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    Looking at modern dairy production, loose housing, i.e. free stalls became one of the 
most common practices, which, while widely implemented along with different 
management routines, do not always include the adjustments necessary for assuring 
animal welfare. The analysis of interactions occurring between cows in dairy barns and 
their effect on health and performance is of great importance for sustainable, animal-
friendly production. The general aim of this thesis was to investigate the possibilities and 
limitations of computer vision approach for studying dairy cattle behaviour and 
interactions between animals, as well as take a first step towards the fully automated 
system for continuous surveillance in modern dairy barns. 
    In the first study, a seven-point shape-model for describing a cow from the 
mathematical perspective was proposed and investigated. A pilot study showed that the 
proposed Behavioural Detector based on the developed shape-model provided a solid 
basis for behavioural studies in a real-life dairy barn environment.  
    The second study investigated a classification case from the industry: how animal 
distribution and claw positioning in specific areas could affect the maximal load on floor 
elements.  The results of the study provided more substantial background data for 
determining the dimensioning of the strength of the slats.  
    The third study aimed to take the first step towards an automated system (so-called 
WatchDog) for behavioural analysis and automatic filtering of the recorded video 
material. The results showed that the proposed solution is capable of detecting potentially 
interesting scenes in video-material with the precision of 92,8%.  
    In the fourth and final study, a state-of-the-art tracking/identification algorithm for 
multiple objects with near-real-time implementation in crowded scenes with varying 
illumination was developed and evaluated.  
    The algorithms forming the multi-modular WatchDog system and developed during 
this project are the crucial stepping stone towards a fully-automated solution for 
continuous surveillance of health and welfare-related parameters in dairy cattle.  The 
proposed system could also serve as evaluation/benchmark tool for modern dairy barn 
assessment.  
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1.1. Preamble 

This dissertation consists of several steps or studies aimed towards the one 
monolithic goal: development of the automatic system for video surveillance and 
analysis of the behaviour of dairy cows in a modern dairy barn environment.  

The main idea of this work was to investigate the possibilities and limitations of 
computer vision based systems for studies involving dairy cows’ behaviour, 
recognition and tracking of individuals as well as accumulating the knowledge 
necessary for the practical implementation of computer vision systems in 
modern dairy production. 

The crucial pre-requisite for the success of this work was that the methodology 
for image analysis (such as object segmentation, recognition, geometrical object 
model etc.) needed to be developed from “scratch” and be as flexible and robust 
as possible to function in the real-world situations. This explains the 
chronological order in which the steps/studies were carried out and also creates 
the generalised framework for future developments.  

1.2. Cows: an introduction  
 
Cows (more often referred to as dairy cattle) are members of subfamily Bovinae, 
most common type of large domesticated ungulates of the genus Bos (Bos 
taurus). Cows have been known and used by humans for different production 
purposes since the early Neolithic period (10500 BC). The extensive genetic 
selection and continuous evolution of farm/production environment resulted in 
some behavioural changes, affecting cows’ way of interacting with animal 
caretakers, each other and farm building environment (McTavish et al., 2013; 
Decker et al., 2014).  
 
Cows are diurnal animals, and the vision is their dominant sense, they are also 
able to distinguish between long and short wavelength colours as well as rely 
more on a perception of moving rather than stationary objects (Adamczyk et al., 

1 Introduction 



10 
 

2015). One of the other species-typical characteristics influencing the cow's 
behaviour in different situations is the ability to discriminate between 
individuals under different circumstances (Coulon et al., 2011). It explains, 
partly, the complexity of social interactions and hierarchical structure within 
groups of dairy cows (Kiley-Worthingthon and De La Plain, 1983). There is 
scientific evidence (Taylor and Davis, 1998) suggesting that cows could use 
previously stored mental images from earlier social encounters and associate 
them with real individuals, affecting their intentions and future interactions.  
 
These factors, as well as some other parameters (e.g. breed, parity number, stage 
of lactation), increase the complexity of planning required for the well-
functioning dairy barn and for securing good cow traffic (Barkema et al., 2015). 
 
1.3. Trends in modern dairy production and their effect on animal well-being 

A growing population leads to increased demand for milk and meat, influencing 
the exponential growth and development of a dairy sector. Matters relating to 
climate change suggest that environmental impacts need to be addressed, as is 
livestock sustainability (Geers and Madec, 2006). To address these issues, means 
are required whereby the health and welfare of individual animals could be 
supported while at the same time maintaining the economies of scale that could 
be obtained with intensive farming (Halachmi et al., 2000; Hermans et al., 2003). 
Furthermore, the demand for affordable food means that cost efficiency pressure 
exists towards the operation of fewer, but more intensive dairy farms that are 
highly rationalised. These large farms require the tremendous attention to 
management routines and strategies around animal health and welfare to assure 
the highest input-output ratio at the lowest cost possible (Olofsson, 1999; Rutten 
et al., 2013; Miguel-Pacheco et al., 2014). With prices for dairy products varying 
largely within the EU, the “marginal difference” between economically 
successful farms and those trying to reach higher income is very small. To 
maintain the sustainable production without jeopardising the “animal” part of it, 
farmers required concentrating more on workflow planning as daily amount of 
their tasks increases (Halachmi et al., 2000; Grandin, 2015). As a result, the 
animal caretakers (farmers, veterinarians, farm advisors and other actors) have 
less time to monitor and provide the proper care for each animal (von 
Keyserlingk et al., 2009).  

Concurrent with this development, there is intense pressure from consumers to 
improve animal welfare, for example by keeping the animals in conditions close 
to natural ones (Kilgour, 2012; Grandin, 2015). Public health concerns about 
antimicrobial resistance mean there is an urgent need to reduce the use of 
antibiotics by improving the health of individual animals. 

The well-being of cows depends on many variables related to the barn 
environment: feeding strategy, cow traffic solutions, number of re-groupings 
with “new” animals re-establishing the hierarchy, flooring conditions, 
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competition for resources (e.g. water, brushes, concentrate feeders), and the area 
per cow, cow comfort. As a result, the production system in combination with 
care strategies determine the environmental variables and therefore, good health 
and welfare for the cows (Adamczyk et al., 2015; Barkema et al., 2015). 

1.4. Farm size and the need for continuous monitoring of animals in specific 
areas of the dairy barn 

With the rapid development of modern dairy production, loose housing, i.e. free 
stalls swiftly became one of the most common housing alternatives, which, while 
widely implemented along with different management routines, do not always 
consider the natural behaviour of dairy cows. The analysis of interactions 
occurring between cows in dairy barns and their effect on health and 
performance is of great importance for sustainable production with high 
standards of animal health and welfare (Phillips, 2002; Grandin, 2015). 

According to recent reports (Rutten et al., 2013; Barkema et al., 2015), the 
average size of the dairy farm is continuously increasing which results in a more 
substantial number of animals for everyday control and caregiving (per caregiver 
and farm). As daily farm work includes many different aspects, the time for 
observing the animals and finding those in need of additional care is dramatically 
decreased, which could lead to production diseases being unnoticed until later 
stages, requiring immediate veterinary attention (Geers and Madec, 2006; 
Barkema et al., 2015). By assuring early detection of diseases and monitoring 
the health of the animals continuously and in real time, it is possible to increase 
the end value of the product for the consumer by creating animal-friendly 
production conditions. Studies are showing (Hermans et al., 2003; Castro et al., 
2012) that animals in pain or with the ongoing pathological conditions will 
express the deviations from their typical behaviours, which could be utilised as 
a valuable indicator for building the models describing animal's states of well-
being. In case of clinical illness, the animal goes through the set of behavioural 
changes, which could be used by farmer or veterinarians to ease further 
diagnostics or adjust the management practices accordingly.  

For an automatic milking system (AMS) to be efficient, the motivation of cows 
to enter it becomes one of the most crucial aspects. Feed is the primary motivator 
to visit the AMS (Prescott et al., 1998; Halachmi et al., 2000). However, the 
expectation to get feed in the AMS creates competition in the waiting area before 
the AMS. This competition affects the social interactions, the timing, and the 
regularity of the visits to the AMS (Melin et al., 2005, 2006). This situation is 
similar to the competition around an automatic concentrate feeder (Olofsson, 
1999; Herlin and Frank, 2007). Thus, monitoring social behaviour and 
aggression in the waiting area are of interest both from an AMS efficiency 
perspective as well as for animal welfare. 
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1.5. Social interactions and their importance for the animal well-being 

Among one of the leading challenges for cows in early lactation is their 
introduction to a new group/part of the barn/system. There are studies (Hedlund 
and Lovlie, 2015) showing that regrouping is one of the underlying reasons for 
the occurrence of agonistic behaviours and increased competition for different 
resources. 

Dairy cows are social animals, and the “group” is an essential resource for them 
and influences health state, welfare, and production performance. In nature, the 
average size of the herd/group in Bos-species is on average 15-20 individuals, 
which considering the average size of modern dairy herds (50+ individuals at 
least) increases the complexity of possible social interactions and their effect on 
cows’ well-being. Studies (Kikusui, Winslow and Mori, 2006) show that a 
secure and positive social environment in cow barn results in both short- and 
long-term effects linked to different aspects of cow health, as well as production 
performance, longevity, and lowered stress levels on group/herd level (Rault, 
2012). 

The maintenance of the social environment in modern dairy herds is 
exceptionally complex activity and not only is time demanding but also requiring 
a sound understanding of underlying reasons and motivational factors 
influencing cows’ behaviour (Vieira, de Pasille and Weary, 2012; Shin, Kang 
and Seo, 2017). 

There is the growing interest within the research community towards the “social-
buffering” in farm animal welfare and health (Boyland et al., 2016). This concept 
is underlying the importance of dyadic relationships and hierarchical structure 
within a group of dairy cows and all the interindividual relationships as well as 
their effects on the functionality of farm environment. The defying principles 
and analysis of these relationships include not only direct interactions occurring 
between the individuals but also take into consideration such parameters as 
proximity between animals, animal distribution and their spatial preferences 
(Gygax et al., 2010).  

There is evidence (Seyfarth and Cheney, 2015) showing that the consequences 
of regroupings and changes in social groups of dairy cows and their linkage to 
possible health and stress-related deviations are not always considered in 
everyday farm practice. Therefore, these problems require more solid knowledge 
to create the set of strategies for assuring environment oriented towards the 
animal welfare (Kondo et al., 1989).  

