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The large pool of carbon (C) stored as soil organic matter (SOM) in soils of high-latitude 

ecosystems contains more organic C than all global vegetation and the atmosphere combined. 

Global climate change is expected to have especially pronounced effects in these ecosystems, and 

even small changes in the accumulation and decomposition of their soil C pool driven by 

heterotrophic microbial activity could profoundly affect atmospheric CO2 levels and thus the global 

climate. Because such changes could trigger drastic shifts in the delicate balance of CO2 between 

the biosphere and atmosphere, a better understanding of the key regulators of C cycling is urgently 

needed.  

Using advanced molecular and biochemical techniques, I investigated the availability of C 

substrates and their utilization by microorganisms under controlled but ecologically relevant 

conditions in soils representative of the boreal landscape. This molecular characterization of SOM 

revealed that tree species significantly influence SOM genesis by changing its rate of accumulation 

and organo-chemical composition. More importantly, a strong connection between SOM 

decomposition and microbial decomposers was observed and shown to be governed by the organo-

chemical composition of the SOM. The structural arrangement of cellulose, and particularly its 

degree of crystallinity, emerged as a key factor determining rates of cellulose hydrolysis and 

subsequent C decomposition in boreal forest soils.  

This work provides some of the first empirical evidence that soil microbial communities in 

frozen boreal forest soils can hydrolyze cellulose and use the released substrate for both catabolic 

and anabolic metabolism. These findings, together with results from peat soil experiments, show 

that both persistent microbial degradation of C (biopolymers and monomers) and the synthesis of 

new microbial biomass during winter are widespread features in soils of the boreal landscape. More 

importantly, the results indicated that small differences in winter soil temperatures can have very 

large implications for the winter C fluxes of boreal soils.  

Over the studied temperature range, C substrates were readily utilized and microbial activity was 

never totally impeded. However, thermodynamic constraints caused strong reductions in metabolic 

rates at sub-zero temperatures. The rates of these processes at low temperatures are low but their 

importance should not be neglected given the spatial scale over which they can occur and the 

prolonged winters these ecosystems experience. Taken as a whole, this thesis provides a valuable 

contribution to our understanding of microbial C cycling in one of the world’s major soil C pools.  
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Abstract 



 

 

Globalt sett finns det mer kol bundet i marken än vad som finns i både atmosfären och i växter i 

biosfären tillsammans. Det gör att även små förändringar i nedbrytningen av markens organiska 

material (OM) som drivs av mikrobiell aktivitet kan ha betydande konsekvenser för den globala 

kolbalansen. En övervägande stor del av markkolet återfinns i nordligt belägna ekosystem. Både 

nutida observationer och modellprognoser för framtida förhållanden tyder på att klimat-

förändringarna särskilt påverkar dessa ekosystem. Mot denna bakgrund är det av stor vikt att 

undersöka de faktorer som kan påverka den känsliga balansen i utbytet av CO2 mellan mark och 

atmosfär. 

Med hjälp av avancerade molekylära och biokemiska tekniker undersöker denna avhandling 

både substrattillgång och substratutnyttjande av kol i marken under kontrollerade, men biologiskt 

relevanta betingelser för jordar som är representativa för det boreala landskapet. Den molekylära 

karakteriseringen av OM visade att olika trädslag signifikant påverkar OM genes både genom att 

ändra ackumuleringshastigheterna och dess organo-kemiska sammansättning. En stark koppling 

mellan nedbrytning av OM och markorganismerna var tydlig, med den organo-kemiska 

sammansättningen av OM som länkande faktor. Vidare framkom att cellulosastrukturen och dess  

kristallinitetsgrad är ett centralt inslag som reglerar hastigheten av cellulosahydrolys och 

efterföljande nedbrytning av kol i boreal skogsmark. 

Detta arbete utgör den första empiriska observationen som visar att markorganismerna i frusen 

skogsmark kan hydrolysera cellulosa och använda det frigjorda substratet för både katabolisk och 

anabolisk metabolism. Dessa resultat, tillsammans med resultat från myrmarksexperiment, visar att 

både fortgående mikrobiell nedbrytning av kol (biopolymerer och monomerer) och syntes av ny 

mikrobiell biomassa under vintern är en utbredd företeelse i det boreala landskapet. Resultaten visar 

också att små skillnader i marktemperaturer under vintern kan få stora konsekvenser för 

kolnedbrytning i skogs- och myrmarken. 

Den mikrobiella aktiviteten och substratutnyttjandet upphörde aldrig helt i det intervall av 

temperaturer som undersöktes. Vid lägre temperaturer fanns dock tydliga termodynamiska 

begränsningar. Även om processerna vid låga temperaturer är långsamma bör deras betydelse inte 

försummas, särskilt med tanke på den globala skalan och de långvariga vintrarna typiska för boreala 

ekosystem. Sammanfattningsvis utgör denna avhandling ett värdefullt bidrag till förståelsen av 

substrattillgång och substratutnyttjande av kol i marken som drivs av mikrobiell aktivitet i en av 

världens största sänkor av kol i biosfären. 

Nyckelord: boreal skog, organiskt material, organo-kemisk sammansättning, frusna jordar, CO2, 

biopolymer, nedbrytning, hydrolys, PLFA, 13C-NMR, Py-GC–MS, mikrobiell metabolism. 

 

 

 

 

 

Mikrobiellt liv i boreala jordar - Om substrattillgång och 
substratutnyttjande av kol för mikrobiell aktivitet i boreala jordar 

Sammanfattning 



 

 

La gran cantidad de carbono (C) almacenada como materia orgánica (MO) en los suelos de los 

ecosistemas de latitudes altas comprenden más C orgánico que la vegetación global y la atmósfera 

combinadas. El avance del cambio climático afecta particularmente a estos ecosistemas. Incluso 

pequeños cambios en la acumulación y descomposición de la reserva de C en el suelo, derivado de 

la actividad microbiana heterotrófica, pueden afectar profundamente los niveles atmosféricos de 

CO2 y el clima global. Con vistas al cambio drástico que tales alteraciones ambientales podrían 

desencadenar en el delicado equilibrio de CO2 entre la biosfera y la atmósfera, una mejor 

comprensión de los reguladores de ciclo del C es ahora más clave que nunca. 

Mediante el uso de técnicas moleculares y bioquímicas avanzadas, investigué la disponibilidad 

de los sustratos C y su utilización por microorganismos en condiciones controladas, pero 

ecológicamente relevantes, en suelos representativos del ecosistema boreal. La caracterización 

molecular de la MO reveló que las especies arbóreas influyen significativamente en la génesis de 

la MO tanto por su influencia en las tasas de acumulación como en su composición organo-química. 

Más importante aún, observé una relación entre la descomposición de la MO y los microorganismos 

descomponedores que a su vez está estrechamente ligada a la composición organo-química de la 

MO. Además, la disposición estructural de la celulosa, que implica diferentes grados de 

cristalinidad, surgió como una característica clave en la determinación de las tasas de hidrólisis de 

la celulosa y posterior descomposición de C en el suelo del bosque boreal. 

Este trabajo proporciona una de las primeras observaciones empíricas de que las comunidades 

microbianas en suelos congelados de bosques boreales pueden hidrolizar la celulosa y utilizar el 

sustrato liberado para su metabolismo catabólico y anabólico. Estos hallazgos, junto con los 

resultados de los experimentos en suelos de turberas, muestran que tanto la degradación microbiana 

persistente de C (biopolímeros y monómeros) como la síntesis de nueva biomasa microbiana 

durante el invierno es una característica generalizada en los suelos del paisaje boreal. Aún más 

relevante es que, los resultados indicaron que pequeñas diferencias en las temperaturas del suelo 

durante el invierno pueden tener grandes implicaciones para los flujos de C emitidos de suelos del 

paisaje boreal. 

Los sustratos de C se utilizaron y la actividad microbiana nunca se vio inhibida. Sin embargo, 

restricciones termodinámicas fueron evidentes en las investigaciones de suelos congelados. Las 

tasas de estos procesos a bajas temperaturas son lentas, pero no se debe ignorar su importancia 

considerando la escala global a la que potencialmente se pueden producir durante los prolongados 

inviernos que experimentan estos ecosistemas. En conjunto, esta tesis proporciona una valiosa 

contribución para la comprensión de la disponibilidad y utilización de los sustratos de C, dos 

controles clave sobre la actividad microbiana y el ciclo de C en uno de los principales reservorios 

de C del mundo.  

Palabras clave: bosque boreal, materia orgánica, composición organo-química, suelos 

congelados, CO2, biopolímeros, descomposición, hidrólisis, PLFA, 13C-RMN, Py-GC–MS, 

metabolismo microbiano. 

  

Vida microbiana en suelos boreales - Acerca de la disponibilidad 
y el uso de sustratos de carbono para la actividad microbiana en 
suelos boreales 
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13C  The stable carbon isotope with a mass of 13 Daltons 
13C-WSC  13C water-soluble carbohydrate monomers and  

  oligomers 
13C1 ß-D-glucose  ß-D-glucose labelled with carbon 13 at the C1 position 

1 and 2D HSQC  One and two-dimensional heteronuclear single quantum 

  coherence 

BR  Basal respiration 

C  Carbon 

CO2  Carbon dioxide 

CP MAS NMR  Cross polarization magic angle spinning  

  nuclear magnetic resonance spectroscopy 

DNA  Deoxyribonucleic acid  

dw  Dry weight 

D2O  Deuterium oxide, heavy water 

e.g.  Exempli grattia 

i.e.  Id est 

IL  Ionic liquid 

KH2PO4  Monopotassium phosphate 

KOH  Potassium hydroxide 

LOI  Loss on ignition 

N  Nitrogen 

N2  Dinitrogen 

NH4 2SO4  Ammonium sulfate 

P  Phosphorous 

PCA  Principal component analysis 

PCR  Polymerase chain reaction 

Pg C  Petagram (1015 grams) of carbon  

PLFA  Phospholipid fatty acid 

PLS  Partial least squares 

Py-GC/MS  Pyrolysis gas chromatography/ mass spectrometry  

Q10  Factor by which the rate of a biological or  

  chemical process (here, respiration) changes in  

  response to a 10 °C temperature change 

QR  Ratio of BR to SIR (BR/SIR)  

SIR  Substrate-induced respiration 
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The earth’s biosphere is the reservoir of a large mass of carbon (C). Much of this 

C is stored in high-latitude ecosystems as soil organic matter (SOM), which 

contains more organic C than all the world’s vegetation and the atmosphere 

combined (Figure 1). Therefore, even small changes in the accumulation and 

decomposition of the soil C pool driven by net primary production and 

heterotrophic microbial activity can profoundly affect atmospheric CO2 levels 

and the global climate. However, the factors controlling soil microbial metabolic 

activity in high latitude ecosystems are not fully understood and the need to fill 

this knowledge gap is increasingly acute. Recent observations indicate that high-

latitude ecosystems are already experiencing severe perturbations induced by the 

advance of climate change (Ciais et al., 2014).  

