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Inflammation is an unspecific response of the immune system to pathogens, for example, 

invasion by bacteria. This thesis focuses on two aspects of inflammation in the context 

of bacterial infections: (1) mast cells and (2) mastitis. Mast cells are potent pro-

inflammatory leucocytes that have been implicated in the defence against bacterial 

infections. Mastitis is an inflammation of the mammary tissue and is one of the most 

economically destructive disease in the dairy industry worldwide. 

Here, mast cell synthesis of the potent pro-angiogenic vascular endothelial growth 

factor (VEGF) in response to stimuli with Staphylococcus aureus (S. aureus) was studied 

using an in vitro model of primary mouse mast cells. VEGF synthesis was found to be 

dependent on the presence of live whole bacteria.  

Previous in vivo investigations of the roles of mast cells in bacterial infections have 

been conducted using c-Kit-dependent mast cell-deficient mice. These mice suffer from 

numerous abnormalities in addition to the lack of mast cells. Instead, we used newer, c-

Kit-independent mast cell-deficient mice (Mcpt5-Cre), which have fewer non-mast cell 

related abnormalities. We found no impact of the mast cell deficiency on the course of 

intraperitoneal S. aureus infection (e.g., bacterial clearance and cytokine production). 

We differentiated the virulence of, and response to, a set of clinical bacterial strains 

of bovine mastitis origin. Escherichia coli (E. coli) and S. aureus strains were injected 

intraperitoneally into mice. One E. coli strain (strain 127) was found to consistently cause 

more severe infection (judged by a clinical score) and induce a distinct profile of 

cytokines (CXCL1, G-CSF, CCL2). The concentrations of these cytokines correlated 

with both the clinical score and bacterial burden. The kinetics of the clinical and 

molecular changes that occurred during acute bovine mastitis were studied using a bovine 

in vivo model in which mastitis was induced by an intramammary infusion of E. coli 

lipopolysaccharide. Changes in clinical parameters (clinical score, milk changes, rectal 

temperature) as well as in milk and plasma cytokine concentrations and changes in the 

metabolome were registered. The progression of these changes occurred in the following 

order: (1) signs of inflammation in the udder and an increase in milk cytokine 

concentrations (after/at two hours), (2) visible changes in the milk and an increase in 

milk somatic cell counts (SCCs) (four hours), (3) changes in the plasma metabolome 

(four hours) and (4) changes in the milk metabolome (24 hours). 
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Inflammation är ett ospecifikt immunsvar, exempelvis mot bakterier.  Denna 

avhandling fokuserar på två aspekter av inflammation i kontexten av bakterieinfektion: 

(1) mastceller och (2) mastit. Mastceller är potenta pro-inflammatoriska leukocyter som 

tros vara inblandande i försvaret mot bakterier. Mastit är en inflammation av 

mjölkkörtelvävnaden. 

Mastcellens syntes av den potenta pro-angiogenes faktorn vaskulär 

endotelcellstillväxtfaktor (VEGF) studerades i kontexten av Staphylococcus aureus (S. 

aureus) infektion. En in vitro modell baserad på primära musmastceller användes. Vi 

fann att mastcellens syntes av VEGF var beroende av närvaron av levande bakterier. 

Tidigare in vivo studier av mastcellens roll in bakterieinfektion har varit begränsade 

av deras beroende av c-Kit mastcellsdefekta möss. Dessa möss lider av flera fysiska 

defekter utöver frånvaron av mastceller. Vi använde oss av en ny musmodell där 

mastcellsdefekten induceras oberoende av c-Kit. I infektionsstudier med S. aureus fann 

vi att frånvaron av mastceller inte påverkade sjukdomsförloppet. 

En intraperitoneal musmodell användes för att studera och särskilja virulensen hos 

en selektion av bakteriestammar ursprungligen isolerade från kor med akut klinisk 

mastit. Möss infekterades med Escherichia coli (E. coli) och S. aureus genom 

intraperitoneal injektion. E. coli stammen 127 orsakade allvarligare infektioner 

(bedömdes med kliniskscore). Immunsvaret mot stammen genererade även en distinkt 

cytokinprofil (CXCL-1, G-CSF, CCL2). Koncentrationen av dessa cytokiner 

korrelerade mot både kliniskscore och antalet bakterier i bukhålan.  

Förändringar i kliniska och molekylära parametrar som sker i akut klinisk bovin 

mastit studerades med en bovin in vivo modell där mastit induceras med en 

intramammär E. coli lipopolysackarid infusion. Kliniska parametrar (kliniskscore, 

mjölkförändringar, temperatur), cytokinkoncentration i mjölk och plasma, och 

förändringar i metabolitkoncentrationer registrerades över tid. Vi fann att dessa 

förändringar skedde i följande ordning: (1) inflammatoriska tecken i juvret och ökade 

cytokinkoncentrationer i mjölken (två timmar), (2) synliga förändringar i mjölken och 

förhöjda somatiska cell antal i mjölken (SCCs) (fyra timmar), (3) förändringar i 

metabolitkoncentrationer i plasman (fyra timmar) och (4) förändringar i 

metabolitkoncentrationer i mjölken (24 timmar). 

Nyckelord: mastcell, mastit, inflammation, vaskulär endotelcellstillväxtfaktor 

Författarens adress: Carl-Fredrik Johnzon, SLU, Institutionen för Anatomi, Fysiologi 
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I thought that I would begin this thesis with a whimsical little poem. It may have 

some bearing on the matter at hand. Thus: 

 

The cheese-mites asked how the cheese got there, 

And warmly debated the matter; 

The Orthodox said that it came from the air, 

And the Heretics said from the platter. 

They argued it long and they argued it strong, 

And I hear they are arguing now; 
But of all the choice spirits who lived in the cheese, 

Not one of them thought of a cow. 

 

A Parable (1898) 

Sir Arthur Conan Doyle 
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To my parents, and also to many dear friends and colleagues, whose sentiments 

on the passage of time I decidedly do not share 

Things that just keep passing by – A boat with its sail up.  

People’s age. 

Spring. Summer. Autumn. Winter. 

Sei Shōnagon 

 

Cold-hearted waves are these; not the waves but the years pass over the waiting   

pine. 

Michitsuna no Haha 

 

Now like a traveller who has tried two ways in vain 

I stand perplexed where these sad seasons meet. 

Murasaki Shikibu 
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BMMC Bone marrow-derived mast cell  

BTSCC Bulk tank somatic cell counts  

CCL Chemokine (C-C motif) ligand  

CFU Colony-forming unit  

CTMC Connective tissue mast cell  

CXCL Chemokine (C-X-C motif) ligand  

DAMP Damage-associated molecular pattern  

DT Diphtheria toxin  

ELISA Enzyme-linked immunosorbent assay  

FcγR Fc-gamma (γ) receptor  

FcεR Fc-epsilon (ε) receptor  

GAG Glycosaminoglycan  

G-CSF Granulocyte colony-stimulating factor  

ICSCC Individual cow somatic cell counts  

IFN Interferon  

Ig Immunoglobulin  

IL Interleukin  

IMI Intramammary infection  

iNOS Nitric oxide synthase  

LPS Lipopolysaccharide  

LTA Lipoteichoic acid  

MCC Mast cell containing chymase (human)  

MCP Monocyte chemoattractant protein  

MCT Mast cell containing tryptase (human)  

MCTC Mast cell containing both tryptase and chymase (human)  

MEC Mammary epithelial cell  

MMC Mucosal mast cell  

mMCP Mouse mast cell protease  

Abbreviations 
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mTMT Mouse transmembrane tryptase  

NETs Neutrophil extracellular traps  

NFAT Nuclear factor of activated T-cells  

NF-κB Nuclear factor-κB  

NLR Nucleotide-binding oligomerisation domain (NOD)-like 

receptor  

 

NMR Nuclear magnetic resonance  

PAM3 Pam3CSK4  

PAMP Pathogen-associated molecular pattern  

PCMC Peritoneal cell-derived mast cell  

PGN Peptidoglycan  

PRR Pattern-recognition receptor  

ROS Reactive oxygen species  

SCC Somatic cell count  

SCF Stem cell factor  

SLB Swedish Friesian (cattle breed)  

SptP Salmonella typhimurium tyrosine phosphatase  

SRB  Swedish Red-and-White (cattle breed)  

TLR Toll-like receptor  

TNF Tumour necrosis factor  

VEGF Vascular endothelial growth factor  
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1.1 Bacteria & the Immune System 

Immunology is, to an extent, the study, on the one hand, of a system that is 

noticeable by our imperceptions of its effects on the body and, on the other hand, 

of the discomfort its activity causes during moments of stress. I find myself that 

it is easier to recall with precision instances of sickness than the much longer 

periods of healthy everyday activity. This is perhaps a natural consequence of 

the human condition. After all, the immune system is a complex network of 

tissues that are largely unseen by the unaided human eye, which react to 

exposure to organisms and particles so numerous and infinitesimal that it is 

difficult to comprehend their existence. With these ruminations on perspective 

in mind, I was reminded of a short article written by Sir Arthur Conan Doyle1 

on knowledge of the immune system and bacteria in the late 19th century, titled 

“Life and Death in the Blood” (Doyle, 1883). The opening passage of that article 

proceeds as follows: 

 

“Had a man the power of reducing himself to the size of less than the one-

thousandth part of an inch, and should he, while of this microscopic stature, 

convey himself through the coats of a living artery, how strange the sight that 

would meet his eye!” (Doyle, 1883). 

1.1.1 Bacterial Life 

Bacteria are prokaryotes, unicellular organisms that are structurally 

distinguished by a lack of internal membranes separating the genetic material or 

enzymatic machinery into isolated compartments (Stanier & Van Niel, 1962). 

                                                        
1. Then simply Arthur Conan Doyle 

1 Introduction 
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They are morphologically and metabolically highly diverse organisms (Salton 

& Kim, 1996; Jurtshuk, 1996). Consequently, bacteria are present in a diverse 

set of environments, ranging from seawater to soil to the digestive systems of 

metazoans (Foster et al., 2017). 

1.1.2 The Immune System 

Animals, specifically mammals within the context of this thesis, are constantly 

exposed to a multitude of bacterial organisms2. From birth until death, the 

totality of a mammalian body represents fertile territory for these organisms to 

colonise. Indeed, they are found in virtually every surface or space available 

(Foster et al., 2017). It is the function of the immune system to protect the ‘self’ 

against these visitors. Interactions between the host and bacteria are not 

exclusively antagonistic. Indeed, the host is continuously exposed to and 

colonised by microbes – comprising the ‘microflora’ – without eliciting any 

negative effects. The mechanisms of these seemingly paradoxical interactions 

are the focus of a great deal of research (Chu & Mazmanian, 2013). The 

antagonistic interactions are the topic of this thesis. 

The immune system is broadly divided into an innate component and an 

adaptive component. These components are distinguished by the speed and 

specificity of their response. The innate response is immediate, whereas the 

adaptive response is specific but slow (days to weeks). The innate and adaptive 

immune systems, though composed of different cells, are not two entirely 

separate entities, and a fully functional immune system requires extensive 

interactions between the two (Crozat, Vivier & Dalod, 2009). 

Innate. The innate immune system is composed of anatomical barriers (e.g., 

the skin, mucosal surfaces), the complement system, a number of different 

leucocytes (neutrophils, monocytes, macrophages, natural killer cells, mast 

cells) and various molecular immune mediators (cytokines, acute-phase 

proteins). It is capable of separating “self” from “non-self” and is the first 

defence that a microorganism will encounter when it enters the body (Parkin & 

Cohen, 2001). 

Adaptive. The basis of the adaptive immune response are the T cells and B 

cells. T cells participate in cell-mediated mechanisms. B cells participate in 

immunoglobulin/antibody mediated responses (IgM, IgG, IgA, IgE, IgD). This 

is a stronger and more selective immunological response (i.e., it can distinguish 

between one species of bacteria and another and selectively react to one but not 

the other). This response is also characterised by immunological memory, which 

                                                        
2. To the bacteria, one must add the yeasts, moulds, protozoans, parasites and viruses 
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enables a more rapid response against a foreign particle upon subsequent re-

exposure (Parkin & Cohen, 2001).  