The occurrence of agonistic interactions within the established groups of dairy 
cows is directly linked to some new individuals entering these groups, as studies 
suggest (MacKay et al., 2014; Boyland et al., 2016). Prolonged conflicts and 
need to re-establish previously formed social hierarchy/dominance order could 
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escalate and lead to severe injuries and even affect the safety of the working 
environment in the dairy barn (Proudfoot, Weary and von Keyserlingk, 2012). 
To understand the underlying reasons for this, one should remember that cows 
form preferential social bonds (Bergman and Beehner, 2015) and these bonds 
could vary depending on the resource or situation, as well as actual health state 
of the individual. There are different indicators (social interactions 
expressed/performed) that could indicate the degree of involvement of the 
individuals and thus serve as important assessment parameter for animal 
caretakers or veterinarians. With increasing knowledge and scientific evidence 
related to the importance of social environment for dairy production, there is the 
demand for information on optimal management strategies (e.g. group size, 
stocking density, the optimal number of re-groupings and such). 

1.6. Flooring as one of the housing factors influencing cows’ behaviour 

One of the substantial factors related to animal well-being is the knowledge of 
how the housing and management in a dairy barn could affect each other and 
animals (Barkema et al., 1998; Schreiner and Ruegg, 2003). It is essential for 
farmers to be aware of how the building and construction of the dairy barn will 
influence cows’ behaviour and health in relation to production performance. 

Among one of the most crucial housing parameters having the direct relation to 
the ease and will of cows to perform/express behaviours is flooring (Telezhenko 
and Bergsten, 2005). The floors in modern cow barns often consist of concrete, 
which is harsh and abrasive. Cows spend a substantial amount of their time 
walking or standing on different surfaces, making it easier to qualitatively and 
quantitatively assess the parameters having the direct impact on health or 
performance (e.g. lameness, mounting behaviour, comfort) (Telezhenko, 2007). 

Studies have shown that increased social and agonistic activity in modern 
livestock housing systems exacerbates the leg problems and lameness (Cook, 
Bennett and Nordlund, 2004). Lameness in cows is common and a serious 
concern, especially for first calving heifers. Currently, too many young heifers 
are culled before even reaching the reproductive state. Many of these animals 
are also treated with antibiotics with questionable results and when there are 
non-antibiotic alternatives available (Bergsten et al., 2017). Such a development 
does not correspond with values such as resource efficiency and sustainability, 
and it is questionable whether the use of painkillers may be more efficient. Thus, 
there is a need to improve flooring in group housing facilities for cows, to reduce 
the risk of leg problems by prevention strategies rather than merely treating the 
problem with antibiotics (Vokey et al., 2001).  

Slatted concrete floors are commonly used in dairy barns for aisles, feeding and 
waiting areas, e.g. before milking. The design of slatted floors should include 
good drainage capacity obtained by the slot width or the void ratio (Magnusson 
et al., 2008; Platz et al., 2008). While ensuring the good drainage capacity of the 
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floor by adjusting void ratio, the adequate claw support should also be kept in 
mind. One of the direct effects of changing the void ratio will be increased or 
decreased hygiene, which could be then correlated with several health/welfare-
related parameters (e.g. risk of mastitis, the risk of leg injury due to slipperiness,  
cleanliness of animals and so forth). The construction of the slats must consider 
this together with the length of the slats and the load from the weight of the 
animals on the slats to dimension the load strength. Presently, the calculation of 
the strength of the slats is set by a European standard which is entirely adopted 
by Sweden (SIS, 2007). The loads used in the calculations are based on the type 
and mass of animals and put into load classes. Three variable characteristics 
loads shall be taken: vertical characteristic linear and point loads and a horizontal 
characteristic point load. However, the calculation of load strength considers a 
twin or a multiple slat construction instead of the prevalent single beams used in 
Sweden. This is the situation where the application of computer vision 
techniques for tracking cows in the specific areas of interest could provide 
valuable information on spatial distribution of individuals and help in the 
evaluation of construction elements (e.g. actual load on concrete beam).  

1.7. Precision Livestock Farming (PLF) and computer vision as modern 
solutions for continuous animal surveillance 

According to Whates (2007), the Precision Livestock Farming (PLF) approach 
is “The application of the principles and techniques of process engineering to 
livestock farming to monitor, model and manage animal production.” 

The housing of cows in large groups requires a sound knowledge of the cow’s 
basic social behaviour, an ability to monitor and understand the needs of 
individual animals within the group and appropriate care interventions to prevent 
health problems (Dominiak and Kristensen, 2017). However, so far no 
practically useful technology to monitor individual animals in new, sometimes 
“de-synchronised” environments, is available (Giot, El-Abed and Rosenberger, 
2013; Redmon et al., 2016). Therefore, a sensor-based PLF approach could 
become an efficient aid for the animal care providers and provide tools for 
automatic surveillance of the animals and pre-clinical indicators of health 
problems (Rutten et al., 2013). Monitoring of individual animals through sensor 
technologies within different production systems and care strategies, in 
combination with health recordings, may accumulate crucial data about essential 
principles for good animal health and animal well-being. This knowledge could 
also help in reducing the stress levels among cows (Tullo et al., 2016). 

Due to the rapid development of the dairy industry and overall complexity of 
everyday farm work (e.g., advanced feeding and management techniques, heat 
detection, health control on individual and heard levels, etc.), visual assessment 
of individuals by farmer becomes ineffective and requires large investments of 
time (Busse et al., 2015). Interestingly, the first attempts at investigating the 
possibilities of computer vision approach for livestock production were made 
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already in the late 80s, showing the potential for further development (Marchant, 
1988a). However, certain levels of hardware development, as well as the 
established methodology for visual signal processing, were needed to establish 
the full potential that image technology could bring to animal surveillance (Van 
der Stuyft et al., 1991).  

There are a number of ways to use image analysis in the animal production, e.g.: 
automatic monitoring of locomotion (Miguel-Pacheco et al., 2014), oestrus 
detection (Tsai and Huang, 2014), interactions within sexually active groups 
(Sveberg et al., 2013), pig aggression (Oczak et al., 2013) and animal density in 
a poultry house (Kashiha et al., 2013). However, problems with identifying and 
differentiating individuals on mixed backgrounds with nonhomogeneous 
illumination for the existing segmentation methods slow the development of 
feasible solutions for commercial farming. Therefore, new techniques for object 
tracking and recognition are needed.  

1.8. Available solutions for animal tracking and identification 

The use of different computer vision based systems for animal tracking and 
monitoring in dairy barns is rapidly developing an area within PLF research 
field. There are solutions suited for segmenting animals from the background in 
different areas of a dairy barn and distinguishing between different behavioural 
states (e.g. standing, laying down, moving) (Porto et al., 2015). Combining these 
methods with advanced machine learning approach (Simonyan and Zisserman, 
2015), it is possible to create an algorithm capable of complex scene evaluation 
and multifactorial analysis of a dairy barn environment in relation to the desired 
hypothesis.  

To monitor farm animal's behaviour and assess all the occurring interactions, 
one should be able to quantify and qualify performed interactions in a reliable, 
repeatable, and continuous manner (Cangar et al., 2008; Porto et al., 2013; 
Guzhva et al., 2016). The focal observations and manual analysis of the recorded 
video material are two of the most common approaches used for these purposes. 
Such manual approach is time-demanding and is largely based on a skill of the 
person performing the annotations and interpretation of the performed 
behaviours (Haidet et al., 2009). Another important feature is the ability to 
correctly identify the animals in overly crowded scenes, under varying 
illumination, during different hours of the day.  

The need for robust identification of individuals has become a multi-dimensional 
problem involving monitoring of production performance as well as individual 
health and the well-being of animals in dairy herds (Dziuk, 2003; Tullo et al., 
2016; Busse et al., 2015; Carne et al., 2009). During the past decade, several 
alternatives for animal tracking and identification were proposed: WI-FI-, RFID-
, GPS-, ultra-wideband and Bluetooth-based products (Ahrendt et al., 2011; 
Nadimi et al., 2012; Rutten et al., 2013; Awad, 2016). Among all methods 
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mentioned above, RFID-modules gained significant popularity over the course 
of past years due to certain advantages over the other methods. These advantages 
include the enormous potential for data storage, affordability and scalability, 
relatively long battery life. However, nevertheless all the advantages, RFID-
modules do still require a considerable amount of work for setting them up: 
manual marking of animals with RFID-tags, protocols and infrastructure, 
integration into existing on-site digital ecosystem (Busse et al., 2015; Carne et 
al., 2009). Therefore, considering the increasing average size of dairy herds and 
number of individuals requiring monitoring, there is a need for a flexible and 
non-invasive system capable of alternative ways for individual tracking and 
identification (Banhazi and Tscharke, 2016).  

As one of the alternatives, computer vision systems could ensure more frequent 
sampling, larger sequences recorded and analysed (Cangar et al., 2008; Sellers 
and Hirasaki, 2014; Tullo et al., 2016). One of the other benefits of using 
computer vision system is the flexibility of the recording setup and many 
features that could be extracted from the video material and used for descriptive 
analysis of the behaviours, locations of animals, identification and more 
(Guzhva et al., 2016). In a case of real-time monitoring and analysis, the need 
for extensive storage capacity is also resolved, as video stream could be assessed 
directly, making the procedure more efficient and suitable for practical on-farm 
use. 

1.9. Importance of dialogue in cross-disciplinary projects and possible pitfalls 

For any animal-oriented project that involves technology and necessitates cross-
disciplinary approach, the first and the most important issue is communication. 
Where animal scientists see behavioural issues, animal-environment related 
problems and different physiological aspects defining the animal as a dynamic 
system, engineers or mathematicians see equations, data structures and hardware 
related problems. Communication barriers and lack of “agreed-upon” 
terminology are the main reasons for slow progress in such projects often 
oriented towards the state-of-the-art development and complex support 
solutions.  

As the personal reflection after four years in a project involving different aspects 
of animal science as well as mathematical and computer sciences sprinkled with 
recent advances in computer vision and deep learning, one should not 
underestimate the importance of simple dialogue. Being lucky enough and 
having insights and practical experience from both camps, there is a need to 
admit that the definition of "animal well-being" becomes almost unbearable task 
while trying to consider all the modelling aspects. Animals are dynamic 
individual systems, with many parameters influencing their behaviour, therefore 
making the classical "black box" approach less viable when it comes to 
continuous analysis of animal health and welfare. To obtain that sound 
knowledge required for even simple forecasting and decision support systems, 
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one should include a number of factors that often come from different 
disciplines.  