The complexity of SOM makes it difficult to obtain a coherent understanding 

of the factors controlling its formation and degradation (Simpson and Simpson, 

2012). Three conceptual models intended to explain the nature of SOM have 

been outlined in the literature. In the classical view, SOM decomposition 

products are ‘humified’ and further transformed or synthesized into large, dark-

coloured compounds that remain in the soil (Stevenson, 1994). A second model, 

the “selective preservation model,” suggests that SOM constituents rich in 

aromatic structures (e.g. lignin) are preferentially preserved in the soil while 

carbohydrates such as cellulose are degraded more rapidly (Sollins, Homann and 

Caldwell, 1996). In a third conceptual model, SOM is regarded as a complex 

continuum of plant and microbial biopolymers and their degradation products in 

a state of progressive decomposition (Sutton and Sposito, 2005; Kelleher and 

Simpson, 2006; Schmidt et al., 2011). 

Most recent studies have attributed the persistence of SOM to complex 

interactions between biological and physicochemical factors controlling rates of 

decomposition (Schmidt et al., 2011; Lehmann and Kleber, 2015).  

  

 

1 Introduction 



12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.Schematic overview of C pools of the terrestrial ecosystem. The numbers indicate the pool 

mass in Pg C (1 Pg C= 1015 g C) based on Ciais et al., (2014). * denotes the size of the atmospheric 

pool of C and is the sum of the preindustrial and cumulative change of anthropogenic C over the 

industrial period 1750-2011. ‡ denote estimates of the C pool in permafrost adjusted according to 

Hugelius et al., 2014.  

Empirical verification of factors proposed to control SOM formation and 

decomposition is urgently needed to improve our ability to predict changes in C 

cycling in high-latitude ecosystems. Boreal ecosystems, are extensively 

distributed across the northern hemisphere, with boreal forests and peatlands 

covering 10-15% and 3%, respectively, of the global terrestrial surface area (Lal, 

2005; Yu, 2011) (Figure 2). These ecosystems harbour ca. 40% of the total 

global C pool, much of which is stored in soils (forest soils ~471 Pg C, peatlands 

~550 Pg C (Lal, 2005; Yu, 2011). Boreal ecosystems are characterized by strong 

seasonal variation in air temperature, with short growing seasons, long and cold 

winters (up to six months), and snow-covered periods.  
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The typically cold conditions of boreal ecosystems have pronounced effects 

on their soils, which generally have very high contents of organic matter, low 

nutrient contents, and low rates of decomposition. The snow cover regulates 

biogeochemical processes during winter because it insulates the soil surface, 

reduces heat loss, and controls the formation of soil frost (Groffman et al., 2001; 

Brooks et al., 2011). Cold and frozen soils are thus common features of boreal 

landscapes.  

Despite low soil temperatures and freezing conditions, soil microbial 

populations in boreal ecosystems remain metabolically active during winter, as 

manifested by biogenic CO2 losses from the soil during the cold months (Coyne 

and Kelley, 1971; Clein and Schimel, 1995; Fahnestock, Jones and Welker, 

1999; Elberling and Brandt, 2003; Öquist et al., 2009). This has been observed 

in forests and peatlands, two major types of boreal landscape. In boreal forests, 

winter CO2 losses from soils can amount to ca. 20% of annual C emissions 

(Wang, Bond-Lamberty and Gower, 2002; Kim et al., 2007; Sullivan et al., 

2008), while CO2 emissions from boreal peatlands can account for 16–80% of 

the growing season net CO2 uptake (Alm et al., 1999; Lafleur et al., 2003; 

Aurela, Laurila and Tuovinen, 2004; Sagerfors et al., 2008; Peichl et al., 2014; 

Zhao et al., 2016). Low temperature biogeochemical processes in cold and 

frozen boreal soils thus contribute significantly to the long-term net ecosystem 

carbon balance. 

The temperature and water content of the soil profoundly affect the rates of 

heterotrophic microbial activity (Trumbore, 2000; Öquist et al., 2009; Tilston, 

Sparrman and Öquist, 2010). Winter time soil temperatures in environments 

with substantial winter snow cover (such as those in the boreal climate zone) are 

mostly determined by the timing of the snow fall and the insulating properties 

of the snow cover (e.g. Granberg et al., 1999; Zhao et al., 2016) rather than air 

temperatures per se (Brooks et al., 2011). Even with air temperatures of -20 °C 

to -30 °C, surface soil temperatures are commonly close to zero or only a few 

degrees below (e.g. Granberg et al., 1999, 2001; Zhao et al., 2016). The direct 

effects of temperature on microbial activity (i.e. the kinetics of enzymatic 

activity) are similar under frozen and unfrozen soil conditions (Öquist et al., 

2009; Tilston, Sparrman and Öquist, 2010). However, there are indirect 

temperature effects that strongly influence the rates of enzyme-catalysed 

reactions. For instance, when the soil temperature is below the freezing point of 

the bulk soil solution, the water content and water potential of the soil are 

dramatically reduced, which affects the microbial community by reducing water 

availability and substrate diffusion rates (Sparrman et al., 2004; Öquist et al., 

2009).  
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Figure 2. Map of the northern circumpolar region showing the field site’s location (red marker). 

The site was chosen to be representative of the central boreal region. Upper map shows the soil 

temperature regimes. The dark blues of the hypergelic, pergelic and gelic classes indicate very cold 

soils that broadly coincide with the presence of permafrost. Soils with cryic temperature regimes 

have a mean annual temperature lower than 8 °C but do not have permafrost. Lower map shows 

land cover and the extent of the boreal forest (dark green) across Scandinavia, Russia, Canada, and 

the USA. Modified from the Soil Atlas of the Northern Circumpolar Region (Jones et al., 2010). 

Substrate availability and substrate utilization are fundamental concepts in 

models of low temperature biogeochemistry in high latitude soils. The presence 

of substrate C and its physical accessibility to microbes have been suggested to 

be essential for the microbial activities that shape biogeochemical processes 

(Davidson and Janssens, 2006; Conant et al., 2011; Schimel and Schaeffer, 

2012; Erhagen, Ilstedt and Nilsson, 2015; Öquist et al., 2016). This raises two 

key questions: what substances are good substrates for microorganisms, and 

what factors affect the availability of these substrates to microorganisms over 

the boreal temperature range? Heterotrophic microorganisms need energy (i.e. 

electron donors) and C to sustain the fundamental metabolic processes of 

respiration and cell growth. The building blocks of SOM, i.e. substances 

originating from plants and microbes, are the source of this energy and C for soil 

microorganisms.  

The composition of SOM is highly variable, and this variability has a large 

impact on its decomposition. Studies on the environmental and physicochemical 

factors that govern SOM formation and decomposition are needed to understand 

processes critical for soil formation, nutrient cycling and the net ecosystem 

carbon balance (Swift, Heal and Anderson, 1979; Trumbore, 2000; Kleber, 

2010; Schmidt et al., 2011). Unfortunately, the interactions between the 

composition and decomposition of SOM are incompletely understood because 

of the challenges associated with characterizing the genesis, turnover, and 

decomposition of SOM, and the associated biological processes (Lehmann and 

Kleber, 2015). However, previous studies and recent advances in molecule-level 

analytical methods have provided new tools for identifying the molecular 

constituents of SOM and their connection to macroscopic and ecosystem-level 

responses (Minderman, 1968; Preston et al., 1989; Baldock et al., 1992; Feng et 

al., 2008; Crow et al., 2009; Clemente et al., 2012; Simpson and Simpson, 

2012). 
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The overarching goal of this work was to gain a better understanding of the 

factors controlling carbon substrate availability and its utilization by 

microorganisms in boreal forest and peat soils. Specifically, I examined the 

importance of SOM composition and structure as mechanisms regulating 

substrate availability to soil microbial populations. I also explored the capacity 

of these microbial populations for catabolic and anabolic metabolism of these 

substrates over a temperature range relevant to boreal ecosystems. This included 

studies on microbial metabolic dynamics below the freezing point (Figure 3). 

The thesis is based on four studies, which are appended as papers I to IV. 

 

• Paper I focuses on the extent to which different boreal tree species generate 

SOM with different organo-chemical compositions and how these 

differences are expressed as differences in SOM accumulation and 

decomposition, and the temperature response of these processes. 

• Paper II explores the capacity of boreal soil microbes to hydrolyze, 

metabolize, and grow on organic biopolymers (cellulose) under frozen 

conditions in boreal forest soils. 

• Paper III focuses on elucidating the role of cellulose structure, i.e. 

crystallinity, and its effects on the rates and extent of soil microbial C 

decomposition. 

• Paper IV investigates the capacity of boreal soil microbes to utilize simple 

C substrates to sustain catabolic and anabolic processes in frozen peat soil. 

 

Taken together, the four chapters of my thesis aim to identify key controlling 

factors that determine the rate of SOM decomposition in high latitude 

ecosystems. Each chapter focuses on the influence of one candidate factor – the 

vegetation type, the metabolic activity of soil microbes under frozen and 

unfrozen conditions, the organo-chemical composition of the SOM, and the 

structural organization of the organic substrates in the soil. I investigate each 

2 Research objectives 
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factor’s potential to affect the rate of SOM decomposition under controlled but 

ecologically relevant conditions. Advanced molecular and biochemical 

techniques are used to study microbial activity in field-collected soils at several 

incubation temperatures, both above and below the freezing point, that 

commonly occur in these ecosystems. This provides valuable information about 

C cycling during the generally less intensively studied winter conditions. 

Although microbial activity during the cold months is likely to be slow, the vast 

geographical extent of these ecosystems and the length of their winters mean 

that mechanistic understanding of microbial responses to these conditions is 

extremely important. This is especially true in light of predictions that seasonal 

dynamics in these regions may be particularly sensitive to the effects of future 

climate change.  

 

 

Figure 3. Schematic overview of the studies comprising the thesis. The fundamental questions 

addressed in this work and formulated as hypotheses in the four papers relate to the factors 

controlling carbon substrate availability and its utilization by microorganisms in boreal forest and 

peat soils. The evaluation included the importance of SOM composition and structure (papers I and 

II) and the potential for changes in metabolic rates (catabolic and anabolic) over an environmentally 

relevant temperature range for boreal systems, including dynamics below the freezing point (papers 

III and IV).  
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2.1 Experimental approach and hypotheses 

This thesis describes my use of advanced molecular-level analytical methods 

and experimental incubations to empirically evaluate the composition of boreal 

SOM and the extent of C substrate availability and utilization by microbial 

communities in boreal soils. The hypotheses tested are outlined below. 

 

Paper I: Tree species significantly influence the composition of SOM because 

they are the sources of much of the diversity of molecular structures found in the 

litter that subsequently forms the SOM (Preston, Trofymow  and Working 

Group, 2000; Quideau et al., 2001; Erhagen et al., 2013). However, the impact 

of SOM formation and degradation resulting from changes in tree species 

composition due forestation and/or global change remains unclear. We 

hypothesized that different tree species generate SOM with different organo-

chemical compositions, and that these differences are expressed as differences 

in the accumulation and decomposition of SOM, and the temperature response 

of these processes. 

 

Paper II: Carbohydrate biopolymers such as cellulose typically constitute 40-

50% of the SOM mass in the organic horizons of boreal forest soils (Erhagen et 

al., 2013). This highlights the important effect of cellulose decomposition on 

soil C balances. It has been suggested that carbohydrate biopolymers may be 

inaccessible to microorganisms during winter because low temperatures could 

directly reduce exoenzymatic activity and thus inhibit biopolymer hydrolysis. 