1.1.3 Inflammation 

Inflammation is an unspecific response of the immune system to pathogens or 

trauma, which is activated within minutes of exposure. It has two purposes: (1) 

defend the host against infection and (2) facilitate tissue-repair (Medzhitov, 

2008). In the context of this thesis, it is the former role, in relation to bacterial 

infections, which is relevant. 

Inflammation develops in vascularised tissues and is characterised by 

increased capillary permeability, vascular dilation, leucocyte infiltration and 

accumulation, and increased blood flow (Freire & Van Dyke, 2013; Ashley, 

Weil & Nelson, 2012). These effects culminate in the elimination or isolation of 

the invading bacteria. However, the unspecific nature of these effects does not 

distinguish between self and the bacteria, causing collateral damage to the 

affected tissue. Hence, the inflammatory response represents both a cost and an, 

albeit short-term, benefit to the host. The immediate noticeable effects of 

inflammation are concisely summarised by its five cardinal signs: calor (heat), 

dolor (pain), rubor (redness), tumor (swelling) and functio laesa (loss of 

function) (Ashley, Weil & Nelson, 2012). Unsurprisingly for such a distinct and 

visible activity of the body, references to inflammation are present in historical 

records dating as far back as ancient Egypt and ancient Mesopotamia (Ryan & 

Majno, 1977; Granger & Senchenkova, 2010). 

Inflammation from Activation to Resolution in Bacterial Infection 

The events of the inflammatory cascade are broadly divided into: Detection, 

Signalling, Response, Infiltration and Resolution. 

Detection. Inflammation is induced by the introduction of bacterial 

components into a tissue. These components take the form of either pathogen-

associated molecular patterns (PAMPs), which are produced by all bacteria, and 

virulence factors, which are restricted to pathogenic bacteria (Medzhitov, 2008). 

PAMPs are conserved molecular structures that are structurally distinct from 

self-molecules (Kumar, Kawai & Akira, 2011). They are detected by a 

corresponding set of host germline-encoded proteins called pattern-recognition 

receptors (PRRs) expressed primarily on immune cells (e.g., tissue resident 

macrophages). There are several different classes of PRRs. Two major receptor 

classes that detect bacterial PAMPs are the Toll-like receptors (TLRs), which 

are located on the plasma membrane and intracellular membranes, and the NOD-

like receptors (NLRs), which are located intracellularly (Takeuchi & Akira, 
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2010). In contrast, virulence factors trigger an inflammatory response through 

their effects on the host cells (e.g., pore formation) or direct tissue damage rather 

than through a set of conserved dedicated receptors that bind to specific foreign 

ligands (Medzhitov, 2008). In the latter case, the inflammatory response is 

activated by the detection of damage-associated molecular patterns (DAMPs). 

These are endogenous molecular structures that are not normally present in intact 

tissues. DAMPs are, like PAMPs, detected by PRRs (Sharma & Naidu, 2016). 

Signalling. The intracellular mechanism that will be initiated is determined 

by the identity of the activated receptor. TLRs commonly activate a signalling 

pathway that is dependent on the adaptor protein MyD88. The MyD88 pathway 

terminates with activation and translocation into the nucleus of the transcription 

factor nuclear factor-κB (NF-κB). Once in the nucleus, NF-κB upregulates the 

expression of pro-inflammatory genes. Signalling by NLRs leads to assembly of 

the inflammasome (an intracellular protein complex) that associates with and 

activates the enzyme caspase-1, which in turn activates inactive immune 

compounds by proteolytic cleavage (Ashley, Weil & Nelson, 2012; Sharma & 

Naidu, 2016). The inflammasome can also be activated by an efflux of K+ 

resulting from pore formation, an example of activation in response to a pore-

forming virulence factor (Mariathasan et al., 2006). 

Response. Inflammation is mediated by a large number of compounds 

divided into seven distinct categories: (1) cytokines, (2) chemokines, (3) 

eicosanoids, (4) proteolytic enzymes, (5) complement components, (6) 

vasoactive amines and (7) vasoactive peptides (Medzhitov, 2008).  

Cytokines and chemokines are small soluble signalling proteins. Cytokines 

such as interleukin (IL)-6 and tumour necrosis factor (TNF)-α enhance the 

activity of leucocytes, whereas chemokines, for example the neutrophil 

attractant IL-8, promote leucocyte chemotaxis (migration towards an increasing 

concentration of a chemoattractant) (Turner et al., 2014). Eicosanoids are a class 

of lipid-derived mediators that are synthesised enzymatically from 

phospholipids present on the plasma membrane. They include prostaglandins, 

thromboxanes and leukotrienes. These substances are, for example, involved in 

vasodilation (Dennis & Norris, 2015). Proteolytic enzymes promote 

inflammation through degradation of the extracellular matrix and promotion of 

leucocyte migration (Sharony et al., 2010). The complement system promotes 

inflammation by enhancing leucocyte migration (Parkin & Cohen, 2001). The 

vasoactive amines histamine and serotonin, increase vascular permeability and 

vasodilation (Barnes, 2001). Vasoactive peptides promote vascular permeability 

and vasodilation either directly or by inducing the release of vasoactive amines 

from immune cells (Medzhitov, 2008). The cumulative effect of all these 
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different compounds is the facilitation of leucocyte recruitment into the 

disturbed tissue. 

Infiltration. Neutrophils and monocytes migrate into the disturbed tissue 

from the blood through chemotaxis and extravasation (movement from the 

capillaries into the surrounding tissue) (Ashley, Weil & Nelson, 2012). 

Neutrophils kill bacteria through one of three mechanisms. First, they can engulf 

a bacterial cell by phagocytosis and kill it internally using reactive oxygen 

species (ROS). Second, they can degranulate and release antibacterial proteases 

as well as toxic chemicals including ROS. Third, they can trap bacteria using so-

called neutrophil extracellular traps (NETs). NETs are composed of core DNA 

elements together with various antimicrobial compounds (Kolaczkowska & 

Kubes, 2013). It is the release of toxic chemicals into the extracellular 

environment by neutrophils that is a major contributor to the damage that 

inflammation causes to the host tissue (Ashley, Weil & Nelson, 2012). 

Monocytes differentiate into macrophages inside inflamed tissue (Geissmann et 

al., 2010), where they proceed to phagocytose and destroy bacteria. They also 

promote inflammation through the synthesis and release of many pro-

inflammatory compounds (Zhang & Wang, 2014). 

Resolution. Resolution of inflammation is important to prevent extensive 

damage to the host tissue and to promote healing. It is dependent on a number 

of interlinked processes which aim to (1) deplete the supply of neutrophil 

chemoattractants in the tissue, (2) ensure neutrophil apoptosis, (3) clear away 

apoptotic neutrophils by macrophages, and (4) switch the phenotype of the 

macrophages from a pro-inflammatory to a pro-resolution phenotype. These pro-

resolution processes are driven by proteases, ROS, cytokines and other factors. 

The pro-resolution phenotype macrophages synthesise and release the pro-

resolution lipid-derived mediator lipoxin and the fatty acid-derived resolvins and 

protectins. These block further neutrophil recruitment and promote neutrophil 

apoptosis. The tissue returns to homeostasis and functionality by the combined 

actions of macrophages, stem cells and progenitor cells (Ashley, Weil & Nelson, 

2012; Ortega-Gómez, Perretti & Soehnlein, 2013). 

1.2 The Mast Cell 

1.2.1 A Brief History of the Mast Cell 

The mast cell has a long evolutionary history. Mast cells are found in all classes 

of vertebrates, and mast cell-like cells are present in some invertebrate classes 

(Crivellato & Ribatti, 2010). The mast cell was originally described by the 
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German biologist Paul Ehrlich in 1878. He named these cells “Mastzelle” (from 

the German “mast”, meaning “fattening”3). The name reflects Paul Ehrlich’s 

belief of a nutritional role for his newly described cell type (Crivellato et al., 

2003). Subsequent researchers with a wider array of tools at their disposal than 

the light microscope and dyes with which Ehrlich’s conducted his investigations, 

have classified the mast cell as a potent pro-inflammatory leucocyte with a range 

of putative functions, implicating it in many different pathologies. To date, the 

only truly well-established activity attributed to the mast cell is its involvement 

in IgE-mediated hypersensitivity (allergy) (Crivellato et al., 2003; Beaven, 

2009; Rodewald & Feyerabend, 2012). 

1.2.2 Introduction to the Mast Cell 

Mast cells are tissue-resident granulocytes (i.e., leucocytes containing 

cytoplasmic granules). They are distributed throughout the body but are 

particularly numerous in tissues that are directly exposed to the external 

environment (Marshall, 2004). Mast cells originate from bone marrow-derived 

pluripotent stem cell. Unlike other haematopoietic cells, mast cells circulate as 

immature progenitors and will only undergo the final steps in the maturation 

process once they enter a tissue (Dahlin & Hallgren, 2015). Morphologically and 

biochemically, mast cells are characterised by: (1) cytoplasmic secretory 

granules, (2) biogenic amines, (3) proteases, (4) proteoglycans, and (5) receptors 

for IgE. 

Granules. Mast cell secretory granules – also called secretory lysosomes – 

are membrane enclosed cytoplasmic particles and act as storage units for a wide 

range of compounds. Biogenic amines, proteases and proteoglycans are major 

granule compound classes. Additionally, some cytokines have been found in 

mast cell granules – e.g., TNF-α (Gordon & Galli, 1990: Wernersson & Pejler, 

2014). Up to 50 – 55% of the cytoplasmic space inside a mast cell is occupied 

by these granules (Yong, 1997). 

Biogenic Amines. Biogenic amines are synthesised from amino acids and 

have a wide range of effects when released into the extracellular milieu (Barnes, 

2001). The biogenic amines synthesised by mast cells are histamine, serotonin 

and dopamine (Barnes, 2001; Freeman et al., 2001). Histamine in particular is 

associated with mast cells, which constitute a major source of that amine. 

Histamine has different effects depending on the exposed cell type and the 

histamine receptors expressed by those cells (H1 – H4) (Barnes, 2001; Parsons & 

Ganellin, 2006). 

                                                        
3. With regards to the foci of this thesis, it is interesting to note that the word ”mast” derives 

from the Greek μαστόσ, meaning breast 
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Proteases. Mast cells synthesise two categories of proteases: (1) mast cell-

specific proteases and (2) proteases that are not exclusively found in mast cells 

(Wernersson & Pejler, 2014). Mast cell proteases are distinguished by their high 

level of expression, which may account for more than 25% of the total mast cell 

protein content, and that they are stored in their active form. Mast cells express 

three classes of cell-specific proteases: tryptase, chymase and carboxypeptidase 

A3 (Pejler et al., 2010). Tryptases are homotetrameric serine proteases with 

trypsin-like specificity (cleave after lysine/arginine residues). Human mast cells 

contain αI-, αII-, βI-, βII- and βIII-tryptase (Pallaoro et al., 1999). Mouse mast 

cells express four tryptases: transmembrane tryptase (mTMT), mouse mast cell 

protease (mMCP)-6, mMCP-7 and mMCP-11 (Pejler et al., 2007). Chymases 

are serine proteases. They are monomeric and have a chymotrypsin-like 

specificity (they cleave after aromatic amino acids). Chymases are divided into 

α- and β-chymases. Human mast cells only express one α-chymase. Mice 

express several chymases: the α-chymase mMCP-5 and the β-chymases mMCP-

1, mMCP-2 and mMCP-4 (Pejler et al., 2007). Carboxypeptidases are 

monomeric zinc-dependent metalloproteases that cleave after aromatic amino 

acids (Pejler et al., 2010). Unlike the other proteases, human and mouse mast 

cells only express one carboxypeptidase each (Pejler et al., 2007). Mast cell 

proteases have been attributed a wide range of physiological activities, including 

the recruitment of leucocytes, arthritis, the maintenance of tissue homeostasis 

and the degradation of toxins (Tchougounova et al., 2005; Metz et al., 2006; 

Schneider et al., 2007; Thakurdas et al., 2007; Shin et al., 2009). Non-mast cell-

restricted proteases found in granules include cathepsins and granzyme B, 

amongst several others (Wernersson & Pejler, 2014). 

