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Stem bending, breakage, and general instability of lodgepole pine has been a major 

problem in northern Sweden due to low stem stiffness. The overall aim of this thesis was 

to evaluate the potential incorporation of wood quality traits into lodgepole pine 

advanced breeding programs. To achieve this, 823 increment cores were sampled from 

207 half-sib families at two progeny trials of lodgepole pine and genetic variations in 

wood density, microfibril angle (MFA), modulus of elasticity (clearwood stiffness; 

MOEs), radial fibre width (RFW), tangential fibre width (TFW), fibre wall thickness 

(FWT), and fibre coarseness (FC) were characterised.  

To quantify genotype by environment interactions (G × E) for growth and stiffness 

and to evaluate performance of provenances, diameter at breast height (DBH) and 

dynamic stiffness of standing trees (MOEtof) were studied, using six 33-36 year-old 

lodgepole progeny trials within three different breeding zones in northern Sweden. To 

evaluate genetic gains in selection for an early MFA transition from juvenile to mature 

wood, six different regression functions were fitted to the MFA profile of each tree to 

delineate the age variation in MFA transition. 

Narrow-sense heritability estimates (ℎ2) ranged from 0.10 to 0.32 for DBH and from 

0.18 to 0.76 for wood quality traits. Unfavourable genetic correlations between growth 

and stiffness were observed, implying that selection for a 1% increase in DBH alone, 

would confer 5.5% and 2.3% decreases in lodgepole pine MOEs and MOEtof, 

respectively. 

Results of the studies in this thesis indicate that simultaneous improvement of DBH 

and stiffness is achievable when an optimal selection index combining both traits is 

implemented. Additionally, it is possible to select for an earlier MFA transition from 

juvenile to mature wood, and thus, decreasing the proportion of the log containing 

juvenile wood in lodgepole pine selective breeding programs. Finally, G × E was only 

significant for stiffness within the northern most breeding zone. To achieve the highest 

stiffness for lodgepole pine, provenances of Yukon origin should be planted at lower 

latitudes and those of British Columbia (BC) origin should be planted at lower elevations 

within the tested breeding zones. 

 

Keywords: wood quality traits, genetic parameters, index selection, early selection 

efficiency, lodgepole pine, G × E interaction, microfibril angle (MFA), transition wood, 

SilviScan 

 

Author’s address: Haleh Hayatgheibi, SLU, Department of Forest Genetics and Plant 

physiology, SE-901 83 Umeå, Sweden

Quantitative genetics of lodgepole pine (Pinus contorta) wood 
quality traits in Sweden 

Abstract 



 

 

 



 

 

To my mom, Homa, and the Swedish Forestry Industry 

 

The best preparation for tomorrow is doing your best today. 

H. Jackson Brown Jr.  

  

Dedication 



 

 

 

 

List of publications 8 

1 Introduction 10 

1.1 Lodgepole pine in its native range 10 

1.2 Introduction of lodgepole pine into Sweden 12 

1.3 Lodgepole pine breeding in Sweden 13 

1.3.1 Long term breeding program 14 

1.4 Genetics of wood quality traits 16 

1.4.1 Solid-wood traits 16 

1.4.2 Pulp and paper-related traits 18 

1.4.3 Juvenile and mature wood characteristics 18 

2 Objectives 20 

3 Materials and Methods 21 

3.1 Field trials 21 

3.2 Studied traits and non-destructive measurements 23 

3.2.1 SilviScan measurements 23 

3.2.2 Acoustic velocity measurement 23 

3.3 Statistical analysis 25 

3.3.1 General model 25 

3.3.2 Index selection 25 

3.3.3 Model fit and determination of transition age 26 

4 Results and Discussion 28 

4.1 Traits summary 28 

4.2 Inheritance of growth and wood quality traits 31 

4.3 Correlations among growth, solid-wood and fibre traits 31 

4.4 Age-age correlations and efficiency of early age selection for growth and 

wood quality traits 33 

4.5 Selection scenarios incorporating wood quality traits 34 

4.6 Genotype by environment interactions and provenance performances 36 

4.7 MFA transition from juvenile to mature wood  39 

Contents 



 

 

4.7.1 MFA radial variation 39 

4.7.2 Heritability estimates and genetic gains 40 

5 Conclusions and Future perspectives 42 

References 44 

Popular science summary 52 

Populärvetenskaplig sammanfattning 53 

Acknowledgements 54 

 

 

        



8 

 

This thesis is based on the work contained in the following papers, referred to 

by Roman numerals in the text: 

 

I Haleh Hayatgheibi, Anders Fries, Johan Kroon, and Harry X. Wu* 

(2017). Genetic analysis of lodgepole pine (Pinus contorta) solid-wood 

quality traits. Canadian Journal of Forest Research, 47, pp. 1303-1313 

II Haleh Hayatgheibi, Anders Fries, Johan Kroon, and Harry X. Wu*. 

Genetic analysis of fibre-dimension traits and combined selection for 

simultaneous improvement of growth and stiffness in lodgepole pine 

(Pinus contorta) (submitted to Annals of Forest Science) 

III Haleh Hayatgheibi, Nils Forsberg, Sven-Olof Lundqvist, Tommy   

Mörling, Ewa J. Mellerowicz, Bo Karlsson, Harry X. Wu, M Rosario 

García-Gil1*. Genetic control of transition from juvenile to mature wood 

with respect to microfibril angle (MFA) in Norway spruce (Picea abies) 

and lodgepole pine (Pinus contorta) (submitted to Canadian Journal of 

Forest Research) 

IV Haleh Hayatgheibi, Anders Fries, Johan Kroon, and Harry X. Wu*. 

Estimation of genetic parameters, provenance performances, and genotype 

by environment interactions for growth and stiffness in lodgepole pine 

(Pinus contorta) (submitted to Scandinavian Journal of Forest Research) 

Paper I is reproduced with the permission of the publisher. 

* Corresponding author.

List of publications 



9 

 

I. Involved in the experimental design and the field sampling, 

preparation of all increment cores for SilviScan analysis, data 

analysis and interpretation, writing the manuscript. 

II. Involved in the conceiving, designing and the field sampling, 

preparation of all increment cores for SilviScan analysis, data 

analysis and interpretation, writing the manuscript.    

III. Involved in the experimental design of lodgepole pine study, 

preparation of lodgepole pine increment cores, performing 

genetic analysis, interpretation of the results, writing the 

manuscript          

IV. Involved in conceiving, design and field sampling of the study, 

data analysis and interpretation, writing the manuscript. 

 

 

 

 

  

The contribution of Haleh Hayatgheibi to the papers included in this thesis was 

as follows: 



10 

 

 

1.1 Lodgepole pine in its native range 

Lodgepole pine (Pinus contorta Douglas ex Louden) is native to North America, 

where it grows between latitudes 31° N in Baja California and 64° N in Yukon in 

Canada, and from sea level to 3900 m of elevation (Koch, 1996; Wheeler & 

Critchfield, 1985; Critchfield & Little, 1966) (Figure 1). 

     Lodgepole pine includes three main sub-species (coastal form var. contorta, 

southern inland form var. murrayana, and northern inland form var. latifolia) 

(Elfving et al., 2001; Critchfield, 1957)). It covers more than five million hectares of 

forest land in the United States and 20 million hectares in Canada (Engelmark et al., 
2001; Wellner, 1975; McDougal, 1973). 