We hypothesized that soil microorganisms in boreal forest soils can hydrolyze, 

metabolize, and grow on organic biopolymers under frozen soil conditions. 

 

Paper III: Cellulose in boreal forest soils occurs in two physically distinct 

forms, crystalline and amorphous. Both forms are abundant in the plant-derived 

material that constitutes SOM (Newman and Hemmingson, 1990; Andersson et 

al., 2004). However, little is known about how the amorphous and crystalline 

structures of cellulose affect its rate of decomposition in boreal forest soils. We 

hypothesized that the structure of cellulose in the soil (i.e. the crystalline or 

amorphous organisation of its glucose units) has important effects on the rate 

and extent of soil C mineralization. 

 

Paper IV: Northern peatlands are important components of the boreal 

landscape, and even small changes in the rate of SOM decomposition could 

strongly affect winter C fluxes from these ecosystems. Under non-frozen 

conditions, boreal peatland soils retain water to a greater degree than upland soils 

(Öquist et al., 2009) and could therefore potentially sustain higher rates of 
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microbial activity in a frozen state. However, it is not known how changes in 

temperature and their effects on the soil water content influence microbial 

metabolism in boreal peatland soils at temperatures below 0 °C. We 

hypothesized that peat soil microorganisms can use simple C substrates to 

sustain both catabolic and anabolic processes in frozen peat soils. 
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3.1 Fieldwork 

The results I present in this thesis are based on investigations of organic surface 

soil samples from forest and peatland sites characteristic of Sweden’s central 

boreal region. In the field, samples were collected from Inceptisols with an 

incipient organic horizon (paper I) and from well-developed Spodosols (papers 

II and III) and Histosols (paper IV). These three soil types dominate boreal 

landscapes (Soil Survey Staff, 2003; Jones et al., 2010)  

The soils investigated in paper I were collected from the site of a tree species 

field experiment located at Sävar, 15 km north of Umeå (63°5342N, 20°32 

34E) (Figure 4). The annual mean temperature and precipitation at the site over 

the climate standard reference period 1961-1990 were 2.9 °C and 662 mm, 

respectively (Alexandersson, Karlström and Larsson-Mccann, 1991). The site 

was laid out according to a randomized block experimental design with three 

replicate plots for each of five tree species: Norway spruce (Picea abies L. 

Karst.), Lodgepole pine (Pinus contorta Dougl.), Scots pine (Pinus sylvestris 

L.), Siberian larch (Larix sibirica Ledeb.) and Silver birch (Betula pendula 

Roth). The site was formerly cultivated land on an Inceptisol, originating from 

glacifluvium with a silty layer overlaying clay (Soil Survey Staff, 2003). The 

soils at the site were ploughed and fertilized until the late 1940s. Hay was taken 

in the 1950s and it was then left unused until the establishment of the tree species 

experiment in 1971. For further information on the site, see the work of 

Alriksson and Eriksson (1998).  

For papers II and III, I collected samples of typical boreal Spodosols at a site 

dominated by Picea abies L. Karst. and Pinus sylvestris L. in the Kulbäcksliden 

Experimental Area, northern Sweden (64°11′N, 19°33′E), with understory and 

3 Material & methods 
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field vegetation dominated by Vaccinium myrtillus L., V. vitis idaea L., and 

Pleurozium schreberi (Brid.) Mitt.  

For paper IV, samples were collected from Histosols (acrotelm) at the Degerö 

Stormyr mire complex, an oligotrophic minerogenic mire covering 6.5 km2 that 

is also situated in the Kulbäcksliden Experimental Forest. The ground vegetation 

at the Degerö Stormyr sampling location is dominated by the mosses Sphagnum 

balticum (Russ.) C. Jens, S. majus (Russ.) C. Jens, and S. lindbergii Schimp. The 

site’s vascular plant community includes the sedges Trichoforum cespitosum L. 

and Eriophorum vaginatum L., as well as the dwarf shrubs Rubus chamaemorus 

L., Andromeda polifolia L. and Vaccinium oxycoccos L.  (Nilsson et al., 2008; 

Laine et al., 2012).  

Over the climate standard reference period 1961-1990, the site’s 30-year mean 

annual precipitation was 523 mm and its mean annual and January temperatures 

were +1.2 and -12.4 °C, respectively, based on climate data measured 2 km away 

from the Kulbäcksliden Experimental site (Alexandersson, Karlström and 

Larsson-Mccann, 1991). The site is characterized as having a cold temperate 

humid climate with a growing season that usually lasts for approximately 6 

months (May–October) and snow cover that normally lasts from early 

November until late April.  

3.2 Laboratory work 

3.2.1 Soil processing 

Upon collection of the Spodosols and Inceptisols (papers I-III), litter, moss, and 

underlying mineral soil were removed from the samples, which were then pooled 

into a single large composite sample per plot to maximize representativeness. 

For paper I, samples from the surface organic soil layer (0–3 cm) were collected. 

For papers II and III, soil cores (15 cm diameter) from the organic (O)-horizon 

(0–5 cm) were collected (Figure 4, d-f and h). The soils were transported directly 

to the laboratory, where the composite was homogenized by passing it through 

a sieve (6 × 3.5 mm mesh) in its field-moist state. Needles, coarse and visible 

fine roots, and other debris were removed manually. The homogenized soil was 

then stored at −20 °C until the start of the incubations. For paper IV, frozen peat 

soil from the topmost 20 cm (acrotelm) was collected, transported to the lab, and 

kept frozen at -20 °C for one week until further treatment. After thawing to 4 °C, 

the samples were cut with scissors to homogenize the material (Figure 4, g).  
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Figure 4. Overview of the experimental sites where soil sampling was carried out. (a) Sävar 

experimental site; samples collected from 0-3 cm. Subfigures (b), (c) and (d) show soil profiles (ca. 

0-20 cm) from P. abies, abandoned meadow, and B. pendula plots, respectively. (e) The Degerö 

Stormyr mire complex; subfigure (f) depicts a sample of the collected acrotelm (0-20 cm). (g) 

Kulbäcksliden experimental site (h) soil cores (15 cm diameter) sampled from the O Horizon 

(0-5 cm). (Photos: Javier Segura (e) Meredith Blackburn, (g,h) Björn Erhagen). 

Subsamples of all collected soils were used to determine the soil’s dry weight 

(after drying for 24 h at 105 °C) and SOM content (determined by loss on 

ignition after heating at 550 °C for 6 h), and the soil pH. The C and N contents 

of all sampled soils were determined by elemental analysis using a Flash EA 

2000 elemental analyser (Thermo Fisher Scientific, Bremen, Germany) to 

calculate C: N ratios. The total C and N contents reported in paper I were related 

to the mass of SOM in the soil (measured in g SOM/g dw) and are referred to as 

soil organic matter C (SOM_C) and soil organic matter N (SOM_N). 

3.2.2 Pretreatment of 13C-cellulose  

For the investigations reported in papers II and III, 13C-cellulose (97 at% 13C, 

from Zea mays L., obtained from IsoLife, Wageningen, The Netherlands) was 

treated with an ionic liquid (IL) to disrupt its partly crystalline structure. The IL 

1-butyl-3-methylimidazolium chloride (BmimCl, Ab Rani et al., 2011) was used 

in these studies because it did not break down into toxic compounds or induce 

the degradation of cellulose to glucose upon mild heating (to ~ 75 °C for 48 h). 

The 13C-cellulose was pretreated and purified, and the IL-induced changes in its 

structure were evaluated by cross polarization magic angle spinning nuclear 

magnetic resonance spectroscopy (CP MAS NMR) and elemental analysis, 

which revealed complete conversion of the polymer into an amorphous structure 

(see Box 1 and details of the IL treatment in paper II). 

3.2.3 Pyrolysis-GC–MS analysis 

The molecular SOM characterization data reported in paper I were acquired by 

pyrolysis gas chromatography/ mass spectrometry (Py-GC–MS). Briefly, 200 ± 

10 μg freeze dried and tube-milled SOM subsamples were weighed and 

transferred to autosampler containers (Eco-cup SF, Frontier Laboratories, 

Japan). The samples were pyrolyzed in a Frontier Labs PY-2020iD oven (450 

°C) connected to an Agilent 7890A-5975C GC–MS system. 450 °C has been 

proposed as a suitable pyrolysis temperature for low mass samples because it 

avoids complete degradation of some organic matter biomarkers (Tolu et al., 

2015).  
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Box 1. Recent advances in “green chemistry” have focused on the study of the 

structural and chemical obstacles that limit the access to carbohydrates like 

cellulose. Usually chemical methods, elevated temperature and often also elevated 

pressure are applied in biomass transformations at industrial level. During the last  

years, Ionic liquids (IL) have been 

increasingly utilized for research 

purposes. Basically, an IL is a salt 

that exists as a liquid consisting of 

ions and short-lived ion pairs at 

room temperature. Many ILs can 

dissolve plant biomass. In my 

studies, an IL was used to disrupt 

the crystalline structure of cellulose, 

increase its accessibility to 

microorganisms, and remove 

impurities such as hemicelluloses, 

xylose, proteins, and organic acids 

(Tadesse and Luque, 2011; Brandt 

et al., 2013). After purification and 

washing, cross-polarization magic 

angle spinning nuclear magnetic 

resonance spectroscopy (CP MAS 

NMR) confirmed that IL treatment 

yielded completely amorphous 

cellulose (see methods in paper II). 

 

 

Schematic depiction of the disruption of 
13C-cellulose using ionic liquids. Figure 

modified from (Hsu, Ladisch and Tsao, 

1980 and Brandt et al., 2013) 

Spectra of the 13C cellulose before (a) and after (b) the IL treatment 

 

Soil heterotrophic respiration (CO2  production) 

At both temperatures, the growth phase after the substrate/nutrient addition (Durationadd-growth, 

ascending limb of the respiration peak in Fig 2) was initiated faster in the soil samples amended 

with treated cellulose (T-test, p<0.05) as compared to the samples treated with the reference 

cellulose (Fig 2). The growth phase in the samples with reference cellulose addition started 5 

days and ~6.5 days later than for the samples with treated cellulose addition, at 19˚C and 9˚C, 

respectively (Table 2). The treated cellulose was more efficiently utilized (as indicated by 

sharper respiration peaks, Fig 2) at both temperatures and resulted in maximum respiration rates 

(Respirationmax) that were twice as high as compared to the soils amended with the reference 

cellulose (p<0.1; Table 2). Durationadd-max was significantly shorter for the treated cellulose 

amended samples at both temperatures (Table 2, Fig 2). At 19˚C, the soils amended with the 

treated cellulose reached the maximum CO2 production rate after 13.4 days while the reference 
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In our samples, 111 pyrolytic organic compounds were identified, and peak 

areas were normalized by setting the total identified peak area for each sample 

to 100% (see Tolu et al., (2015) and paper I for more details). 