Seeing colleagues with "classical" university education covering one, sometimes 
two relatively narrow fields, suffering from an inability to explain their 
hypothesis to somebody working on a different side of the academic umbrella, 
underlines the importance of interdisciplinary communication. The progress and 
advances in such field as Precision Livestock Farming require clear 
understanding and definition of familiar concepts (e.g. animal, behaviour, well-
being, sensor, algorithm, or model).   
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2 Aim of the thesis 

 
The general aim of the project was to investigate the possibilities and limitations 
of image analysis approach for studying dairy cattle behaviour and movement as 
well as take a first step towards the fully automated system for continuous 
surveillance in modern dairy barns. 
 
The aim of paper I was to investigate social interactions between cows in the 
waiting area with four AMS units and to collect data by three top-down view 
video cameras. 
 
The paper II aimed to estimate the presence of claws on individual slats by 
observation of animal distribution on the slatted floor in a waiting area to robotic 
milking. The study was performed to give more substantial background data for 
determining the dimensioning of the strength of the slats. 
 
The paper III aimed to take the first step towards an automated system for 
behavioural analysis and filtering of the recorded video material. 
 
The paper IV aimed to create flexible, state-of-the-art tracking/ identification 
algorithm for multiple objects with near-real-time implementation in crowded 
scenes with varying illumination and based on recent progress in computer 
vision and convolutional neural networks. 
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3 Materials and methodology 

3.1. Animals, housing, and study area 
 

All studies (Papers I-IV) were carried out at the commercial free-stall dairy barn 
situated in Smedstorp, Skåne County, Sweden.  
 
There were 250+ Swedish Holstein cows during the time of studies that had 
access to the Region of Interest (ROI). The cows were milked in four automatic 
milking stations (AMS), (VMS®, DeLaval, Sweden) with a pre-selection of cows 
for milking using a milk-first traffic system. The practical implication of milk-
first system is that animals need (depending on time since the last milking 
session) to go through the AMS unit if they want to access feeding area of the 
barn.  
 
The common waiting area (6 x 18 meters) before entering any of the four AMS 
was used for all the studies. With average (according to the statistics from VMS) 
milking rate of 2.4 per animal per day, the rough estimate for daily passage rate 
through the study area was 600 cows. The cows had free access to all four AMS 
at any time during the day. The floor in the waiting area consisted of the concrete 
slats with 125 mm in width and the slat opening of 35 mm.  
 
3.2. Development of video acquisition method and recording setup 
 
Video recordings were made using three Axis M3006-V (Axis 
Communications®) cameras with a broad view angle of 134 degrees. They were 
placed in the ceiling of the barn at the height of 3.6-meters, pointing straight 
down to optimise overview of the study area. There was a significant overlap 
between the camera images to avoid missing events taking place at the border 
between the cameras. See Figure 1 and 2 for some example frames. In total 24 
months (only 4 + 2 months out of those 24 were used for analysis) of video-
material was recorded with the frame resolution of 800x600 pixels, 8-bit RGB 
colour space and a framerate of 16 frames per second to achieve a balance 
between the size of the video file and the quality of the image. The videos were 
recorded using the H264 codec for compression.  
 
 
 
 
 
 
 
 
Figure 1. Example frames from the recorded video material. 
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Figure 2. The frames from Figure 1 projected onto the cow shoulder plan and stitched together to 
form the overview over the entire waiting area. 

 
3.3. Calibration of cameras and plane estimation of the study area 
 
To fulfil the specific research questions regarding dairy barn slatted floor and 
distribution of animals on it, the correct transition of image coordinates into real-
world coordinates was crucial. To assure that all the coordinates were reliable 
and that the observer/algorithm was able to identify all the objects correctly, 
three images were merged and synchronised after applying normalisation 
algorithms. Setups with only one camera (even with wide observation angle) 
could suffer from some image artefacts (e.g. radial distortion, tangential 
distortion, occlusion between objects/cows) therefore; it was decided to use three 
cameras for a relatively small ROI in the waiting area.  
 
The classical pinhole camera model augmented with a lens distortion model was 
used to model the camera. The camera setup was calibrated by placing markers 
on the walls and stands in the middle of the waiting area (see Figure 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



21 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The location of the calibration markers on the virtual floor (1.49 meters above the real 
floor) used to calibrate the cameras. The crosses indicated marker positions and next to the cross is 
a label used to identify a specific point. 

 
They were all placed at the same height and thus defined a plane. The mean cow 
height in the barn was measured, and the plane was placed at cows’ shoulder 
height. This height was estimated to be 1.49 meters with a standard deviation of 
0.05 by measuring twelve random cows in the study area. This was the plane in 
which all of the landmarks considered below, except for the head, were expected 
to be found. By projecting detected landmarks back and forth between the 
camera images and this plane, detections from different cameras could be 
matched. In addition to the markers, the focal length and lens distortion 
parameters were provided by the camera manufacturer. The lens distortion was 
removed, and a homography was estimated that projected each of the camera 
images onto the cow shoulder plane. At the borders between the cameras, the 
image became strange as cows there were viewed from different directions on 
opposite sides of the border. However, this image was only used for illustration. 
There was enough overlap between the images to allow them to be processed 
one by one and then the resulting detections could be combined using this 
calibration. By using homogeneous coordinates, the pinhole camera model that 
forms 2D image pixels, x = (x1, x2, 1), by projecting world 3D points, X = (X1, 
X2, X3, 1), using a camera matrix, P, could be formed as: 
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λx=PX=K(R t)X= ൭
f 0 p୶

0 f p୷

0 0 1

൱ (R t)X                                 (1) 

 
  
where f is the focal length of the camera and (px, py) its principal points, while t 
and R define its 3D position and orientation. This projective image was then 
distorted using some lens distortion function: 
 
          (2) 
 
Here a radial fisheye lens distortion model was used. By using nominal image 

coordinates, xn = K-1x and = ( 1 – px, 2 – py, 1), the inverse of this 
distortion function could be expressed as: 
 
                       
      (3) 
 

where ki is the set of distortion parameters and |x| =  . Note that with this 
distortion model, the focal length becomes part of the distortion and Equation 3 
allows the pixels produced by the camera, x, to be transformed into nominal 
projective coordinates, xn, directly. The distortion parameters, ki, was provided 
by the manufacturer and the principal point, (px, py), was assumed to be at the 
centre of the image.  
 
In the camera images, the markers placed in the cow shoulder plane were 

allocated manually and their distorted coordinates, , were registered by 
clicking on them. Also, real-world distances between the marks were estimated 
using a laser distance meter. From these measurements the world coordinates, 
xs, were calculated using multidimensional scaling (Young and Householder, 
1938). One homograph, H, for each camera was fitted to the point 
correspondences allowing the pixels to be projected onto this plane using: 
 
              (4) 
 
This generated a common coordinate system for all of the cameras which 
allowed detections from each of the cameras to be projected into this common 
frame. That way different cameras could be used in different parts of the waiting 
area. To minimise the amount of occlusion taking place, each part of the waiting 
area should use the closest camera to get a view from as straight above as 
possible. For that, the camera position in the cow shoulder plane needs to be 
estimated. That could be achieved by RQ factorisation of H (Hartley and 
Zisserman, 2004), 
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                                                                                                  (5) 
 
 
 
were the camera position is given by c = (cx, cy, 1). Figure 2 shows an image 
where each pixel has been chosen from the camera closest to that pixel, i.e. with 
minimum |xd − c|. The final crops used from each camera consisted of the pixels 
in this stitched view, with a border of 75 pixels added on each side to make the 
overlap 150 pixels, which roughly corresponds to the length of one cow. 
 
3.4. Data preparation and development of seven-point shape model for 
behavioural studies (Paper I) and WatchDog/Tracker algorithms (Paper III and 
IV) 
 
To assure that data in video sequences with behaviours was representative for 
the whole period of recordings and to assure the variability of the behavioural 
events, we used a script randomising the choice of frames in the pool with video 
sequences. This script randomly picked up sequences of frames with potentially 
interesting events (total number of annotated frames in all the selected 
sequences, n = 8370, with an interval of five frames between every annotated 
frame) from the whole set of 288 h of videos. An experienced observer 
confirmed the presence of social interactions in the video sequences. To prepare 
images from the sequences for further analysis, manual frame segmentation was 
used. To increase the speed of the initial segmentation, an interactive 
segmentation tool for Matlab proposed by Gulshan et al. (2010) was used. This 
tool used a new state-of-the-art approach based on the improved geodesic star 
convexity method. The social interactions were identified based on the 
alignment of geometrical shapes segmented from the image and positively 
identified as cows by experienced observers (Figure 4).  
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Figure 4. Example of the shape model (landmark points assigned to every animal). 

 
To achieve accurate identification of behaviours by both observer and algorithm, 
seven landmark points (head, left and right shoulder, front middle, left and right 
hip and back middle) were then manually assigned to every cow present in an 
image. The information from every landmark point, containing image 
coordinates and absence or presence of occlusion, was stored in .JSON files, 
named to match the unique image code with camera number, date and time 
stamps. One group of the segmented object pixels with the segmentation index 
value was defined as a cow. The identification of social interactions was based 
on the ethogram adapted from Rousing and Wemelsfelder (2006) and all the 
interactions between pairs of cows were annotated into one of five states:  
 

 Body sniffing: one cow was having her muzzle close (stretched 
towards) or touching the body of another cow; 

 Body pushing: one cow was pressing (or staying very close) her body 
against the body of another cow; 

 Head butting: one cow was having her forehead positioned (directed 
blow movement) towards the head of another cow; 

 Head pressing: one cow was having her forehead pressed to the head, 
neck or body of another cow; 

 No interaction; 
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The CNN was trained using stochastic gradient descent with momentum 
(Rumelhart et al., 1986). An initial learning rate of 1.0 was used, and it was 
lowered by a factor 1/10 each time the validation loss flattened out. A batch size 
of 256 and a momentum of 0.9 was used. The network was regularised using 
weight decay of 0.0001 and batch normalisation (Ioffe and Szegedy, 2015). The 
CNN-detector was trained from the manually annotated data. Utilising the full 
set of annotated frames (n = 8370) to get unbiased results, training and testing 
of the detector was performed by using 10-fold cross-validation. A classification 
system, investigating features extracted from pairs of cow’s shape models, was 
developed (Figure 4). Every cow shape model went through Bookstein 
normalisation (Bookstein, 1997) and every pair of cows was investigated 
independently, via symmetric training, forming two training examples for input. 
From every training example, positions and distances for every landmark point 
were extracted (24 positions plus 49 distances, resulting in 73 features per 
training example) and used for investigating possibilities of interactions. 
Furthermore, an outline of each shape model formed by six line segments and 
the closest point to each point on the other cow was found. A single number for 
each such closest point was formed by unfolding the outline into a straight line 
and rescaling each segment to place the connecting endpoints of the segments at 
the integer positions 0, 1, . . . 5. 
 
