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Abstract:

The additive main effects and multiplicative interaction (AMMI) and genotype and genotype-
environment interaction (GGE) models have been extensively used for the analysis of
genotype-environment experiments in plant breeding and variety testing. Since their
introduction, several tests have been proposed for testing the significance of the
multiplicative terms, including a parametric bootstrap procedure. However, all of these tests
are based on the assumptions of normality and homogeneity variance of the errors. In this
paper, we propose tests based on non-parametric bootstrap and permutation methods. The
proposed tests do not require any strong distributional assumptions. We also propose a test
that can handle heterogeneity of variance between environments. The robustness of the
proposed tests is compared with the robustness of other competing tests. The simulation study
shows that the proposed tests always perform better than the parametric bootstrap method
when the distributional assumptions of normality and homogeneity of variance are violated.
The stratified permutation test can be recommended in case of heterogeneity of variance

between environments.

Abbreviations: GEI, genotype x environment interaction; AMMI, additive main effects and
multiplicative interaction; GGE, genotype and genotype X environment interaction; MET,

multi-environment trial.
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INTRODUCTION

Series of variety and plant breeding trials conducted at multiple environments, so-called
multi-environment trials (MET), are the basis for the development and dissemination of new
crop varieties. MET are important in order to test and identify genotypes for high and stable
yield for general and specific adaptation. They are frequently analysed by linear models with
effects for genotype, environment and their interaction. The pattern of genotype-environment
interaction in MET data is usually of particular interest because it determines the adaptive
pattern of a genotype’s response to changing environments. Many models have been
suggested for genotype-environment interaction effects in MET data (van Eeuwijk, 1995;
Yang and Kang, 2002; Smith, et al., 2005). A very popular class of model has multiplicative
terms for the genotype-environment interaction effects. The oldest model was proposed by
Fisher and Mackenzie (1923) in the context of a factorial experiment with different types of
manure and potato varieties which uses multiplicative terms for simple genotype-
environment effects. The first proposal for modelling interaction in MET data was based on a
regression of genotypes yields on an environment index computed from the mean of all
genotypes at an environment. This model was proposed by Yates and Cochran (1938) and
was popularized by Finlay and Wilkinson (1963). Williams (1952) and then Pike and
Silverberg (1952) used the analysis of variance and singular value decomposition (SVD) to
estimate multiplicative terms for interaction. Perhaps the most popular class of models,
introduced by Mandel (1971), was labelled by Gauch (1988) as Additive Main Effects and
Multiplicative Interactions (AMMI). The model was introduced in a plant breeding context
by Kempton (1984) in connection with graphical displays of genotype-environment data, so-
called biplots (Bradu and Gabriel, 1978; Kempton, 1984; Gauch, 1988; Yan and Kang, 2002;
Laffont et al., 2013), which represent both genotypes and environments simultaneously and
allow interactions to be studied graphically, and it used with both AMMI and GGE. The
AMMI model has main effects for both genotypes and environments as well as multiplicative
terms for the interaction. A further class of models that has a main effect only for
environments, but no main effect for genotypes, are so-called Genotype and Genotype-
Environment (GGE) models (Yan et al., 2000, Yan and Kang, 2002), also known as sites-
regression (SREG) models (Cornelius et al., 1996).

AMMI and GGE models play an important role in the analysis of plant breeding and variety
trials. Gauch (2013) provides a protocol for AMMI analysis of MET data. The merits of
AMMI and GGE models have been discussed by Gauch (2006), Yan et al. (2007), Gauch et
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al. (2008) and Gauch (2013). In AMMI models, the genotype-by-environment interaction is
decomposed by a singular value decomposition (SVD) of the matrix of residuals after

removing the genotype and environment main effects. The AMMI model can be written as
yij =.u+ai+ﬁ]'+Zl]§:1yiklk6jk+‘ri}', (1)

where y;; is the observed response (or mean yield) of the j-th genotype in the i-th
environment (i =1,2,..1;j = 1,2,...,]), u is the overall mean, a; and ,8]- are the main effect
of the i-th environment and j-th genotype, 7;; is the associated random residual error, 4, = 0
(k =1,2,..K) is the k-th singular value, and y;;, and ;) are the scores associated with the i-
th environment and j-th genotype, subject to the usual estimability constraints. The singular
values 4, are sorted in decreasing order. The sum of the multiplicative terms represents the
interaction effect. Usually, the first few multiplicative terms show the systematic pattern and
the remaining terms are just random noise. The GGE class of models is obtained by dropping
the genotype main effect ; from equation (1) and applying SVD to the data matrix centered

on the environmental means.