3.2.4 Respiration measurements & substrate additions 

Respirometer experiments 

Papers I and III describe soil incubation experiments performed with a 

respirometer. To optimize moisture conditions for microbial activity during 

incubation, the water content of the soil samples was adjusted to a water potential 

of -25 kPa (Ilstedt, Nordgren and Malmer, 2000). Briefly, soil samples 

containing 1 (paper III) or 11 ± 2.1 (paper I) g of organic material (dry weight, 

dw) were placed in 250 ml incubation jars (Nalgene, Thermo Fisher Scientific) 

and incubated at 4, 9, 14, and 19 °C (paper I), and 9 and 19 °C (paper III). During 

incubation, the CO2 production from the SOM was measured hourly using the 

respirometer (Chapman, 1971; Nordgren, 1988, Nordgren Innovations, 

Djäkneboda, Sweden). The incubation jars were equipped with a small vessel 

containing 10 ml KOH (0.5M) and two platinum electrodes. The jars were placed 

in an insulated water bath with a tightly controlled temperature (±0.02 °C). CO2 

produced by SOM respiration was trapped in the KOH solution, reducing its 

electrical conductivity; this change in conductivity was measured with the 

platinum electrodes. The changes in conductivity were then used to calculate 

CO2 production in mg CO2 g-1 OM dry weight (dw) h-1.  

In papers I and III, the basal respiration (BR) was calculated as the average 

of 100 consecutive hours of CO2 measurements, starting 34 days after the start 

of the incubation and after respiration equilibration. The BR rates reflect the 

inherent metabolic properties of the microorganisms in the incubated sample. 

After the BR had been determined, a quantity of substrate equivalent to 50 mg 

C g-1 SOM in the form of glucose (paper I) or crystalline and amorphous 

cellulose (paper III, Box 1) together with solutions of (NH4)2SO4 and KH2PO4 

were added to the soil samples to give a 181:13:1 molar ratio of C:N:P. The 

amounts of C, N and P were chosen to correspond to optimal conditions for 

microbial growth in soil samples with a high organic content (Ilstedt, Nordgren 

and Malmer, 2000). In paper III, a second addition of N & P was done after 40 

days of incubation to further evaluate the role of nutrients in cellulose 

mineralization. 

Substrate-induced respiration (SIR) is the immediate response in CO2 

production to the addition of a C substrate at saturation level (Anderson and 

Domsch, 1978). The SIR was calculated as the average of 5 hourly 
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measurements following glucose or cellulose additions. According to Anderson 

& Domsch (1978), SIR is a measure of the soil’s microbial potential, i.e. the 

available soil microbial biomass able to degrade the added carbon substrate. For 

paper I, the ratio of BR to SIR (QR=BR/ SIR) was calculated to obtain an 

indication of the actual activity of the CO2-producing community in the soil 

relative to the maximum potential activity of the microbial population 

(Blagodatskaya and Kuzyakov, 2013).  

To determine how SOM degradation rates changed with the temperature, Q10 

responses were determined from the BR values reported in papers I and III and 

SIR values in paper IV. Q10 is the factor by which rates of respiration changes in 

response to a ten degree change in temperature. To describe the respiration rate 

and its temperature dependence, we used an exponential model as proposed by 

Fang et al., (2005) (eq. 1) 

𝑄10 = 𝑒𝛽×10 (1.) 

Here, e is the base of the natural logarithm, ß is the exponent of the 

exponential function that best fits the corresponding respiration and temperature 

data, and 10 is a factor corresponding to the 10-degree difference in temperature.  

3.2.5 Frozen soil incubations  

In papers II and IV, incubations were performed to measure the production of 
13C-CO2 and the synthesis of 13C-labeled compounds (corresponding to the rates 

of catabolic and anabolic processes) under frozen and unfrozen conditions 

(Drotz et al., 2010, Erhagen et al., 2013). To this end, soil samples were placed 

in autoclaved gas-tight glass bottles. Each soil sample was then treated with a 

quantity of 13C-labeled cellulose (see box 1, paper II) or 13C-labeled glucose 

(paper IV) equivalent to 67 (paper II) or 44 (paper IV) mg C per g SOM (dw), 

respectively. A solution of (NH4)2SO4 and KH2PO4 was then added to each 

bottle to give a final C:N:P molar ratio of 182:13:1.  

As described previously, the amounts of C, N and P were chosen to 

correspond to optimal conditions for microbial growth. To quantify the non-

biological transformation of the 13C-labelled substrates, I treated some soil 

samples with an NaN3 solution to inhibit microbial activity (Wolf et al., 1989) 

just before incubation and immediately after adding the 13C-labelled substrate 

and N&P solution to the soil. The bottles were sealed, evacuated, refilled with 

atmospheric air and then placed in temperature-controlled cabinets. For paper II, 

the bottles were incubated at -4 and 4 °C for 195 and 28 days respectively. For 

paper IV, the bottles were incubated at -5, -3, 4, and 9 °C for 115, 77, 11, and 7 

days respectively.  



27 

 

On each sampling occasion, NaN3 solution was added to each of three 

incubated bottles to inhibit further microbial activity. Headspace gas samples 

were withdrawn from these bottles and transferred to N2-flushed GC vials 

(Perkin Elmer) and N2-flushed EXETAINER® tubes containing a solution of 500 

μl 0.5 M KOH to determine their total CO2 and 13C-CO2 contents, respectively. 

Total CO2 contents were determined using a gas chromatograph (Perkin-Elmer 

Auto Systems, Waltham, MA, USA) operating with a methanizer and flame 

ionization detector (Zhao et al., 2016). Amounts of 13C-CO2 produced during 

the incubations were determined as described below.  

3.2.6 NMR spectroscopy techniques  

Determination of 13C-CO2 and 13C-labeled water-soluble compounds  

For papers II and IV, the amounts of 13C-CO2 produced in the incubation samples 

were determined by solution state 13C NMR analysis of the CO2 absorbed by the 

KOH solutions in the EXETAINER® tubes. After injecting the sampled 

headspace gas, the tubes were equilibrated at 4 °C for 1 h. Next, 250 μl of the 

solution from the tube and 250 μl of 1.0 M KCH3COO were transferred to a 

NMR tube (Wilmad-Lab Glass, Vineland, USA) and analyzed using a 600 MHz 

Avance III HD spectrometer (Bruker Biospin GmbH, Rheinstetten, Germany), 

equipped with a 5 mm Broad Band Observe Cryo-Probe. The acetate carbonyl 

signal at 181.4 ppm was used as a natural abundance internal reference to 

integrate the signal of the 13C carbonate at 168.2 ppm (see details in paper II).  

To determine the contents of 13C water-soluble carbohydrate (13C-WSC) 

originating from the 13C cellulose used as the substrate in paper II, forest soils 

were homogenized to enable representative subsampling of the labelled material. 

I achieved this by grinding and homogenizing the samples in a liquid N2 bath. I 

then applied established soil water extraction protocols (Giesler and Lundström, 

1993; Jones and Willet, 2006) to the homogenized samples so as to monitor 

changes over time in their 13C-WSC contents (see papers II and IV). The 

extracted aqueous solutions were passed through a 0.45 μm filter and freeze-

dried. The freeze-dried material was then rewetted and dissolved in 1 ml of water 

containing 10% D2O. A sample of 500 μl of the resulting mixture was transferred 

to an NMR tube (Wilmad-Lab Glass) and analyzed using the 600 MHz 

spectrometer and probe mentioned above. For more detailed information 

concerning the NMR settings, see papers II and IV. 
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Analysis of membrane phospholipid fatty acid (PLFA) enrichment 

To determine the incorporation of the 13C-label into PLFAs in papers II and IV, 

lipid extracts were weighed into smaller glass vials, evaporated at 40 °C under a 

stream of N2, and re-weighed. 400 μl methanol-d4 (99.8 at%) and 200 μl of a 

mixture of 0.1 % methyl ethyl ketone (99.5 %) and Chloroform-d (99.8 at%) 

were added to the extracts and 480 μl portions of the resulting solutions were 

transferred to NMR tubes (Wilmad-Lab Glass) and examined by performing a 

one-dimensional (1D) 1H experiment and a 1D variant of a 1H-13C HSQC 

experiment (see Box 2) (Szyperski, 1995; Mahrous, Lee and Lee, 2008; Fan et 

al., 2009) using a 600 MHz Avance III spectrometer (Bruker Biospin GmbH).  

The 1D HSQC experiment observes protons connected by a single chemical 

bond to a 13C carbon. To quantify 13C enrichment in PLFAs, we used the signal 

of the residual solvent (methanol) as a reference for the natural abundance of 
13C. The natural abundance gives rise to a specific intensity ratio of the solvent 

signals in the 1D HSQC and 1D 1H spectra. This ratio was also evaluated for the 

PLFA signals; the difference between the ratios for the PLFA and methanol 

signals reflects the 13C enrichment of the fatty acids (see box 2 and the Methods 

section of paper II for validation and further details of this approach).  

3.2.7 Phospholipid fatty acid (PLFA) analysis 

For papers II and IV, 0.5 g portions of soil were extracted and fractionated using 

the method of Bligh & Dyer (modified according to Frostegård, Tunlid and 

Bååth, 1991) to determine their phospholipid fatty acid (PLFA) types and 

concentrations. The abundance of PLFAs was analyzed using a Perkin-Elmer 

Clarus 500 gas chromatograph (Waltham, MA, USA). Different types of PLFA 

can be associated with different microbial groups. The PLFAs i15:0, a15:0, 

a17:0, i16:0, 16:1ω9, 16:1ω7t, 16:1ω7c, i17:0, cy17:0, cy19:0, and 18:1ω7 were 

considered to be bacterial markers (Bååth, Frostegård and Fritze, 1992; 

Frostegård, Bååth and Tunlid, 1993); 18:2ω6,9 was used as a general fungal 

marker (Federle, 1986; Frostegård, Bååth and Tunlid, 1993); 16:1ω5 was used 

as a marker for arbuscular mycorrhizal fungi (Frostegård, Bååth and Tunlid, 

1993; Zogg et al., 1997); and 10me16, 10me17, and 10me18 were treated as 

actinobacterial markers PLFA quantification produces results comparable to 

other biomass-related methods and has been identified as a suitable method for 

detecting changes in biomass after the addition of substrates (Frostegård, Tunlid 

and Bååth, 2011). 
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Box 2. Nuclear magnetic resonance spectroscopy (NMR)  

NMR is widely used in organic chemistry, medicine, and biophysics. It also has many applications 

in environmental research, notably in the study of complex, heterogeneous samples for ecology, 

soil science, and biogeochemistry. When a molecule is placed in a magnetic field, the nuclei of 

specific isotopes such as 1H or 13C (12C is NMR-inactive) resonate at specific frequencies 

characteristic of their chemical environment. These frequencies are known as “chemical shifts,” 

and can be used to identify chemical groups and their bonding within a molecule. NMR enables 

non-destructive analysis of heterogeneous samples in various phases. In this work, solid- and liquid 

state NMR experiments were used to determine the fate of C substrates and gather information on 

the metabolic processes of soil microbes. Specific NMR techniques that were used include CP-

MAS to characterize soil samples, liquid state 13C-CO2 NMR to monitor the respiration of 13C-

labelled substrates, and 1D 1H analysis together with a 1D variant of a 1H-13C HSQC experiment to 

monitor 13C incorporation into fatty acids (PLFA). Together, these experiments allowed to follow 

the fate of C as it was metabolized by soil microorganisms. 