     In its natural habitat, lodgepole pine is the major commercial species and its wood 

and fibre properties are suited for production of high-quality lumber and pulpwood 

products (Wang & Stewart, 2012; Wu & Ying, 2004). Additionally, it is the most 

well-known species for its adaptation to frequent forest fires through development of 

closed, or serotinous cones (Elfving et al., 2001; Engelmark et al., 2001). The cones 

remain sealed in the environment until they are exposed to high temperatures required 

for their opening. This enables dense lodgepole pine stands to grow rapidly in the 

aftermath of a fire (Backlund, 2013; Despain, 2001; Elfving et al., 2001). Local 

adaptation of lodgepole pine has been widely studied including norm of reaction of 

provenances (Wu & Ying, 2004), potential climate adaptation (Wang et al., 2006; 

Rehfeldt et al., 1999), and seed planning zones (Ying & Yanchuk, 2006). 

 

 

 

 

 

1 Introduction 
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Due to its pioneer characteristics along with a wide range of adaptation (Pfister & 

Daubenmire, 1973), lodgepole pine has been planted as an exotic species in many 

countries such as New Zealand (Ledgard, 2001) and Fennoscandia (Elfving et al., 

2001). 

 
 

 

                   Figure 1. Map of lodgepole pine (Pinus contorta) native distribution area (Taysor, 2013) 
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1.2 Introduction of lodgepole pine into Sweden 

 

Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) are the 

two most important native tree species for commercial wood production in Sweden. 

However, during the mid-1960s, a forecast was made that the over-exploitation of 

old-growth natural forests and the gap in the age-class distribution of Swedish forest 

stands will lead to a shortage of harvestable timber in the beginning of the next 

century. This has justified the introduction of exotic tree species as one option to 

eliminate the anticipated deficit. Later, the choice of lodgepole pine (P. contorta var. 

latifolia Engelm.) was supported by the rapid growth and high yield, coupled with 

desirable wood characteristics and a good survival had been obtained by lodgepole 

pine in Swedish experimental plantations, between 1910 and 1930 (Elfving et al., 

2001; Nellbeck, 1981; Hagner, 1971).   

     Large-scale introduction of lodgepole pine, primarily as a source of pulpwood, 

was initiated by extensive series of seed collection and broad research to find the 

most suitable provenances for Swedish climatic conditions. Therefore, several 

provenance trials were established from 1962 to 1979 in order to build the basis for 

seed transfer schemes (Hagner, 1993; Hagner, 1971). Early observations revealed 

that provenances obtained from interior of British Columbia (BC) and Yukon 

performed best (Rosvall et al., 1998; Lindgren et al., 1993). It was also discovered 

that in contrast to the native Scots pine, lodgepole pine populations perform better 

with a 2-5° northward transfer compared to its latitudinal origin in Canada (Hagner 

& Fahlroth, 1974).  

     Furthermore, its superiority in terms of growth, yield, and survival to Scots pine 

was revealed in the first field studies (Elfving et al., 2001; Elfving & Norgren, 1993; 

Martinsson, 1983; Hägglund et al., 1979). It has been evidenced that lodgepole pine 

produces about 36% more stem volume than Scots pine grown under similar 

conditions in northern Sweden (Elfving et al., 2001). This is driven by several factors, 

including an earlier start of growth in spring and a lower required heat sum for the 

initiation of shoot elongation. Additionally, rotation length for lodgepole pine is 10 

to 15 years shorter than that for Scots pine (Backlund, 2013; Elfving et al., 2001).  
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1.3 Lodgepole pine breeding in Sweden 

 

Base material for breeding was collected during the 1970s from the interior of the 

var. latifolia distribution area, located in western Canada, where lodgepole pine was 

considered to be well-adapted to Swedish conditions. The first plus-tree selections 

were made from 1970 to 1974 by two forest companies, whereby seed and scions 

were collected from about 200 plus-trees in natural stands of western Canada. The 

first clonal and seedling seed orchards covering about 31 hectares were established 

using these plus trees (Rosvall, 1980). Genetics of these plus-trees have been broadly 

studied (Fries, 1987).  

     Later, in order to secure domestic seed sources of lodgepole pine for future 

demands and long-term breeding purposes, an additional cooperative seed-collection 

program was launched. Thus, six preliminary breeding zones (utilization zones) in 

northern Sweden were proposed based on latitude and elevation, mirroring similar 

climate regions and seed transfer zones (collection zone) in western Canada. About 

1112 plus-trees were selected from 100 natural stands (about 12 mother trees from 

the same stand) distributed in the interior of Yukon, BC, and at some extent in 

Alberta, and open-pollinated seeds were collected from these selections. Once the 

collection of seed samples was accomplished, 18 progeny trials (three trials per each 

breeding zone) from 1979 to 1981, and six seedling seed orchards (per each breeding 

zone) covering about 100 hectares were established from 1979 to 1987. Based on 

performance evaluation of these progeny trials at age 10-12 years (Ericsson, 1994), 

an early genetic thinning for five of these seedling seed orchards was carried out in 

1992 (Ericsson & Danell, 1995). 
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1.3.1 Long term breeding program  

 

Currently, there are a total of 3232 plus-trees available to serve as a founder 

population for long-term lodgepole pine breeding and conservation. Depending on 

their origin, these plus trees are divided into three groups (Rosvall et al., 2011) as 

follows: 

 

1. Old Canadian tested plus-trees (128 trees) which were firstly selected in Canada 

and then grafted in Sweden 

2. Young Swedish untested plus-trees (193 trees) selected in commercial Swedish 

plantations 

3. Young Swedish F1 plus-trees (2911 trees) selected from the best open pollinated 

families in Swedish progeny tests, which were implemented using plus-trees 

selected in Canada 

 

The general breeding strategy for lodgepole pine is similar to those of Norway spruce 

and Scots pine. However, for lodgepole pine, the advanced-generation breeding 

materials will be divided into 11 populations, each made up of 50 unrelated founder 

trees, distributed over target areas delineated based on photoperiod (latitude) and 

temperature gradients (growing season) (Figure 2). The selected breeding parents will 

be crossed by double pair-mating to form new recruitment populations (Rosvall et 

al., 2011; Danell et al., 1993).  

     To date, the breeding program for lodgepole pine in Sweden has mainly focused 

on improving growth, vitality, and adaptive traits. Several studies estimated genetic 

parameters for growth, survival, and form traits in Swedish lodgepole pine progeny 

trials (Ericsson & Danell, 1995; Ericsson, 1994; Fries & Lindgren, 1986). However, 

wood quality, stem breakage, and general instability of lodgepole pine is a major 

problem in northern Sweden and needs to be improved. Wood quality traits play a 

significant role in the health of plantations and are key determinants of economic 

value of end-use products. Therefore, to enhance the economic value of Swedish 

lodgepole pine breeding and deployment populations, wood quality traits should be 

incorporated into the advanced breeding programs. To do so, a rapid, non-destructive, 

and cost-effective method to measure a large number of sample trees as well as 

knowledge of quantitative genetic parameters in the large breeding populations are 

required.  