Proteoglycans. Proteoglycans are glycoproteins composed of a protein core 

with numerous glycosaminoglycans (GAG) attached covalently as side chains. 

In mast cells, the dominant core protein is serglycin (Åbrink, Grujic & Pejler, 

2004). Serglycin contains lengthy regions of repeated serine and glycine 

residues. The length of these regions varies from species to species, but in mice 

and humans they are 18 – 21 aa long. These regions act as attachment sites for 

GAGs (Rönnberg, Melo & Pejler, 2012), polysaccharides composed of repeating 

sulphated disaccharide units. Due to the high degree of sulphation, 

proteoglycans are highly anionic. Mast cells synthesise GAGs of the heparin and 

chondroitin sulphate types. Proteoglycans have an essential role in the regulation 

of storage inside the granules. Serglycin-deficient mast cells show defective 

storage of proteases and biogenic amines (Åbrink, Grujic & Pejler, 2004; 

Ringvall et al., 2008). It seems paradoxical that mast cells store large amounts 

of proteases and proteoglycans in a small confined space without degradation of 

the latter. It has been hypothesised that the proteoglycan core protein is protected 
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from proteolytic degradation by clustering of GAGs (Rönnberg, Melo & Pejler, 

2012). 

FcεRI. FcεRI is a high-affinity receptor for the Fc portion of IgE4. Mast cell 

FcεRI is a tetrameric protein complex composed of an α-subunit (IgE binding), 

β-subunit (signalling) and γ-homodimer (signalling). The complete tetramer 

structure is referred to as αβγ2. IgE binding to FcεRI results in the release of 

granule content – so called degranulation (see Activation below) (Kraft & Kinet, 

2007). 

1.2.3 The Mast Cell in Mice & Humans 

Mast cell research makes great use of mouse and human models. Hence, it is of 

interest to consider the species-dependent differences in mast cells in mice and 

humans. Within either species, mast cells are present as distinct subpopulations. 

At the species level, mast cells differ by the contents of protease, proteoglycan 

and biogenic amines. At the subpopulation level, they are distinguished by the 

contents of protease (human) or protease and proteoglycan, as well as the tissue 

localisation (mouse). Human mast cells are categorised as MCT (containing 

tryptase), MCC (containing chymase) or MCTC (containing tryptase and 

chymase). Mouse mast cells are classified as either MMC (mucosal type) or 

CTMC (connective tissue type) (Buckley et al., 2006; Moon et al., 2010) (Table 

1). 

Table 1. Mast cell subpopulations in mice and humans. 

 Mouse  Human   

 MMC CTMC MCT MCC MCTC 

Tryptase - mMCP-6 

mMCP-7 

+ - + 

Chymase mMCP-1 

mMCP-2 

mMCP-4 

mMCP-5 

- + + 

Carboxypeptidase A3 - + - + + 

Proteoglycan Chondroitin 

sulphate 

Heparin Heparin 

Chondroitin 

sulphate 

Heparin 

Chondroitin 

sulphate 

Heparin 

Chondroitin 

sulphate 

Biogenic Amines Histaminea  

Serotonin 

Histaminea 

Serotonin 

Histamine 

Serotonin 

Histamine 

Serotonin 

Histamine 

Serotonin 

aLess in MMC than in CTMC (<1 pg/cell compared with >15 pg/cell) 

                                                        
4. The low-affinity receptor FcεRII is expressed on B cells (Stone, Prussin & Metcalfe, 2010) 
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1.2.4 Mast Cell Mediators 

Mast cells produce two distinct categories of mediators: preformed mediators 

and de novo synthesised mediators (Gri et al., 2012). Preformed mediators are 

stored inside the cytoplasmic secretory granules and are released within seconds 

of activation. These mediators include biogenic amines, proteoglycans, 

proteases and lysosomal enzymes (Wernersson & Pejler, 2014). The de novo 

synthesised mediators are generated first upon mast cell activation and are 

released within minutes to hours of activation, depending on the mediator type. 

These mediators include eicosanoids, cytokines, chemokines, growth factors and 

antimicrobial species. Eicosanoids generated by mast cells include 

prostaglandins (PGD2) and leukotrienes (LTB4, LTC4) (Boyce, 2005). Mast cells 

can synthesise a plethora of cytokines, chemokines and growth factors, with 

effects that range from pro-inflammatory (e.g., IL-1β, TNF-α) to anti-

inflammatory (e.g., IL-10) to immunomodulatory (e.g., TGF-β) (Mukai et al., 

2018). Compounds with direct antimicrobial effects have also been found to be 

produced by mast cells, e.g., antimicrobial peptides (Di Nardo, Vitiello & Gallo, 

2003; Di Nardo et al., 2008). Taken together, mast cell mediators have the 

potential to exert a wide range of effects on the immune system and on microbes 

(Table 2). 

Table 2. Major mast cell mediator classes and examples of mediators belonging to those classes. 

Mediator Class Effects (e.g.) Reference 

Preformed   

Biogenic Amines Vasodilation, Leucocyte regulation, 

Vasoconstriction 

Barnes, 2001 

Restricted Proteases Recruitment of neutrophils, Tissue 

homeostasis, Toxin degradation 

Pejler et al., 2010 

Non-restricted Proteases Tissue remodelling Wernersson & Pejler, 2014 

Proteoglycans Affect protease activity Rönnberg, Melo & Pejler, 

2012 

Lysosomal enzymes Tissue remodelling Gri et al., 2012 

De novo   

Cytokines Pro-inflammatory, Anti-

inflammatory 

Mukai et al., 2018 

Chemokines Leucocyte chemotaxis Mukai et al., 2018 

Growth Factors Promotion of cell growth (various 

cell types) 

Mukai et al., 2018 

Eicosanoids Leucocyte recruitment, Vascular 

permeability, Smooth muscle 

constriction 

Boyce, 2005 

Antimicrobial Compounds Direct antimicrobial effects Gri et al., 2012 
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1.2.5 Mast Cell Receptors 

Mast cells express a great variety of receptors belonging to several different 

receptor families, including: (1) Fc receptors, (2) TLRs, (3) mannosylated 

receptors, (4) complement receptors, (5) cytokine receptors and (6) chemokine 

receptors (Gri et al., 2012) (Table 3). 

Table 3. Major receptor families expressed by mast cells, examples of receptors belonging to those 

families and examples of ligands. 

Family/Type Receptor 

(e.g.) 

Ligands (e.g.) Mouse Human Reference 

Fc FcεRI IgE + + Kraft & Kinet, 2007 

 FcγRa IgG + + Malbec & Daëron, 2007 

TLRsb TLR1 Lipopeptides + + Applequist, Wallin & 

Ljunggren, 2002 

Kulka et al., 2004 

 TLR2 PGN, LTA + + Applequist, Wallin & 

Ljunggren, 2002 

Kulka & Metcafle, 2006 

 TLR3 dsRNA + + Matsushima et al., 2004 

Kulka et al., 2004 

 TLR4 LPS + + Applequist, Wallin & 

Ljunggren, 2002 

Kubo et al., 2007 

 TLR5 Flagellin  + Kulka et al., 2004 

 TLR6 LTA + + Applequist, Wallin & 

Ljunggren, 2002 

Kulka et al., 2004 

 TLR7 ssRNA + + Matsushima et al., 2004 

Kulka et al., 2004 

 TLR8 ssRNA + + Supajatura et al., 2001 

Kulka et al., 2004 

 TLR9 DNA + + Matsushima et al., 2004 

Kulka et al., 2004 

Mannosylated CD48 FimH +  Malaviya et al., 1999 

Complement C3aR C3a + + Schäfer et al., 2013 

el-Lati, Dahinden & Church, 

1994 

 C5aR C5a + + Schäfer et al., 2013 

Füreder et al., 1995 

Cytokine c-kit SCF + + Chen et al., 1994 

Hauswirth et al., 2006 
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Family/Type Receptor 

(e.g.) 

Ligands (e.g.) Mouse Human Reference 

 IL-3R IL-3 + + Wright et al., 2006 

Dahl et al., 2004 

Chemokine CCR1 CCL5 + + Amin et al., 2005 

Oliveira & Lukacs, 2001 

 CCR2 CCL2 +  Oliveira & Lukacs, 2001 

 CCR4 CCL17  + Amin et al., 2005 

aFcγRI in human, FcγRIII in mouse, FcγRII in both human and mouse 

bLigands: Akira & Takeda, 2004 

1.2.6 Mast Cell Activation 

Mast cells can be activated dependently or independently of IgE. IgE-

independent activation can be mediated by, for example, IgG, TLR ligands and 

complement components. The response of the mast cell varies with the stimuli 

(Frossi, De Carli & Pucillo, 2004). 

IgE-dependent. IgE binds with high affinity to FcεRI receptors on the mast 

cell surface. Upon exposure to IgE and antigen, FcεRI receptors will cross-link 

and initiate an intracellular signalling cascade (Kraft & Kinet, 2007). A key 

feature of this cascade is the mobilisation of intracellular Ca2+ (Wernersson & 

Pejler, 2014), which ends in the release of mast cell granule content, 

degranulation, as well as de novo synthesis of mediators (Kraft & Kinet, 2007). 

Degranulation occurs within seconds, release of eicosanoids within minutes and 

de novo protein mediators within hours of activation (Abraham & St John, 2010). 

After activation, mast cells replenish their granules. Granule replenishment 

occurs over a long period of time, up to 72 hours. Upon full regranulation, mast 

cells can participate in a new activation cycle (Blank, 2011). 

IgE-independent. IgG-mediated activation of mast cells occurs through the 

FcγR receptor upon antibody binding to antigen. IgG-mediated activation results 

in mast cell degranulation (Malbec & Daëron, 2007). TLR-mediated activation 

of mast cells typically results in the release of mediators in the absence of 

degranulation, i.e., the synthesis and release of de novo mediators such as 

eicosanoids and cytokines (Sandig & Bulfone-Paus, 2012). However, some TLR 

ligands can induce degranulation, such as peptidoglycan (PGN) (Supajatura et 

al., 2002). Activation of mast cells by complement compounds has been 

observed to enhance IgE-mediated degranulation (Schäfer et al., 2013). 
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1.2.7 The Mast Cell in the Immune System 

The mast cell constitutes something of a paradox. It is evolutionary preserved in 

all vertebrates, expresses a wide range of receptors and can synthesise a broad 

range of mediators (Crivellato & Ribatti, 2010; Gri et al., 2012). These 

observations would lead one to suppose that the mast cell has an indispensable 

and multifunctional role in the immune system. However, the most well 

documented activity attributed to the mast cell to date is its essential role in 

mediating allergic disease, i.e., the inflammation resulting from IgE-mediated 

mast cell activation and degranulation in response to innocuous antigens 

(Rodewald & Feyerabend, 2012). Beyond this well-documented activity, mast 

cells have been reported to participate in a wide range of contexts, such as the 

degradation of animal toxins, in tumour development, angiogenesis, diabetes 

and obesity (Norrby, 2002; Metz et al., 2006; Schneider et al., 2007; Ribatti & 

Crivellato, 2012; Shi & Shi, 2012). These seemingly contradictory reports have 

posited the mast cell as both a negative and positive modulator of immunity 

(Galli, Grimbaldeston & Tsai, 2008). 

The notion that mast cells are involved in host responses towards bacterial 

exposure is based on the observation that these cells: (1) express receptors for 

detecting bacterial compounds (Table 3), (2) synthesise compounds that can 

modulate other immune cells or have direct antimicrobial effects (Table 2) and 

(3) are localised at the ideal position to detect bacterial pathogens (i.e., tissues 

directly exposed to the external environment). Taken together, these 

observations are the basis of the idea of the mast cell as a ‘sentinel cell’, a first 

line of defence against invading pathogens (Galli, Maurer & Lantz, 1999). In 

agreement with the general notion of the mast cell as a mediator of both positive 

and negative effects, it has been reported to have both a protective and a 

detrimental impact on the course of infections (Johnzon, Rönnberg & Pejler, 

2016). 