Close-up of a membrane lipid bilayer and the molecular structure of a saturated fatty acid chain 

overlaid on the 2D HSQC spectrum of a representative soil lipid extract and the corresponding 1D 

1H spectrum. Peaks in the 2D spectrum correspond to C-H groups; the peak volumes reflect the 

abundance of the C-H moiety. These NMR experiments allowed to determine where 13C was 

incorporated into fatty acids during the incubations and the level of 13C enrichment that was 

achieved. For more detail on the approach, see the Methods section of paper II.   
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3.2.8 DNA analysis 

In paper IV, the composition of the microbial community in peat samples was 

explored by means of molecular DNA analysis. Peat soil DNA was extracted in 

duplicate from 0.25 g of soil from each sampling time and incubation 

temperature using the MoBio PowerSoil® extraction kit (MoBio Laboratories, 

Carlsbad, USA) according to the manufacturer’s protocol. The 16S rRNA gene 

was amplified and barcoded for Illumina sequencing using a modified variant of 

Sinclair’s two-step PCR protocol (Sinclair et al., 2015). Briefly, the PCR 

reactions were performed using Illumina adapter-linked 16S rRNA gene-

specific 341F forward (Herlemann et al., 2011) and 805NR reverse primers 

(based on work by Apprill et al., 2015). Each reaction was performed in 

duplicate using Q5 High-Fidelity DNA polymerase (New England Biolabs, 

Ipswich, UK) according to the manufacturer’s recommendations. After PCR 

amplification, the purified barcoded PCR products were pooled to equalize their 

DNA contents and sequenced with the Illumina MiSeq platform using paired-

end 300bp read length sequencing with v3 chemistry at the SciLifeLab 

SNP&SEQ facility at Uppsala University. For more detailed information on the 

DNA extraction and sequencing process, see paper IV. 
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3.3 Statistics and data evaluation 

In paper I, differences in SOM descriptors (i.e., the pH, C:N ratio, SOM content 

and SOM_C and SOM_N) between all treatments, including the control 

(abandoned meadow) treatment, were evaluated by one-way analysis of variance 

(ANOVA). To analyze for both main and interaction effects of tree species and 

temperature on the basal respiration (BR) rates of the incubated samples, a two-

way ANOVA was performed with temperature and tree species as factors. Two-

way ANOVA was also used to explore main and interaction effects of tree 

species and incubation temperature on the ratio of actual to potential respiration 

(QR). For all ANOVAs, multiple comparisons between tree treatments were 

performed when significant differences were detected (alpha=0.05).  

In paper I, the peak data obtained from pyrolysis-GC–MS experiments 

revealing the molecular composition of the SOM were integrated using a data 

processing pipeline developed for R. Peak identification was performed with the 

“NIST MS Search 2” program using the “NIST/EPA/NIH 2011” library and 

additional spectra from published pyrolysis studies (Tolu et al., 2015, 2017). 

The effects of tree species on the molecular composition of the SOM were 

evaluated by performing principal component analysis (PCA) on the identified 

pyrolytic organic fragments. Since we specifically wanted to explore the effects 

of tree species on the organic chemistry of the SOM, data for the abandoned 

meadow plots were excluded from this multivariate analysis A second PCA was 

performed to explore the correlation structure between the pyrolytic fragments, 

the SOM descriptors mentioned above, and the measured respiratory responses 

(BR, SIR and QR) at all tested temperatures. To test the hypothesis that OM 

content, BR, SIR, Q10, and QR can be explained by the organo-chemical 

composition of SOM, we performed a partial least squares (PLS) analysis. All 

PCA and PLS analyses were performed using version 14.0 of the SIMCA-P 

software package (Umetrics, Umeå, Sweden).  

In paper II, the production of 13C-CO2 and increases in the concentrations of 
13C-WSC and PLFA markers in the soil solution were evaluated by linear 

regression.  

In paper III, the C4 spectral region of the CP MAS NMR spectrum of 

cellulose (80-92 ppm) was used to assess changes in cellulose crystallinity. The 

assessment was based on the relative intensities of the CP MAS NMR spectra in 

the crystalline region (86-92 ppm) and the amorphous region (80-86 ppm) 

(Larsson et al., 1999). The total amount of the added substrate that was utilized 

metabolically was estimated using a mass balance approach in which the CO2 

production rates were combined with assumed carbon use efficiencies (CUEs) 

of 0.4, 0.5, and 0.6 (as reported by Öquist et al., 2016). Statistical differences 

were evaluated using Student's t-test.  
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 In paper IV, the allocation of 13C to catabolic and anabolic processes was 

examined using PCA. This analysis included data on the consumption of 13C 

glucose and the concomitant production of 13C-CO2, 13C-WSC, microbial PLFA 

concentrations, and the incorporation of the 13C label into membrane fatty acids. 

In both papers II and IV, differences in 13C incorporation into PLFAs were 

examined using the Kruskal Wallis-test, which requires measurements to be 

placed in rank-order but does not assume normality of data. For all analyses, 

differences were regarded as significant if p < 0.05. All multivariate analyses 

were performed using version 14.0 of the SIMCA-P software package 

(Umetrics, Umeå, Sweden). The Prism package (Graph Pad Software 6.0, La 

Jolla, USA) and Minitab 18 statistical software (Minitab Inc. State College, PA, 

USA) were used for all univariate analyses. 
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4.1 Tree species effect on SOM decomposition, its 
temperature response and accumulation 

Paper I examined the effect of tree species on soil properties and processes 

critical for SOM formation and decomposition. This involved an advanced 

characterization of the SOM developed under trees planted on a tree 

experimental site established on an abandoned meadow half a century ago. The 

goal was to determine the extent to which different tree species generate SOM 

with distinct organo-chemical compositions and whether these differences are 

expressed as differences in SOM accumulation, decomposition, and the 

temperature response of these processes.  

The PCA based on the 111 identified pyrolytic fragments revealed three 

significant principal components and explained 80 % of the variation in the 

organic chemical composition of the forest soil samples (R2= 0.80, Q2=0.5 Fig 

5). Overall, the organo-chemical composition data showed that SOM formed 

under plots with coniferous trees contained higher proportions of intact plant-

derived molecules, indicating the accumulation of comparatively non-degraded 

plant material. Intact plant-derived molecules identified in these plots included 

levosugars, carbohydrate pyrolytic products of ligno-cellulose, complexes 

strongly associated with lignin, compounds related to guaiacol (which derives 

from lignin guiacyl (G) subunits), and preserved plant steroids (Figure 5, Table 

S1 in paper I).  

In contrast, the SOM formed in plots with the deciduous B. pendula was rich 

in plant material-derived degradation products. The most abundant fragments in 

these cases were aliphatic compounds originating from the breakdown of plant 

suberin and cuticular waxes into shorter chains and N-containing compounds, 

i.e. specific pyrolytic products of proteins or amino acids (Fabbri et al., 2012). 

4 Summary of results and discussion 
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Lignin compounds related to syringol (derived from lignin syringyl (S) subunits) 

were also more abundant in these plots. Both the plant and microbial degradation 

products found in B. pendula plots suggest a high degree of microbial activity 

and decomposition. Taken together, these results indicate that the variation in 

SOM composition reflects both the identity of the tree species planted half a 

century ago and the current state of SOM decomposition (Figure 5).  
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Figure 5. Score and loading plots of the PC model based on 111 pyrolytic fragments of the sampled 

forest soils (total variation explained: PC1 52%, PC2 11%, PC3 11%, R2X=0.74 Q2=0.5, n=15). 

The variance explained by PC2 and PC3 did not relate to the experimental treatments but to 

differences between the experimental blocks. For enhanced clarity, the figure shows only PC1 and 

PC3.  PC scores of the forested plots are indicated by orange stars (LS—L. sibirica, PA—P. abies, 

PC—P. contorta, PS—P. sylvestris) and black stars (BP—B. pendula). The model also contained 

the SOM descriptors (pH, C:N ratio, SOM content, SOM_C and SOM_N; black circles) and 

respiratory measures (Q10, BR, SIR and QR; grey squares). Data points corresponding to different 

compound types are surrounded by enclosures of specific colours: green for carbohydrates, red for 

lignin and phenolic compounds, light blue for aliphatic compounds, and dark blue for N-containing 

compounds. The correlation structures between the organo-chemical composition of SOM and QR, 

BR and SIR are indicated by light red, grey, and green shading, respectively. 

Paper I also examined the extent to which differences in SOM composition could 

be related to differences in decomposition rates and the temperature sensitivity 

of saprotrophic respiration (Q10). Contradicting our hypothesis, the organic 

chemical composition of the SOM had no significant effect on the Q10 of basal 

soil respiration. The independence of Q10 on the organic chemical composition 

agrees with earlier observations on common European tree species (Vesterdal et 

al., 2012) and nearby boreal forests (Erhagen et al., 2013).  

Two different molecular approaches - 13C-NMR as used by Erhagen et al., 

(2013) and pyrolysis-GC–MS as reported in this thesis - have indicated that the 

Q10 for soil CO2 production is independent of the organo-chemical composition 

of the SOM. This is inconsistent with theoretical predictions of the effects of 

substrate quality based on the Arrhenius kinetic model (Bosatta and Ågren, 

1999; Davidson and Janssens, 2006). Other empirical studies have concluded 

that the decomposition of complex compounds in SOM is less, equally, or more 

temperature-sensitive than that of labile compounds (e.g. Melillo et al., 2002; 

Fang et al., 2005; Fierer et al., 2005; Erhagen et al., 2013). This lack of 

consensus is presumably partly due to variation in SOM composition and the use 

of different experimental methods (Conant et al., 2008). However, a recent meta-

analysis of empirical studies suggested that most of these studies actually agree 

with the Arrhenius model and thermodynamic theory, i.e. that temperature 

sensitivity increases with the complexity of the compounds undergoing 

degradation (Sierra, 2012),  

The CO2 production data obtained with the respirometer made it possible to 

acquire three estimates (BR, SIR and QR) of microbial metabolic activity. QR 

was found to depend strongly on the organo-chemical composition of the SOM 

at all tested temperatures. Conversely, the BR and SIR were both only weakly 

dependent on the organo-chemical composition of the SOM or completely 

independent of it at all studied temperatures (Figure 5, Table 1). The QR values 

ranged between 0.2 and 0.4, in keeping with previously reported QR values for 
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forest soils (Wardle and Parkinson, 1990; Blagodatskaya, Anan’yeva and 

Myakshina, 1996; Anan’yeva, Blagodatskaya and Demkina, 2002). 

Table 1. Refined model performance statistics for the PLS analysis of basal respiration (BR), 

substrate-induced respiration (SIR), and the respiratory quotient (QR). 

 

 

 

 

 

Some emerging ideas and observations suggest that the organo-chemical 

composition of litter and SOM have less important effects on decomposition 

than ecosystem-level properties such as environmental and biological factors 

including mineral protection of substrates and microbial activity (Marín-Spiotta 

et al., 2014; Lehmann and Kleber, 2015; Bradford et al., 2017; Maaroufi et al., 

2017). However, the results presented in paper I do not support the subordination 

of the molecular composition of the SOM as a factor governing SOM 

decomposition. On the contrary, this study strongly suggests that the link 

between SOM decomposition and microbial decomposers is controlled by the 

organo-chemical composition of the SOM. Thus, although neither the active 

microbial population nor the potentially active microbial population seem to be 

governed by the organo-chemical composition, it does seem to control the 

proportion of the potential microbial population that may become active. 