In each frame, each ordered pair of cows was the source of one potential 
interaction. Our interaction-detector investigated each pair of cows, and the 
output of this detector was a probability, that indicated the likelihood of the 
detector for this particular pair of cows performing each interaction. When the 
detector was certain that there was an interaction going on, this detection 
probability was close to 1. If the detector was certain that there was no 
interaction, it was close to 0, and when it was uncertain, it was close to 0.5. In a 
scene with six cows, there would be 30 ordered pairs investigated. This gave 30 
different probabilities:  
 
pi for i = 1 … 30        (6) 
 
These were combined into a single probability (one for each behaviour) for the 
entire frame giving the probability that any of the pairs was in a state of, e.g., 
‘Head Pressing, which gave the detection probability for the frame: 
 
                  (7) 

     
 
3.5. CNN cow detector architecture 
 
The detector was split into two steps. The first step (the landmark CNN) is a 
fully convolutional CNN that detects the landmarks in the image. The second 
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step (the cow CNN) is another CNN that uses the probability map produced by 
the first CNN as input and detects the cows and their orientation (Figure 5). 
 
 
 
 
 
 
 
 
Figure 5. The architecture of the cow detector. 

 
Only four of the landmarks were used for the landmark CNN: head, front middle, 
cow centre and back middle. The discarded landmarks left and right shoulder are 
close to the front middle while the discarded landmarks left and right hip are 
close to back middle. This was done because these landmarks do not provide 
much extra information about the cow’s position or orientation and including 
them would slow down the experiments. 
 
Also, due to the max-pooling used in the CNN, the output feature map has a too 
low resolution to separate such close landmarks well, which means that they 
might compete for the same pixels in the output probability map. That might 
harm performance. 
 
However, extending to use more landmarks is straightforward. The architecture 
of this network is a fully convolutional CNN similar to VGG (Simonyan and 
Zisserman, 2014) with batch normalisation (Ioffe and Szegedy, 2015) after each 
convolution step. That means that instead of fully connected layers at the end, 1 
× 1 convolutions were used. Only valid outputs from the convolutional and 
maxpool layers were kept. Applying the network to a high-resolution image 
would apply the landmark detector to every position in the image, resulting in 
an efficient implementation of a sliding window detector. It could be applied to 
images of resolution 118 + 32nw times 118 + 32nh and would produce an output 
image of resolution nw × nh with five channels. Each of the channels contains the 
detection probability of each of the five classes (four landmarks and one 
background class).  
 
A pixel at (x, y) in the output probability map corresponds to landmark detection 
at position (32x + 75, 32y + 75) in the input image. During training, nw = nh = 1 
was used, and the net was trained on patches of 150 × 150 pixels extracted from 
the input images. The positive examples were centred on the landmarks and 
randomly jittered 16 pixels (as the distance between output pixels is 32 input 
pixels). Negative patches were selected at centres more than 32 pixels from any 
landmark. In addition to the positive and negative patches a set of “do not care” 
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patches was selected at random centres at distances between 16 and 32 pixels 
from landmarks. The ground truth (Golden Standard manually confirmed by an 
observer) probability of these patches belong to the class of the landmark was 
set to 0.5, and the probability that they are ground was set to 0.5. In some cases, 
several landmarks appear within 32 pixels of the patch centre. In that case, the 
probability mass was distributed uniformly among all involved classes. Also, all 
patches were randomly rotated 180 degrees. The weights of the convolutions 
were initiated using random samples drawn from a Gaussian distribution 

truncated at 2, with standard deviation  =ට
ଶ


, where n is the number of inputs 

(He et al., 2015). Once the net was trained, the step length of the last maxpool 
layer was reduced from two to one to increase the output resolution. After that 
pixels at (x, y) in the probability maps correspond to detections at (16x + 75, 16y 
+ 75) in the input image. During testing nw and nh depend on the size of the input 
frame which varies from camera to camera.  
 
The second step is another fully convolutional CNN that works with the 
probability map produced by the first CNN as input and tries to detect the cows 
and their orientations. The full circle is divided into 32 equally spaced 
orientations which generate 32 different oriented cow classes. In addition to that, 
there is the "no cow" class, which makes the total number of classes of this CNN 
33. The input probabilities were turned into log likelihoods as it made more sense 
when summing them together. Then the network consisted of a single 13 × 13 
convolutional layer.  
 
The same resolution was kept after each layer which means the relationship 
between pixels coordinates in the output map and the original input frame was 
the same as for the landmark CNN. The net was then applied to the fully rectified 
training images producing probability maps of 44 × 46 × 5 pixels. These were 
used as training examples for the cow detection net (without splitting them into 
patches). Random rotations 180 degrees and translations  16  pixels were 
applied to both input images and their annotations. This means that all the 6399 
annotated cows could eventually be used as a positive example to each of the 32 
orientation classes. The output ground truth probability maps of 44 × 46 × 33 
pixels were constructed from the annotations by projecting each cow, i, centre 
point into the probability map as (xi, yi) and calculate its angle ai as the angle of 
the line between front middle and back middle landmarks. Then a binary 44 × 
46 × 33 mask B (x, y, c) is formed, containing a background mask: 
 
 
 (8) 
 
 
and 32 orientation masks: 
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 (9) 
 
 
 
 
for 0 ≤ c ≤ 31 and all i. The adist function calculates the absolute angular distance 
between two angles. The ground truth probability masks are then produced by 
normalising B to sum to 1 for each pixel. Finally, the network is trained using 
the same hyperparameters as for the landmark CNN. 
 
3.6. Classification of claws on slatted floor models (Paper II) 
 
After the network produced the detections, overlapping detections were removed 
by a pruning state. The Figure 6 below shows some results from the detector 
where the detected cows are marked with rectangles and the detections removed 
by the pruning are marked in red.  
 
 
 
 
 
 
 
 
 
Figure 6. Example of the output image from the cow-detector. 

 
The cow detector only generates a centre position and orientation of each cow. 
To estimate the position of the claws from such detections, a statistical model 
was formed from the manual annotations. All the annotated cows were 
normalised by translating their centre to (0,0) and rotating them to align their 
body with the x-axis. The normalised positions for all four claws were then 
plotted in different colours in Figure 7 below, and a mean cow shape was 
estimated by taking the mean position of each claw. This mean shape was plotted 
as a red H-like shape with endpoints of the lines marking the claw positions. 
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Figure 7. Normalisation positions for all four claws and their covariance matrix. 
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Figure 7 shows that the distribution of the claws given the cow position is heavily 
skewed, that means that fitting, for example, a Gaussian distribution to it, will 
not give a perfect fit as the Gaussian is symmetric.  
 
Also, the positions of the claws are highly correlated to each other as could be 
seen in the covariance matrix whose elementwise absolute values are plotted 
above. It shows that the correlation between the coordinates of the claws, (xfl, 
yfl) and (xfr, yfr) for the front claws as well as (xbl, ybl) and (xbr, ybr) for the 
back claws are when compared to the variances on the diagonal. Instead of trying 
to find a parametric distribution that could be fitted well to this data, a non-
parametric approach was used. The entire set of annotated and normalised cows 
was stored as a representation of the claw distribution. To sample from this 
distribution, a random cow was drawn from this set.  
 
To simulate a floor with 125 mm wide slats and slot openings of 35 mm, a grid 
with 160 mm wide rectangles was placed in the image (Figure 8), representing 
the area of the load of a claw on individual beam. 
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Figure 8. Projection of the virtual floor over the barn floor. The floor is represented by a blue grid 
with one grid element for each 160 mm slat+slot. The annotated cows are shown as red H-shapes 
where the endpoints indicate the positions of the claws. It is also possible to project the annotated 
cows from the images into the coordinate system of the virtual floor, as is shown in the second row 
of the figure. 
 
The rationality here is that if a claw was placed over the opening, the full weight 
supported by that claw would still be placed on the slat. Different heights and 
placements of the rectangles were investigated. The number of claws placed in 
each rectangle was then calculated and divided by the total number of observed 
images. This gave a probability distribution over the number of claws on a 
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random slat at a random point in time. This analysis was performed both using 
the manually annotated cows (1722 images) and using automated detections on 
a separate set of images (5861 images) that was not used during the training of 
the detector. For each of the cows detected by the CNN detector, a random 
sample was drawn from the claw distribution presented above. This sample was 
then translated and rotated to be placed at the detected centre at the detected 
orientation. By comparing those results, the precision of the automated process 
could be estimated. From the probability of there being exactly n claws on a 
random slat at a random time, p(X=n), the probability of there being n or fewer 
claws can be estimated as a sum from 0 to n: 
 
                                                                   (10) 
 
 
The probability distribution of the worst case at any random point in time is 
found by taking the maximum over all the slats. On a floor with m slats, the 
probability of there being n or fewer claws on the maximum is that same as there 
being n or fewer claws on all the slots. If the slots are assumed to be independent 
this can be estimated as: 
 
                                                                   (11) 
 
3.7. Proposed tracking algorithm (Tracker) 
 
The Tracker optimises over sequences of detection likelihoods produced by the 
CNN and is thus able to utilise all the information provided by the CNN, using 
per frame non-maximum suppression. The tracking algorithm used the 
probability map produced by the CNN directly, without first constraining it to a 
few discrete detections. The probability map consists of probability, ds,t, of a cow 
being detected in each of discrete sets of possible states, s    𝕊, in frame t.  
 
These states typically consist of the location of the objects (i.e. the coordinates 
of the probability map produced by the CNN), but could also be more 
informative as in the case above where the detector also detects the orientation 
of the cows. Each state, s    𝕊 then consists of a position (x; y) and an orientation 
, i.e. s = (x; y; ) for some discrete sets of | 𝕊 | possible states.  
 
The proposed tracking algorithm does not depend on the structure of those states 
and below 𝕊 refers to a general discrete set of states. The only assumption made 
about the states is that two different objects could not be in the same state at the 
same time, which makes sense as the position of the object typically is the part 
of its state.  
 