     For lodgepole pine, which is an introduced species, it is of vital importance that 

seed sources are well adapted to their new environmental condition. It is well 

recognized that the phenotypic response of genotypes might vary when grown under 

different climatic and edaphic conditions due to genotype by environment interaction 

(G × E) (Bridgwater & Stonecypher, 1978). Existence of G × E, due to the change in 
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the ranking of genotypes, complicates the design of breeding and deployment 

strategies. Because tree breeders must decide whether to select for stability of 

performance, whereby the rate of population improvement is slow, or to select 

genotypes for specific environments to maximize genetic gain in that site, but with 

greater program costs (Namkoong et al., 2012). Thus, to implement an effective 

breeding strategy for lodgepole pine, in the studies this thesis is based upon, genetic 

parameters of growth, wood quality traits, genetic correlations between traits, and 

levels of G×E were evaluated.  

   

 

 
 

Figure 2. Planned breeding zones for lodgepole pine in Sweden (Rosvall et al., 2011) 
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1.4 Genetics of wood quality traits 

 

Wood quality traits have become an important focus in advanced tree breeding 

programs due to their impact on quality of end-use products (Zobel & Jett, 1995; 

Zobel & Van Buijtenen, 1989). Wood properties exhibit continuous variation, and 

therefore, are considered as quantitative traits influenced by multiple genetic and 

environmental factors (Thamarus et al., 2004; Zobel & Jett, 1995). Considerable 

genetic variation and high heritabilities were reported for most important wood 

quality traits, including solid-wood and pulp and paper-related traits, in various 

conifers (Zobel & Jett, 1995). It has also been observed that age by age genetic 

correlations are very high for wood quality traits, implying early selection for wood 

quality traits is highly efficient if heritability estimates at early ages are comparable 

or higher than later ages (Hong et al., 2015; Chen et al., 2014; Lenz et al., 2011; Wu 

et al., 2007). 

1.4.1 Solid-wood traits 

 

Wood density and microfibril angle (MFA) are key indicators of wood quality due to 

their impact on wood strength, dimensional stability of structural lumber, and pulp 

quality. Wood stiffness (generally expressed as modulus of elasticity: MOE) and 

longitudinal shrinkage, are largely dependent on MFA (Cave & Walker, 1994; Zobel 

& Van Buijtenen, 1989; Cave, 1968). MFA is the angle at which the cellulose 

microfibrils in the secondary cell wall deviate from the long axis of the cell 

(Donaldson, 2008; Walker & Butterfield, 1996) (Figure 3). 

     Several studies in conifers have shown that very large angles of MFA (about 45°) 

are common in the first 5 to 10 growth rings near the pith (Donaldson, 2008) and 

MFA values decline gradually until they stabilize at values of 10-15° towards the 

bark (Moore et al., 2014). Higher MFA and lower stiffness in rings near the pith have 

been hypothesized to ensure flexibility of young stems to bend through large angles 

and protect them from wind damage and snow loading (Lichtenegger et al., 1999; 

Booker & Sell, 1998). 
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Genetics of wood quality traits have been extensively studied in recent years (Wu et 

al., 2008). Narrow-sense heritability estimates are generally greater for wood quality 

traits than for growth traits, whereby heritability estimates of wood density is 

reportedly greater than those of MFA and MOE (Chen et al., 2014; Hong et al., 2014; 

Lenz et al., 2010; Baltunis et al., 2007). Estimated genetic correlations of wood 

density and stiffness with growth traits were highly unfavorable in radiata pine (P. 

radiata Don) (Wu et al., 2008; Baltunis et al., 2007), Norway spruce (Chen et al., 

2014), Scots pine (Hong et al., 2014), and white spruce [P. glauca (Moench) Voss] 

(Lenz et al., 2011).  

     Due to such unfavorable genetic correlation, simultaneous improvement of growth 

and wood quality traits remains as a constraint in tree breeding programs (Wu & 

Sanchez, 2011). As such, several methods including designing effective breeding 

strategies (Hallingbäck et al., 2014; Yanchuk & Sanchez, 2011), using restricted 

index selection (Chen et al., 2016; Gapare et al., 2009), and applying index selection 

with optimal economic weights (Ivković et al., 2010; Ivković et al., 2006), have been 

proposed. 

 

 

 

 
 

                  Figure 3. Schematics of microfibril angle (MFA) in juvenile wood and mature wood 
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1.4.2 Pulp and paper-related traits 

 

Along with wood density, different characteristics of wood fibres, such as fibre 

length, fibre coarseness (FC), and fibre wall thickness (FWT) are key determinants 

of pulp and paper quality (Kibblewhite, 1999; Paavilainen, 1993). FC, a commonly 

used assessment in pulping, defined as fiber mass per fiber length, is strongly related 

to wall thickness, fiber width and cell wall density (Carrillo et al., 2015; Mansfield 

& Weineisen, 2007b). Thin-walled fibres with low coarseness (e.g., in juvenile and 

earlywood) result in superior sheet formation and surface properties, while coarse 

fibers (e.g., in latewood) produce strong paper products (Lenz et al., 2011). 

Considerable genetic variations and strong inheritances have been reported for 

tracheid characteristics in conifers (Ivković et al., 2006; Zobel & Jett, 1995).  

     It has also been noted that density has a negative and unfavorable genetic 

correlation with radial fiber width (RFW) (Chen et al., 2016; Lenz et al., 2010; 

Ivković et al., 2006; Hannrup et al., 2000), while it has a strong positive correlation 

with FWT and FC (Chen et al., 2016; Hong et al., 2014; Lenz et al., 2010). This 

implies that breeding for density, which enhances the pulp yield, may produce 

tracheids with smaller diameters and thicker walls, and thus, will lead in inferior 

paper-sheet formation and surface properties (Lenz et al., 2010). 

 

1.4.3 Juvenile and mature wood characteristics 

 

Differences between juvenile and mature wood are the major sources of variation in 

wood quality, both among and within trees (Zobel & Sprague, 1998). Such 

differences occur in various wood characteristics, including specific gravity, 

mechanical properties (Bendtsen & Senft, 1984), cell length (Yang et al., 1986; 

Shiokura, 1982), and pulp yields (Zobel & Sprague, 1998).  Juvenile wood is mostly 

undesirable due to its short cells, low density, low strength, high content of 

compression wood, large MFA, low crystallinity, and high variability compared to 

mature wood (Barnett & Jeronimidis, 2009; Mellerowicz et al., 2001; Zobel & Van 

Buijtenen, 1989).  

     The proportion of juvenile wood in trees is influenced by both genetic and 

environmental factors and thus is amenable to selection and breeding (Zobel & 

Sprague, 1998). In addition to selecting genotypes with improved juvenile wood 

properties, it is also possible to breed for an earlier transition from juvenile to mature 

wood (Koubaa et al., 2007; Gapare et al., 2006; Loo et al., 1985). Transition from 

juvenile to mature wood usually occurs over two to five growth rings, depending on 

the wood property (Alteyrac et al., 2006). However, it is difficult to estimate this 
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boundary with adequate reliability as there is usually no clear demarcation line 

between juvenile wood and mature wood in a tree stem (Mutz et al., 2004; Zobel & 

Sprague, 1998).  

