Fig. S9), in line with this reasoning.
Such an effect has not been previously documented, but may be a
contributing factor behind why Spodosol Bs horizons with low
Feox/(Feox + Alox — Alpyp) ratios exhibit strong anion adsorption and
weak Pb?* adsorption characteristics at the same time (compare
with Gustafsson, 2006). This does not exclude the presence of other
effects that may cause a low reactivity of the precipitated ferrihy-
drite in these horizons. For example, a low DOC concentration may
enhance the crystallisation of 2-line ferrihydrite to 6-line ferrihy-
drite and to other Fe oxides (e.g. Eusterhues et al., 2008) with lower
surface areas. In theory, it is possible to explain the observed results
if one assumes that the accumulated ferrihydrite and allophane
have a low and high SSA, respectively, causing a low lead(ll)
adsorption to the former and a strong anion adsorption to the latter.
However, this seems to be at odds with the observed intergrowth
between the two phases (as indicated by Karltun et al., 2000), and
also with the observation that adsorbed vanadate was equally
distributed between ferrihydrite and an Al(OH)s-type phase
(possibly allophane) in Risbergshojden 2 Bs (Larsson et al., 2017).
For these reasons, we hypothesize that it is the surface charge effect
of co-accumulated allophane that is the main reason for the un-
expectedly low lead(Il) adsorption in Bs horizons with a low ratio of
accumulated Fe to Al
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Fig. 2. Lead(ll) adsorption as a function of pH. Points are observations and lines are model fits. Left column: Model fits using the optimised fys from the cadmium and copper
systems, but with the default PZC(Fh) = 8.1. Right column: Model fits with adjusted PZC(Fh) values (see Table 4).

Table 4

Default and optimised values of the fraction active organic matter (fys), the point-of zero charge (PZC) of ferrihydrite (Fh) as used in the SHM and CD-MUSIC models, and the

Alpyp/Aloy ratio.

Sample fus (Default) fus (Optimised) PZC of Fh (Default) PZC of Fh (Optimised) Alpyp/Alox
Kloten 1 Bs2 0.55 0.13 8.1 9.1 0.442
Kloten 2 Bs “ 0.089 “ 9.0 0.436
Risbergshojden 1 Bs2 “ 0.062 “ 8.9 0.083
Risbergshdjden 2 Bs “ 0.12 “ 8.8 0.328
Risfallet Bs “ 0.25 8.4 0.636
Romfartuna Bhs “ 0.55 8.1 0.728

“ 0.13 “ 8.4 0.551

Tarnsjo Bs

4. Conclusions

Cadmium(Il) and copper(ll) adsorption to seven Spodosol Bs
horizons was governed by organic matter complexation, whereas
for lead(Il) both organic matter complexation and Fe/Al (hydr)oxide
sorption may be involved, although the former predominated ac-
cording to the EXAFS results for the Kloten 2 Bs sample. For cad-
mium(Il) carboxylate groups were the most significant complexing
ligands. Addition of phosphate or arsenate to 1 pmol L' did not
result in any major shifts in metal speciation, and did not enhance
the adsorption of any of the three metals to any significant extent.

An assemblage model with default parameters derived for soil
surface horizons overestimated metal sorption in six out of seven
Bs horizons. To provide model fits in accordance with the experi-
mental results, substantial decreases of the fraction active organic
matter were necessary, and the PZC of ferrihydrite had to be
increased. The final model indicates that in Spodosol Bs horizons
with low Alpyp/Aloy ratios, humic and fulvic acids are less accessible
for metal sorption through their interaction with Fe and Al (hydr)
oxides. At the same time the reactivity of ferrihydrite is low,
possibly because of spillover of positive surface potential from
allophane components.
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Fig. 3. Lead adsorption as a function of pH for the Kloten 2 Bs soil, with and without
the presence of 1 umol L~! PO4—P in the equilibrium solution. Points are observations
and lines are model fits.
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Table S1
Concentrations of metals and phosphate added to the B horizon soil suspensions®

Soil Cd** Cu** Pb** PO,-P®
mmol kg!