The maximum possible number of multiplicative terms is M = min(I — 1,]/ — 1) for AMMI
models, whereas it is M = min(/ — 1,]) in GGE models. To maximize predictive accuracy,
it is usually preferable to use a smaller number of terms (K) (Gauch, 1988). If too few terms
are selected, predictions may be severely biased. If too many terms are selected, there is a
danger of overfitting, entailing the risk of variance inflation. Thus, the challenge is to strike
the right balance between bias and variance. Therefore, deciding how many multiplicative
terms should be included in the model is a decisive step. Many procedures have been
proposed for this purpose, including various significance tests (Gollob, 1968; Boik, 1993;
Cornelius, 1993; Piepho, 1995; Forkman and Piepho, 2014) and cross-validation (Gauch,
1988; Dias and Krazanowski, 2003, 2006). The empirical type-I error rate and power of
significance tests for unreplicated data has been studied in Forkman and Piepho (2014), and a
comparison of cross-validation methods for replicated data can be found in Hadasch et al.

(2017).

Forkman and Piepho (2014) proposed a significance test for the multiplicative terms of the
AMMI or GGE model using a parametric bootstrap procedure assuming that the observed
data follow a normal distribution with expected value given by the GGE or AMMI models.

The null distribution is simulated using parameter estimates obtained from the observed data
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under the null hypothesis. A large number of simulated random samples, i.e. bootstrap
samples, are generated from the estimated model. Forkman and Piepho (2014) assume that
residual errors are independently normally distributed with homogeneous variance. However,
it is very likely that these assumptions do not hold for real data, especially when cultivar
trials are performed in different locations with heterogeneous variance. Forkman and Piepho
(2015) and Piepho (1995) showed that these types of test perform poorly when the
assumptions of normality and homogeneity of variance are violated. In this case, the required
conditions for a parametric test are not satisfied and a test that does not depend on parametric

assumptions is desirable.

The aim of this article is to suggest robust procedures for testing the significance of the
multiplicative terms. Specifically, we propose tests based on non-parametric bootstrap and
permutation methods (Efron and Hastie, 2016; Good, 2005). Both methods are based on

resampling of the residuals.
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MATERIAL AND METHODS

To describe the method, it is convenient to rewrite model (1) in matrix form as:
Y=1,41] + a1} + 1,87 +E (2)

where Y = {yi j} is the I X J matrix of genotype-environment means y;;. Let a =
(ay, @y, ...,a;)T be a vector of environment main effects, B = (8, Sa, ...,ﬁ])T a vector of
genotype main effects and 1,, is an n-vector of ones. The term u is an overall mean. The
I X J matrix E is the sum of @) and R, ie., E= 0, + R, where 0, models the
genotype-environment interaction and R = {ri j} isan | X J matrix of random errors 73;. In
(1), the term Xj—; Yix A Sjx = O models the genotype-environment interaction, and it is
based on a SVD of @, which comprises k multiplicative terms that are not zero. Also,
Yk=1Yik kO, can be written as U(K)A(K)Vgc), where U,y and Vi) are I X k and | X k
matrices of the k left and right singular vectors, respectively, and A, is a diagonal matrix

that contains the x singular values sorted in decreasing order.

The estimates of the overall mean (1) and the main effects (@ and ) are obtained by a
simple two-way ANOVA of Y. The resulting residual matrix E is of rank M. Using singular
value decomposition, E can be written as E = UAVT, where Uand Vare] x M and] X M
matrices of the estimated left and right singular vectors, respectively, and A is an M X M
diagonal matrix of estimated singular values. If k¥ multiplicative terms are contained in the

model then it is called an AMMIk model.