     The distinction between juvenile wood and mature wood has mostly been 

determined by analyzing trends of radial variation (from pith to bark) for different 

wood properties such as density (Mansfield et al., 2007a; Alteyrac et al., 2006), MOE 

(Wang & Stewart, 2013), fibre length, and MFA (Wang & Stewart, 2012; Mansfield 

et al., 2009; Bhat et al., 2001). This method is called threshold or graphic method 

whereby plots of each wood property are visually evaluated to locate a ring number 

or age when the property reaches the threshold value for mature wood (Clark et al., 

2006). An alternative approach is to use mathematical methods such as segmented 

regression (Abdel-Gadir & Krahmer, 1993; Szymanski & Tauer, 1991) or segmented 

non-linear models (Alteyrac et al., 2006; Mutz et al., 2004). 

     In study III, MFA was used to evaluate genetic control of transition from juvenile 

to mature wood in lodgepole pine and Norway spruce. 
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The overall objectives of the studies this thesis is based upon, were to estimate genetic 

parameters for growth and wood quality traits of lodgepole pine in Sweden and to 

evaluate selective breeding strategies that incorporate solid-wood and fibre related 

traits into lodgepole pine advanced breeding programs. The following specific 

questions were addressed: 

 

1) How large is the genetic variation for solid-wood (I), and pulp and paper 

related traits (II) and what are their genetic relationships with growth traits 

(papers I and II)? 

2) How can solid-wood and fibre traits be incorporated into selective breeding 

programs, and how much gain will be obtained for these traits using different 

selection indices incorporating wood quality traits (paper I and II)? 

3) Is there any genetic gain in selection for earlier transition from juvenile to 

mature wood with respect to MFA (paper IIII)?  

4) How large is G × E for growth and stiffness and how is the performance of 

provenances in different breeding zones of lodgepole pine (paper IV)? 

 

 

 

 

 

 

 

 

 

 

 

 

2 Objectives 
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3.1 Field trials  

 

Six lodgepole pine open-pollinated progeny trials within breeding zone two (Jovan 

and Mader), planted in 1981; breeding zone four (Hemmingen and Övra), planted in 

1980; and breeding zone five (Lagfors and Hemmesmark), planted in 1979 were 

selected for the studies underlying this thesis (Figure 4. A). 

     Trials Mader and Jovan originated from four provenances in Yukon (Carmacks, 

Frances Lake, Watson Lake, and Whitehorse), trials Övra and Hemmingen originated 

from three provenances in BC (Fort St. John, Prince George, Fort Nelson) and one 

provenance in Yukon (Watson Lake), and trials Lagfors and Hemmesmark originated 

from two provenances in BC (Fort St. John and Prince George) (Figure 4. B).  

    The experimental design for each trial was a randomized complete block layout 

with five replicates. Each family was planted in 10 (column) x 12 (row) tree plots 

within each block. Tree spacing was 2 m between rows and 1.5 m within rows. Trials 

within each breeding zone included ~ 200 common half-sib families, while there were 

no common families among breeding zones. 

    In addition, two 21-year-old Norway spruce progeny trials, S21F9021146 aka 

F1146 (trial 1) and S21F9021147 aka F1147 (trial 2), comprised of 1,373 and 1,375 

half-sib families, respectively, located in southern Sweden, were utilized in study III. 

Both trials were planted as randomized incomplete blocks with single-tree plots at 

spacing of 1.4 m × 1.4 m (Chen et al., 2014). 

 

 

 

 

3 Materials and Methods 
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Figure 4. Locations of six lodgepole pine progeny trials (within three breeding zones) in northern Sweden (A) and their seed origins (provenances) distributed in 

Yukon and British Columbia (BC) in Western Canada (B).   

 

Study IV 

Studies I & II & III & IV 
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3.2 Studied traits and non-destructive measurements 

3.2.1 SilviScan measurements 

 

Bark-to-bark increment cores (12 mm) were collected at 1.3 m height from 399 trees 

at Övra (approximately four trees from 100 families) and from 424 trees at Lagfors 

(approximately four trees from 107 families) and assessed using a SilviScan 

instrument (Innventia, now part of RISE, Stockholm, Sweden). Before the SilviScan 

measurement, each increment core was sawn into a 7 mm high × 2 mm thick radial 

strip from pith to bark.  High-resolution pith-to-bark radial variations for three solid-

wood quality traits (wood density, MFA, and modulus of elasticity (clearwood 

stiffness; MOES)) addressed in paper I, and four fibre traits (RFW, tangential fibre 

width (TFW), FC, and FWT) addressed in paper II, were obtained (Table 1). Density 

was obtained as an average for 25 µm radial intervals, while MFA was averaged over 

2 mm intervals, and these estimates were used to predict MOEs (Evans, 2006).   

Norway spruce increment cores were collected at breast height from 5,618 trees and 

high-resolution radial variations in MFA from pith to bark were measured for each 

core, using SilviScan (study III). 

3.2.2 Acoustic velocity measurement 

 

The Hitman ST300 tool (Fibre-gen, Christchurch; New Zealand) (Figure 5) was used 

to measure acoustic velocity of about 7500 standing trees within 324 half-sib 

families, addressed in studies I and IV. Two sensor probes were inserted into the outer 

wood of the tree, with the lowest probe at around 1 m high. Probes were placed in 

sections of the stem that had fewer branches and were vertically aligned at a distance 

of about 70 to 110 cm apart. The distance was measured with a laser beam, and an 

acoustic wave was passed through the stem by striking the transmitter probe with a 

steel hammer. The wave was picked up by the receiver probe and its time of flight 

(tof) was recorded. Two series of eight hits were taken per tree, and an average of 

two measurements was taken. Dynamic MOE (MOEtof) was estimated using the 

product of squared sound velocity (m/s) multiplied by a constant green density of 

1000 (kg/m3) (Wang et al., 2001). 
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Table 1. Solid-wood and fibre wood SilviScan measurements and their abbreviations 

SilviScan measurements Abbreviation Method of determination 

Wood Density Density  X-ray densitometry 

Radial fibre width RFW  Image analysis 

Tangential fibre width TFW  Image analysis 

Fibre coarseness FC Calculate with RFW, TFW and Density 

Fibre wall thickness FWT Calculate with RFW, TFW and Density 

Microfibril angle  MFA  X-ray diffraction 

Modulus of elasticity  MOEs  X-ray diffraction and density 

 

 

 

 
 

 

                    Figure 5. Hitman ST300 tool used to measure the acoustic velocity of standing trees 
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3.3 Statistical analysis 

3.3.1 General model 

 

All the statistical analysis were done using ASReml statistical software package 

(Gilmour et al., 2009). To estimate genetic and phenotypic parameters and 

correlations, both univariate and multivariate mixed-linear models were used. The 

general univariate model equation is: 

𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑒 

Where 𝑦 is the vector of each individual tree observation, 𝑏 is the vector of fixed 

effect, 𝑢 is the vector of random effect and 𝑒 is the vector of residuals. 𝑋 and 𝑍 are 

the incidence matrices of fixed effect (𝑏) and random effect (𝑢), respectively. 

Bivariate models were used to estimate genetic and phenotypic correlations 

between two different traits (papers I, II, IV), age-age correlations (papers I and II), 

and type-B genetic correlations (genetic correlations for the same trait in different 

sites) (paper IV). 