Protective. The protective functions of mast cells in bacterial infection have 

been reported to be dependent on the (1) recruitment of immune cells to the site 

of infection, (2) modulation of inflammatory cell function, (3) interactions with 

cells of the adaptive immune system and (4) direct antimicrobial effects (Table 

4). Recruitment. The first studies that suggested a role for mast cells in bacterial 

infection attributed an essential role for mast cell-derived TNF-α in the 

recruitment of neutrophils (Echtenacher, Männel & Hultner, 1996; Malaviya et 

al., 1996). Other mast cell-derived neutrophil chemoattractants are leukotrienes, 

CXCL1 and CXCL2, and tryptase (Malaviya & Abraham, 2000; Thakurdas et 

al., 2007; De Filippo et al., 2013). Modulation. Mast cells have been shown to 

enhance the antimicrobial activity of neutrophils against the bacteria Klebsiella 

via an IL-6-dependent mechanism (Sutherland et al., 2008). Mast cells have also 
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been observed to inhibit replication of the bacteria Francisella tularensis (F. 

tularensis) inside macrophages in an IL-4 and contact-dependent manner 

(Ketavarapu et al., 2008). Adaptive Immune System. Mast cells have been shown 

to impact the recruitment of CD4+ cells to draining lymph nodes during 

Escherichia coli (E. coli) infection, the recruitment of dendritic cells into 

draining lymph nodes in response to Staphylococcus aureus (S. aureus) PGN 

and into infected tissues during E. coli infection (McLachlan et al., 2003; 

Shelburne et al., 2009; Dawicki et al., 2010). Antimicrobial Effects. Several 

studies have shown that mast cells possess the ability to directly kill bacteria via 

phagocytosis, the secretion of antimicrobial peptides and the release of mast cell 

extracellular traps (Malaviya et al., 1994; Di Nardo, Vitiello & Gallo, 2003; Di 

Nardo et al., 2008; von Köckritz-Blickwede et al., 2008). 

Detrimental. The detrimental impact of mast cells in the context of bacterial 

infections have been reported in terms of (1) mast cell activation, (2) immune 

evasion and (3) suppression (Table 4). Activation. In models of severe 

polymicrobial sepsis and Salmonella typhimurium (S. typhimurium) infection, 

mast cells have been shown to have a negative impact on the host, an effect that 

is dependent on TNF-α and IL-4. IL-4 has been observed to aggravate the disease 

by inhibiting phagocytosis by macrophages (Piliponsky et al., 2010; Dahdah et 

al., 2014). Evasion. Both Mycobacterium tuberculosis (M. tuberculosis) and S. 

aureus have been shown to persist intracellularly inside mast cells (Muñoz, 

Rivas-Santiago & Enciso, 2009; Abel et al., 2011). Survival inside immune cells 

is a common mechanism exploited by pathogens to evade the immune system 

(Finlay & McFadden, 2006). Mast cells appear to be no exception to this 

phenomenon. Suppression. S. typhimurium have been shown to be able to 

suppress the neutrophil-recruiting activity of mast cells by using a tyrosine 

phosphatase (SptP) in vivo. The bacterium delivers this protein into mast cells, 

thereby inhibiting their activation (Choi et al., 2013). Similarly, commensal 

bacteria have been shown to inhibit mast cell activation, possibly as a 

mechanism of homeostasis. High densities of non-pathogenic E. coli have been 

found to inhibit the activation of mast cells both in vitro and ex vivo (Magerl et 

al., 2008). A combination of four different probiotic bacterial strains upregulate 

the expression of anti-inflammatory genes in mast cells (Oksaharju et al., 2011). 
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Table 4. Protective and detrimental effects mediated by mast cells in response to bacterial 

infections or stimuli with bacterial components. 

Effect  Example Reference 

Protective   

Recruitment Neutrophil recruitment Echtenacher, Männel & 

Hultner, 1996 

Malaviya et al., 1996 

Malaviya & Abraham, 2000 

Thakurdas et al., 2007  

De Filippo et al., 2013 

Modulation Enhance neutrophil activity Sutherland et al., 2008 

 Inhibition of intramacrophage F. 

tularensis replication 

Ketavarapu et al., 2008 

Adaptive Immune System Recruitment of CD4+ cells and 

dendritic cells into draining 

lymph nodes during E. coli 

infection 

McLachlan et al., 2003  

Shelburne et al., 2009 

 

 Recruitment of dendritic cells 

into draining lymph nodes in 

response to S. aureus PGN 

Dawicki et al., 2010 

Antimicrobial Effects Antimicrobial peptides Di Nardo, Vitiello & Gallo, 

2003 

Di Nardo et al., 2008 

 Phagocytosis Malaviya et al., 1994 

 Extracellular traps von Köckritz-Blickwede et al., 

2008 

Negative   

Activation Increased mortality rate in 

enterobacterial infection models 

Piliponsky et al., 2010 

Dahdah et al., 2014 

Evasion Intracellular survival of S. aureus Abel et al., 2011 

 Intracellular survival of M. 

tuberculosis 

Muñoz, Rivas-Santiago & 

Enciso, 2009 

Suppression Suppression by S. typhimurium 

via SptP 

Choi et al., 2013 

 Upregulation of anti-

inflammatory genes by probiotic 

bacteria 

Oksaharju et al., 2011 

 

1.2.8 The Mast Cell & Vascular Endothelial Growth Factor 

Human and mouse mast cells have been shown to store vascular endothelial 

growth factor (VEGF; also called VEGF-A) in their granules and release it in 

response to a variety of stimuli, including IgE receptor cross-linking (Boesiger 
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et al., 1998; Grützkau et al., 1998). The observation that mast cells express 

VEGF has led to the notion that mast cells are involved in angiogenesis, for 

example, in the context of tumour growth (Norrby, 2002; Ribatti & Crivellato, 

2012). VEGF is a member of the VEGF gene family of growth factors (Byrne, 

Bouchier-Hayes & Harmey, 2005).5 VEGF is a glycoprotein with an essential 

role in angiogenesis (the formation of blood vessels from pre-existing vessels) 

and vasculogenesis (de novo formation of blood vessels) (Robinson & Stringer, 

2001). In humans, the VEGF gene produces at least eight different isoforms 

(VEGF110, VEGF121, VEGF145, VEGF148, VEGF165, VEGF183, VEGF189 and 

VEGF206) (Hoeben et al., 2004). In mice, three splice variants are known 

(VEGF120, VEGF164 and VEGF188) (Ng et al., 2001). The isoforms vary in terms 

of their potency in inducing angiogenesis, ability to diffuse, extent of expression 

and tissue specificity (Berse et al., 1992; Ng et al., 2001; Hoeben et al., 2004). 

Interestingly, in the context of mast cells, VEGF diffusibility is determined by 

its ability to bind heparin/heparan sulphate. Isoforms lacking heparin binding 

domains are more diffusible than those expressed with these domains (Ng et al., 

2001; Hoeben et al., 2004).  

1.2.9 Mast Cell Models 

Mast cells are traditionally studied using in vitro models (human, mouse) and in 

vivo models (mouse). Both primary cells and cell lines are routinely employed 

in mast cell in vitro studies. Primary mast cells can be derived from the bone 

marrow (bone marrow-derived mast cells; BMMCs) or peritoneum (peritoneal 

cell-derived mast cells; PCMCs) of mice, or from human tissue (Malbec et al., 

2007; Arock et al., 2008; Passante, 2014). An important tool in in vivo studies 

of mast cells are mast cell-deficient mice. There are two classes of these models: 

(1) kit-dependent deficient mice and (2) kit-independent deficient mice. c-Kit is 

the receptor for stem cell factor (SCF), the principal growth factor for mast cells 

(Moon et al., 2010). 

c-Kit-dependent. Mutants with deficient Kit proteins have different 

phenotypes: KitW, KitWv, KitW-sh and KitW/Wv. In KitWv mice, c-Kit has impaired 

kinase activity (Nocka et al., 1990). KitW-sh mice have impaired expression of 

Kit due to a genomic rearrangement (Berrozpe et al., 1999). KitW/Wv mice are 

produced by crossing KitW and KitWv mice and have been extensively used in 

mast cell research. A key aspect of these phenotypes is that the c-Kit receptor is 

also expressed by many other cells during development; hence, mutations 

affecting c-Kit have consequences for tissues and cells beyond the lack of mast 

cells. These effects may influence the outcome of experiments and lead to 

                                                        
5. Also includes the members VEGF-B, VEGF-C and VEGF-D 
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erroneous conclusions regarding the roles of mast cells (Rodewald & 

Feyerabend, 2012). 

c-Kit-independent. Mice in which the mast cell deficiency results from an 

alteration independent of c-Kit were developed in response to the concerns 

raised regarding the validity of the older c-Kit-dependent models. These 

deficiencies are either constitutive or inducible. Constitutively mast cell-

deficient mice are established from birth. In inducible models, the mast cell 

deficiency only develops in response to infusion of a toxin into a genetically 

modified animal (Rodewald & Feyerabend, 2012). The mast cell deficiency in 

these models depends either on the Cre recombinase system or on the addition 

of constitutively expressed diphtheria toxin receptors. By ensuring that the 

expression of the added genetic elements is under the control of mast cell-

specific genes (proteases, enhancers), the alteration is restricted to mast cells 

(i.e., Cre recombinase is only active in mast cells) (Dudeck et al., 2011; Otsuka 

et al., 2011; Feyerabend et al., 2011; Lilla et al., 2011; Sawaguchi et al., 2012). 

For example, in Mcpt5-Cre R-DTA mice, the Cre-recombinase is controlled by 

the promoter for Mcpt-5 (gene encoding mMCP5). Cre-recombinase catalyses 

the recombination of specific DNA fragments (loxP) located at either ends of a 

larger DNA sequence, in this case a sequence containing the stop codon for the 

genes encoding diphtheria toxin (DT). Expression of Mcpt-5 leads to expression 

of the Cre-recombinase and removal of the DT stop codon, enabling the 

expression of DT. DT expression leads to mast cell death (Brault et al., 2007; 

Dudeck et al., 2011). Regardless of how the c-Kit-independent mast cell 

deficiency is induced, these mice have fewer abnormalities compared with the 

older c-Kit-dependent models. Hence, they are believed to be a more powerful 

research tools (Feyerabend & Rodewald, 2012). 

 

1.3 Mastitis 

1.3.1 Modern Domestic Cattle 

Cattle are large domesticated ruminant ungulates (Adelsköld et al., 1923). 

Modern domestic cattle are split into two species, taurine cattle (Bos taurus) and 

zebus (Bos indicus) descended from aurochs (Bos primigenius). A third species, 

sanga cattle, is an African species of mixed taurine:zebu ancestry (Ajmone-

Marsan et al., 2010). In 2016, the global population of cattle was estimated to be 

in excess of one billion individuals (FAOSTAT, 2016). In Sweden, the cattle 

population is estimated to include approximately 1400000 individuals (Grönvall, 
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2018). The Swedish Red-and-White (SRB) and Swedish Friesian (SLB) are the 

most common breeds amongst dairy cows (Växa, 2018). Since their 

domestication, cattle have provided human societies with draught power, milk, 

meat and hides (Ajmone-Marsan et al., 2010). The influence of cattle on human 

culture is attested by their frequent depiction in art and appearance in religion. 

The depictions of bull sports in Minoan art, of milking in Ancient Egyptian art 

and the cow Audumla, of Norse Mythology, who gave her milk to Ymir, the first 

being, are but a handful of examples of the influence that this animal species has 

had on human civilisation (Loughlin, 2000; Encyclopaedia Britannica). In this 

thesis, the term bovine will be used to refer to cattle. 