The number of multiplicative terms appropriate for a given data set may be determined by a
significance test of the null hypothesis that k¥ equals some specified value K against the
alternative hypothesis that k is larger than K. The test statistic 7, suggested by Yochmowitz
and Cornell (1978) and Schott (1986), was used by Forkman and Piepho (2014) in their
parametric bootstrap methods, where T = A%, o aram AZ. In a parametric bootstrap
method, the null distribution is simulated using parametric estimates under the null
hypothesis (Efron and Tibshirani, 1993). A large number of samples are drawn from the fitted
model using the estimates of model parameters. For each of these bootstrap samples, the test
statistic 7, say Tj, is calculated, where » indexes the bth bootstrap sample. The obtained

distribution of T}, approximates the true distribution of 7 under the null hypothesis.
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We here assume that the first K terms from the singular value decomposition represent the

true fixed interaction @, for all bootstrap samples and the random error R follows an
independent normal distribution with mean zero and constant variance O'(ZK) (Forkman and

Piepho, 2014). The estimates of @, and O'(ZK) are obtained as

5 { 0, ifK = 0, :
0 =\ 0oh Tk ifK > 0. ®)
and
1 M
o=z ) %, 0sKsM-2, (4)
k=K+1

where v = (I — 1)(J — 1) for AMMI and v = I(J — 1) for GGE analysis. The assumption of
the parametric bootstrap method that random errors are normally distributed with constant
variance, i.e. O'(ZK), is very strict, and it may be violated in agricultural experiments. In
particular, there is likely to be heterogeneity of variance in multi-environment trials. Forkman
and Piepho (2015) investigated the type-I error rate of the parametric bootstrap method when
random errors are not normally distributed and heterogeneity of variance occurs. They found
that the type-I error rate can be well above the nominal 5% rate when random error exhibits
departure from normality and the error rate is also adversely affected by departures from
homogeneity of variance. Therefore, it is desirable to have a test which is not based on such

assumptions.
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NON-PARAMETRIC BOOTSTRAP METHOD

Here we propose a non-parametric bootstrap procedure for computing the p-value for testing
the K multiplicative term under the null hypothesis H,: k = K. Following Efron and
Tibshirani (1993), the null distribution is simulated using parameter estimates under the null
hypothesis. In first step, the fixed-effects parameters are estimated from the data and the
residuals are computed. Then, a large number of samples, bootstrap samples, are drawn from
the fitted model under the null hypothesis as follows. The first K terms from the SVD
represent the true fixed interaction @, in all bootstrap samples, which is estimated using (3).
The residual error of the h-th bootstrap sample, R%, is drawn randomly from the observed R
and added to the fixed interaction @, to obtain simulated data @) + R5. We do not add
main effects here because they are swept out before the SVD to estimate the interaction effect
so their value is immaterial to the behavior of the test. Then, the test statistic 7 is computed to
obtain the bootstrap test statistic T}, which is compared to the observed test statistic 7 (based
on actual data). The proportion of statistics T}, higher than the observed statistic 7" gives the p-
value. Note that the parametric bootstrap methods are based on the assumption that residual
errors, R, are normally distributed with constant variance, whereas the non-parametric
bootstrap method only assumes the exchangeability of residuals.

The algorithm for the nonparametric bootstrap method is given as follows:

Stepi.  Compute E and perform the SVD on E.
Step ii. Compute 7 using the singular values from Step i.
Step iii. Compute @(K) and @(_K), where @(_K) =M 1 POy isan I X J matrix.
For b =1,2,...,B, Do:
Step iv. Sample an I x J matrix R} from the elements of @(_K) with replacement.
Stepv. Compute Ef = ® ) + R}.
Step vi. Compute EZ using
Ef =Ef —Ej;, —Ef; + Ef for AMMI analysis and,
Ef =EZ —EZ, + EZ for GGE analysis,
where Ep_is the general mean matrix, and Ej; and Ej ; are row
(environment) and column (genotype) mean matrices from E5,
respectively.
Step vii. Perform the SVD of EZ.

Step viii. Compute T}, in the same way as 7 using singular values from Step vii.

8

Page 8 of 33



Page 9 of 33

Crop Sci. Accepted Paper, posted 12/05/2017. doi:10.2135/cropsci2017.10.0615

End For

Step ix. Estimate the p-value as the observed frequency of T}, > T.

It is often observed in multi-environment trials that the error variances are heterogeneous
among environments. In the case of heterogeneity among environments, stratification of
environments can be done in Step iv of the algorithm given above, i.e. the bootstrapping or

permutation can be performed within each stratum (environment).
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PERMUTATION-BASED METHOD

As discussed by Good (2004), a requirement of permutation tests is the exchangeability of
data under the null hypothesis. In our case, the elements of errors E in Eq. (2) are
exchangeable, but strictly speaking the the elements of residuals E are not exchangeable due
to differences in the effects that need to be subtracted to obtain these residuals. Nevertheless,
we may consider a permutation procedure, the expectation being that the elements of
residuals E approximately behave as the exchangeable elements of E, thus providing some
robustness under violations of the normality and homogeneity of variance assumptions. The
test proposed in the previous section can also be based on the permutation of residuals rather
than bootstrapping. Note that if the residuals are sampled with replacement, we have a
bootstrapping procedure, whereas if sampling is without replacement, we obtain a

permutation procedure.