The state space was augmented with a probabilistic motion model that described 
how the state of an object was allowed to move from one frame to another. This 

p(X £n)= p(X = i)
i=0

n

å
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model was defined as a probability distribution, p(st|st-1), over states st in frame 
t given the state of the object, st-1, in frame t-1. Any such model could be used, 
but typically the model would assign high probabilities for the object to retain 
its current state or move to a neighbouring state, while it assigns low 
probabilities to it jumping further away.  
 
The gates described above were used to indicate when objects enter or leave the 
scene. Each gate was associated with a specific state. When an entrance gate, 
with state sin, indicated that a new cow has entered the scene, a new object was 
instantiated with state sin. Also, when an exit gate with state sout indicated that a 
cow has left the scene, the object that currently is most likely to be in state sout 
was removed from the scene. This means that the remaining parts of the tracker 
could operate under the assumption that the number of objects stayed known and 
constant from one frame to the next. For each state s    𝕊 the tracking algorithm 
could maintain os,t, which is the identity of the object that is currently most likely 
to have the state s and ps,t, which is the probability that the object os,t has state s 
in frame t. These values were updated recursively by assuming that os,t-1 and ps,t-

1 are known and for each state s calculate the most likely previous state: 
 
 
        (12) 
 
 
This allows os,t-1 to be propagated using: 
 
       (13) 
 
 
To propagate the probabilities, the observation probabilities, ds,t, produced by 
the CNN detector are used: 
 
       (14) 
 
 
These propagated probabilities will no longer sum to one. By assuming that the 
object is still present and its state is one of the states for which it is currently the 
most likely object, a probability distribution for the current frame could be 
formed by normalising the propagated probabilities: 
 
 
          (15) 
 
 

e
s
= argmax

ŝ
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The second part of that assumption is an approximation. For distant objects it is 
insignificant, but for close objects, it might affect the results. Finally, the current 
state of each object, o, is estimated as: 
 
 
      (16) 
 
 
3.8. Real-ID from passive data-markers 
 
As for the identification of individuals, tracking algorithm presented in this study 
utilises data-markers already integrated into modern robotic dairy barn 
environment. All the manufacturers producing equipment for automatic milking 
systems have RFID-tags on animals for accessing selection gates, milking 
stations, feeders. This means that the information capable of identifying the 
individual cow is already present and saved in the computer logs every time 
animal moves/takes action. By combining these passive data-markers with a 
robust visual tracking system, non-invasive identification of individuals in 
different situations/parts of the barn made possible. As the ow of animals is 
usually controlled by the system of selection gates and there are at least several 
entry points to the scene of the interest, the opportunity to back-trace the real-id 
number is usually higher with a larger number of registrations per animal. The 
gates register when cows enter or exit the scene, and this information is together 
with the identification of the cow is passed to the tracker, which tracks the cow's 
movements while in the waiting area. However, for this study and to further 
investigate possible limitations of the proposed system, only one registration at 
automatic milking station was used for identification. The tracker detected and 
followed cows to the entrance to the milking station, where the system read the 
real-ID number. The detector then assigned this real-ID number to a detected 
cow and followed her along the tracklet backwards to the moment of actual entry 
to the waiting area. 
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The results section aims to present findings from different modules that form the 
WatchDog system and follow the logical as well as the chronological order of 
system development. These modules were developed and tested in the following 
order: an algorithm for the behavioural analysis (Behavioural Detector module), 
an algorithm for virtual/real floor assessment and claw placement (Floor/Claw 
module), an algorithm for filtering video material (actual WatchDog module) 
and at last an algorithm for tracking and identification (Tracker" module). 

 
4.1. Behavioural Detector module performance 
 
The results showing the accuracy of the detector for two sets of behavioural 
events (Head Pressing and Body Pushing) within the tested sequences of frames 
are presented in Figures 9 and 10. The overall performance of the detector and 
accuracy for all five classes of behavioural events are presented in the form of 
confusion matrix (Table 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 Results 
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Table 1. “Behavioural Detector” module performance while distinguishing between five different 
behavioural states (no interaction – no_int, body pushing – body_push, head-butting – head_butt, 
head pressing – head_press, body sniffing – body_sniff) and compared to Ground Truth values. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 9. The accuracy of the detector for the Head Pressing behaviour in a test fragment. 

 
 

 

 
CLASSIFICATION RESULTS 

no_int body_push head_butt head_press body_sniff 

 
 
 
 

GROUND 
TRUTH 

no_int 6719 1 0 0 2 

body_push 471 217 5 16 3 

head_butt 225 0 52 11 0 

head_press 318 18 11 96 3 

body_sniff 107 0 0 55 40 
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Figure 10. The accuracy of the detector for the Body Pushing behaviour in a test fragment. 

4.2. Floor/Claw module performance for slatted floors with different properties 
(case study) 
 
The first study compared 160 mm wide slats with 560 mm wide slats. The area 
studied was 16 meters wide, which means that 100 slats were needed to cover 
the entire area if they were 160 mm wide, while 29 was enough for the 560 mm 
case. The slats were assumed to cover the entire height of the area (5.3 meters). 
Experiments were performed both with manually annotated cows and with 
automatically detected cows. The manual cases consisted of 1722 images 
randomly sampled from a random camera at a random time. This resulted in a 
total of 14930 hooves and 77847 slat observations for the 160 mm case and 
23079 observations for the 560 mm case. The automated detections were 
performed on 5861 images resulting in 508960 hooves and 2631490 (23079) slat 
observations for the 160 (560) mm case. Results are shown in Figures 11 and 12 
below. Results are presented both for 160 mm slats and for 560 mm slats. 
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Figure 11. The claw distribution per slat per unit of time modelled for 160 mm (top) and 560 mm 
(bottom) scenarios. 
 
 
 



39 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. The maximal load on a slat with n or less claws modelled for 160 mm (top) and 560 mm 
(bottom) scenarios. 
 
 



40 
 

The automated results correspond very well with the manual versions, and the 
narrower 160 mm slat-zones received significantly fewer claw-placements as 
would be expected. The automated approach slightly underestimates the 
probabilities as compared to the manual approach. This is probably because the 
detector sometimes could fail to detect a cow.    
  
4.3. WatchDog module evaluation results 
 
4.3.1. Cow detection 
 
To evaluate the system performance, 6400 frames spread over the entire test-
recording were processed by the CNN. It was not ensured that none of the 
training frames were chosen here, but since they both were chosen randomly 
from a set of 400 million frames, the chance that they are mutually exclusive is 
97.2%. A simple algorithm extracting frames containing two or more cows was 
implemented. That would be the most basic requirement for interaction, and 
already this simple criterion, discarded 38% of the recordings. To verify that the 
discarded video was uninteresting, 500 random frames selected by the watchdog 
and 500 random frames discarded by the watchdog were automatically annotated 
using the CNN results and studied manually. 
 
Cows intersecting the borders were ignored in the sense that the images were 
considered correct regardless of whether such border cases was detected or not. 
A detection was considered correct if its rotated bounding box overlapped more 
than 50% of the cow back. A histogram of the number of cows detected per 
frame is presented in Figure 13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



41 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. A histogram of the percentage of  cows detected per frame. Frames with 0 or 1 cows 
were considered uninteresting, which according to this detector is 38% of the frames. 

 
Some example detections are shown in Figure 14. Two of the reasons for 
mistakes are inter-cow occlusion and the combination of landmarks from 
different individuals. 
 
The evaluation runs at 6.55 fps on a single Tesla K20m GPU, using single 
precision floats. 
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Figure 14. Top row: Three images correctly interpreted (all cows detected and no extra detections). 
Bottom row: The three images were the errors were made (one missed cow and two extra 
detections). 

 
4.3.2. Interaction detection 
 
To remove even more of the uninteresting video, an additional feature, the 
minimum distance between the cows in the scene, was also extracted. Then a 
short sequence containing a lot of interesting interactions consisting of 187 
frames uniformly sampled over 10 minutes was extracted and manually 
annotated by an expert. Five different interactions were manually identified: 
body pushing, butting, head-butting, head pressing and body-sniffing. Frames 
where any of these interactions were present, were considered interesting and all 
other frames uninteresting. The minimum cow distance, d f , for each frame f , 

was extracted. It is believed to be a useful feature as cows need to be close to 
interact. Also, the cows need to be in close proximity for some period of time, 
so we take the maximum over nine consecutive frames and use as a feature, x f  

= max f -4≤ I < f +4 di for the frame f . 

   
By thresholding x f  a simple detector is formed. By choosing different 

thresholds, the results could be varied between not detecting any uninteresting 
frames and not missing any interesting frames. The per frame ROC curve in 
Figure 15 shows the amount of the interesting frames detected (true positives) 
as a function of the amount of the uninteresting frames remaining (false 
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positives) for different thresholds. It is, for example, possible to discard 20% of 
the uninteresting frames while only losing 3% of the interesting once. If it is 
acceptable to lose more of the interesting frames, even more of uninteresting 
frames could be discarded as detailed by the curve. 
 
An interaction will consist of multiple frames, and in many situations, it is 
enough to detect a single one of those frames as the user then could be allowed 
to also look at adjacent frames. Figure 15 also contains a per interaction roc 
curve that shows the amount of the interactions for which at least one frame was 
detected (true positives) as a function of the amount of the uninteresting frames 
remaining (false positives). It shows that it is for example possible to discard 
35% of the uninteresting frames without losing any of the interactions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Results for different thresholds, with the number of interesting frames (in orange) or 
interactions (in red) kept (true positive rate), plotted as a function of the number of uninteresting 
frames kept (false positive rate). 

 
Note that this is in addition to the filtering by the number of cows present. By 
combining the two filters, 50% of the uninteresting frames could be discarded 
while only losing 4% of the interesting frames. If one frame per interactions is 
enough, it would be possible to discard 60% of the video without losing any 
interactions. 
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The system was evaluated on several levels: cows, frames and interactions. 
Single cows were detected with a hit rate of 97% and a false alarm rate of 2.9%. 
Single frames were perfectly interpreted 92.8% of the time. Frames with only 
zero or one cow present were correctly identified 99.5% of the time. All 
interactions were detected while discarding 60% of the video as uninteresting. 
 
4.4. Tracker module performance 
 
To evaluate the tracking system, two one hour recordings were chosen. One 
recording with only a few cows in the waiting area during the night (with 
artificial lighting only) and another recording from a crowded scene (during the 
day when the sun shines in through the window, Figure 16). The exit time and 
gate found by the tracker for each cow, that both entered and exited the scene 
during the recording, were compared with the exit times produced by the 
selection gates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Example frames, with tracked objects marked, from the crowded, sunny (top) and easy 
(bottom) sequence. The red ID-numbers are initiated and assigned by the selection gates and placed 
on the correct cow by the tracker, while the blue numbers are placed manually in the first frame 
and then further tracked.  