1.3.2 The Composition of Milk 

Milk is a complex biological emulsion of water and fat along with two other 

major milk constituent classes: proteins and sugars (lactose). It also contains 

many other substances, e.g., minerals and vitamins. Milk is the main source of 

nutrition for the mammalian neonate. Hence, it must contain all the nutrients 

required for growth. Milk fats released into the liquid as membrane-enclosed 

globules, and lactose, the disaccharide of glucose and galactose, act as sources 

of energy. Milk proteins, caseins and whey proteins, provide the amino acids 

required for the growth of tissues. The exact proportions of the different 

components vary considerably between different mammalian species. For 

example, the milk of marine mammals and polar bears contain more fat than the 

milk from other mammals. Human and bovine milk, as relevant examples, vary 

in the content of lactose, total protein, and the ratios of casein and whey, fats and 

minerals (Björnhag, 2004; Fox et al., 2015) (Table 5). 

Table 5. Comparison of the composition of human and bovine milk in terms of lactose, protein, fat 

and minerals. 

Component Human Bovine 

Lactose (g/100 g) 6,3 – 7,0 4,4 – 5,6 

Protein (g/100 g) 0,9 – 1,9 3,0 – 4,0 

Approximate casein:whey ratio 40:60 80:20 

Fat (g/100 g) 2,1 – 4,0 3,3 – 6,4 

--Saturated (%) 36 – 45 55 – 73 

--Monounsaturated (%) 44 – 45 22 – 30 

--Polyunsaturated (%) 8 – 19 2,4 – 6,3 

Minerals (g/100 g) 0,2 – 0,3 0,7 – 0,8 

References: Fox et al., 2015; Gantner et al., 2015 
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1.3.3 A Brief Overview of the Mammary Secretory Tissue 

The bovine udder is quartered. Each quarter is functionally distinct with no direct 

connections. The right and left side of the udder are separated by thick 

connective tissue bands. The front and rear quarter on one side are only separated 

by a thin connective tissue septum. The whole udder is supported by a number 

of connective tissue bands, including the bands separating the two udder halves. 

The secretory tissue of one quarter is divided into the following components: (1) 

alveoli (singular: alveolus), (2) milk ducts and (3) connective tissue. The 

function of the gland connective tissue is to protect the more delicate alveoli 

(Nickerson & Akers, 2011).  

The globular alveoli are the functional units of the secretory tissue. An 

alveolus consists of a single layer of specialised epithelial cells surrounding a 

hollow cavity. These epithelial cells, also called mammary epithelial cells 

(MECs) or simply mammocytes, absorb compounds from the blood and convert 

them into milk components. The milk is secreted into the hollow cavity. The 

mammary epithelial layer is surrounded by myoepithelial cells, a type of smooth 

muscle cell. Capillaries connect each alveolus to the general circulation. Milk 

accumulates inside an alveolus and, upon contraction of the myoepithelial cells, 

is forced out through a single duct – an opening providing egress from the 

alveolus. Alveoli are clustered together, and the duct of each alveolus connects 

them into a larger duct system. This system drains into the gland cistern. The 

gland cistern is in turn connected to the teat cistern. Milk is drained from the teat 

cistern through the teat canal. A sphincter6 closes the teat canal and prevents 

leakage. 

The udder is supplied with a very plentiful blood flow by arteries entering 

both halves of the udder near the rear quarters. Blood is drained from the 

mammary gland primarily through veins exiting from the front and rear of the 

udder. The udder possesses two large lymph nodes, one in each udder half. Milk 

synthesis is controlled by hormones, the release of which is controlled by the 

nervous system. The nervous system is otherwise not directly involved in the 

control of milk synthesis (Björnhag, 2004; Nickerson & Akers, 2011; Fox et al., 

2015). 

1.3.4 The Innate Immune System of the Mammary Gland 

The innate immune system of the mammary gland is divided into: (1) resident 

defences, (2) inducible defences and (3) cellular defences7. The resident 

                                                        
6. Circular smooth muscle 

7. Cellular defences are considered to be a part of the resident defences. I have chosen to detail 

them separately for the sake of clarity 
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defences are constitutively present in the udder, whereas the inducible defences 

must be mobilised in response to an infection. Cellular defences are represented 

both by the resident population of leucocytes and by leucocytes that are recruited 

into the gland during inflammation (Rainard & Riollet, 2006). 

Resident Defences. Resident defences are partly composed of anatomical 

barriers and partly of humoral defences. Between milkings, the teat canal is 

blocked by a keratin plug generated from the epithelial cells of the teat cistern. 

It constitutes a simple anatomical barrier to pathogen entry into the mammary 

tissue. The humoral defences are composed of a series of proteins present in the 

milk, including components of the complement system (C3b, C5a), lactoferrin 

(iron-chelator), transferrin (iron-chelator), lysozyme (an enzyme targeting PGN) 

and opsonic antibodies produced in the absence of antigenic stimulation (IgM). 

Inducible Defences. Numerous genes are activated in mammary cells in 

response to infection, including nitric oxide synthase (iNOS; catalyses the 

formation of nitric oxide), host defence peptides (short proteins with 

antibacterial activity) and lactoferrin (concentration in milk increases 

dramatically upon inflammation) (Rainard & Riollet, 2006).  

Cellular Defence. Three cell types are important for the innate immune 

system in the mammary gland: (1) MECs, (2) neutrophils and (3) macrophages 

(Rainard & Riollet, 2006; Ezzat Alnakip et al., 2014). Mast cells have also been 

demonstrated to be present in the udder (Nielsen, 1975).  

Cellular Defences of the Innate Immune System of the Mammary Gland 

Leucocytes involved in the mammary immune system are primarily 

macrophages and neutrophils (Rainard & Riollet, 2006; Ezzat Alnakip et al., 

2014). Both MECs and macrophages have been identified as possible activators 

of inflammation in the mammary tissue in response to bacterial infection (Elazar 

et al., 2010; Brenaut et al., 2014). 

Mammary Epithelial Cells. Aside from their milk synthesis function, MECs 

synthesise a wide range of inflammatory mediators following exposure to 

bacterial stimuli. In several in vitro experiments, MECs have been shown to 

express several cytokines in response to stimuli with purified bacterial 

components, conditioned media or heat-inactivated bacterial cells – e.g., CCL2, 

TNF-α, IL-1β, IL-6 and IL-8 (Strandberg et al., 2005; Fu et al., 2013; Gilbert et 

al., 2013). In an ovine in vivo infection model of S. aureus mastitis, MECs 

orchestrated the early stages of the inflammatory response based on a 

mechanism that was dependent on IL-8 (Brenaut et al., 2014). Hence it is 

possible that bovine MECs share a similar ‘activator of inflammation role’ 

during bacterial infection. 
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Neutrophils. The function of the resident mammary neutrophil population is 

not clear. However, the recruited neutrophil population becomes the 

predominant leucocyte in the mammary gland during inflammation (Rainard & 

Riollet, 2006). In a healthy gland, neutrophils make up 3 – 26% of the total 

leucocytes in milk. In an inflamed gland, they reach up to 90% of the total 

leucocytes (Ezzat Alnakip et al., 2014). Once inside the mammary gland, these 

neutrophils have the same function as they do elsewhere in the host – to 

neutralise invading pathogens. A distinguishing feature of the mammary 

neutrophils is their reduced antimicrobial activity compared with neutrophils in 

other tissues. Upon entry into the mammary gland, neutrophils engulf milk fat 

globules and proteins, leading to a reduction in the number of granules available 

for killing ingested microbes (Paape et al., 2003). However, they remain able to 

deal with invading microbes, possibly due to their sheer numbers (Blowey & 

Edmondson, 2010). 

Macrophages. As in other tissues, the resident mammary macrophage 

population represents the potential initiators of the inflammatory response 

(Rainard & Riollet, 2006). In a mouse model of mastitis, the mammary 

macrophage population was demonstrated to be essential in the recruitment of 

neutrophils into the mammary gland in response to lipopolysaccharide (LPS) 

infusion. The mechanism was dependent on TNF-α and TLR4 signalling (Elazar 

et al., 2010). Bovine macrophages have been shown to be able to phagocytose 

mastitis pathogens in vitro and release chemoattractants in response to S. aureus 

(Politis et al., 1991; Grant & Finch, 1997). As in other tissues, monocytes are 

recruited into the mammary gland during inflammation. They differentiate into 

macrophages and are essential in the resolution of inflammation by clearing 

away neutrophils, as described elsewhere (see Inflammation) (Paape et al., 

2003). Macrophages are the predominant leucocyte in healthy glands, 

constituting up to 79% of the total leucocyte content in milk. In an inflamed 

gland, this proportion falls to 9 – 32% (Ezzat Alnakip et al., 2014).  

The Bovine Mast Cell 

Mast cells are present in the udder, where they are the primary source of 

histamine (Nielsen, 1975; Maslinski et al., 1993; Beaudry et al., 2016). The 

bovine mast cell is a little studied area in comparison with those of mice and 

humans. A few studies have attempted to elucidate bovine mast cell 

heterogeneity and tissue distribution. Like human mast cells, bovine mast cells 

are divided into three subtypes based on their protease content: MT, MTC and 

MC. Tryptase-positive mast cells are present in all sections of studied tissues, 

whereas chymase status varies (Küther et al., 1998; Jolly et al., 1999). Chymase-

positive mast cells are more numerous in connective tissues than in mucosal 
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tissues (Jolly et al., 2000). It remains to be determined whether bovine mast cells 

express more than one type of tryptase or chymase, but methodological 

discrepancies suggest that the proteases are heterogenous as in mice and humans 

(Jolly et al., 1999; Jolly et al., 2000). 

1.3.5 Mastitis  

Mastitis is an inflammation of the mammary tissue (Adelsköld et al., 1923; 

Erskine, 2016). It typically arises as a response to an intramammary infection 

(IMI). Though commonly of bacterial origin, IMIs can also be caused by algae 

and fungi. Viruses are also possible mastitis pathogens (Dion, 1982; Watts, 

1988; Bradley, 2002; Wellenberg, van der Poel & Van Oirschot, 2002). Mastitis 

is marked by the five cardinal signs of inflammation: reddening of the tissue, 

swelling of the tissue, pain in the inflamed tissue, an increased temperature in 

the tissue and impaired function. The latter is manifested as a reduced milk yield 

(Erskine, 2016).  

Activation of Inflammation in the Mammary Gland 

As noted previously, both MECs and the resident population of mammary 

macrophages are potential activators of the inflammatory response in the bovine 

mammary gland (Elazar et al., 2010; Brenaut et al., 2014). Cows, like other 

mammals, express the repertoire of TLRs 1 – 10 (Menzies & Ingham, 2006). 

Minimally, TLR2 and TLR4 agonists are detected by bovine MECs, e.g., LPS 

and lipoteichoic acid (LTA) (Gilbert et al., 2013). 

Effect of Mastitis on Milk & Economic Impact 

Mastitis has numerous effects on milk apart from the reduced yield. The 

proportions of proteins, fats, ion concentrations, pH and concentrations of 

enzymes are altered in milk from an inflamed gland (Kitchen, 1981). These 

changes will, in turn, affect the taste of the milk and the possibility of further 

processing, e.g., the manufacturing yield is lower from mastitic milk due to the 

reduction of casein levels (Blowey & Edmondson, 2010). The recruitment of 

leucocytes in the mammary gland is also measurable in milk as an increase in 

milk somatic cell counts (SCCs). SCCs are primarily composed of neutrophils 

and macrophages that are recruited into the udder (Ezzat Alnakip et al., 2014). 

SCCs are given in cells/ml and are used to measure the quality of the milk. High 

levels are considered to indicate poor milk quality. Additionally, increased levels 

are directly associated with reduced milk yield (Schukken et al., 2003; 

Hagnestam-Nielsen et al., 2009). SCCs are measured on the herd level or on 
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individual level. Herd level SCCs are performed using the bulk tank milk. Apart 

from determining the total quality of the milk from one dairy herd, bulk tank 

SCCs (BTSCCs) are also used to follow changes in SCCs over time. High 

BTSCCs typically indicate the presence of subclinical mastitis cases (Blowey & 

Edmondson, 2010). National standards for BTSCCs vary considerably. Within 

the European Union as well as Australia, New Zealand and Canada the levels 

are <400,000 cells/ml. In the United States, the level is 750,000 cells/ml (USDA, 

2016). Individual cow SCCs (ICSCCs) can be used to identify specific 

individuals with high SCCs (Blowey & Edmondson, 2010). On the individual 

level, uninfected quarters have been found to have a mean SCCs of 70,000 

cells/ml (Schukken et al., 2003). 