The results presented in paper I agree with the current understanding of SOM 

as a collection of macromolecular aggregates consisting primarily of small 

components of < 2000 Da (Simpson et al., 2002; Sutton and Sposito, 2005; 

Kelleher and Simpson, 2006) that originate mainly from plants and 

microorganisms (Knops, Bradley and Wedin, 2002; Derrien, Marol and 

Balesdent, 2007; Hopkins and Dungait, 2010; Miltner et al., 2012). 

Temperature-driven changes in the physical and chemical environment of the 

SOM make these aggregates more or less accessible to microbial enzymes, 

leading to variation in the rate of their decomposition (Figure 3 in paper I). Both 

PLS model R2Y Q2 R2X Components 

BR 4°C 0.37 0.33 0.81 1 

BR 9°C 0.36 0.27 0.70 1 

BR 14°C n.s. n.s. n.s. 0 

BR 19°C n.s. n.s. n.s. 0 

SIR 4°C n.s. n.s. n.s. 0 

SIR 9°C n.s. n.s. n.s. 0 

SIR 14°C 0.32 0.18 0.62 1 

SIR 19°C 0.60 0.52 0.39 1 

QR 4°C 0.68 0.63 0.85 1 

QR 9°C 0.80 0.63 0.75 2 

QR 14°C 0.81 0.76 0.88 1 

QR 19°C 0.78 0.77 0.76 1 
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temperature and soil moisture were controlled in the experiments presented in 

paper I, so the observed responses can be attributed solely to the relationship 

between the added C, the microbial community’s response to the additions and 

the initial SOM composition.  

“Common garden” experiments such as that examined in paper I are seldom 

performed (Augusto et al., 2002) but can partly eliminate several site-related 

factors that can confound evaluations of species’ effects on soils (Binkley, 

1995). There have been few reports on tree species’ effects on top-soils based 

on common garden studies in the boreal region, but those that have been reported 

consistently show that forest floor C and nutrient levels at sites planted with 

common boreal tree species decrease in the order Picea>Pinus>broadleaf 

(Populus or Betula) (e.g. Vesterdal et al., 2013 and references therein). 

Similarly, the mean total SOM and N contents in our samples decreased in the 

order Picea > Pinus = Larix > Betula. However, a study conducted 20 years ago 

at the experimental site examined in Paper I (Alriksson and Eriksson, 1998) 

reported no differences between tree species with respect to the accumulation of 

SOM or C in the forest floor. It may thus require more than 30 years from tree 

establishment for tree species-dependent differences in the soil-associated 

processes of SOM formation and decomposition to become apparent in boreal 

forest soils. 

4.2 Microbial mineralization of cellulose in frozen soils 

Paper II addressed the potential of the microbial community in boreal forest soils 

to hydrolyze, metabolize, and grow on organic biopolymers under frozen 

conditions. The organic layer horizon (O horizon) of boreal forest soils was used 

as a model system to test this hypothesis and cellulose was chosen as a model 

substrate because it is the most common C biopolymer, typically comprising 20–

30% of the plant litter mass (Kögel-Knabner, 2002). We followed the fate of the 

added C by determining the transformation rates of 13C-cellulose into 13C water-

soluble carbohydrates (13C-WSC monomers and oligomers), 13C-CO2, and the 

incorporation of 13C into membrane phospholipid fatty acids (PLFAs).  

We found that the added cellulose was hydrolyzed in the soil (Figure 6a) and 

that 13C-CO2 was produced until day 113 of incubation (Figure 6b). The net 

increase in 13C-WSC released from the added 13C-cellulose correlated positively 

with the amount of 13C-CO2 produced over 113 days (Pearson r = 0.66, p = 

0.014). Microbial PLFA concentrations initially declined (between days 0 and 

16; see Figure 2b in paper II), probably because of the rather quick freezing to 

the target temperature. Similar declines have been observed as a result of rapid 
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freezing or after several freeze-thaw cycles (Feng, Nielsen and Simpson, 2007; 

Schmitt et al., 2008).  

However, a large proportion of the microbial cells remained viable and able 

to grow at -4 °C, as proven by the measured PLFA concentrations, which 

increased from day 16 onwards. The net 13C-WSC concentration correlated 

positively with the increases in bacterial and actinobacterial PLFA 

concentrations between days 16 and 113 (Pearson r = 0.57, p = 0.05, and Pearson 

r = 0.66, p = 0.019, respectively) (Figure 2b in Paper II). Both bacteria and 

actinobacteria are important decomposers in forest soils (Štursová et al., 2012; 

Lladó et al., 2016), and our findings suggest this may also be true in frozen soils. 

 
Figure 6. Panel a shows changes over time (and fitted linear functions) in the concentrations of 13C-

labeled water soluble carbohydrates (13C-WSC) formed by hydrolysis of the added 13C-cellulose 

(blue triangles) during incubations at -4 °C. Panel b shows CO2 (blue circles) and 13C-CO2 (blue 

diamonds) produced from the added 13C cellulose in the frozen samples at -4 °C; the lines are linear 

fits over the first 113 days of incubation. 

Substrate availability to bacteria and actinobacteria in the incubated soil may 

have become limited over time, probably as a result of diffusion constraints in 

the frozen soil. This is a plausible explanation for the decline in activity observed 

after ca. 3 months. The stoichiometric relationships between the CO2 

concentrations in the bottles’ headspaces and the assumed O2 consumption 

suggest that the decrease in activity may also be related to suboptimal oxygen 

levels that developed as the incubation progressed. However, the increase in 

microbial PLFA concentrations correlated with total CO2 production over time, 

suggesting that microbial carbon mineralization was closely related to changes 

in microbial biomass during the incubations (Figure 2 in paper II).   
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Figure 7. 13C from the added 13C-cellulose was used to synthesize new cell membrane lipids in soil 

samples incubated at -4 °C. The incorporation of the 13C label was determined by1D 1H analysis 

and a 1D variant of a 1H-13C HSQC NMR experiment. The bars show the median contents and max 

and min ranges of 13C-enrichment (relative to natural abundance) in acyl chains at the start (day 1), 

mid-point (day 58), and end (day 195) of the incubations at -4 °C. We obtained signals for spectral 

regions assigned to the following hydrogens and the corresponding C atoms (indicated in the model 

phospholipid fatty acid chain): 2.28 ppm - H-2 (blue circle and bars); 1.62 ppm - H-3 (brown circle 

and bars); 1.28 ppm - H-4 to H-(Ω-1) (gray ellipse and bars) and 0.9 ppm - H-Ω (green circle and 

bars) (see Box 2). The median enrichments between the start and end of incubations for the C3 and 

CΩ signals were 41 and 36%, respectively (Kruskal–Wallis test, p < 0.05). 

We determined the incorporation of 13C from 13C-cellulose into the PLFA pool 

and confirmed that the added 13C was a source of C used for growth by the 

microorganisms (Figure 7). 

The detected enrichment occurred along the whole length of the acyl chains 

in the samples incubated at -4 °C, suggesting new synthesis of fatty acids. Fatty 

acid chains found in the membranes of microorganisms were modified by 

elongation and branching (forming additional terminal C-Ω, methyl groups) and 

exhibited localized enrichment in the C-2 and C4–CΩ-1 groups of the acyl 

chains (Box 2, Figure 7). This is consistent with previous findings showing that 

microbial growth at low temperatures affects the degree of unsaturation, chain 

length, and branching at the methyl ends of fatty acids (Neidleman, 1987; Suutari 

and Laakso, 1994; Margesin et al., 2003). Our observations thus indicate that 

the soil microbes’ membranes underwent adaptive changes that permitted the 

maintenance of metabolic processes under frozen conditions.  

Cellulose hydrolysis rates were lower in frozen soil than in unfrozen soil, 

probably largely due to the reduction of the unfrozen water content. The 

behaviour of unfrozen samples was generally consistent with previous findings 
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(German et al., 2012; Erhagen et al., 2013; Öquist et al., 2016). The rate 

restrictions in frozen soils result from the considerable physicochemical changes 

associated with the dramatic changes in liquid water content and water potential 

induced by relatively small changes in the temperature of the frozen matrix 

(Öquist et al., 2009; Harrysson Drotz et al., 2010; Tilston, Sparrman and Öquist, 

2010). 

It has been suggested that cellulose hydrolysis is hampered in nitrogen-

limited soils (Schimel and Weintraub, 2003; Allison and Vitousek, 2005). 

However, when soils freeze most of the soil pore water transitions into ice and 

the dissolved compounds become more concentrated in the remaining liquid 

water pool (Harrysson Drotz et al., 2010). At the same time, metabolic rates and 

nutrient demands decrease (Tilston, Sparrman and Öquist, 2010). However, one 

can reasonably expect major differences in unfrozen water content between 

different soil types and ecosystems (Spaans and Baker, 1996; Romanovsky and 

Osterkamp, 2000). Additionally, cellulose hydrolysis would have been 

facilitated by the use of amorphous cellulose as the carbon substrate and by 

setting the availabilities of N and P to levels expected to be optimal for microbial 

activity. Naturally occurring cellulose polymers from Scots pine and Norway 

spruce (the dominant tree species at the studied site) have an amorphous 

cellulose content of around 50% (Andersson et al., 2004), making it a common 

constituent of SOM. However, little is known about the influence of the structure 

of carbohydrate biopolymers (i.e. the arrangements of their glucose subunits) on 

their rates of decomposition. 

Our study demonstrates that microbes in boreal soils can hydrolyse a major 

constituent of SOM in soils from the boreal landscape. The hydrolysis and 

mineralization of cellulose observed in our frozen samples contradicts the 

prevailing view that freezing precludes biopolymer decomposition (Wallenstein 

et al., 2011). Given the large contribution of C biopolymers to the soil C pool, it 

is important to account for even small changes in their decomposition rates. 

Changes in the large biopolymeric SOM pool over decades could lead to 

important changes in soil C stocks and atmospheric CO2 concentrations.  
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4.3 The effect of cellulose structure on microbial C 
decomposition 

In paper III we investigated how carbohydrate biopolymer structure influences 

rates of microbial C decomposition in boreal forest soils. Cellulose originating 

from plant and microorganism cell walls is generally the dominant biopolymer 

in SOM (Kögel-Knabner, 2002), highlighting the importance of cellulose 

decomposition for soil C balances. However, little is known about how the 

decomposition of cellulose is affected by its crystalline or amorphous structure. 

Cotton linter cellulose (60% crystalline) was used as a model substrate, and 

completely amorphous cellulose was obtained by treating this material with an 

ionic liquid (IL, see Box 1). The effect of this structural change on microbial 

decomposition was evaluated by adding the two types of cellulose to soil 

incubations and comparing their rates of decomposition.  

At both tested temperatures (9 and 19 °C), soils amended with amorphous 

cellulose exhibited faster initial increases in CO2 production rates (T-test, p < 

0.05) and reached maximum respiration rates that were twice as high as those 

for soils amended with crystalline cellulose (Figure 8a). By the end of the 

incubations, a mass balance approach showed that the added amorphous 

cellulose was completely decomposed whereas the crystalline cellulose was 

mainly undecomposed (Figure 8b). The significantly faster response to the 

addition of IL-treated amorphous cellulose suggests that the IL treatment may 

have induced other changes that affected the biopolymer’s availability. One 

likely effect of IL treatment is a reduction of the polymer chain length. This 

would conceivably increase the number of sites exposed to exoenzymatic attack, 

leading to a faster substrate utilization response. 