 
This difference could be up to 60 seconds even for the correct tracks, as one of 
the gates was located outside the visible area. Results are shown in Table 2 and 
Table 3 respectively.  
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Table 2. Complete trajectories of the simple sequence with columns indicating: 
cow id-number, tracker found the correct exit gate, time-difference between 
tracker exit and exit registered by the gate in seconds and the total length of the 
track in seconds.  
 

 
 
 
 
 
 
 
 
 
 
 

COW-ID  CORRECT 
EXIT  

GATE DIFF. (SEC)  TRACK LENGTH (SEC)  

1832  1  2.38  26.06  

1662  1  8.12  46.88  

1733  1  6.44  137.44  

328  1  3.88  170.81  

1553  1  4.06  374.94  

631  1  5.19  86.44  

1761  1  42.88  73.94  

1562  1  2.50  227.00  

1852  1  56.12  129.19  

1758  1  2.62  37.50  

1803  1  22.94  27.06  

1833  1  12.38  71.81  
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Table 3. Complete trajectories of the crowded sequence with columns indicating: cow id-number, 
tracker found the correct exit gate, time-difference between tracker exit and exit registered by the 
gate in seconds and the total length of the track in seconds. The rows below the line are cases when 
the tracker fails. Within parenthesis is the length of the track in seconds that was successfully 
tracked before the tracker failed.  
 

COW-ID CORRECT 
EXIT 

GATE DIFF. (SEC) TRACK LENGTH (SEC) 

1582 1 1.62 1240.44 

1739 1 25.38 1212.25 

1390 1 5.19 360.31 

1549 1 3.12 248.94 

1767 1 0.75 173.94 

1612 1 0.88 32.31 

1776 1 1.31 139.56 

324 1 3.12 75.00 

1634 1 3.06 197.88 

1527 1 1.25 99.94 

1639 1 1.44 151.00 

1792 1 764.75 1193.56 (244.50) 

1541 0 1914.50 380.12 (40.00) 

1761 0 60.62 2126.75 (452.50) 

 
A track was considered correct if cow left the scene through the correct gate and 
within 60 s of her RFID-tag registration by the respective gate. In total there 
were 26 tracks considered, and 23 were correctly tracked, while 3 of the tracks 
were lost at some point (no longer possible to confirm real-ID), (Figure 17). Note 
that some of these tracks were quite long and if a track is lost, it is highly unlikely 
that it will be found again. The longest successfully tracked sequence was 20 
minutes long. The three tracks that failed were manually inspected to find the 
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point in time where the error occurred. In one case tracker failed at the border of 
the image, at the overlap between stitched frames, most likely because cows 
were more distorted in this area from both viewing angles. Note also that two 
detections were merged in this overlapping area, after the camera calibration, 
which includes some errors. The other two cases were a case of ID-shifting due 
to a densely crowded scenario and confusion due to the earlier made error. Given 
those 26 starting points, the tracker was able to maintain the correct position in 
a total of 101.29 minutes or 225 s in average per starting point. Note that these 
numbers only show the complexity of the dataset. They should not be interpreted 
as mean time to failure as most of the tracks are not lost entirely but detected at 
the exit borders of the scene. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17. Here all 26 tracks in the dataset are shown in the y-axis and how long the tracker was 
able to follow each of them in the simple/crowded sequence. 
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5 Discussion 

 
5.1. Prerequisites for successful implementation of computer vision systems in 
livestock production  
 
With recent advances in the fields of computer vision and deep learning, as well 
as affordable computational power, systems based on computer vision could 
become the solution needed for surveillance of animals in different production 
systems (Giot, El-Abed and Rosenberg, 2013; Sellers and Hirasaki, 2014; 
Kulikov et al., 2014; Nilsson et al., 2015; Banhazi and Tscharke, 2016). 
However, the vast majority of current computer vision systems for monitoring 
dairy cows are still in the developmental phase and do not provide the 
flexibility/functionality required for continuous monitoring of animals. Most 
leading-edge examples on detecting cows by using video cameras have been 
focused on monitoring areas where the orientation of the cows was known due 
to physical limitations imposed by the surroundings. Two examples of such 
work are the Viola-Jones based detector of Porto et al. (2012) for detecting cows 
at the feed barrier and the work of Martinez-Ortiz et al. (2013) to detect and track 
cow heads in narrow entrance corridors.  
 
The key-concepts forming the framework needed for robust solutions for 
automated and accurate tracking/identification of animals, as well as extended 
behavioural analysis features are not fully established yet. Thus, investigating 
the opportunities and limitations of recent advances in computer vision and deep 
learning will facilitate the development of modules capable of monitoring 
animal health/welfare/behaviour related parameters at low computational cost 
and in real- or near-real-time manner.  
 
Our research has provided the first step towards the new applications for dairy 
cows regarding CV's ability to detect interactions between individuals, 
WatchDog-functionality, tracking capacity, as well as initial function 
classification. 
 
5.2. Importance of a good mathematical model for describing a cow as an object 
 
As Nasirahmadi et al. (2017) mentioned in their review, successful monitoring 
of individual animals by computer vision systems is highly dependent on the 
model describing an animal as a mathematical object. The model should be 
detailed enough to register behavioural changes, animals’ position and 
movement, as well as have the flexibility for further extension at a low 
computational cost.  
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When looking at the overall accuracy of the Behavioural Detector module based 
on our seven-point shape model, performance and accuracy varied depending on 
different test-conditions: 
 

- no “line border features”, single frame: accuracy 79.2%, 
- with “line border features”, single frame: accuracy 83.1%, 
- with “line border features”, three consecutive frames: accuracy 

85.1%. 
 
The main difference between these three different test-conditions was the 
number of geometrical features involved in the analysis as well as a number of 
frames used for confirming each of the investigated behaviours. This was done 
to assess the future computational costs, and predict the capacity required for 
storing the recordings (Paper I). 

 
As could be seen from the confusion matrix, differentiation between similar 
(based on geometrical shape only) object classes (e.g., Body sniffing and Head 
pressing) was inconclusive as classifier blended. The idea behind the pre-
selected behaviours used for the analysis was to choose something that belonged 
to entirely different classes from the assessment point of view (positive and 
negative behaviours) while being very similar shape-vice. This was done to 
investigate the limitations and fall-backs of the seven-point shape model right 
from the beginning since the manual annotation with landmarks is a very time-
consuming process. The results showed that the proposed model was suitable for 
representation of complex behaviours and could be applied to different situations 
while providing the necessary flexibility. The utilisation of additional features 
and time dimension feature could help in resolving the issue above of blending 
similar behaviours and provide the potential for further algorithm improvement 
as well as in decreasing number of false negatives.  
 
While complex social interactions involve such an important parameter as 
duration, higher classifier accuracy is difficult to achieve only from static 
landmark points in single frames. One possible solution is to extend the pool of 
training data (to assure greater variability of behavioural states and reliability of 
classes in training sequences). This will allow us to re-evaluate the existing 
features (both from the shape perspective and from the level-of-detail-needed 
one) to see how the complexity of different behaviours and behavioural states 
could be described and computed. Depending on different areas of interest in the 
barn or on different research questions, certain adjustments in the algorithm will 
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be needed to shift between real-time implementation and post-situational 
analysis (on already recorded data).  
 
Considering the performance of the classifier, similar object classes (2-D 
representation of behavioural state based on shape model only, a single frame) 
could be merged to form simplified interaction descriptions (e.g., Head butting 
and Head pressing into general butting). Such simplified snapshots of performed 
behaviours could provide quick benchmark (related to cow traffic mainly) of the 
specific area in the dairy barn to evaluate any adjustments in management 
practices. One possible (and the most logical) addition to this simplified 
behavioural overview will be to add heatmap function to the analysis, allowing 
visualisation of the spatial distribution of cows and time spent either at the 
specific set of coordinates or proximity to other cow/object of interest.  
 
5.3. The complexity of the approach used for detection of individual animals 
(Papers III and IV)  
 
General purpose object detection frameworks such as YOLO (Redmon et al., 
2016; Redmon and Farhadi, 2017) and SSD (Liu et al., 2016) have outstanding 
performance. They do, however, focus on detecting objects of varying size and 
aspect ratio but with a fixed orientation. He et al. (2015) have considered rotated 
bounding boxes to generate general-purpose objected proposals. They provide a 
local optimisation over position, size, aspect ratio and rotation from the initial 
set of sampled windows. In the approach proposed in our work, the size and 
aspect ratio are known and fixed, and an exhaustive search for position and 
rotation is performed. That way the risk of not considering relevant rotations is 
eliminated. Also, the methodology proposed by He et al. (2015) is based on 
handcrafted features assuming that image borders are unlikely to contain objects 
and that the object of interest covers a significant part of the interior of the image.  
 
Another way for accurate object detection/classification is to combine 
segmentation algorithms such as DeepMask (Pinheiro, Collobert and Dollar, 
2015) and SharpMask (Pinheiro et al., 2016) with an object detector such as 
MultiPathNet (Zagoruyko et al., 2016). This results in object detections 
augmented with pixel level segmentation. From those segmentations, rotated 
bounding boxes could be generated or, even better, distance measures could be 
made using the segmentation directly. However, this requires manual pixel level 
segmentation of training data, while the approach suggested in our work only 
requires a few manual clicks per training object. 
 
Thus, the second most important task in our work was to understand the 
limitations of the cow detector itself, as the most crucial component of the 
developed WatchDog system (Paper III). Most, 94.5%, of the images were 
perfectly interpreted, i.e. all cows present were detected and no extra detections. 
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The majority of errors were made in crowded situations where more than two 
cows were present and detected and thus classified correctly according to the 
watchdog criteria. Only a single case was found where the WatchDog 
erroneously discarded a frame, resulting in an overall accuracy of 99.9%. Note 
that this is a per-frame accuracy and an interaction consists of multiple frames, 
so missing an entire interaction would be extremely unlikely even though the 
frames within that interaction would be somewhat correlated. In total, those 1000 
images contained 2041 cows. 16 of those cows were not detected, and 48 extra 
detections were made yielding a cow hit rate of 99.22% with a false alarm rate 
of 2.35%. 
 