Taken together, mastitis incurs economic costs in terms of a reduced milk 

yield and quality, veterinary costs (diagnostics and treatment) and culling of 

incurable cases. Mastitis is considered to be one of the most economically 

destructive diseases in the dairy industry worldwide (Halasa et al., 2007; 

Hogeveen, Huijps & Lam, 2011) and it is reported in dairy herds on a global 

scale (Persson Waller et al., 2009; Östensson et al., 2013; Abebe et al., 2016; 

Levison et al., 2016; Busanello et al., 2017; Gao et al., 2017). 

Clinical Forms of Mastitis 

Mastitis manifests itself in two forms: (1) clinical mastitis and (2) subclinical 

mastitis. Clinical mastitis is characterised by visually distinguishable symptoms 

in both the udder and the milk. Visible alterations in the milk include a change 

in colour (white to yellow) and the appearance of clots. Clinical mastitis cases 

restricted to local symptoms are termed mild. Cases with systemic symptoms, 

such as fever or anorexia, are termed severe. Cases with rapidly developing 

symptoms are termed acute. In subclinical mastitis visible changes in the udder 

and the milk are at most transient. However, a reduction in milk yield and 

increased SCCs are still present. Subclinical mastitis cases that persist for at least 

two months are termed chronic. Due to the lack of easily recognisable symptoms, 

subclinical mastitis cases are difficult to detect (Erskine, 2016). 

Mastitis Bacterial Pathogens & Differential Immune Response 

Mastitis pathogens are traditionally divided into two general types: (1) 

contagious pathogens and (2) environmental pathogens. Contagious mastitis 

pathogens are present as reservoirs inside the mammary gland and can spread 

from one animal to another. Environmental pathogens are opportunistic and 

originate from outside the animal. In general, contagious mastitis pathogens 

cause subclinical mastitis whereas environmental pathogens cause clinical 
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mastitis (Blowey & Edmondson, 2010). However, although microbial species 

are typically categorised as one or the other of these two classes, the distinctions 

are less apparent on the strain level (Bradley, 2002).  

Common mastitis bacterial pathogens are streptococci, staphylococci and 

coliforms (Blowey & Edmondson, 2010). In Sweden, two common bacterial 

mastitis pathogens are S. aureus and E. coli (Ericsson Unnerstad et al., 2009). 

These two species also represent the two types of mastitis pathogens: S. aureus 

is generally considered a contagious pathogen and E. coli an environmental 

pathogen. They also reflect the imperfect distinction between the two classes. 

Some E. coli strains can cause persistent infection, whereas some S. aureus 

strains cause acute infections. Virulence factors enabling iron acquisition, 

mobility and adherence are often found in E. coli strains that are able to cause 

persistent rather than transient infections with which the species is normally 

associated with (Dogan et al., 2006; Lippolis et al., 2014; Fairbrother et al., 

2015). In S. aureus, genes encoding superantigens and antibiotic resistance 

mechanisms are typically found in persistent strains (Haveri et al., 2007). E. coli 

and S. aureus are also good examples of the contrasting immune responses that 

different species can provoke (Schukken et al., 2011). E. coli typically elicit a 

rapid cytokine response, including IL-1β, IL-8 and TNF-α. S. aureus elicits a 

cytokine profile including IL-1β and interferon (IFN)-γ. This response is slower 

and yields lower cytokine concentrations (Bannerman, 2009) (Table 6). 

Treatments & Diagnostics 

The diagnosis of mastitis is based on both clinical examination of the affected 

animals and an examination of the milk (Duarte, Freitas & Bexiga, 2015; 

Erskine, 2016). The milk can be examined for visible changes as well as with 

more refined methodology. An increase in SCCs is the gold standard for 

detecting cases of subclinical mastitis (Duarte, Freitas & Bexiga, 2015). 

Monitoring SCCs over time is one method used to detect suspected mastitis 

cases. However, many other factors influence SCCs apart from mastitis, 

including age, stage of lactation, stress and season. Hence, SCCs cannot be 

solely relied on and other factors, such as the history of a dairy herd, must be 

taken into consideration to determine the likelihood of mastitis (Blowey & 

Edmondson, 2010). Identification of a mastitis pathogen is based on genotypic 

(PCR) and phenotypic (milk culture) methods (Duarte, Freitas & Bexiga, 2015). 

Identification of the causative organism is a prerequisite to determine treatment 

options or other course of action (Blowey & Edmondson, 2010). 

Mastitis is typically treated with antibiotics and symptomatic treatment, e.g., 

nonsteroidal anti-inflammatory drugs (NSAIDs) (Erskine, 2016). Not 

surprisingly, antibiotic resistant strains of bacterial mastitis pathogens have been 
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isolated worldwide (Persson, Nyman & Grönlund-Andersson, 2011; Gao et al., 

2012; Saini et al., 2012). In Sweden, the use of antibiotics is limited to specific 

cases of acute clinical mastitis (Persson Waller, 2018). Other courses of action 

include milking infected cows last (to reduce the spread of infection) and culling 

(Blowey & Edmondson, 2010). 

Table 6. Comparison of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as mastitis 

pathogens in terms of pathogen type, mastitis type, immunogenic component(s), cytokine profile 

(protein level unless otherwise stated), rectal temperature and milk somatic cell counts (SCCs). 

Cytokine level comparisons are relative. (-): no response. (+): response. (++):  stronger response. 

 E. coli S. aureus Reference 

Pathogen Typea Environmental Contagious Blowey & Edmondson, 

2010 

Mastitis Typea Clinical Subclinical Blowey & Edmondson, 

2010 

Immunogenic 

Component(s) 

LPS LTA 

Lipoproteins 

Mehrzad et al., 2008; 

Gilbert et al., 2013 

Immune Responseb 16 hours 24 – 32 hours Bannerman et al., 2004 

Cytokine Profile    

    IL-6c + ++ Lee et al., 2006 

    IL-8 + - Bannerman et al., 2004 

    TNF-α + - Bannerman et al., 2004 

    IL-1β ++ + Bannerman et al., 2004 

    IFNγ ++ + Bannerman et al., 2004 

Rectal Temperature (°C) 40,5 39 – 39,5 Bannerman et al., 2004 

SCC (106 cells/ml) >40 ~30 Bannerman et al., 2004 

aSpecies level 

bTime point where changes in cytokine expression and/or secretion, rectal temperature and SCCs levels 

first become significant 

cGene expression 

Mastitis & Metabolomics 

Metabolomics, also called metabonomics, is the study of changes in metabolites 

on a system-wide scale under certain conditions (e.g., cells in a culture) 

(Rochfort, 2005). Metabolites are molecules generated by an organism’s 

metabolism, the life-sustaining chemical processes of a living organism (Lazar 

& Birnbaum, 2012). Metabolomic studies are undertaken using techniques such 

as nuclear magnetic resonance spectroscopy (NMR) and mass spectroscopy 

(MS) (Rochfort, 2005). In the context of bovines and mastitis, the metabolic 

profiles of milk have been studied both in naturally occurring cases of disease 

and in experimentally induced disease. Such studies have found that mastitis 
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induces distinct metabolite profiles. For example, animals classified as healthy, 

clinical and subclinical have distinct milk profiles, milk classified as low or high 

SCC vary significantly with regard to a number of metabolites, and metabolite 

profiles vary over time in animals where mastitis was experimentally induced by 

infusion of bacteria (Sundekilde et al., 2013; Moyes et al., 2014; Thomas et al., 

2016; Xi et al., 2017). 

In Vivo Mastitis Models 

Both mouse and bovine in vivo models are used to study mastitis. Mouse 

models include both mammary and non-mammary models (Bogni et al.; 1998; 

Leitner, Lubashevsky & Trainin, 2003; Elazar et al., 2010). Bovine in vivo 

models include intramammary infusion or injection of purified bacterial 

components (e.g., LPS or LTA) and whole or inactivated bacteria (Yagi et al., 

2002; Leitner et al., 2003; Rainard et al., 2008; Pellegrino et al., 2010). 

Although these bovine models have some practical disadvantages in 

comparison with the mouse models, they offer the possibility of studying 

mastitis in the relevant species and tissue.  
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2.1 Aims of the Present Studies 

The objective of these studies was to investigate the inflammatory mechanisms 

in bacterial infections, with a special focus on mast cells and bovine mastitis. 

 

➢ Paper I: Investigate the induction of vascular endothelial growth factor 

(VEGF) by S. aureus in mast cells in vitro 

➢ Paper II: Investigate the activation of mast cells in vitro by S. aureus and 

the role of mast cells in S. aureus infection in vivo 

➢ Paper III: Investigate and differentiate the virulence of a set of acute mastitis 

bacterial isolates of bovine origin using an in vivo mouse infection model 

➢ Paper IV: Investigate the clinical, immunological and metabolic changes 

that occur during mastitis using an in vivo bovine model of LPS-induced 

acute mastitis 

2.2 Paper I 

VEGF is essential for promotion of the survival, proliferation and migration of 

endothelial cells. In addition to these pro-angiogenic effects, VEGF also acts as 

a chemoattractant for immune cells. Mast cells produce and secrete VEGF and 

thus are thought to be involved in angiogenesis. In a previous study (Paper II), 

a gene array revealed that VEGF was highly upregulated in mast cells stimulated 

with live Staphylococcus aureus in vitro. This phenomenon provided a hitherto 

unknown link between bacteria and the induction of VEGF in mast cells. The 

aim of this study was to further investigate this finding. As many previous 

studies had used immature mast cell models, we decided to use fully mature 

2 Present Investigations 
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mouse mast cells derived from the peritoneum of adult mice (peritoneal cell-

derived mast cells; PCMCs). 

To investigate whether mature mast cells could synthesise and release VEGF, 

PCMCs were co-cultured with S. aureus. VEGF gene expression was analysed 

by quantitative PCR. VEGF secretion was analysed by enzyme-linked 

immunosorbent assay (ELISA). We found that VEGF expression was 

upregulated after six hours of co-cultivation and a significant increase in the 

concentration of VEGF in the co-culture supernatant was seen after just two 

hours. Next, we investigated whether live whole bacteria were required to induce 

VEGF expression and secretion. Purified bacterial components LPS, LTA, 

Pam3CSK4 (PAM3), PGN or a mixture of all four), heat inactivated bacteria and 

conditioned media (bacterial growth media or PCMC media conditioned with 

bacterial growth followed by sterile filtering) failed to elicit any response at the 

gene expression level. Subsequently, we investigated whether the induction of 

VEGF expression required direct contact between the mast cell and the bacteria. 

To achieve this goal, we utilised a Transwell system. Here, the PCMCs and 

bacteria were separated by a thin membrane that allowed the diffusion of soluble 

products, but not the migration of whole bacteria. Using this system, we found 

that direct contact was not required for the induction of VEGF expression. 

Finally, we investigated which cell-signalling pathway might be involved in this 

induction. PCMCs were pre-treated with inhibitors for the adaptor molecule 

Myd88 (involved in most TLR signalling pathways), nuclear factor of activated 

T-cells (NFAT; signalling molecule involved in the induction of pro-

inflammatory genes in mast cells) and NF-κB (transcription factor involved in 

the regulation of genes related to the immune system) before co-cultivation with 

S. aureus. We observed only a partial inhibitory effect on VEGF upregulation in 

response to NF-κB inhibition. 