Rates of decomposition were calculated based on CO2 production rates 

measured with the respirometer and an estimated average carbon use efficiency 

(CUE) of 0.5; CUE values ranging from 0.4 to 0.6 were previously determined 

by 13C-cellulose labelling for soil microbial populations in samples taken from 

the site studied here (Öquist et al., 2016)). A CUE value > 0.5 suggests that some 

of the utilized substrate originates from the inherent SOM pool, which may 

reflect a “priming” effect. However, a CUE of 0.6 for utilization of glucose units 

at 19 °C would correspond to the consumption of ca. 10 mg SOM-C, 

representing less than 1% of the SOM in the sample. This in turn corresponds to 

a 0.4% increase in basal respiration rates, which is within the range of 

uncertainty for the CO2 production measurements. These results are therefore 

not conclusive evidence of priming. 

Cellulose and stoichiometric amounts of N were added at t=0 and an additional 

N supplement was added after 920 hours (Figure 8b). No additional effect on 

crystalline cellulose decomposition was observed following the second nutrient 
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addition, but the decomposition of the amorphous cellulose was enhanced by 

extra nutrients (Figure 8b). These results are consistent with the current 

understanding of hydrolytic enzyme activity and cellulose decomposition in 

nitrogen-poor soil systems (e.g. Harrington, Fownes and Vitousek, 2001; 

Schimel and Weintraub, 2003) where the soil microbial population probably 

lacks access to a readily available N source to rapidly build enzymes (Allison 

and Vitousek, 2005). More importantly, this result highlights the importance of 

the interaction between nutrients and the structural arrangement of the cellulose 

because only the amorphous fraction was decomposed. 
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Figure 8. Panel a shows the soil’s heterotrophic CO2 production over time after addition of 

amorphous (grey line) and crystalline (black line) cellulose. The error bars indicate standard errors 

(n=3). Panel b shows the cumulative mass loss over time from one unit of cellulose incubated in 

the moor layer soil matrix (amorphous cellulose (grey line) and a mixture of amorphous (40%) and 

crystalline (60%) cellulose (black line). Cellulose and stoichiometric amounts of N were added at 

t=0 and an additional N supplement was made after 920 hours (dashed vertical line). The extent of 

cellulose decomposition was calculated from the measured CO2 production and an estimated carbon 

use efficiency (CUE) of 0.5 for the soil microbial populations derived from a 13C-cellulose labelling 

study using soils sampled from the same site (Öquist et al., 2016). 

Previous studies have attributed the degradation resistance of cellulose to 

lignification (e.g. McClaugherty and Linkins, 1990; Laskowski and Berg, 2006), 

i.e. physical protection by lignin that restricts carbohydrate degradation. 

However, more recent biotechnological studies have shown that the accessibility 

of cellulose to enzymatic attack is restricted by its crystallinity (Park et al., 

2010). Differences in cellulose crystallinity could thus modulate the availability 

of SOM-C to microorganisms and may explain some of the variation seen in this 

work. The observed results might help explain why biopolymers such as 

cellulose typically constitute 40-50% of the contemporary mass in the O horizon 

of boreal forest soils even though this SOM may have been decomposing for 

tens, hundreds, or even thousands of years. 

Cellulases, which can be either free or cell-associated, hydrolyze β (1→4)-

glycosidic bonds between glucosyl residues (Lynd et al., 2002). Endoglucanases 
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catalyze hydrolysis randomly at internal amorphous sites, producing new chain 

ends and oligosaccharides with different chain lengths, whereas exoglucanases 

(cellodextrinases) catalyze hydrolysis randomly at the ends of cellulose chains, 

mainly releasing glucose and cellobiose. Thus, IL-induced changes in the 

hydrogen bonding of the initial cellulose and the resulting increase in 

amorphicity made the IL-treated cellulose more accessible to endoglucanases at 

internal amorphous sites and to exoglucanases at the ends of cellulose chains. 

The crystallinity of natural plant cellulose varies between species: 

crystallinities of 52% (Andersson et al. 2004) and 62% (Newman and 

Hemmingson, 1990) have been reported for cellulose from Norway spruce, 

whereas the reported values for Scots pine range from 51% to 55% (Newman 

and Hemmingson, 1990; Sivonen et al. 2002; Andersson et al. 2004). Our results 

suggest that differences in the crystallinity of the cellulose entering the soil could 

have important implications for cellulose availability to microorganisms and 

turnover rates. 

SOM dynamics are complex, and SOM decomposition is governed by several 

factors including substrate quality, enzyme kinetics, the decomposer 

community, the temperature, and the water content. This study shows 

conclusively that the structure of cellulose – specifically, its degree of 

crystallinity – can also control its decomposition rate in boreal forest soils. This 

factor deserves more attention in studies on the decomposition and recalcitrance 

of SOM, and should be considered alongside the thermodynamic aspects of 

SOM decomposition linked to its organic matter content.  

4.4 Utilization of simple C substrates in peat soils at low 
temperatures 

Paper IV explored the capacity of the microbial communities to use simple 

carbon substrates to sustain catabolic and anabolic processes. The results 

demonstrate that despite being subject to prolonged periods of frozen soil 

conditions, peat microbial communities are largely viable at typical winter peat 

soil temperatures. Adding to previous observations of microbial activity in 

frozen boreal soils (Öquist et al., 2009; Drotz et al., 2010, paper II), this work 

consolidates the conclusion that both persistent microbial degradation of SOM 

and synthesis of new microbial biomass during winter are widespread features 

in boreal soils. In incubations at 9, 4, and -3 °C, ca. 80 percent of the added 13C-

glucose was consumed (based on the decline of the 13C1 ß-D-glucose NMR 

signal) after 4, 8, and 63 days of incubation, respectively (Figure 9). At all tested 

temperatures, the consumption of the added 13C-glucose was strongly negatively 

correlated to the production of 13C-CO2 (r =-1, p < 0.05). 
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Figure 9. Relative 13C1 ß-D-glucose consumption in incubations at 9, 4, -3 and -5 °C based on the 

decline of the 13C-NMR signal for C1 ß-D-glucose over time. 

The observed rates of 13C-CO2 production are consistent with previous soil 

incubation studies over similar temperature ranges (Bergman et al., 2000; 

Schimel and Mikan, 2005; Drotz et al., 2010). In our frozen samples, 13C-CO2 

production rates accelerated after a “lag phase” lasting for ca. 20 days at -3 °C 

and ca. 60 days at -5 °C (Figure 2 in paper IV), a period during which the 

saprotrophs may adapt to utilize the substrate (e.g. Drotz et al., 2010). Evidence 

of very slow but persistent microbial activity was even found at -5 °C. However, 

given the timescales involved (>4 months), it is conceivable that this activity 

would have little impact on the net C balance of peatland.  

The delays in the respiratory response could be due to the rapid freezing of 

the soil to the sub-zero target temperatures, which may have prevented the 

microbial populations from gradually adapting to the low temperature as they 

would in a natural winter progression. However, the microorganisms were 

clearly active during the lag phase because they transformed some of the added 
13C to 13C-glycerol and 13C-mannitol. These two compounds are known to 

enable microbial metabolic function at low temperatures (Weinstein et al., 2000; 

Robinson, 2001 and refs therein). In other words, they act as physiological 

antifreeze that limits intracellular damage caused by freezing (Cooke and 

Whipps, 1993; Weinstein et al., 1997). 

By the time the microorganisms had consumed ca. 80% of the added 13C-

glucose, an array of newly synthesized 13C compounds were found in the 

extracted soil solution (Figure 10). Liquid-state NMR experiments (see details 

in paper IV and Box 2) showed that these compounds were mainly small 

metabolites found in the alkyl C region. However, broader peaks indicating 
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protein production were also observed. Most of the NMR peaks exhibited 13C-
13C coupling patterns, proving that the carbon source was the added 13C-labeled 

glucose. Additionally, the increase in 13C-CO2 respired from the added 13C-

glucose was positively correlated to the amount of 13C incorporated into PLFAs 

(p < 0.05) (Figure 10). This suggests that microbial carbon mineralization was 

closely related to changes in microbial biomass during the incubations.  

Moreover, judging by the 13C-CO2 produced and the 13C incorporated into 

membrane lipids, the allocation of 13C to catabolic and anabolic pathways in 

samples incubated at -3 °C may not differ substantially from that at 9 °C, which 

is consistent with previous observations (Drotz et al., 2010). There were 

however substantial differences in the rates at which the processes occurred. As 

expected, incubations at 9 and 4 °C yielded turnover times on the order of hours 

to days for easily assimilated C substrates (Artz, 2009). However, freezing the 

soils reduced metabolic rates sharply because of the pronounced 

physicochemical changes resulting from the lower temperatures and changed 

water content.  

The major changes induced by freezing the soil are reflected in the calculated 

apparent temperature response (Q10) of 13C-CO2 production. The Q10 differed by 

several orders of magnitude between the unfrozen and frozen soil matrices (Q10= 

2.0, 20, and 412 over the intervals 9 to 4 °C, 4 to -3 °C, and -3 to -5 °C). Similar 

Q10 values have been reported for frozen soils by others (e.g. Mikan, Schimel 

and Doyle, 2002; Panikov et al., 2006). An abrupt increase in the temperature 

sensitivity of soil respiration upon freezing typically reflects changes in the 

hierarchy of environmental factors controlling microbial activity (Mikan, 

Schimel and Doyle, 2002; Elberling and Brandt, 2003; Panikov et al., 2006). 

Öquist et al., (2009) have demonstrated that temperature responses at sub-zero 

temperatures are primarily linked to water deficiency induced by freezing of the 

soil water.  

It has also been proposed that shifts in species composition or substrate use 

have some influence on the temperature response of frozen soils (Schadt et al., 

2003; Schimel and Mikan, 2005). However, these factors also depend on the 

presence and availability of unfrozen water in the frozen soil matrix. Thus, in 

the frozen peat matrix, the interactive effect of small temperature changes on 

water availability and differences in the soil’s capacity to retain unfrozen water 

result in strong apparent temperature sensitivities. 
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Figure 10. Biplot of the principal component analysis (PCA) of laboratory incubations of peat soils 

at different temperatures (R2= 0.83, Q2= 0.63 n=12). PCA scores show the temperature treatments 

(-3, 4 and 9 °C) at the start of the incubations and after 80 % of the added glucose had been used 

by the microorganisms (open and filled circles, respectively). Dashed lines accentuate systematic 

changes over time at the different temperatures. The PCA loadings show all 13C-labelled water-

soluble compounds (open triangles, M1 to M13= metabolite 1 to 13; GB1= C1 ß-D-glucose; Oligo= 

Oligosugars; Mann= Mannitol; Gly= Glycerol; Prot= Proteins). 13C-CO2 production (black star), 

Bacterial and fungal PLFA (open boxes) and level of 13C enrichment in PLFA (black diamond). 