5.4. Inconsistency in the Cow Detector performance during the different seasons 
 
Half a year after the initial recordings were made, another month of video 
material was collected (see Figure 18), and the original cow detector was tested 
on that data. 
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Figure 18. Example frames from a second recording set made half a year after the initial 
recordings. 
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It did not perform very well. A set of 931 frames was sampled from the new 
recording and passed to the detector. It produced annotated images that were 
then inspected manually. Among those, 510 or 55% of the images were correctly 
interpreted in the same sense as above, while 421 or 45% contained some 
mistake. A lot of false detections were made. Especially in overexposed areas 
and there were also significantly more misses. In a random sample consisting of 
50 of the 421 erroneous frames, there was in total 128 cows correctly detected, 
28 extra detections made and 45 cows missed. 
 
Two main differences between this new data set and the old one have been 
identified. First, the cameras have become quite dirty. They were cleaned a few 
times during the experiments, but they became dirty quite fast, so for a system 
like this to become useful, it will have to be able to handle somewhat dirty 
cameras. Second, the sun was low in the sky at the time of year of the new 
recording. That results in a different lighting situation. It is an indoor scene, but 
windows are letting in the sunlight. 
 
From this new data set, the 421 frames where the old detector made errors, as 
well as three frames that contained no errors, were manually annotated in the 
same way as before. They contained in total 2880 cows. The detector was 
retrained using both the new and the old data, which resulted in a detector with 
more smooth performance across the different seasons. A validation set 
consisting of 10% of the annotated data (196 frames) was separated out and not 
used during the training. This set was used to evaluate the new detector. In total 
it contained 408 cows, and 396 of these were detected with only six extra 
detections. That gives a cow hit rate of 97% with a false alarm rate of 2.9%. 
Regarding frames, 92.8% were correctly interpreted while there were mistakes 
made in 14 of the frames. Among those 14 frames, 13 contained more than one 
cow and thus the hit rate of the watchdog finding frames with two or more cows 
were 99.5%. 
 
5.5. Tracking of individual cows and method evaluation (Paper IV) 
 
The current state-of-the-art for detecting cows freely moving around the barn 
was presented by Porto et al. (2013). They used a Viola-Jones based detector 
and needed six cameras at 4.6 meters height to cover a 15.4 × 3.8 m area to detect 
cows in three different orientations: vertical, horizontal and diagonal with a hit 
rate of 90%. They did not use separate detectors for the two different diagonals 
which means that producing rotated bounding box from their results would not 
be straightforward. In work presented in this thesis, only three cameras at 3.6 
meters height were needed to cover an 18 × 6 m area and detect cows in 32 
different orientations with a hit rate of 97%. Note that the hit rates are from 
different datasets and that the dataset used in this work has larger variations in 
viewpoints due to the use of fewer cameras at a lower height to cover a larger 
area.  
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The Tracker module was developed and tested at the end of the project, being 
more of a proof-of-concept, since the idea of using the passive data-markers for 
individual identification of animals was never tested before. Even considering 
the limited time available for the implementation of the Tracker module, a lot of 
potentially interesting information was gathered and separated into different 
classes for further development. The value of non-invasive continuous tracking 
system capable of identifying the individuals is tremendous and could help in 
resolving the common overstocking problems of modern dairy barns by assuring 
the optimal flow of animals and benchmarking-on-the-go.  
 
To test the Tracker module, certain simplifications in the approach were taken. 
During the study, the exit gates did not register the exit event until the cow had 
been gone from the scene for a few seconds. Also, one of the entry gates was a 
place quite far outside of the observed area, which meant that the timings of the 
exit registrations were more reliable than the timings of the entry registrations. 
To mitigate the effect of this, the recorded video was reversed in time, and the 
exit gates were used as entry gates and vice versa. Also, synthetic observations 
with low probabilities were inserted at the entry and exit states when the actual 
detection there was lower than the synthetic one. These detections kept the cow 
tracks in those states during the time between the gate registration, and that 
enough of the cow appears in the image for a detection to be made. Also, the 
cows present in the scene at the start of the reversed video were manually marked 
and given a synthetic id-number. This meant that no exit information was 
available for these cows. Instead, a different exit criterion was used (for all 
cows): if a cow’s optimal position was one of the synthetic exit gate detections 
for more than 0.5 s consequentially, it was considered an exit and removed from 
the tracking. This means that the exit events from the gates were not used by the 
tracker and could instead be used to evaluate the results. 
 
While considering the average duration of successful tracking events 
(approximately 225 seconds) and gradually decreasing accuracy in over-
crowded scenes, one should bear in mind that the occurrence of errors (false-ID) 
do not indicate the limitations of the proposed solution. As mentioned 
previously, the identification error (when Tracker blends the real ID-numbers of 
cows that are in close proximity to each other) only indicates the per-frame 
failure. By extending the pool of potential data-collection points, one should be 
able to recover the initial detection and place the correct ID-marker on the object 
of interest. Our assumptions suggest that the system will benefit from more 
cameras installed all over the dairy barn, specifically around areas with selection 
gates or narrow passages, creating the extended network of passive data-
markers.  
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5.6. Methodological considerations 
 
Due to the limited number of studies in the field of applied computer vision for 
studying dairy cattle behaviour, it is somewhat difficult to compare pros and 
cons of different methods/techniques used under different circumstances. 
Therefore, all the potential pitfalls mentioned in this work apply mostly to our 
recording setup and may vary from farm to farm, leaving the room for future 
research and improvements.  
 
One of the primary concerns was the number of cameras used during the studies. 
As experience showed, using the three cameras with wide (134 degrees) viewing 
angle resulted in significant overlap between the recorded images. Such overlap 
could make the detections and analysis more difficult at times, due to 
obscured/distorted object coordinates, increasing the total computational cost. 
For all the future experiments, the number of cameras needed for each ROI 
should be based on the actual scene reconstruction and specific research question 
and not hardware specification of the camera only.  
 
Another potential add-on to the existing setup is to eventually increase the 
resolution of recorded video material (step from default 800x600 pixels towards 
Full HD resolution) as that could increase the precision of detections and add 
new layers of information. However, with that in mind, the system should be 
still capable of recording the substantial amounts of data without increasing the 
storage cost. One possible solution for this could be to divide the range of 
features for monitoring into immediate (requiring lower resolution due to the 
simplicity of task) and offline (with higher resolution and additional 
information). Computer vision solutions with different levels of data-analysis-
and-visualisation will also require the efficient infrastructure for data exchange 
as well as the ability to communicate with other existing data systems installed 
on-site.  
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The first study introduced a new approach for the detection of social interactions 
in dairy cattle. This could be considered as the first step in the development of 
an entirely automatic learning-based framework for behaviour monitoring, 
showing nearly 85% of accuracy when comparing it to ground truth levels 
confirmed by an experienced observer.  
 
The second study concluded that the Floor/Claw module showed the potential 
for further development and could be used as a tool for practical assessment of 
actual weight load/animal distribution in areas of interest. In both cases (160 mm 
and 560 mm concrete slats), it could be concluded that the floor closest to the 
entrances to AMS will be slightly more loaded. 
 
The third study resulted in the development of a CNN-based cow detection 
system. The proposed solution can detect and count the cows present in the 
image with high precision. 92.8% of the test images were perfectly interpreted 
in the sense that the system was able to place a rotated rectangle on each cow 
and nowhere else. This detector was used to discard 50% of the recorded video 
as uninteresting while only losing 4% of the interesting video. If detecting a 
single frame per interaction is enough, 60% of the test dataset could be 
automatically discarded without losing any of the interactions. Regarding 
detection of single cows, the hit rate was 97% with a false alarm rate of 2.9%. 
Note that these numbers depend on how significant portion of the recorded video 
is interesting and how often the scene is crowded (which is when most mistakes 
are made). This will vary between different farms and studies.  
Another important conclusion was that the even though it is an indoor scene, the 
lighting variations caused by the different seasons are significant. It was not 
enough to collect data from three months. Instead, both training data and 
evaluation data from different seasons are needed to build a system that can 
operate all year around.  
 
The fourth and final study investigated and proposed the flexible and non-
invasive computer vision system for tracking and identification of individual 

6 Conclusions 
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cows. The cows and their real-id numbers were tracked in a waiting area before 
automatic milking stations. The system was investigated on a real conventional 
farm with all the real-world issues, such as over year illumination changes and 
spider webs obscuring the field of view of the cameras. The proposed system is 
a crucial stepping stone towards a fully automated tool for continuous 
monitoring of cows and their interactions with other individuals and the farm-
building environment. Furthermore, the system is based on several state-of-the-
art deep learning methods, which enabled handling several real-world issues. 
Experiments indicate that a cow could be tracked close to 4 minutes before 
failure cases emerge and that cows could be successfully tracked for over 20 
minutes in mildly-crowded (<10 cows) scenes.  
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Future work aims to improve the performance and flexibility of the modules 
from the WatchDog system as well the development of new building blocks or 
modules which will extend the functionality of the proposed solution by: 
 

- source code optimisation to achieve the opportunity to use 
WatchDog on different platforms and embedded hardware at lower 
computational cost without losing the functionality; 

- adding the additional features to Behavioural Detector module that 
will allow spatial analysis as well as social network analysis based 
on proximity between the individuals. This will allow the studies 
investigating hierarchical order within the herd, maternal 
relationship and preference tests (both towards other individuals and 
specific areas of interest); 

-  extending the range of functions for the Behavioural Detector 
module by adding features that will allow calving detection, simple 
gait  recognition and benchmarking of scene complexity; 

- investigating the opportunities to create a smartphone-based 
application with Augmented Reality (AR) functionality for 
behavioural evaluation on-site (as well as some lameness detection 
based on back ridge angle); 

- making a “For Research Purposes” only graphical user interface 
(GUI) for WatchDog module responsible for video filtering, 
allowing more efficient work with the recordings; 

- investigating the opportunity for adjusting the developed shape-
model to include other animal species into the algorithm; 

 
 
 
 
 

7 Future research plans 
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I mjölkproduktionen blir djurbesättningarna med lösgående djur allt större 

och arbetet effektiviseras genom mer mekanisering och automatisering. 
Skötseltiden för varje enskilt djur blir kortare samtidigt som det ställs stora krav 
på djurens tillsyn för deras välfärd och hälsa. Under senare år har flera tekniska 
hjälpmedel (sensorer) införts i lösdriftsstallar som gör det möjligt att förbättra 
övervakningen av djurs hälsa, fruktsamhet och produktion.  