3.3.2 Index selection 

 

Variance-covariance matrices for diameter at breast height (DBH) and MOE were 

estimated using multivariate linear mixed models. The Smith-Hazel selection index 

(Hazel, 1943; Smith, 1936) with different sets of economic weights for MOEs, 

ranging from 5 to 15 relative to 1 for DBH, was applied (paper II). The index is 

written as follows: 

  𝐼 = 𝑏1𝑃𝐷𝐵𝐻 + 𝑏2𝑃𝑀𝑂𝐸 

Where 𝑃𝐷𝐵𝐻 and 𝑃𝑀𝑂𝐸 are an individual tree’s measurement of DBH and MOEs, 

respectively, 𝑏1 and 𝑏2 are their respective index coefficients. The index coefficient 

(𝑏) was obtained as follows: 

 

𝑏 = 𝑃−1𝐺𝑎 

where 𝑃 is the phenotypic variance-covariance matrix for selection traits, 𝐺 is the 

additive genetic variance-covariance matrix between selection traits and objective 

traits, and a is the vector of economic weights for each of the objective traits. 
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The expected genetic gain (∆𝐴) of each individual trait included in a Smith-Hazel 

index was calculated as: 

 

∆ 𝐴𝑥 = 𝑖 
(𝑏𝑥 𝑉𝐴𝑥 + 𝑏𝑦  𝐶𝑂𝑉𝐴𝑥𝑦)

𝜎𝐼
 

where ∆ 𝐴𝑥 is the expected genetic gain in trait 𝑥, 𝑖 is the selection intensity of 

1% (𝑖=2.67), 𝑉𝐴𝑥 is the additive genetic variance of trait 𝑥 , 𝐶𝑂𝑉𝐴𝑥𝑦 is the additive 

genetic covariance of trait 𝑥 and associated trait 𝑦, 𝑏𝑥 and 𝑏𝑦 are the index 

coefficients generated from the Smith-Hazel index, and 𝜎𝐼 is the phenotypic standard 

deviation of the index. 

 

3.3.3 Model fit and determination of transition age 

 

In the study described in paper III, the radial patterns for MFA of all 5618 Norway 

spruce and 823 lodgepole pine individual trees were plotted against the cambial age. 

However, there were some individuals for which the general decreasing trend of 

MFA from pith to bark had been changed, due to some disturbances such as 

compression wood. Therefore, such outliers (abnormal curves) were identified and 

excluded prior to data analysis, as follows: 

1) Exclusion_1 or basic method: exclusion of those individuals for which MFA 

values increased with cambial age. This was the baseline of data treatment and thus 

the first step of following exclusions 2 and 3. 

2)  Exclusion_2 or shape-based method: following the basic method, annual rings of 

the individuals for which average MFA values were greater than their three previous 

rings average MFA value, were removed. 

3) Exclusion_3 or family-based method: following the baseline method, annual rings 

of the individuals, which had average MFA values deviating from their 

corresponding family-mean MFA values by more than 1.96 × SD, were excluded 

from data analysis. 

     After removal of outliers, six different regression functions were fitted to the pith-

to-bark MFA profiles of the individual trees. A threshold value of 20° was considered 

for MFA and when the parameter of the fitted functions fell below the threshold, the 

estimated parameter was defined as MFA transition. 

Norrrow-sense heritability estimates and genetic gains in direct selection of MFA 

transition were obtained for both species. 
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4.1 Traits summary 

 

Mean values, coefficients of variation, and narrow-sense heritability estimates (ℎ2) 

for DBH and stiffness measured acoustically (MOEtof) at the six sites are presented 

in Table 2 (Paper IV), and nine wood quality traits obtained based on benchmark 

SilviScan using two sites are presented in Table 3 (Paper I and II). In general, 

coefficient of additive (CVA) and phenotypic (CVp) variations were higher for DBH 

than for wood quality traits, except for MFA. Such pattern had been previously 

reported in various conifers (Chen et al., 2014; Hong et al., 2014; Gaspar et al., 2008).  

For DBH, CVA ranged from 7.4% to 13.7% with the highest value obtained at 

Hemmesmark and the lowest obtained at Lagfors. For MOEtof, CVA ranged from 

7.2% to 11.8% with the highest value obtained at Mader and the lowest obtained at 

Lagfors (Table 2). 

     For SilviScan-based solid-wood quality traits, the highest CVA and CVp were 

obtained for MFA and MOEs at Övra. Similarly, CVA and CVp were the highest for 

MFA at Lagfors, while CVA for MOEs was significantly lower at Lagfors. Among 

fibre traits, FC was the most variable trait at both trials while TFW had the lowest 

CVA and CVp (Table 3). In accordance with results of other studies for conifers, such 

as Norway spruce (Chen et al., 2016) and Scots pine (Hong et al., 2014), solid-wood 

traits were generally more variable than fibre traits, particularly for MOE. 

 
 

 

 

4 Results and Discussion 
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Table 2. Number of observations (N), mean values, coefficients of additive (CVA) and phenotypic (CVp) variation and narrow-sense heritability 
(ℎ2) for growth and acoustic stiffness of six lodgepole pine progeny trials within three breeding zones (parameters presented in paper IV). 

Trial                                                                                    Trait                                                                 

DBH (mm)  MOEtof (GPa) 

N Mean CVA (%) CVp (%) h2   N Mean CVA (%) CVp (%) h2 

Mader 1943 132 11.8 20.8 0.32 (0.09) 
 

1174 11.2 11.8 17.8 0.44 (0.11) 

Jovan 5547 116.8 9 21.8 0.17 (0.03) 
 

1241 13.7 8.6 12.4 0.47 (0.11) 

Övra 4329 130.5 7.6 24.3 0.10 (0.04) 
 

1250 13.7 7.2 17 0.18 (0.09) 

Hemmingen 4662 114.1 10.8 26 0.17 (0.04) 
 

1242 13.6 9.4 13.9 0.46 (0.11) 

Lagfors 6289 128.1 7.4 21.6 0.12 (0.04) 
 

1332 15.9 7.2 14 0.29 (0.10) 

Hemmesmark 3129 105.2 13.7 28.7 0.23 (0.08)   1325 15.1 9.4 12.4 0.58 (0.11) 

DBH, diameter at breast height; MOEtof, modulus of elasticity of time of flight  

Standard errors of heritabilities are in the parenthesis
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Table 3. Mean values, coefficients of additive ( CVA ) and phenotypic ( CVp ) variation and Narrow-sense heritabilities ( h2)  for solid-wood and fibre traits of two 

lodgepole pine progeny trials (parameters presented in paper II). 