Kloten 1 Bs2 0.31 - 0.79 -
Kloten 2 Bs 0.068 0.68 0.68 11.4
Risbergshdjden 1 Bs2 0.33 1.64 1.64 -
Risbergshdjden 2 Bs 0.056 0.56 0.56 93
Risfallet Bs 0.058 0.58 0.58 4.8
Romfartuna Bhs 0.17 - 0.34 -
Térnsj6 Bs 0.038 0.38 0.38 0.48

aFor the Kloten 2, Risbergshdjden 2, Risfallet and Tirnsjo soils all metals (Cd?*, Cu?* and Pb?") were added together,
whereas in the other soils the metals were added individually in separate experiments.
"In one set of experiments, PO4-P was not added, whereas in the second set, POs-P was added with the concentration shown

here to give an equilibrium concentration of around 1 uM dissolved P.

Table S2

Geochemically active metals, as estimated by extraction
Soil Cca* Cu* Pb**

umol kg!

Kloten 1 Bs2 0.3 - 13
Kloten 2 Bs 0.1 44 26
Risbergshdjden 1 Bs2 0.1 40 4
Risbergshdjden 2 Bs 0.1 18 50
Risfallet Bs 0.4 36 52
Romfartuna Bhs 0.2 - 11
Térnsjo Bs 0.1 12 14

For the Kloten 2, Risbergshdjden 2, Risfallet and Térnsj6 soils, 2 g soil was shaken with 35 cm® 0.1 M HNO:s for 16 h
(Gustafsson and Kleja, 2005). The filtered supernatants were analysed for Cd, Cu and Pb by ICP-OES.

For the Kloten 1, Risbergshéjden 1, and Romfartuna soils, the above results were originally published by Gustafsson et al.
(2003). 3 g soil was shaken with 30 cm?® 0.5 M NH4OA¢/0.016 M EDTA solution at pH 4.65 for 2 h. The filtered
supernatants were analysed for Cd, Cu and Pb by GFAAS.



Table S3

Parameter values for cation complexation to soil organic matter in the Stockholm Humic
Model (SHM)?

Cation Humic acid and fulvic acid

log Kvim log K log Kmbou ALK,
AP - -4.06 -9.45 1.05
Ca** 2.2 - - 0.3
Fe’* - -1.68 -4.6 1.7
Mg** -2.5 - - 0.3
Cd** -1.6 -9.5 - 1.3
Cu® -0.55 -6.0 -13.6 1.4
Pb** -0.40 -5.92 - 0.98/1.55°

High-affinity ligand

log Kvm Site concentration

Pb? 3.0 0.01 % of organic C content

2The constants are the same as used in earlier publications (e.g. Linde et al. 2007; Gustafsson et al. 2011). However, the

method to calculate the site concentration of the high-affinity ligand for Pb?* was revised in this study, see text.

"The ALK value for the log Kmm constant of solid-phase organic matter was set to 1.55; for the log Kmp constant of solid-

phase organic matter, and for the constants for dissolved organic matter, ALK2 = 0.98.



Table S4

Surface complexation reactions and constants used in the CD-MUSIC model for ferrihydrite®.

Reaction (Azo, A7y, AZ,)° log K¢
FeOH' + H* <> FeOH2*" (1,0,0) 8.1
Fes0% + H' < FesOH% (1,0,0) 8.1¢
FeOH” + Na* < FeOHNa”" (0,1,0) -0.6
Fe;0”% + Na™ < FesONa”* (0,1,0) -0.6
FeOH” + H" + NOs'«» FeOH2NO3" (1,-1,0) 7.424
Fes0% + H* + NOs<> Fe;OHNO3* (1,-1,0) 7.424
2FeOH” + 2H" + PO4* > Fe20:P02* + 2H,0 (0.46,-1.46,0) 27.59
2FeOH” + 3H* + PO4* <> Fe20:POOH" + 2H20 (0.63,-0.63,0) 32.89
FeOH” + 3H" + PO4* <> FeOPO3H2” + H20 (0.5,-0.5,0) 30.23
FeOH” + H* + S04« Fe0SO03' + H20 (0.65,-1.65,0) 9.65
FeOH” + Ca?" <> FeOHCa'”*" (0,32,1.68) 3.17
2FeOH” + Pb?* <> (FeOH):Pb* (1.2,0.8,0) 9.58 (99 %)
12.25 (0.9 %)
14.24 (0.1 %)
2FeOH” + Cu?* + Ha0 <> (FeOH)2CuOH + H (0.5,0.5,0) 0.97
2FeOH” + Cd>* + H20 <> (FeOH),CdOH + H* (0.5,0.5,0) -1.42 (99 %)
131 (1%)
2FeOH’ + 2H" + Pb* + POs* > (FeO):HPbPOsH® + H20 (0.7,0.3,0) 33.64 (99 %)
37.20 (1 %)
2FeOH” + 2H* + Cu?" + PO4#*« (FeO);HCuPO3H’ + H.0 (0.7,0.3,0) 31.71
2FeOH’ + 2H" + Cd2* + POs> < (Fe0);HCAPO3H® + H20 (0.7,0.3,0) 30.50