Therefore, we suggest the same test given in the previous section but now based on the
permutation method. Thus, for the permutation test, the same algorithm can be used,
however, the residual error in Step iv is obtained by taking a sample drawn at random without

replacement.

10
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Example
Description of Datasets

The non-parametric method outlined above is compared with the parametric bootstrap

method using five real datasets from the literature on multi-environment trials.

i. A New York soybean dataset with seven genotypes investigated in ten environments
(Gauch, 1992; Zobel et al., 1988).
ii.  An international maize and wheat improvement center (CIMMY T) maize dataset with
nine genotypes in 20 environments (Cornelius et al., 1996).
iii.  An Ontario winter wheat dataset with 18 genotypes in nine environments (Yan et al.,
2007; Yan and Tinker, 2006).
iv. A corn yield data with 20 genotypes and seven locations (Corsten and Denis, 1990).

v. A pea dataset with five pea genotypes and four trails (Forkman and Piepho, 2014).

The first four datasets are available in R package “agridat” and the pea dataset is available in
the supplementary section of Forkman and Piepho (2014). Table 1 gives an overview of
AMMI analyses of these datasets. The sum of squares explained by a multiplicative term and
percentage of sum of squares explained is given. The results for testing different
multiplicative terms of the AMMI model using parametric and non-parametric methods are
given in Table 2. The p-values were derived using 100,000 bootstrap samples. An R code
function is available in the supplementary material to use the proposed method. The function
requires less than a minute for a 300 x 100 data matrix with 100,000 bootstrap samples using

a standard PC.

The first two multiplicative terms are identified as significant for the New York soybean data
and the Ontario wheat data with both the parametric and non-parametric tests. For the
CIMMYT maize data and the corn yield data, all methods agree that the AMMI model with
one term is appropriate. However, no significant interaction is found in the Swedish pea data.
The non-parametric bootstrap methods most often resulted in slightly higher p-values as
compared to the parametric bootstrap method. However, the same numbers of multiplicative

terms were identified as significant by the parametric and the non-parametric methods.
[Table 1 about here]

[Table 2 about here]

11
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SIMULATION STUDY
To investigate the robustness of the simple parametric and non-parametric test to non-
normality and heterogeneity of error terms, simulations were conducted using the R language
environment, each with 100,000 simulations and B = 5,000 bootstrap runs. To make the
simulation realistic, they were based on models fitted to the real data sets studied in this
paper.
Suppose that y;; is a response in a two-way table for a given data set. The simplest model
included only an intercept and a random error. To test the multiplicative effects, we fitted the
AMMIK model for a given value of K, that is

Vij = MHijay trij = u+a;+ B+ 04y + 135
The overall mean was estimated as i = y, the environment effect as &; = y; —y and the
genotype effect as ,[;’j =Yy ;—¥. The interaction ;) was estimated from the first K
components of the SVD of E=y;;—y;, —y;j+y using (3). The model assumes
1 ~dist(0, 6(2K)), where dist is the specified distribution. The residual variance 6(2K) was
computed using (4). Type-I error rates were estimated through simulation by assuming that

the actual model has k = K terms (K = 0,1, ...,4), and the significance of the (K + 1)th

term was tested at the 5% significance level.

In this way, it was possible to generate repeated data sets which mimic the patterns of the
original data and have a specified number of interaction components. Also, by varying the
distribution of error, it was possible to assess the robustness of tests when the error term
belonged to different distributions. The simulations are made using nine different cases for
drawing random errors r;. The same distributions which were used by Forkman and Piepho
(2015) were used in these simulations. A description of these distributions and error variance
used in the simulation is given in Table 3. The distributions were scaled so that the mean is
Aijk) and the variance equals to 6(2K), and in the cases with heterogeneous variance among
environments 6(2K) =X 61'2(1() /1, where 51'2(1() is the error variance in the i-th environment. In
the case of heterogeneity among environments, the non-parametric bootstrapping or

permutation was performed within each stratum.