Benchmark 

SilviScan  Trial 
 Övra                

Lagfors 

  Mean            CVA (%) CVp (%) h2   Mean CVA (%) CVp (%) h2 

Solid-wood traits   
   

   
 

Density (kg/m) 456.6 4.2 8.1 0.29 (0.22) 
 

483.2 5.6 7 0.67  (0.21) 

EWD (kg/m) 343.2 4 7.2 0.33 (0.22) 
 

357.2 5.2 6.1 0.77 (0.22) 

LWD (kg/m) 735.8 4.3 6.9 0.40 (0.23) 
 

774.4 3.7 6.3 0.39 (0.20) 

MOEs (GPa) 10.4 11.5 21 0.30 (0.20) 
 

12 5.6 15.7 0.13 (0.16) 

MFA (°) 18.6 15.2 27.9 0.30 (0.20) 
 

16.6 13.5 23.8 0.33 (0.19) 

Fibre traits 

   

 

    

 
RFW (µm) 31.7 4.6 5.9 0.71 (0.21) 

 30.9 4 4.7 0.73 (0.20) 

TFW (µm) 28.8 2.5 3.9 0.44 (0.21) 
 28.6 3 3.5 0.74 (0.20) 

FWT (µm) 2.4 4  7.8 0.29 (0.21) 
 2.6 6 7.2 0.72 (0.21) 

FC (µg/m) 397.7 5.7  8 0.52 (0.21)   405.9 6.2 7.5 0.72 (0.20) 
EWD, early wood density; LWD, latewood density; MOEs, modulus of elasticity; MFA, microfibril angle; RFW, radial fibre width; TFW, tangential fibre width; 

     FWT, fibre wall thickness; FC, fibre coarseness 
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4.2 Inheritance of growth and wood quality traits 

 

Among the SilviScan-based solid-wood traits, the highest heritabilities were obtained 

for wood densities at Lagfors, ranging from 0.39 to 0.77, with the highest value 

obtained for early wood density (EWD) (h2=0.77), while such estimates ranged from 

0.29 to 0.40 at Övra. Heritabilities obtained for fibre traits were generally higher at 

Lagfors (ℎ2  0.72), whereas they were lower at Övra (ranged from 0.29 to 0.71). 

Our heritability estimates were generally higher for wood quality traits than for 

growth traits, in line with results obtained in other conifers (Chen et al., 2014; Hong 

et al., 2014; Wu et al., 2008). Further, fibre traits were generally more heritable than 

solid-wood traits in our study and heritabilities of fibre traits were higher than those 

reported for Scots pine (Hong et al., 2014), Norway spruce (Chen et al., 2016), and 

white spruce (Lenz et al., 2010), particularly at Lagfors.  

4.3 Correlations among growth, solid-wood and fibre traits 

 

In study I, we found several unfavourable genetic correlations (rA) between growth 

and solid-wood traits. SilviScan-based MOE was more negatively correlated with 

DBH (Figure 6) than those measured acoustically (Hayatgheibi et al., 2017). Such 

finding had been previously reported, whereby SilviScan-derived MOE was more 

negatively correlated with DBH, volume and height in Scots pine (Hong et al., 2014) 

and Norway spruce (Chen et al., 2015).  

     Among all wood density component traits, the most unfavourable genetic 

correlation was found between DBH and early wood density (EWD) at both trials. 

Low to moderate negative genetic correlations, associated with high standard errors, 

were observed between wood density and DBH. Genetic correlation of density with 

growth traits was highly unfavourable in radiata pine (Wu et al., 2008; Baltunis et 

al., 2007), Norway and white spruce (Chen et al., 2014; Lenz et al., 2010; Steffenrem 

et al., 2009; Ivković et al., 2002), and Scots pine (Hong et al., 2014), but non-

significant in maritime pine (P. pinaster Ait) (Bouffier et al., 2009) and loblolly pine 

(P. taeda L.) (Antony et al., 2013). 

     It is well known that MOE is correlated with density and MFA (Wu et al., 2007). 

However, MOEs was less correlated with density in Lagfors (rA= 0.29) than in Övra 

(rA= 0.65). Further, MFA had a moderate to high negative, but favourable genetic 

correlation with MOEs and MOEtof at both trials and very high genetic correlations 

were observed between MOEs and MOEtof (rA ~ 0.90). 



32 

 

 

Correlation of fibre traits with growth and solid-wood traits was assessed in paper II. 

Genetic correlation of DBH with RFW and TFW was moderate, ranging from 0.32 

to 0.55, while it was nearly zero with FWT, at both trials. Similarly, DBH had a 

moderate genetic correlation with FC at Övra, while such correlation was non-

significant at Lagfors (study II, Table 2). 

     The non-significant correlation observed between DBH and FWT for lodgepole 

pine in our study, is in contrast with previously reported correlations in other conifers. 

As such, DBH was negatively correlated with FWT in Norway spruce (Chen et al., 

2016) and Scots pine (Hong et al., 2014), implying that trees with high volume 

growth tend to have thinner walls and thus lower density.  We found a very high 

correlation between density and FWT at both trials (rA ~ 0.90), similar to what was 

reported for Norway spruce (Chen et al., 2016), but higher than those reported in 

Scots pine and white spruce (Hong et al., 2014; Lenz et al., 2010). In addition, FWT 

was highly correlated with FC. 

     Further, density had a moderate negative and unfavourable correlation with RFW 

and TFW at both trials. Similarly, FWT had a low to moderate negative genetic 

correlation with RFW and TFW in Övra. This implies that breeding for density, 

which enhances pulp yield, may produce tracheids with smaller diameters and thicker 

walls, and thus, will lead in inferior paper-sheet formation and surface properties 

(Lenz et al., 2010). 

     In study IV, genetic correlations between DBH and MOEtof for single-site and 

combined-site analysis were obtained. We found that growth-stiffness genetic 

correlation is more unfavourable in breeding zone two (Mader and Jovan) and four 

(Övra and Hemmingen), while such correlations were non-significant in breeding 

zone five (Lagfors and Hemmesmark). Results were shown in Table 4 and 5 in study 

IV.   
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Figure 6. Scatter plot of lodgepole pine individual trees breeding values for diameter at breast height 

(DBH) and modulus of elasticity (MOE)  

 

4.4 Age-age correlations and efficiency of early age 
selection for growth and wood quality traits 

 

Age-age genetic correlations from early ages to the reference age of 26 years were 

very high for solid-wood (paper I) and fibre traits (paper II) in lodgepole pine, 

reaching 0.9 at cambial age four for MFA and FC; cambial age six for RFW and 

TFW; and cambial age 10 for MOE and ring width in both trials.  Age-age genetic 

correlations for density and FWT in Övra reached unity at cambial age four, while 

such correlation obtained at age 10 in Lagfors. Due to the high age-age genetic 

correlation and high heritability estimates obtained for wood quality traits, we 

observed that early selection is very effective for wood quality traits in lodgepole 

pine. 

    Among all studied traits in this thesis, MFA had the highest early selection 

efficiency as the heritability estimates and age-age genetic correlations obtained at 

early ages were very high for this trait. Such a high early selection efficiency for 

MFA as early as age four had also been previously reported in Norway spruce (Chen 

et al., 2014) and white spruce (Lenz et al., 2011).  Furthermore, we found that early 



34 

 

selection for wood density, MOE, and fibre traits is optimal at about cambial ages of 

eight to 10 years in lodgepole pine, similar to what was found in Scots pine (Hong et 

al., 2015). It is known that early age selection is more efficient for wood quality traits 

than for growth traits in conifers owing to the higher heritability estimates at early 

ages and higher age-age correlation obtained for wood quality traits compared to 

growth traits (Hong et al., 2015; Chen et al., 2014; Wu et al., 2007; Li & Wu, 2005). 

Similar pattern was observed in our study as selection efficiency for ring width was 

only about 0.5 at cambial age 14 in Övra and it was nearly zero in Lagfors due to the 

very low heritability estimate obtained for ring width at the reference age in Lagfors. 