Öquist et al., (2009) reported liquid water contents at -4 °C ranging from 0.58 

to 0.67 g H2O g SOM−1 for acrotelm peat samples taken from the site sampled 

in this work. Associated with this water significant substrate diffusion to and 

from viable microbial cells can be sustained (Tilston et al., 2010). Bacterial and 

fungal PLFA accounted for 93% and 7%, respectively, of the total PFLA. DNA 

analysis indicated that the predominant bacterial community was typical for a 

methanogenic low pH peat environment, and the communities described at the 

start of the incubation are consistent with those described by Kulichevskaya et 

al., (2007) (see the discussion of microbial DNA dynamics and taxonomic tree 

in paper IV).  
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Among the phyla identified in paper IV, Acidobacteria, proved common and 

widely distributed.  Little is known about the function of Acidobacteria in 

terrestrial ecosystems, partly because it is difficult to cultivate these bacteria 

(Kielak et al., 2016). It is known however that low pH is a regulator of 

acidobacterial community composition (Jones et al., 2009). Within the phylum 

Proteobacteria, we observed methanotrophic genera with several moderately 

acidophilic species that have been isolated from Sphagnum, peat bogs, forest 

soils, arctic and subarctic wetlands, and permafrost (Knief, 2015). 

All Planctomycetes sequences obtained were related to the Aquisphaera 

genus. The genus Aquisphaera closely resembles the genus Singuilisphaera 

(genome divergence 7.7%, Rosenberg, 2014), a planctomycete isolated from the 

acidic peatlands of European north Russia (Kulichevskaya et al., 2008, 2009, 

2011). Although few organisms from this phylum have been isolated, 

Planctomycetes seems to be diverse and ubiquitous, and has been described as 

an important part of the bacterial populations decomposing Sphagnum in 

northern peatlands (representing up to 14% of all bacterial cells (Kulichevskaya, 

Pankratov and Dedysh, 2006; Kulichevskaya et al., 2007; Ivanova and Dedysh, 

2012). Further research into the role of Planctomycetes in C mineralization and 

other biogeochemical cycles in northern peatland ecosystems is thus warranted. 

Changes in the physical nature of water (e.g. water potential) at sub-zero 

temperatures induce physiological adjustments in microorganisms (Russell & 

Fukunaga, 1990; Margesin et al., 2003; Schimel & Mikan, 2005; Drotz et al., 

2010). Schimel and  Mikan (2005) suggested that such changes are more likely 

to occur than changes in the microbial community composition. The 13C-

enrichment of fatty acid chains in peat samples at -3 °C was strongest at the C2 

position, with a lower but evident enrichment across the C3, C4–CΩ-1 and CΩ 

groups of the acyl chains. This pattern of enrichment is consistent with the results 

presented in paper II and suggests that microorganisms readily use the C that 

becomes available when other microorganisms die.  

This is in line with the current understanding that intense and efficient 

internal recycling of simple C biopolymer building blocks is a widespread 

metabolic feature of soil microorganisms (Gunina and Kuzyakov, 2015). 

Changing the composition of the membrane fatty acids is a known response that 

increases the fluidity of microbial membranes and permits growth at low 

temperatures (Chintalapati, Kiran and Shivaji, 2004 and references therein). 

Taken together, our observations support the theory of Schimel and Mikan 

(2005), whose studies on tundra soils prompted them to suggest that the ability 

of microorganisms to sustain physiological processes under freezing conditions 

results from changes in the their physiology rather than changes in community 

composition. 
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This work investigated issues relating to the availability of C substrates and their 

utilization by microorganisms in boreal soils. The chapters were conceptually 

linked to provide a better understanding of how C availability controls microbial 

activity, which in turn shapes biogeochemical processes with profound 

implications for the C balance of boreal ecosystems. It should be pointed out that 

experimental laboratory studies, by definition, are subject to artefacts to some 

degree. For instance, the act of collecting soils and bringing them to the 

laboratory may disrupt the physical structures of microbial associations in the 

soil. I believe, however, that the behaviour of the model soil system and the 

studied saprotrophic communities resembles the characteristics of soils in situ 

closely enough to meaningfully address the questions considered in this thesis. 

That is to say, the studied soil systems are capable of providing answers that will 

help to disentangle the more complex processes occurring in nature. The 

following section discusses the goals of the individual chapters of this thesis, 

their main conclusions, and the implications of the results when taken as a whole. 

Paper I 

The goal of this paper was to determine whether different tree species generate 

SOM with different organo-chemical compositions and whether these 

differences are expressed as differences in the accumulation and decomposition 

of SOM, and the temperature response of these processes. 

➢ A sophisticated molecular characterization of the SOM revealed that tree 

species significantly influence SOM genesis by changing both its rate of 

accumulation and its organo-chemical composition. Accordingly, tree-type 

specific molecular fingerprints were detected in SOM formed under conifers 

and B. pendula. It was shown that the observed variation in SOM content 

could be explained by the organo-chemical composition of the SOM. More 

importantly, a strong connection between SOM decomposition and microbial 

5 Concluding remarks 
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decomposers was observed and this connection was linked to the organo-

chemical composition of SOM. No effect of tree species on the temperature 

response of CO2 production was detected, nor was any relationship between 

the organo-chemical composition of the SOM and the Q10 value. The results 

presented here suggest that tree growth has a considerable impact on the 

molecular composition of the SOM and the associated processes of SOM 

formation and decomposition in boreal forest soils.  

Paper II  

The goal of this paper was to explore the capacity of soil microorganisms in 

boreal forest soils to hydrolyze, metabolize, and grow on an organic biopolymer 

under frozen soil conditions. 

➢ Soil microbial communities in frozen soils were found to hydrolyze cellulose 

and use the released substrates for both catabolic and anabolic metabolism. 

This work was the first to demonstrate microbial capacity to hydrolyze 

biopolymeric SOM constituents in frozen boreal soils, resulting in slow but 

sustained SOM degradation. The decomposition of C biopolymers is what 

regulates soil C balances, and even small changes in the decomposition rates 

of the large biopolymeric SOM pool could cause important changes in soil C 

stocks, and atmospheric CO2 concentrations over decades. Given the long 

periods during which high latitude soils are frozen, the findings presented in 

this paper provide vital insights into the contribution of winter processes to 

the global carbon balance. 

Paper III 

The goal of this paper was to assess whether cellulose structure, i.e. the 

crystalline or amorphous organisation of the glucose units, has important effects 

on the rates and extent of soil C decomposition. 

➢ The degree of cellulose crystallinity was found to be a key factor determining 

the rate of cellulose hydrolysis and subsequent mineralization in boreal forest 

soils. This observation advances our understanding of SOM decomposition 

and should be considered alongside the thermodynamic aspects of SOM 

decomposition linked to the molecular composition of the soil organic matter. 

Paper IV 

The goal of this paper was to evaluate the capacity of peat soil microorganisms 

to utilize simple C substrates to sustain catabolic and anabolic processes in 

frozen peat soils. 
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➢ Microorganisms in the acrotelm of frozen boreal peat soils were found to 

utilize simple C substrates to sustain both catabolic and anabolic metabolism. 

Although freezing of the soil reduces rates of substrate utilization, the 

observed microbial responses are consistent with a significant metabolic 

capacity. This work also showed that very small differences in winter soil 

temperatures can have very large implications for winter C fluxes. The 

finding that catabolic and anabolic processes proceed in frozen peat soil over 

an environmentally-relevant temperature range advances our understanding 

of the factors controlling winter CO2 mineralization in northern peatlands. 

5.1 Implications and suggestions for future work 

The large pool of C stored as SOM in soils of high-latitude ecosystems 

comprises more organic C than all the world’s vegetation and the atmosphere 

combined (Figure 1). This work shows that both persistent microbial degradation 

of C in SOM (both biopolymers and monomers) and synthesis of new microbial 

biomass during winter are widespread features in boreal soils. More importantly, 

these observations indicate that small differences in winter soil temperatures can 

have very large implications for winter C fluxes from boreal soils.  

Observations and projections for the northern regions suggest that the effects 

of climate change will be most pronounced during winter, leading to reduced 

snow cover and altered frost regimes. These trends may continue throughout the 

21th century (Ciais et al., 2014), and even small changes in winter soil dynamics 

caused by such changes could appreciably increase the amount of C available 

for microbial decomposition. In view of the drastic shift that such environmental 

changes could trigger in the delicate balance between atmospheric and 

biospheric CO2, a better understanding of the key regulators is urgently needed. 

To this end, my thesis provides novel data about several aspects of the dynamics 

of soil microbial decomposition, identifying important controlling factors that 

determine the rate of SOM degradation in these sensitive ecosystems. 

The results presented herein also reveal the molecular composition of the 

SOM and the structural arrangement of its constituents to be important factors 

controlling C availability. Over the studied range of temperatures, C substrates 

were readily utilized and microbial activity was never totally impeded. However, 

thermodynamic constraints were evident at the lower end of the temperature 

range. While these processes are slow at such temperatures, it is important to 

recall the immense scale on which they can occur: approximately 57% of the 

Earth’s terrestrial surface experiences long periods of freezing at least 

occasionally (Duguay et al., 2005), and wintry conditions persist for several 

months of the year in the arctic and boreal biomes of Scandinavia, Canada, 
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Russia, and the USA. Thus, while considerable differences in soil characteristics 

between different soil types and ecosystems can be expected, these processes 

could occur over vast areas of the Earth and extended periods of time.  

Further research is needed to assess the effects of different tree species on the 

balance between SOM formation and decomposition. For boreal forests soils 

specifically, an interesting issue to explore is the high prevalence of 

carbohydrate polymers (e.g. cellulose), which account for 40-50% of the 

contemporary SOM mass (Erhagen et al. 2013), even in cases where the SOM 

has been decomposing for long periods of time. Moreover, the variety of 

complex superstructures exhibited by cellulose and the different scales on which 

these structures are defined (nano-, micro-, and macro-) makes it an ideal model 

substrate for this task. I think such studies would be greatly enhanced by 

characterization at the molecular level (using techniques such as NMR and/or 

Py-GC–MS) that can link the molecular composition and structure of SOM 

constituents to SOM formation and decomposition processes.  

Studies of this kind would not be complete without efforts to relate the 

activity and composition of soil microbial communities in order to enhance the 

understanding of the availability and utilization of C substrates and their effects 

on the C pools in soils of high-latitude ecosystems. 

Questions remain as to whether the microbial metabolic capacity demonstrated 

here for cellulose in forest soils is also applicable to the decomposition of other 

biopolymers and over a wider range of environmental conditions (e.g. those 

found in the active layer or permafrost). This warrants further research because 

of the large contribution of biopolymers to soil C stocks. Future studies of 

peatland winter biogeochemical processes should also address the role of C 

biopolymers as substrates for mineralization and examine anoxic conditions and 

the microbial capacity for methane production under frozen conditions. There 

should be efforts to quantify this winter microbial capacity and define its 

contribution to C cycling in high-latitude ecosystems. Ultimately, winter 

processes should be incorporated into Earth-system model projections to enable 

accurate assessment of their contributions to the global carbon balance. Each of 

the four chapters in my thesis deals with one important piece of the puzzle of 

microbial metabolic activity in boreal soils, from the influence of vegetation type 

on substrate characteristics to the ability of microorganisms to decompose C 

substrates under the harsh conditions of high-latitude soils. This thesis is thus a 

valuable contribution to our understanding of microbial C cycling in one of the 

world’s major soil C pools. 
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