Användning av kameror, där bilderna analyseras av en dator, finns redan 
utvecklat för att upptäcka juversjukdom, hälta och bedöma hull hos kor, samt för 
att se var djuren befinner sig i stallet. Genom sådan bildanalys är det också 
möjligt att registrera vissa beteenden på individnivå hos nötkreatur. För att förstå 
hur korna fungerar som grupp och på individnivå görs idag manuella 
beteendestudier som är mycket tidskrävande och därmed kostsamma. En 
målsättning är därför att utveckla teknologi och verktyg för att automatiskt 
detektera sådana sociala interaktioner på ett tillförlitligt sätt. 

Syftet med detta arbete var att undersöka möjligheter och begränsningar för 
att använda bildanalys för att studera kors beteende, rörelser, positioner och 
samspel dem emellan. I och med detta skulle ett första steg kunna tas mot ett 
helautomatiskt system för kontinuerlig övervakning av djurhälsa och djurvälfärd 
i modern mjölkproduktion. Vårt första mål var att undersöka om det var möjligt 
att från en videofilm automatiskt definiera vad som är en ko i hennes stallmiljö 
samt bestämma hennes position. Därefter fortsatte arbetet att automatiskt 
bestämma kornas beteende och sociala samspel (interaktioner) med varandra. 
Ett ytterligare mål var att utnyttja bildanalys för att bestämma klövarnas 
placering på bärande element av spaltgolv. En frågeställning var hur man 
automatiskt selekterar intressanta videosekvenser och slutligen hur man kan 
koppla kor som man ser i bild till dess rätta identitet och sedan följa dem runt i 
stallet. 
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I den första studien utvecklades en ny matematisk modell för att beskriva en 
ko som ett geometriskt objekt. Resultaten visade att den nya modellen, med 
utnyttjande av maskininlärning, gav möjlighet att studera olika interaktioner 
mellan korna. Den utvecklade automatiska detektionen fångade upp nästan 85% 
av interaktionerna jämfört med de som upptäcktes av en erfaren observatör. 

I den andra studien vidareutvecklades ett neuronnät (CNN), som är en 
självlärande algoritm som försöker efterlikna funktionen i biologiska neuronnät 
(exempelvis hjärnan). Med denna CNN metodik kunde korna och deras 
klövplaceringar på ett spaltgolv i en samlingsfålla kartläggas. Dessa resultat kan 
användas som ett verktyg för att bedöma den faktiska belastningen på golvet och 
därmed för att dimensionera golvet så att det håller för den aktuella 
kobeläggningen. 

I den tredje studien utvecklades en metod för att med hög precision selektera 
fram intressant videomaterial för beteendestudier, detta genom upptäcka och 
räkna de kor som fanns i bilden. Nästan 93% av testbilderna tolkades fullständigt 
i den meningen att systemet kunde placera en rektangel på varje ko och ingen 
annanstans. Vidare användes denna teknologi för att plocka bort 50% av de 
inspelade videosekvenserna som inte var intressanta, utan att riskera förlora mer 
än 4% av de intressanta bilderna. Därmed kunde analyserna effektiviseras och 
mycket forskningstid sparas. 

I den fjärde och sista studien undersöktes hur man kan spåra och identifiera 
enskilda kor med videokameror och datamarkörer (till exempel 
selektionsgrindar eller VMS-stationer) som redan finns i ladugårdens 
datasystem, dvs. utan att sätta fast några sensorer på korna. Systemet fungerade 
trots att ljuset varierade under året och att spindelnät fanns i taket och skymde 
kameralinsen till viss del. Studien visade vidare att kor kunde spåras i över 20 
minuter (i situationer med <10 kor). 

 
Avhandlingen visade att:  
 

 Det är möjligt att använda bildanalys för identifiering av kor i deras 
stallmiljö samt att registrera position, aktivitet och interaktioner; 

 Med bildanalys kan djuren övervakas kontinuerligt och automatiskt 
utan att någon apparatur fästs på djuren; 

 Med bildanalysteknologi kan man fånga upp förändringar i 
djurgruppens beteende, som signaler på djurens välbefinnande och 
hälsa och därmed åtgärda problem tidigt; 

 Vid beteendestudier kan bildanalys spara tid och resurser jämfört 
manuell analys av videoinspelningar; 
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The average farm size in dairy production is continuously increasing 

resulting in increasing mechanisation and automation of on-farm procedures for 
achieving more efficient workflow. It also results in decreased time for farmers 
or animal caretakers to spend on observing individual animals. This, combined 
with the strong public demand for improved animal welfare and health creates 
demand for new tools (sensors) and methods that could help in monitoring 
animals´ health, production, and fertility parameters.  

The use of cameras and computer vision for automatic analysis of recorded 
images/video material already resulted in some products aiming to diagnose 
udder problems, lameness, body condition or position of animals in the barn. 
The image analysis also gives an opportunity to record certain behaviours of 
individual cows. To understand how the cows function in a production 
environment and what kind of relationships they have with other cows, scientists 
working with animal behaviour use manual observations. These observations are 
very time consuming and therefore quite expensive. The idea is to replace the 
manual observations with automatic camera-based tools capable of recognising 
and analysing social interactions in dairy cows. 

The aim of this thesis was to investigate the opportunities and limitations of 
image analysis for studying cows’ behaviours, movements, positions and 
interactions with other individuals. This development could be the stepping 
stone towards the fully automatic surveillance system for continuous monitoring 
of animal health and welfare in modern dairy production.  

 
The first research goal for us was to investigate the possibility to differentiate 

between the cow and her environment from the recorded video material as well 
as to find her position using image analysis.  

The mathematical model describing the cow from the geometrical 
perspective was developed and tested. The results showed that the proposed 
model in combination with some machine learning approach could distinguish 
between different social interactions in dairy cows. The behavioural detector 
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based on this geometrical model was able to correctly identify 85% of all the 
behaviours in recordings when compared to an experienced human observer. 

The continuation of that work was to add the opportunity to record and 
differentiate between different social interactions occurring between cows in the 
dairy barn. The second study was concentrated on developing the artificial neural 
network (CNN), which is a self-learning algorithm mimicking the work of real 
mammal brain. This algorithm was developed to detect the positions and 
placements of cows’ claws on concrete floor elements and in that way evaluate 
the weight load per each of those elements. The potential outcome of such 
detections is an ability to map cows’ positions in areas of interest and evaluate 
the spatial distribution of animals as well as the pressure they create on floor 
elements.  

The outcome of the third study was a method allowing fully automatic 
filtering of the recorded video material based on user-defined parameters 
(number of cows, the distance between them or certain interactions). The, so 
called, WatchDog algorithm was able to correctly identify almost 93% of all 
cows in every analysed image resulting in filtering out 50% of video material as 
irrelevant while potentially losing only around 4% of image data. This approach 
could save the expert time, previously used for manual processing of the 
recorded videos.  

The fourth and final study investigated the opportunity of continuous 
tracking and identification of cows in an automatic and non-invasive manner 
(using only cameras, without the need to put additional sensors on animals). The 
advantage of the proposed method is that the identification is based on already 
existing data markers present in management system at any AMS farm (data 
from selection gates, AMS-stations, automatic feeders etc.). The system showed 
stable performance even under varying lighting conditions and during different 
seasons, nevertheless spider webs and dirt on camera lenses. The study showed 
that the cows could be tracked in bouts of 20 minutes (for mildly-crowded scenes 
with 10 or less cows).  

The thesis provided a solid basis for the further development of automated 
computer vision systems for monitoring different aspects of animal behaviour 
and health in modern dairy production.  

 
 

 



71 
 

The studies in this thesis were funded by FORMAS (and all the taxpayers); 
thank you for making this possible! 

 
The long and bumpy road which resulted in me finishing this thesis would 

not have been possible without the support of a large number of people. I cannot 
describe the appreciation I feel for all the help and “positive experiences” I 
received and, therefore, would like to thank you all! 

 
Anders and Christer for giving me the freedom to carry out this research in 

exactly the way I wanted it to be performed, for trusting and supporting my ideas 
and choices. 

Lena, Charlotte, and Kalle for valuable comments, discussions and all the 
good questions during our meetings. 

Håkan and Mikael for the tremendous amounts of patience towards all my 
questions and also for making me fall in love with the exciting new field of 
computer vision (and a couple of programming languages along the way). 

Linda for being the BEST boss and co-supervisor EVER. And for all the 
time, trust, and OPPORTUNITIES for personal development within the group 
and department.    

Andrus for all the countless reminders about “go get some sleep already” 
when seeing me online at night. And, for all the Classic Rock gems you sent me 
during these four years of my PhD studies. Those songs kept me going even 
when the energy was low. 

Madde and Kristina for giving me the opportunity to teach and to evaluate 
my knowledge and experience by trying to transfer the “essence” to students 
(and improving A LOT while doing that). 

Anne-Charlotte for being the kind and supportive person, colleague, friend.  

Acknowledgements 



72 
 

Lars for being my best friend, and simply by hearing me out in times of need. 
And also by reminding me about the importance of “training the physical body 
which will then host the healthier mind”. 

Coffee for being the “Juice of Life” and “The Greatest Scientific Inspirer”. 
And last (but not least), Isabel, my wonderful wife, for being my better half 

and for being THE MOST UNDERSTANDING person in the world. Your 
support and love helped me during the hardest of times and guided me across 
the deepest of research seas. 

  
 
 
 
 
 
 

 
 



Acta Universitatis Agriculturae Sueciae

Acta Universitatis Agriculturae Sueciae presents doctoral theses from 

the Swedish University of Agricultural Sciences (SLU).

SLU generates knowledge for the sustainable use of biological natural 

resources. Research, education, extension, as well as environmental 

monitoring and assessment are used to achieve this goal.

Online publication of thesis summary: http://pub.epsilon.slu.se/

ISSN 1652-6880

ISBN (print version) 978-91-7760-206-4

ISBN (electronic version) 978-91-7760-207-1

Acta Universitatis Agriculturae Sueciae

Doctoral Thesis No. 2018:33

This thesis provides knowledge about opportunities and limitations 

of computer vision and image analysis algorithms for studying 

cows’ behaviours, movements, positions and interactions with other 

individuals. This development could be the stepping stone towards 

the fully automatic surveillance system for monitoring of animal 

health and welfare in modern dairy production.

Oleksiy Guzhva, received his postgraduate education at the 

Department of Biosystems and Technology, SLU, Alnarp. He received 

his Doctor of Veterinary Medicine degree at Poltava State Agrarian 

Academy, Ukraine.


	Tom sida
	Tom sida
	Tom sida