 

4.5 Selection scenarios incorporating wood quality traits  

 

Several selection scenarios for incorporating wood quality traits were studied.  

Genetic gains and correlated genetic responses for growth and solid-wood (paper I); 

and fibre traits (paper II), using selection intensity (i) of 2.67 (i.e., 1%) were assessed. 

Results are presented in Table 4. Selection based on DBH would result in an increase 

of 7.9 % in DBH, slight increases in fibre traits, but unfavourable -5.5, -2.3, -1.5% 

changes in MOEs, MOEtof, and density, respectively (Table 4).  

    Selection based on MOEs, would incur increases of 13, 11.4, and 3.2% in MOEs, 

MOEtof, and density, respectively, but unfavourable decrease of -6.5 % in DBH, and 

negligible changes in fibre traits.  Due to the unfavourable growth-stiffness genetic 

correlation obtained in paper I, index selection with appropriate economical weights 

for simultaneous improvement of these traits was proposed. Economic weights for 

growth and stiffness in lodgepole pine have not been estimated using production-

system parameter estimates. Recent study by Chen et al. (2016) in Norway spruce 

suggested that an increase of 1 GPa in MOE is 10 times as profitable as an increase 

of 1 mm in diameter, based on the economic weights of growth and MOE used in 

radiata pine (Ivković et al., 2006). 

     Therefore, to examine the importance of relative weights of DBH and MOE in 

lodgepole pine, a selection index with different sets of economic weights for MOEs, 

ranging from 5 to 15, relative to 1 for DBH, was applied in our study (paper II). 

Results are shown in Figure 7.  As the economic weighting of MOE decreased from 

the weight of 10 to 5, the gain for MOE declined to -0.43 GPa, whereas the gain for 

DBH increased to about 9.5 mm. When the economic weighting for MOE increased 

to 15, the gain for MOE increased by about 1.1 GPa, while the gain for DBH 

decreased by about -3.5 mm. We found that the economic weighting of MOE ranging 

from 7 to 10 resulted in positive genetic gains for both traits.   
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In the subsequent analysis reported in paper II, we observed that, selection index 

combining DBH and MOE using economic weights (10 for MOE relative to 1 for 

DBH) led to slight increases in TFW (1.5%), FWT (3.6%), FC (4.4%), and wood 

density (2.3%). 

 

Table 4. Genetic gains (in bold and italic format) and correlated genetic responses for DBH, solid-wood 

and fibre traits 

Selection  

   trait Response (%) 

 DBH MOEs MOEtof Density RFW TFW FWT FC 

DBH 7.9  -5.5 -2.3     -1.5 2.1 1 0.16 2.5 

MOEs -6.5   13 11.4 3.2 -1.6 0.8 3.2 2.8 

 

 

 

 

 

 

 
 

Figure 7. Expected genetic changes of diameter at breast height (DBH) (bold) and modulus of elasticity 

(MOE) for selection based on DBH and MOE with indicated economic weights for MOE relative to a 

constant economic weight (1) for DBH (x-axis), under a selection intensity of 1% (i=2.67). 
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4.6 Genotype by environment interactions and provenance 
performances 

 

In forestry, G×E has been extensively studied (Li et al., 2017; Matheson & Cotterill, 

1990; Shelbourne, 1972) and significant G×E, primarily for growth, has been 

reported in various important conifers, such as radiata pine (Ivković et al., 2015; 

Baltunis et al., 2010; Wu & Matheson, 2005), loblolly pine (Roth et al., 2007; Li & 

McKeand, 1989), slash pine (P. elliottii Engelm) (Hodge & White, 1992), and 

Norway spruce (Chen et al., 2017). According to literature (Apiolaza, 2012; Baltunis 

et al., 2010; Gapare et al., 2010; Hallingbäck et al., 2008; Wu & Matheson, 2005), 

G×E for wood quality traits is generally low compared to growth traits.  

     We observed that type-B genetic correlations (𝑟𝑏) for growth, stiffness (MOEtof), 

and survival were mostly high within each breeding zones, except for DBH and 

survival in the breeding zone four (𝑟𝑏=0.74 and 0.40, respectively) and for MOEtof in 

the breeding zone two (𝑟𝑏= 0.46), indicating that G × E might not be important in 

lodgepole pine, except for stiffness in northern Sweden (Study IV). Similarly, results 

of other studies, investigating the extent of G × E for growth and wood quality traits 

in Swedish breeding programs revealed that G × E is negligible for wood quality 

traits in Norway spruce (Chen et al., 2016; Chen et al., 2014; Hallingbäck et al., 

2008) and low to moderate for growth in Scots pine (Hannrup et al., 2008). 

     Previous studies, investigating performance of lodgepole pine provenances in 

Sweden, had reported that survival is largely dependent on the latitude of origin, 

whereby seed sources of northern origin had higher survival as well as higher rate of 

seed production (Lindgren et al., 1994). Additionally, it has been reported that height 

growth is associated with altitude of origin, whereby fastest growth was achieved for 

provenances about 800 m, and there was a decline in growth above this threshold 

(Fries, 1986; Lindgren, 1983) 

     Relative performance of provenances for DBH and MOEtof within a test site and 

within breeding zones were assessed (Study IV). Results were shown in Figures 8 

and 9. We found that the mean performance of provenances, particularly for mean 

DBH, differed significantly within a breeding zone. As such, seed sources originating 

from Yukon, the northernmost provenances, had better growth performance in higher 

latitude, particularly provenances Frances Lake and Whitehorse. 

      In contrast, seed sources originating from BC, had better growth performance 

when planted at trials with lower latitude within a breeding zone. Furthermore, 

maximum growth performance of provenances originating from BC, Fort St. John 

and Prince George in particular, was achieved at Övra, the trial associated with the 

highest precipitation during vegetative growth and the highest elevation. 
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  In contrast to what was observed for DBH, we found that provenances originating 

from Yukon, particularly Whitehorse, had the lowest mean stiffness at Mader (higher 

latitude), and the highest mean stiffness of seed sources originating from BC (Fort 

St. John and Prince George) was obtained when planted at Lagfors and Hemmesmark, 

trials which had the warmest temperatures and the lowest elevations. 

 

 

 

 

 
 

Figure 8. Diameter at breast height (DBH) (mm) means for provenances of lodgepole at the six progeny 

trials (within three breeding zones) in northern Sweden. The vertical lines in the middle of the boxes are 

error bars. 
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Figure 9. Modulus of elasticity (MOE) (GPa) means for provenances of lodgepole at the six progeny 

trials (within three breeding zones) in northern Sweden. The vertical lines in the middle of the boxes are 

error bars. 
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4.7 MFA transition from juvenile to mature wood 

4.7.1 MFA radial variation 

 

For both lodgepole pine and Norway spruce, the MFA average profiles decreased 

from above 30° close to the pith towards about 10° close to the bark (Figure 10). In 

Norway spruce, mean MFA profile decreased from about 30° at the pith and then 

stabilized after reaching a cambial age of 10 years at about 10° in Höreda and about 

12° in Erikstorp. The mean MFA profile for lodgepole pine started at 40° followed 

by a rapid decrease to about 30° after 3 years, after which the shape of the 

development was similar to that for Norway spruce but slower, stabilizing after 

cambial age of 15 years at about 12° in Övra and about 10° in Lagfors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Radial trends for MFA of Norway spruce at two trials (Höreda and Erikstorp) from cambial 

age 1 to 20 and for Pinus contorta at two trials (Övra and Lagfors) from cambial age 1 to 30. The black 

lines represent the actual observations from all individual trees and the red line is the mean radial variation 

of MFA against the cambial age.                                     
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4.7.2 Heritability estimates and genetic gains 

 

Heritability estimates obtained for lodgepole pine MFA transition were greater than 

those obtained for Norway spruce (paper III, Table 1). Moreover, in both species, 

heritabilities were generally highest based on the slope function, while they were 

lowest based on the logistic function, under all exclusion methods. Heritabilities 

ranged from 0.08 to 0.23 for Norway spruce, with the highest value obtained based 

on the slope function under exclusion_2 and the lowest value obtained based on the 

logistic function under exclusion_3.  