To investigate the effect of the data dimension on the type-I error rate of the non-parametric
bootstrap method, simulations were also performed based on datasets of increased

dimensions. The data dimension was increased by combining the AMMIO model fitted to the

12

Page 12 of 33



Page 13 of 33

Crop Sci. Accepted Paper, posted 12/05/2017. doi:10.2135/cropsci2017.10.0615

Soya bean data matrix two times, three times, four times and five times, simultaneously in
both row and column directions. In this way, the numbers of environments and genotypes

were increased. Finally, the error term from the exponential distributions (Table 3) is added.

[Table 3 about here]

13
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RESULTS AND DISCUSSION

The comparison of the simple parametric bootstrap method with the non-parametric bootstrap
and permutation methods is done in terms of the observed frequency of type-I errors. The
results are shown in Figures 1, 2 and 3. Each plot represents results using a specified
distribution for the error terms. The three bars in a group represent three methods, and the K-

th group (K = 0,1, 2, 3, 4) shows the assumed AMMIK model.

The results of the simulation of the different distributions (Table 3) with homogenous error
variance are presented in Figure 1. The results for normally distributed errors are given in
Figure 1(a), for the lognormal in Figure 1(b), gamma in Figure 1(c), uniform in Figure 1(d)
and exponential in Figure 1(e). For all non-normal distributions, the type-I error rates of the
non-parametric bootstrap and the permutation methods are nearer to the nominal 5% as
compared to the parametric bootstrap method. The same pattern of results is obtained for all
three data sets. When the assumptions of normality and homogeneity of variance are
satisfied, the non-parametric bootstrap and the permutation methods maintain the type-I error
rates close to the nominal 0.05 significance level, as does the parametric bootstrap method.
For gamma distributed error terms (Figure 1c), the non-parametric bootstrap and permutation
methods gave much lower and more correct type-I error rates than the parametric method.
The exponential distribution is an extreme case that is not plausible in crop variety trials. For
this distribution, the parametric bootstrap method shows a very high type-I error rate while
the non-parametric bootstrap and permutation methods show much lower, but still high type-I
error rates (Figure le). For all three methods, the type-I error rate decreases with increasing
number K of multiplicative terms. The parametric bootstrap method produces a too low type-I
error rate for uniformly distributed errors (Figure 1d); however, the non-parametric bootstrap
and permutation methods give error rates closer to the nominal 5% rate. In all these cases, the

non-parametric bootstrap and permutation methods perform similarly.
[Figure 1 about here]

The results with heterogeneous error variance are presented in Figure 2. For the normal
distribution with heterogeneous variance (i.e. homogenous CV), the type-I error rates of the
non-parametric bootstrap and permutation methods are much lower than that of the
parametric bootstrap method (Figure 2a), although they are higher than 0.05 but decrease
with the number of multiplicative terms. The simulated lognormal distributions are slightly

skewed (Forkman and Piepho, 2015), therefore, all three methods maintain the type-I error

14
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rate close to 5% when the assumption of homogeneity is fulfilled (Figure 1b). However,
when the error term is simulated with heterogeneous variance (Figure 2b), the type-I error
rate is much higher than 0.05 for all three methods, but the type-I error rate of the non-
parametric bootstrap and permutation methods is almost half of the error rate for the

parametric method.

The results for normally distributed errors with heterogeneous variance among environments
are shown in Figure 2(c). The type-I error rate is also quite high for all three methods
(although the non-parametric bootstrap and permutation methods do much better than the
parametric bootstrap method). To overcome this problem, each environment is considered as
a stratum and non-parametric bootstrapping and permutation are done within each stratum
separately. The results given in Figure 2(d) indicate that the stratified non-parametric
bootstrap method is conservative, whereas the permutation method performs better than the

non-parametric bootstrap method.

[Figure 2 about here]

The case of non-normally distributed errors with heterogeneous variance among
environments is considered in Figure 3. The non-parametric bootstrap and permutation
method performed much better, with regard to type-I error, than the parametric bootstrap
method. Figure 3(c) shows that these tests perform much better using stratification of

environments.

[Figure 3 about here]

To investigate the effect of data dimension on the type-I error rate of the non-parametric
bootstrap method, the simulation is performed by increasing the data dimension. The results
from different data sizes with error terms from the exponential distribution and testing
AMMIO models are given in Figure 4. From this figure, it is visible that the type-I error rate

gets closer to 5% as the size of the data matrix increases.