2The model is based on the interface parameters of Tiberg et al. (2013), and most of the values are from this reference, except
for the Cd constants (Tiberg et al. 2016) and the SO4 constant (Gustafsson et al. 2015). The Ca constant was optimised based
on data given by Cowan et al. (1991).

b The change of charge in the 0-, b- and d-planes respectively.

¢ Two or three numbers indicate binding to sites with different affinity, the percentages of which are within brackets (c.f.

text).

dThese values are based on a PZC of 8.1 and were adjusted in model simulations when PZC was increased (see text).
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Fig. S1. Left: stacked k>-weighted K-edge EXAFS spectra for cadmium for (a) Cd-Fh, (b) Cd-
P-Fh, (c) Cd-FA, (d) Cd(I)(aq) 0.015, (e) Cd(II)(aq) 0.5, (f) Kloten 2 Cd, (g) Kloten 2 Cd+P,
(h) Kloten 2 Cd+As, (i) Risfallet Cd, (k) Risfallet Cd+As (see Table 2 for descriptions).
Black lines are raw data and red dashed lines are best fits. Right: Fourier Transforms (FT
magnitudes) of the k>-weighted EXAFS spectra.
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Fig S2. Wavelet transforms of Cd K-edge EXAFS spectra for the Kloten 2 samples. The k-
range used was 3.5-9.5 A™! for all samples. a) Raw spectrum, Kloten 2 Cd, b) Raw spectrum,
Kloten 2 Cd+P, ¢) Raw spectrum, Kloten 2 Cd+As, d) Model Kloten 2 Cd, e) Model Kloten 2

Cd+ P, f) Model Kloten 2 Cd+As.
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Fig. S3. Fourier Transforms (FT Real part) of ks-weighted EXAFS spectra for (a) Cd-FA,
(b) Kloten 2 Cd, (c¢) Kloten 2 Cd+P, (d) Kloten 2 Cd+As, (e) Risfallet Cd, (f) Risfallet Cd+As.
Black lines are raw data and red dashed lines are best fits.
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Fig. S4. Left: stacked k>-weighted K-edge EXAFS spectra for lead for (a) Pb-Alox (b) Pb-Fh,
(c) Pb-P-Fh, (d) Pb-FA, (e) Kloten Pb low, (f) Kloten Pb+P low, (g) Kloten Pb+As low, (h)
Kloten Pb high, (i) Kloten Pb+P high (see Table 3 for descriptions). Lines are raw data and
dashed lines are best fits. Right: Fourier Transforms (FT magnitudes) of the k*-weighted
EXAFS spectra.
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Fig. SS. Percent Cd, Cu and Pb adsorbed as a function of pH, with and without the addition of
PO4-P to an equilibrium concentration of 1 pM. Filled and empty symbols represent samples
with and without the addition of PO4-P, respectively.
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Fig. S7. Modelled relative contributions of cadmium(II), copper(Il) and lead(Il) bound to
solid-phase organic matter (SOM) and to ferrihydrite (Fh) in the batch experiments with the
Kloten 2 Bs sample (final model, shown in the lower right of Fig. 1, Fig. S6 and Fig. 2,
respectively).
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Fig. S8. The optimised value of the fraction active organic matter (fus) as a function of the
ratio of pyrophosphate-extractable Al to oxalate-extractable Al (Alpyp/Alox).
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Fig. S9. The optimised PZC of soil ferrihydrite as a function of the fraction of poorly
crystalline Fe oxide relative to the sum of poorly crystalline Fe + Al, as evidenced by the
Feox/(Feox+A10x-Alpyp) ratio..
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