 

Summary of Paper I: 

➢ Induction of VEGF expression and secretion in fully mature mast cells 

requires whole live bacteria 

➢ This induction is seemingly independent of TLRs but partly dependent on the 

NF-κB pathway 

➢ VEGF induction is not dependent on direct contact between the mast cell and 

bacteria, but the soluble factor(s) involved could not be identified 

2.3 Paper II 

Many studies have focused on elucidating the role of mast cells in bacterial 

infections, primarily using immature mast cells in vitro and Kit-dependent mast 
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cell knockout mice in vivo. In this study, the role of the mast cell in bacterial 

infections was studied using mature mast cells (PCMCs) in vitro and Kit-

independent mast cell knockout mice in vivo (Mcpt5-Cre+ x R-DTA with mast 

cell competent Mcpt5-Cre- x R-DTA littermates used as controls).  

PCMCs were co-cultivated with S. aureus in vitro. Gene expression was 

comprehensively studied using an Affymetrix microarray system. This revealed 

a profound upregulation of several genes encoding pro-inflammatory cytokines, 

including IL-3, IL-13 and TNF-α. Release of these cytokines into the cell culture 

supernatant was confirmed by ELISA. 

Mice were infected with S. aureus by intraperitoneal injection. Controls were 

injected with an equivalent volume of sterile bacterial growth medium. Infection 

was allowed to proceed for four hours, one day or three days. The impact of the 

infection was monitored by weighing the mice, bacterial burden by determining 

the colony-forming unit per ml (CFU/ml) in the peritoneal lavage fluid, the 

infiltration of cells into the peritoneum by cell counting and the effect on the 

peritoneal cell population by differential cell counting. No differences were 

observed between mast cell-deficient and competent mice.  

The influence of the mast cells on the production of cytokines in the 

peritoneum was investigated using a cytokine array. Cytokines detected at high 

concentrations in this assay (IL-6, MCP-1) and cytokines from the in vitro 

experiments (IL-3, IL-13) were further investigated by ELISA. No differences 

were observed between mast cell-deficient and competent mice. 

 

Summary of Paper II: 

➢ Mast cells are activated to release cytokines in response to S. aureus in vitro 

➢ Mast cells do not influence the course of S. aureus infection in vivo nor do 

they contribute to the peritoneal cytokine profile 

2.4 Paper III 

The aim of this study was to use a non-mammary mouse infection model to 

differentiate the virulence of a selection of acute clinical mastitis bacterial 

isolates of bovine origin. Non-mammary mouse models have previously been 

used in mastitis research. In the present study, isolates of the species S. aureus 

(8325-4, 556, 392) and E. coli (MG1655, 676, 127) were used. The laboratory 

strains 8325-4 and MG1655 were used as controls. The generation time for all 

of the strains was determined and did not significantly differ in a species-based 

comparison. 

The mice were infected by intraperitoneal injection, and the infection was 

allowed to proceed for 24 hours. The infection was assessed by weighing the 
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mice, scoring the severity of infection, and weighing lymph nodes and spleens. 

Clearance of bacteria from the peritoneum was assessed by determining the 

CFU/ml in the peritoneal lavage fluid. Effects on the recruitment of immune 

cells to the peritoneum and the peritoneal cell population were determined by 

cell counting. The pro-inflammatory cytokine profile in the peritoneum was 

investigated using a cytokine array. 

E. coli strain 127 caused strikingly consistent and high clinical scores, but it 

had no effect on the lymphoid organs. Strain 127 also persisted at greater 

numbers in the peritoneum. All strains induced neutrophil recruitment. The 

concentrations of three cytokines (G-CSF, CXCL1 and CCL2) were particularly 

highly increased based on a cytokine array in mice infected with strain 127 

compared with the other strains. The concentrations of these cytokines were 

subsequently measured by ELISA in peritoneal lavage fluid (local) and plasma 

(systemic). The concentrations of these cytokines were higher in mice infected 

with 127 than any of the other strains, and correlated significantly with both the 

clinical score and bacterial burden. Hence, strain 127 caused both a local and 

systemic cytokine response. 

 

Summary of Paper III: 

➢ E. coli 127 strain consistently caused more severe infections as judged by 

clinical scoring and persisted at greater number in the peritoneum 24 hours 

after infection, but did not affect the lymphoid organs 

➢ E. coli 127 strain generated a distinct cytokine profile (G-CSF, CXCL1, 

CCL2) in both the peritoneal lavage fluid (local response) and plasma 

(systemic response) 

➢ The concentrations of these cytokines correlated with both disease severity 

and bacterial burden in the peritoneum  

2.5 Paper IV 

The objective of this study was to investigate the clinical and molecular changes 

that occur during acute bovine mastitis. A kinetic approach was applied, and 

changes were registered in terms of clinical parameters (clinical score, milk 

changes, rectal temperature), concentrations of cytokines in milk and plasma, 

and changes in the metabolome. Additionally, a role for mast cells in this model 

was investigated by analysing histamine levels in milk and plasma. Mastitis was 

induced by an intramammary infusion of LPS dissolved in physiological saline 

solution. Controls received an equivalent volume of physiological saline 

solution. Only healthy primiparous lactating cows were enrolled for the purposes 

of this study. Samples were collected in the form of milk and blood. 
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Clinical signs of mastitis in the udder (heat, pain, swelling, temperature) were 

visible two hours post-infusion and persisted up to 24 or 72 hours. Visible 

changes in the milk and a significant increase in the milk SCCs were delayed 

and appeared only after four hours. These changes also persisted for a longer 

period of time, up to 120 hours post-infusion, than did the other clinical 

parameters. Increases in the concentrations of the cytokines IL-6, TNF-α and 

CCL2 in milk were significant at two hours post-infusion. G-CSF and CXCL1 

did not significantly increase in milk. In plasma, only a transient increase in IL-

6 was detectible at four hours post-infusion. Histamine did not increase 

significantly in either milk or plasma, indicating that mast cells did not have a 

major role in the response to LPS. 

The metabolomics profiles of the milk and plasma were analysed using a 

targeted (plasma) and untargeted (milk) NMR-based analysis approach. In milk, 

major changes occurred 24 hours post-infusion, including a reduction of lactose 

levels. Hence, these changes were preceded by a significant degree of time by 

the other local changes in the udder, judged in terms of clinical parameters and 

cytokine concentrations. Changes in the plasma required less time to develop, 

where an increase in lactose together with concurrent reductions in the levels of 

ketone bodies and short-chain fatty acids were detectible four hours post-

infusion. The systemic changes in the plasma coincided with the transient IL-6 

increase in plasma. The progression of these changes can be summarised as 

follows: (1) signs of inflammation in the udder and increases in milk cytokine 

concentrations (two hours), (2) visible changes in the milk and increases in milk 

SCCs (four hours), (3) changes in the plasma metabolome (four hours) and (4) 

changes in the milk metabolome (24 hours) 

 

Summary of Paper IV: 

➢ Intramammary infusion led to visible signs of acute mastitis two hours post-

infusion, returning to normal levels within 24 to 72 hours post-infusion 

➢ Changes in the milk were delayed compared with general and systemic 

changes, but persist for longer periods of time 

➢ Concentrations of IL-6, TNF-α and CCL2 increased in milk; only a transient 

increase in levels of IL-6 was detectible in plasma 

➢ The absence of increased histamine levels in milk and plasma suggests that 

mast cells have no role in LPS-induced acute mastitis, but activation 

independent of degranulation cannot be excluded 

➢ Changes in the metabolome were registered in both the plasma and the milk, 

developing at four hours post-infusion before returning to normal within 72 

hours 
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Inflammation is an unspecific response of the immune system to trauma and 

invasion by foreign particles such as for example bacterial pathogens. 

Inflammation, due to its unspecific nature, causes collateral damage to the host 

tissue in addition to the beneficial effects of eliminating or limiting the spread 

of an infectious agent. Two common examples in which the negative impact of 

inflammation causes extensive damage to the host are mastitis (inflammation of 

the mammary tissue) and IgE-mediated hypersensitivity (activation of mast 

cells). Mast cells have also been suggested to have a role in bacterial infections, 

as a sentinel cell that is ideally positioned to respond quickly and early to the 

presence of bacteria. The inflammatory mechanisms that are operative during 

bacterial infection, in the context of mastitis and the contribution of mast cells, 

were studied using a four-pronged approach. (1) Mast cell mechanisms were 

studied in vitro using mature primary mouse mast cells and (2) in vivo using Kit-

independent mast cell-deficient mice. This strategy is in contrast to many 

previous studies in which immature mast cells and Kit-dependent mast cell-

deficient mice have been used. Mastitis was investigated: (1) in vivo using a 

mouse non-mammary infection model and (2) an LPS-induced acute bovine in 

vivo mastitis model. 

The conditions required for the synthesis and release of VEGF by fully 

mature mast cells stimulated with S. aureus were comprehensively studied in 

vitro. At this stage, the identity of the soluble factor(s), which only seemed to be 

produced during co-cultivation of mast cells and bacteria, could not be 

elucidated. These factor(s) could potentially be identified by analysing media 

conditioned with both S. aureus and mast cells using mass spectrometry. VEGF 

is involved in tumour angiogenesis. Several species of bacteria are known to 

infiltrate and colonise tumours. Likewise, mast cells frequently populate 

tumours. It is thus possible that bacterial stimuli of tumour-populating mast cells 

3 Concluding Remarks & Future 
Perspectives 
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yield the VEGF required for tumour angiogenesis. If a dual cancer-bacterial 

infection in vivo model could be developed, this hypothesis could be investigated 

using strains of tumour-colonising bacteria and mast cell-deficient mice. Prior 

to any such investigation, the upregulation of VEGF in response both to different 

strains of S. aureus and to other species of bacteria would be required to establish 

whether VEGF induction is species specific. 

A similar approach could be used to investigate the role of the mast cell in 

general bacterial infections. In our study, a laboratory strain of S. aureus was 

used and no differences were found between mast cell competent and deficient 

mice. Optimally, by using different strains of S. aureus and different bacterial 

species, as well as different strains of those species, and alternate routes of 

infection, more general conclusions regarding the mast cell in infection could be 

made. Ideally, wildtype strains derived from diseased animals could be used as 

an alternative to the laboratory strains. 

A similar approach was used in our non-mammary mouse mastitis model. 

Mice were infected by intraperitoneal injection with a number of different 

bacterial strains representing two major mastitis pathogen species, E. coli and S. 

aureus. We found that one particular strain of E. coli, strain 127, caused 

consistently more severe infections and generated a distinct cytokine profile 

(CCL2, G-CSF, CXCL1). The concentrations of these cytokines correlated with 

both disease severity and bacterial burden. It is imperative that these strains, and 

potentially additional strains and other species of common mastitis bacterial 

pathogens, are used in further investigations with a bovine model system rather 

than a mouse system. In lieu of an in vivo bovine infection system, which would 

be prohibitively difficult both from a practical and ethical standpoint, a model 

using bovine mammary tissue could be employed. Tissue could be sourced from 

recently slaughtered animals. Though bovine cell lines are available, the bovine 

mammary immune response is likely better modelled using whole tissue rather 

than individual cell types. 

The clinical, immunological and metabolic changes that occur during 

mastitis were studied using a kinetic approach applied to an in vivo LPS-induced 

acute bovine mastitis model. We found that metabolic changes occurred earlier 

in the plasma than in the milk, which was also reflected in the clinical 

parameters, where changes in the general condition occurred earlier than 

changes in the milk. No role for mast cells in mastitis was found with this LPS-

induced model, at least not in a role involving degranulation. An ideal 

continuation of this study would be to use a similar intramammary infusion 

model substituting LPS with live whole bacteria, such as the bacterial strains 

used in our mouse non-mammary infection model. This approach would enable 

the investigation of changes in clinical parameters and molecular and metabolic 
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profiles over time in response to both different species of bacteria and different 

strains. Such a strategy would better reflect the actual changes in bovine 

physiology that operate during mastitis than the response to a purified bacterial 

component. However, as noted previously, such a model would be prohibitively 

difficult to use due to both practical and ethical reasons. An alternative would be 

to infuse cows with inactivated bacteria. Whether any response could be elicited 

to such stimuli could be determined by performing pilot studies using a bovine 

tissue mammary in vitro model similar to the one outlined above. 
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The signs of inflammation are easily recognisable: heat, swelling, redness and 

pain. Inflammation is a broad response of the immune system to exposure to 

trauma or harmful microorganisms such as bacteria. Inflammation damages both 

invading microbes and host tissue alike. This thesis is focused on the 

mechanisms involved in inflammation caused by bacterial infection, in the 

context of mast cells and mastitis. 