     For lodgepole pine, all heritability estimates were nearly zero based on the logistic 

function. This is driven by the inability of this function to estimate MFA transition, 

using the threshold value of 20°. In general, heritabilities ranged from 0.15 to 0.53 in 

Övra and from 0.22 to 0.43 in Lagfors (logistic function was excluded). In addition 

to the slope function, high heritabilities were obtained based on the central peak 

(ranging from 0.33 to 0.38) and negative exponential functions (ranging from 0.26 to 

0.34) in Övra, and based on the arctangent (ranging from 0.41 to 0.43) and 

polynomial (ranging from 0.36 to 0.38) in Lagfors. 

     As was observed for heritability estimates, genetic gains obtained based on the 

slope function were highest, while those obtained based on the logistic function were 

lowest, regardless of which exclusion method was applied. In addition to the slope 

function, high genetic gains were obtained based on the negative-exponential and 

central peak functions in Norway spruce and based on arctangent and negative-

exponential functions in lodgepole pine (paper III, Table 2).  

     These findings indicate that it is possible to select for an earlier MFA transition 

from juvenile to mature in Norway spruce and lodgepole pine selective breeding 

programs. 
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Based on the four studies in this thesis, following conclusions can be drawn with 

future perspectives: 

 

1) Wood density, MOEs, latewood proportion (LWP), and values of fibre 

properties increased from the pith, while MFA and ring width were high 

around the pith, then gradually decreased and stabilized towards the bark. In 

general, observed radial age trends were similar at two lodgepole pine trials, 

though wood density, MOEs, LWP, FWT, and FC were higher in Lagfors 

compared to Övra, while ring width, MFA, and RFW were lower, after the 

cambial age of 18 years.  

 

2) Heritability estimates of wood density and fibre properties were low near the 

pith, increased until they peaked between the cambial ages of 8-16 years, 

then stabilized towards the bark. In general, all estimated heritabilities were 

significantly higher after the cambial age of 4 years in Lagfors, except for its 

MOEs heritability estimates, which were lower after the cambial age of 12 

years. 

 

3) Early selection at cambial age of 4 years for MFA and about cambial ages 

of 8-10 years for wood density, MOE, and fibre properties would be highly 

efficient in lodgepole pine breeding programs. 

 

4) Due to the unfavourable DBH–stiffness genetic correlation, selection for a 

1% increase in DBH, would result in decreases of 5.5% and 2.3% lodgepole 

pine stiffness (MOEs and MOEtof, respectively). However, Simultaneous 

improvement of growth and stiffness is achievable when a selection index 

with 7 to 10 economical weights for stiffness (MOEs) relative to 1 for DBH 

is incorporated. 

5 Conclusions and Future perspectives 
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5) Unfavourable relationship between solid-wood and pulpwood traits suggests 

that breeding strategies must be implemented to improve wood quality of 

lodgepole pine for multiple uses. 

 

6) There is a possibility to select for an earlier MFA transition from juvenile to 

mature wood, and thus, decreasing the proportion of the log containing 

juvenile wood in lodgepole pine selective breeding programs. 

 

7) Although type-B genetic correlations for growth and stiffness were mostly 

strong, G × E for stiffness was significant within the most northern breeding 

zone. Furthermore, the low stiffness of lodgepole pine as well as its 

unfavourable genetic correlation with growth in northern Sweden, should be 

considered in the selective breeding programs. 

 

8) Provenances of Yukon origin had the highest growth but the lowest stiffness 

at higher latitude, while those of BC origin grew faster at lower latitudes, 

within a breeding zone. To achieve the highest stiffness for lodgepole pine, 

provenances of BC origin should be planted at the low-altitude zone 

(breeding zone five).   
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Trees and their wood products are one of the oldest and the most well-known natural 

materials used by societies for multiple purposes, including constructing building, 

making furniture, producing paper and biofuel. 

     

    Wood has a wide range of characteristics which determine how well the wood is 

suited for a particular product. To get the best out of wood, both its quantity and 

quality should be enhanced through genetic improvement and stand management.   

    

    Lodgepole pine has been introduced into Sweden during the mid-1960s. Trees 

grow fast, they have a good survival and are very productive. However, stem bending 

and even stem breakage of those trees, which are less resistant to wind, snow-loads, 

and environmental stresses, have been a major problem in northern Sweden. 

Additionally, wood produced from such trees is of lower quality for construction 

purposes, and thus, of lower economical value.  

 

Tree breeding programs aim to enhance the overall value of forest products by 

applying genetic and economics principles to develop individual trees most suited for 

the human needs. 

     

     In the studies this thesis is based upon, several principles of tree breeding have 

been applied to quantify the genetic variation and to design the optimal way in order 

to improve both wood quantity and quality of lodgepole pine in northern Sweden. 

This will meet the societal need of bio-material for construction and pulp and paper 

making. 

Popular science summary 
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Träd och träprodukter är ett av de äldsta och mest kända naturmaterial i vårt samhälle 

och det används för flera ändamål, bland annat konstruktion av byggnader, 

tillverkning av möbler, produktion av papper och till biobränsle. 

 

 Trä har ett brett register av egenskaper som avgör hur bra träet passar för en viss 

produkt. För att få ut det mesta av trä, bör både kvantitet och kvalitet förbättras genom 

genetisk förädling och god skogsskötsel.  

 

 Contortatall introducerades i Sverige under mitten av 1960-talet. Trädslaget 

växer snabbt, har hög överlevnad och är väldigt produktiv. Emellertid har stamböjar 

och även stambrott av de träd som är mindre motståndskraftiga mot vind, 

snöbelastning och annan miljöbelastning varit ett stort problem i norra Sverige. 

Dessutom är trä som från contortatall av lägre kvalitet för byggnadsändamål och 

därmed av lägre ekonomiskt värde. 

 

Förädling av skogsträd syftar till att förbättra det generella värdet av 

skogsprodukter. Genom att tillämpa genetiska och ekonomiska principer kan man 

genetiskt förädla de individer som är mest lämpade för människans behov. 

 

I studierna som denna avhandling är baserad på har flera principer för 

skogsträdsförädling applicerats för att kvantifiera den genetiska variationen och för 

att utforma det optimala sättet för att öka produktionen och förbättra kvalitén hos 

contortatall i norra Sverige. Detta kan möta samhällets behov av biomaterial, 

konstruktionsvirke och massa- och papperstillverkning. 

 

  

Populärvetenskaplig sammanfattning 
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