For testing the main effects of environment and genotypes, the observed type-I error rates of
these methods are close to the nominal 5% significance level, which was already confirmed

by Forkman and Piepho (2015).

[Figure 4 about here]

15
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CONCLUSION

The replication of treatments is a basic principle of experimental design which permits
calculating an error mean square. In this paper, however, we consider unreplicated data. But
yet, because of the structured form of interaction in AMMI models, residuals, which form the
basis of our resampling procedure, can be computed even though we have no replication at
the genotype-by-environment level. It should be emphasized, however, that wherever
feasible, replication is preferable because it is expected to allow more robust inferences than

are afforded by unreplicated data.

In this paper, we were concerned with statistical tests for finding the number of multiplicative
terms in AMMI and GGE models for analyzing unreplicated genotype-environment data. The
introduced tests based on the non-parametric bootstrap and permutation methods are
straightforward. No strong assumptions are needed. The results of the simulation study
indicate that these methods have better performance than the parametric bootstrap method
with regard to the type-I error rate. When the distribution of the observations is non-normal
or the data is heteroscedastic, the parametric bootstrap method cannot maintain the nominal
type-I error rate. However, the non-parametric bootstrap and permutation method performed
much better, especially when used with stratification by environment. In conclusion, the non-
parametric bootstrap and permutation methods always perform better or at least as good as
the parametric bootstrap method. The stratified permutation test is the recommended test
when observations are heteroscedastic or not normally distributed. While these non-
parametric tests provide robustness to violations of the usual assumptions, control of the type
I error rate is not exact, so there is room for further improvement and the development of
further improved procedures is highly desirable. Also, the investigation of our proposed
methods has been limited to the balanced case. It would be worthwhile to check their

performance under a range of scenarios with unbalanced data.

Lastly, the choice of statistical analysis should be governed by the agricultural research
purpose followed by statistical recommendations. As pointed out by Gauch (2006), the
research purposes are the masters whereas statistical methods are the servants. Gauch (2013)
identified three criteria for model diagnosis in AMMI literature, i.e., statistical significance,

agricultural interpretability, and predicative accuracy. There are different possible criteria for

16
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different agricultural purposes even for a given dataset. The statistical significance test tries
to optimize predicative accuracy. This is the main research purpose we are addressing.
Multiplicative terms that are not significant are automatically not relevant for any research
purpose, however, specific research purposes such as delineating mega-environment may call
for fewer terms than those that are statistically significant. Therefore, it is important to
consider the research purpose and the properties of the dataset when diagnosing the

multiplicative terms to retain.
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Table 1: Sums of squares (A?) in AMMI analyses of real datasets.

' New York CIMMYT maize Ontario wheat C eld dat Swedish pea
Singular Soybean data data data orn yield data data
value —~ —~ —~ —~ —~
A % A? % A2 % A2 % A %

1 8,189,065 82.4 35,078,698 56.2 9.616 482 880.13 41.74 69,259 73.7

2 1,170,288 11.4 9,426,035 15.1 4.652 233 54525 2586 20,720 22.0

3 254,964 2.6 6,515,627 104 1.933 97 259.61 1231 3,997 43
4 200,449 2.0 5,383,947 8.6 1.249 63 231.01 10.96 - -
5 107,532 1.1 3,091,503 5.0 1.083 54 133.05 6.31 - -
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Table 2: AMMI analyses of the New York soybean, CIMMYT maize, Ontario wheat,
Swedish pea and Corn yield datasets using the simple parametric bootstrap method, the non-

parametric bootstrap method and the permutation-based method.

Term Test statistic P-value
K+1 r Parametric Non-parametric Permutation
New York soybean data
1 0.824 0.0000 0.0000 0.0000
2 0.671 0.0050 0.0221 0.0294
3 0.445 0.8650 0.8743 0.8753
4 0.631 0.4700 0.4792 0.4809
5 0916 0.0960 0.0998 0.0995
CIMMYT maize data

1 0.562 0.0000 0.0000 0.0000
2 0.345 0.1560 0.1876 0.1885
3 0.364 0.2720 0.3246 0.3277
4 0.472 0.0460 0.0654 0.0677
5 0.514 0.1110 0.1211 0.1211

Ontario wheat data

1 0.482 0.0000 0.0000 0.0000
2 0.450 0.0030 0.0025 0.0025
3 0.340 0.5800 0.6659 0.6779
4 0.333 0.9050 0.9034 0.9057
5 0.433 0.6100 0.6439 0.6484
Corn yield data
1 0.417 0.0244 0.0354 0.0363
2 0.444 0.0693 0.0572 0.0579
3 0.380 0.8134 0.8172 0.8217
4 0.546 0.2902 0.3151 0.3185
5 0.691 0.3309 0.3673 0.3694
Swedish pea data

0.737 0.3620 0.3027 0.2922

2 0.838 0.5440 0.5338 0.5356
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Table 3: Distributions used in the simulation study.