The mast cell is a white blood cell, a component of the immune system. These 

cells are found in high numbers in the skin, intestine, lungs and other tissues that 

are directly exposed to the environment. Mast cells store large numbers of pro-

inflammatory compounds (so called ‘mediators’). Such mediators include 

histamine and cytokines (proteins used to signal between cells). These 

substances can be released within seconds of mast cell activation. Mast cells also 

produce mediators in response to activation, which are released over time 

(minutes to hours). Such mediators include antimicrobial peptides (peptide that 

directly kill microbes) and many additional cytokines. Mast cells are believed to 

assist in the response to bacterial infection by, for example, recruiting other 

immune cells to an infected tissue by releasing cytokines. 

Mastitis is an inflammation of the milk-producing tissue in the mammary 

glands of mammals. The inflammation is usually caused by a bacterial infection. 

Mastitis is one of the most economically destructive diseases in the dairy 

industry worldwide. It reduces milk yield and quality and incurs high veterinary 

costs. 

Mast cell responses to live bacteria were studied by culturing them together 

(Paper I) or by using a mouse infection model (Paper II). In Paper I, mast cell 

production and the release of vascular endothelial growth factor (VEGF) were 

studied. VEGF is a potent promoter of blood vessel growth (angiogenesis). We 

found that live Staphylococcus aureus (S. aureus) was required to activate the 

release of VEGF from mast cells. Individual purified bacterial components (e.g., 

bacterial cell wall components) did not active mast cells to produce VEGF. Mast 

Popular Science Summary 
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cells have long been thought to be involved in angiogenesis due to their ability 

to produce VEGF, but this bacterial induction of VEGF has not been previously 

reported. It could possibly be involved in tumour processes. Both mast cells and 

bacteria have been observed to populate certain tumours. It is possible that 

bacteria promote blood vessel growth in tumours by inducing mast cells to 

produce VEGF. 

In Paper II, using a mouse S. aureus infection model, comparing normal 

wildtype mice with genetically modified mice lacking mast cells, we observed 

that the lack of mast cells did not affect the progress of the infection. This was 

measured by weighing the mice, measuring the clearance of bacteria (how well 

the immune systems of the mice could kill the bacteria), measuring the 

concentrations of pro-inflammatory cytokines and counting the inflammatory 

cells recruited to the infected site. Previous mouse infection studies have used 

mast cell-deficient mice that are dependent on mutations in a receptor called c-

Kit. c-Kit is a receptor for a growth factor that is essential for mast cells. Defects 

in this receptor cause a loss of mast cells. However, because c-Kit is required by 

many other cells, mutations also cause many other defects. It is therefore difficult 

to draw conclusions from these models because the observed effects in the mast 

cell-deficient mice could have been caused by other defects. In contrast, we used 

a new model in which the mast cells were removed using a targeted genetic 

modification independent of the c-Kit receptor (Mcpt5-Cre mice). These mice 

have fewer non-mast cell-related defects.  

 Mastitis was investigated using a live mouse model (Paper III) and a live 

bovine model (Paper IV). In Paper III, the live mouse model was used to study 

the virulence (the ability of a microbe to infect or damage a host) of a selection 

of Escherichia coli (E. coli) and S. aureus strains originally isolated from the 

udders of cows afflicted with acute mastitis. The aim was to assess whether the 

virulence of a strain could be linked to the immune response they provoked. The 

response to infection was judged by a clinical score, by estimating bacterial 

clearance and by measuring the release of cytokines. We found that one strain 

of E. coli (strain 127) caused consistently more severe infections and elicited a 

distinct profile of cytokines (CXCL1, G-CSF, CCL2). We also found that the 

concentration of these cytokines correlated to the clinical score and the extent of 

bacterial clearance. 

In Paper IV, a live bovine mastitis model was used to study the local and 

systemic effects of the inflammatory response over time. Mastitis was provoked 

by infusing lipopolysaccharide (LPS; a bacterial component) into udders. The 

effects on the animals were observed as clinical parameters (signs of 

inflammation in the udder), signs of mastitis in the milk (change in colour and 

appearance of clots), recruitment of immune cells into the milk and release of 
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cytokines into the milk as well as blood. We also measured changes in the levels 

of metabolites in the milk and the blood. Measurement in the blood allowed an 

estimation of the effects in whole animals (systemic). Metabolites are molecules 

that are generated by a living organism’s metabolism. We found that local and 

systemic effects occurred at different time points after LPS infusion. We 

observed that the changes occurred in the following order: (1) signs of 

inflammation in the udder and increases in milk cytokine concentrations (two 

hours), (2) visible changes in the milk and increased numbers of immune cells 

in the milk (four hours), (3) changes in the levels of plasma metabolites (four 

hours) and (4) changes in the levels of milk metabolites (24 hours). 

 

Conclusions: 

➢ Paper I: Mast cell synthesis and release of VEGF required live whole S. 

aureus. 

➢ Paper II: Mast cells do not influence the course of S. aureus infection in 

mice, with regards to weight loss, bacterial clearance, recruitment of immune 

cells and the release of cytokines. 

➢ Paper III: The release of cytokines in response to a highly virulent E. coli 

strain can be correlated to the severity of infection and bacterial clearance in 

a mouse mastitis model. 

➢ Paper IV: Local (udder) and systemic (blood) changes in response to acute 

mastitis occur at different time points after induction of inflammation. 

Changes in the udder occur earlier than the systemic changes. 
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Inflammation är ett ospecifikt immunsvar mot exempelvis invasion av 

sjukdomsalstrande organismer (bakterier, virus, svampar och parasiter). 

Inflammation kännetecknas av svullnad, hetta, smärta och rodnad. 

Immunförsvaret består både av anatomiska barriärer (exempelvis huden) och 

ett antal specialiserade celler (vita blodkroppar) vars funktion är att förhindra 

och bekämpa angrepp av mikroorganismer. Mastcellen är en vit blodkropp som 

återfinns i särskilt stora antal i vävnader som är i direkt kontakt med miljön 

såsom huden, lungor och tarmar. Mastceller lagrar en rad olika substanser som 

har en pro-inflammatorisk effekt på kroppen (så kallade mediatorer). Dessa 

substanser kan mastcellen frisätta som svar på olika slags stimuli. Frisättningen, 

även kallad degranulering, sker inom loppet av sekunder. Mastcellen kan även 

nyproducera substanser som den avger över tid (timmar). Mångårig forskning 

har identifierat mastcellen som en slags ’vaktcell’ mot sjukdomsalstrande 

mikroorganismer. Mastit är en av de mest förlustbringande sjukdomarna inom 

mjölkindustrin. I denna avhandling studerades inflammation i sammanhanget 

bakterieinfektion med särskilt fokus på mastcellen och mastit.  

Det är känt sedan tidigare att mastceller produceras vaskulär 

endotelcelltillväxtfaktor (förkortat VEGF), en tillväxtfaktor inblandad i 

nybildningen av blodkärl (angiogenes). Vi studerade mastcellens produktion av 

VEGF i samband med bakterieinfektion. Detta då en tidigare studie påvisat att 

det genetiska uttrycket av VEGF ökade markant som svar mot stimulans med 

Staphylococcus aureus (S. aureus; en vanlig bakterieart). Vi studerade detta 

tidigare okända samband närmare genom att odla mastceller och levande S. 

aureus under olika odlingsförhållanden. Vi stimulerade även mastceller med 

renade bakteriekomponenteter. Vi fann att uttrycket av VEGF i mastceller var 

beroende av närvaron av levande hela bakterier, då inaktiverade bakterier och 

enskilda bakteriekomponenter inte aktiverade mastcellens produktion av VEGF 

(Artikel I).  

Populärvetenskaplig Sammanfattning 
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Mastcellens roll i bakterieinfektion studerades med en levande musmodell. 

Många tidigare studier inom detta område har använt sig av så kallade c-Kit 

beroende mastcellsdefekta möss. Tillväxtfaktorn stamcellfaktor (förkortat SCF) 

är vital för utvecklingen av mastceller. Omogna mastceller binder till sig SCF 

genom en receptor kallad c-Kit. I c-Kit beroende mastcellsdefekta möss är 

receptorn c-Kit muterad. Mutationen innebär att den inte kan binda till SCF. 

Konsekvensen är att dessa möss inte kan bilda några mastceller (det vill säga, 

”mastcellsdefekta”). Problemet med dessa möss är att c-Kit även är en viktig 

receptor för många andra celler. Vid sidan av bristen på mastceller lider dessa 

möss även av andra defekter, något som kan påverka resultaten som dessa möss 

ger i studier. Vi använde oss av en ny mastcellsdefekt musmodell där frånvaron 

av mastceller inte är beroende av mutationer i c-Kit, så kallade Mcpt5-Cre+ x R-

DTA möss. Olikt många tidigare studier, där c-Kit muterade möss använts, fann 

vi att mastcellen inte spelade någon roll i immunsvaret mot S. aureus infektion 

av bukhålan. Vi såg inga skillnad mellan de mastcellsdefekta mössen och de 

normala kontrollmössen. Mössens viktförändring, deras immunförsvars förmåga 

att döda bakterier (”clearance”), rekrytering av vita blodkroppar och produktion 

av cytokiner (signalmolekyler viktiga för immunförsvaret) studerades (Artikel 

II). 

Med en musmodell studerade vi hur immunsvaret varierade mot olika 

stammar av ett par vanliga mastit orsakande bakterier, Escherichia coli (E. coli) 

och S. aureus. Olika stammar av samma art kan ha olika förmåga att orsaka 

sjukdomar. Urvalet av stammar i denna studie isolerades ursprungligen från kor 

med akut klinisk mastit. Med denna musmodell fann vi att en av E. coli 

stammarna – stam 127 – orsakade allvarligare infektioner än de övriga 

stammarna. Immunsvaret mot denna stam ledde även till en distinkt profil av 

cytokiner som korrelerade med sjukdomstillståndet (det vill säga, högre mängd 

cytokin utvecklades i mer sjuka djur). Dessa resultat skulle kunna följas upp i en 

komodell, exempelvis i en modell där juvervävnad från slaktade djur stimuleras 

med bakterier (Artikel III). 

Vi studerade förloppet av akut klinisk mastit med en levande komodell, där 

mastit framkallades med en juverinfusion av E. coli endotoxin. 

Sjukdomsförloppet studerades i termer av kliniska förändringar (bedömdes med 

en klinisk score och mjölkförändringar), förändringar av mängden cytokiner i 

mjölk och blod, samt förändringar i koncentrationen av metaboliter i mjölk och 

blod. Metaboliter är molekyler som genereras av en levande organisms 

metabolism. Sjukdomsförloppet följdes över tid. Vi fann att dessa förändringar 

skedde i en specifik ordning: (1) tecken på inflammation i juvret och förhöjd 

mängd cytokiner i mjölken (två timmar), (2) synliga förändringar i mjölken och 

förhöjda somatiska cellantal i mjölken (SCCs) (fyra timmar), (3) förändringar i 
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mängden metaboliter i blodet (fyra timmar) och (4) förändringar i mängden 

metaboliter i mjölken (24 timmar) (Artikel IV). 

 

Slutsatser: 

➢ Artikel I: Uttryck av VEGF i mastcellen krävde stimuli med levande S. 

aureus. 

➢ Artikel II: Mastcellen påverkar inte förloppet av S. aureus infektion i möss 

med avseende på viktförlust, ”clearance”, rekrytering av vita blodkroppar 

och frisättningen av cytokiner. 

➢ Artikel III: Frisättningen av cytokiner som sker som svar mot en hög 

virulent E. coli stam korrelerade mot graden infektion och ”clearance” i en 

musmodell av mastit. 

➢ Artikel IV: Lokala och systemiska förändringar under akut mastit sker vid 

olika tidpunkter efter infusion med endotoxin. 
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