Distribution

Test of multiplicative effects

Normal distribution with homogeneous
variance

Normal distribution with heterogeneous
variance (homogeneous coefficient of
variation)

Normal distribution with heterogeneous
variance among environments

Lognormal distribution with homogeneous
variance

Lognormal distribution with heterogeneous
variance (homogeneous coefficient of
variation)

Gamma distribution with shape parameter
a=4

Exponential distribution
(i.e. Gamma distribution with shape
parameter o = 1)

Uniform distribution

Gamma distribution (¢ = 4) with
heterogeneous variance among
environments

Yij ~N(fijxy 6y
Yij~Nfijxy, Yoy i)
Yy = Ouoy/ft

Vi ~NWijx0), 67x))s

yij~In N(my, s& ),
M) = 1og(Rij)) = St/ 25
st = 10g(8fe /fija +1)
yij~In N(my, s& ),
My = loglijey — Stxy/ 2,
sty = 1og(6Gy /A% + 1)
Yij~Hijay + X = 26,
X~gamma(4, 6k /2)
Vij~fijy + X — 6k,
X~gamma(l,6x))

Yij~Hlijao) R,

R~Uniform (— /36(210' ,fg‘?(ZK) )

Yij~lijx) + X — 26y,
X~gamma(4, 6;x)/2)
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FIGURE CAPTION

Figure 1: Observed type-I error rates of the parametric, non-parametric and permutation
bootstrap methods for three datasets in columns and distributions in rows. The distribution of
errors are (a) normal, (b) lognormal, (¢) gamma (a = 4), (d) uniform, and (e) exponential.

All these distribution assumes homogenous error variance.

Figure 2: Observed type-I error rates of the parametric, non-parametric and permutation
bootstrap methods for three datasets in columns and distributions in rows. The distribution of
errors is normal for (a, ¢, d) and lognormal for (b). The heterogeneous error variance was
used for cases (a) and (b), and heterogeneous error variance among environments are used for
cases (c) and (d). In case (d), the bootstrapping and permutation is done within each

environment.

Figure 3: Observed type-I error rates of the parametric, non-parametric and permutation
bootstrap methods for three datasets in columns and distributions in rows. The gamma
distribution with shape parameter (@ = 4) and heterogeneous error variance among
environments are used for both cases. In case (b), the bootstrapping and permutation is done

within each environment.

Figure 4: Observed type-I error rates by using non-parametric bootstrap methods for different sizes of
the data matrix with exponentially distributed errors with homogeneous variance. The left most bar
represents the error rate of original Soya bean data and the right most bar shows error rate of data that
was increased by combining the original data matrix 5 times in both environment and genotype

direction.
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Figure 4: Observed type-I error rates by using non-parametric bootstrap methods for different sizes of data
matrix with exponentially distributed errors with homogenous variance. The left most bar represents the
error rate of original Soya bean data and the right most bar shows error rate of data that was increased by

combining the original data matrix 5 times in both environment and genotype direction.
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HEHHH
HitH#H#  Function for Non-parametric bootstrapping HHHHHHHHHH
HEHH R

## Columns are genotypes
## Rows are Environments

require(reshape2)
require(agridat)
require(el1071)

test.npb <- function(Y, n.boot=1000, K = 2)
{

| <-nrow(Y)

J <-ncol(Y)

M <- min(I-1, J-1)

E <- sweep(Y, 1, rowMeans(Y))
E <- sweep(E, 2, colMeans(Y))
E <- E + mean(Y)

E.svd <- svd(E)

U  <-E.svdSu[,1:M]

V  <-E.svdSv[,1:M]

D  <-diag(E.svdSd[1:M])
lam <- E.svdSd[1:M]

t.obs <- lam[K+1]22/sum(lam[(K+1):M]A2)
t.boot <- rep(NA, n.boot)

if (K>0){
U.K <- U[,1:K]
D.K <- diag((lam[1:K]), nrow=K, ncol=K)
V.K<-V[,1:K]
theta.K <- U.K %*% D.K %*% t(V.K)
lelse
theta.K <- matrix(0, nrow= |, ncol=J)

U.B <- U[,(K+1):M]

D.B <- diag((lam[(K+1):M]), nrow=(M-K), ncol=(M-K))
V.B <- V[,(K+1):M]

R.B <- U.B %*% D.B %*% t(V.B)

for(bb in 1:n.boot){
R.b <- matrix(sample(R.B, I*J, replace=T), nrow=l, ncol=J)
E.b <-theta.K +R.b
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E.bb <- sweep(E.b, 1, rowMeans(E.b))
E.bb <- sweep(E.bb, 2, coIMeans(E.b))
E.bb <- E.bb + mean(E.b)

lam.b  <-svd(E.bb)Sd
t.boot[bb] <- lam.b[K+1]*2/sum(lam.b[(K+1):M]*2)
}

pvalue <- colMeans(t.boot > matrix(rep(t.obs, n.boot), nrow=n.boot, byrow=TRUE))

cat("Test statistics of observed data:", t.obs, "\n")
cat("p-value of AMMI", K, "using Non-parametric bootstrap:", pvalue)

HUHHH R R R
#itt L C A Corsten and J B Denis, (1990) Structuring Interaction in

H### Two-Way Tables By Clustering, Biometrics, 46, 207--215. Table 1.

HUHHH R R

data(corsten.interaction)

dat <- corsten.interaction

corsten <- acast(dat, gen~loc, value.var="yield')
test.npb(corsten, n.boot=100000, K=1)

test.pc(corsten, n.boot=100000, K=0)

HEHHHH R R
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HiHHAHHHHHHH R R R R
HiHHHHHHHHHH R Permutation Method HEHAHHHTH
HiHHAHHHHHHH R R R R

## Columns are genotypes
## Rows are Environments

require(reshape2)
require(agridat)
require(el1071)

test.ppb <- function(Y, n.boot=1000, K = 2)
{

| <- nrow(Y)

J <- ncol(Y)

M <- min(I-1, J-1)

E <- sweep(Y, 1, rowMeans(Y))
E <- sweep(E, 2, colMeans(Y))
E <- E + mean(Y)

E.svd <- svd(E)

U <-E.svdSu[,1:M]

V  <-E.svdSv[,1:M]

D <-diag(E.svdSd[1:M])
lam <- E.svdSd[1:M]

t.obs <- lam[K+1]22/sum(lam[(K+1):M]A2)
t.boot <-rep(NA, n.boot)

if (K>0){
U.K <- U[,1:K]
D.K <- diag((lam[1:K]), nrow=K, ncol=K)
V.K<-V[,1:K]
theta.K <- U.K %*% D.K %*% t(V.K)
lelse
theta.K <- matrix(0, nrow= |, ncol=J)

U.B <- U[,(K+1):M]

D.B <- diag((lam[(K+1):M]), nrow=(M-K), ncol=(M-K))
V.B <- V[,(K+1):M]

R.B <- U.B %*% D.B %*% t(V.B)

for(bb in 1:n.boot){
R.b <- matrix(sample(R.B, I*J, replace=F), nrow=I, ncol=J)
E.b <-theta.K+R.b
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E.bb <- sweep(E.b, 1, rowMeans(E.b))
E.bb <- sweep(E.bb, 2, coIMeans(E.b))
E.bb <- E.bb + mean(E.b)

lam.b  <-svd(E.bb)Sd
t.boot[bb] <- lam.b[K+1]*2/sum(lam.b[(K+1):M]*2)
}

pvalue <- colMeans(t.boot > matrix(rep(t.obs, n.boot), nrow=n.boot, byrow=TRUE))

cat("Test statistics of observed data:", t.obs, "\n")
cat("p-value of AMMI", K, "using Permutation based bootstrap:", pvalue)

HUHHH R R R R
#itt L C A Corsten and J B Denis, (1990) Structuring Interaction in
H#t## Two-Way Tables By Clustering, Biometrics, 46, 207--215. Table 1.

data(corsten.interaction)

dat <- corsten.interaction

corsten <- acast(dat, gen~loc, value.var="yield')

HEHHHE A

test.ppb(corsten, n.boot=100000, K=1)

test.ppb(corsten, n.boot=100000, K=0)



