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Abstract 

Aim 1/ Disentangle the effects of local environmental conditions and space at multiple scales 

in order to uncover and explain biogeographical signals in microbial communities of freshwater 

diatoms. 2/ Assess the role of species traits related to dispersal capacities in diatoms 

biogeography. 

Location Rivers and streams of Sweden sampled on a total area of 450000 km². 

Methods We used partial redundancy analyses and variation partitioning coupled with spatial 

eigenfunctions analyses to separate the effects of environment and space at three different 

scales on diatoms community structure. As community analyses might give limited insight into 

species-specific mechanisms we also performed variation partitioning species by species and 

the amount of variance explained by each fraction was related to species cell length and 

attachment to the substrate. 

Results We found a strong effect of environment and space at large scale suggesting 

environmental filtering and dispersal limitation over large distances. Additionally, species-

based analyses uncovered an effect of space at fine scale suggesting possible species-specific 

mass-effect dynamic or species sorting driven by missing environmental factors varying at fine 

scale. Environmental and spatial effects varied strongly among species but this variation was 

not explained by cell length and attachment to the substrate. 

Main conclusions Our results confirm the importance of both environment and dispersal-

related processes in controlling diatoms community structures and bring new perspectives on 

the role of dispersal in shaping microbial communities at biogeographical scale. Dispersal 

being a species-specific mechanism, species association are not necessarily conserved from 

site to site and species-based approaches can detect different spatial patterns than traditional 
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community analyses do. Contrary to what was reported in connected metacommunities at 

small-scale, interspecific traits variation seem to be of limited importance for long-distance 

overland dispersal in diatoms. 

 

Introduction 

Inferring ecological processes underlying species distribution and community structures in 

time and space is a major concern of ecology (Levin, 1992). It has long been recognised that 

the geographical patterns of biodiversity are the result of both species sorting, i.e. filtering of 

species by local abiotic and biotic factors, and dispersal (Hubbell et al., 1999; Ricklefs, 2004). 

Spatial ecology has highlighted the importance of the interplay between those processes in 

explaining variation among communities at two main conceptual scales. First, at local scale, 

metacommunities which are usually defined as a set of communities that are linked by dispersal 

of multiple interacting species (Wilson, 1992; Leibold et al., 2004; Holyoak et al., 2005; 

Martiny et al., 2006). Second, at larger scale, biogeography which often includes an 

evolutionary perspective (MacArthur, 1972; Ricklefs, 2004). Because they focus on the same 

types of processes, it can be difficult to draw a clear boundary between metacommunity 

ecology and biogeography (Gonçalves-Souza et al., 2014). However, both approaches came to 

the conclusion that niche-based and dispersal-based processes are interacting closely in 

determining community structures. Additionally, they stressed that the relative roles of niche 

and dispersal-based processes vary among scales, ecosystems and organisms (Astorga et al., 

2012; De Bie et al., 2012; Heino et al., 2015, 2017). 

Diatoms are unicellular eukaryotic algae encompassing a huge taxonomic diversity and 

contributing a significant share of marine and freshwater primary production. Because they are 
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microscopic organisms (ca. 2–500µm), diatoms have traditionally been considered 

ubiquitously distributed. This idea is based on the Baas-Becking hypothesis which states that 

microbial species are not limited by dispersion and are cosmopolitan. This has been coined by 

the sentence "everything is everywhere, but the environment selects" (Baas Becking, 1934; 

Fenchel & Finlay, 2004) from which the second part has often been disregarded (De Wit & 

Bouvier, 2006). Because of this misinterpretation, the validity of the Baas-Becking hypothesis 

has been heavily discussed during the last hundred years, confounding being cosmopolitan and 

ubiquitous. However, a growing body of research is now suggesting that microbial 

biogeography is not the result of species sorting only, but that regional factors and historical 

dynamics (origin, dispersal and extinctions of species) are also important to determine the 

structure of local microbial communities (Martiny et al., 2006; Telford et al., 2006; Lindström 

& Langenheder, 2012). 

Similar conclusions have been drawn from recent diatom studies where authors used variation 

partitioning (Borcard et al., 1992) to separate the environmental and the spatial signals 

(Potapova & Charles, 2002; Soininen et al., 2004; Vyverman et al., 2007; Heino et al., 2010). 

These studies showed that a significant part of the variation in diatom communities can be 

explained by a pure spatial effect (i.e. spatial variation without the environmental component). 

However, it can be challenging to clearly identify which ecological mechanisms generate a 

spatial effect (Fortin & Dale, 2005). Indeed, spatial patterns can be generated by dispersal 

limitation (by distance or physical barriers), by mass-effect (massive dispersal compensating 

for sub-optimal environmental condition), and environmental filtering (if important spatially 

structured variables are missing). Hence, spatial patterns must be interpreted cautiously, taking 

into account the geographical scale, the dispersal ability of the target organisms and the 

geographical variation of environmental conditions. 
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Diatoms are usually assumed to disperse passively (Kristiansen, 1996). Within a river system, 

individuals will naturally be transported by water flow, from upstream to downstream  

(Atkinson, 1988). This was confirmed by metacommunity studies taking into account flow 

directionality (Liu et al., 2013; Dong et al., 2016). Diatoms can also disperse from one water 

body to another and travel long overland distances through animal vectors like water birds 

(Proctor, 1959) and by airborne dispersal (Schlichting, 1969). Although these dispersal modes 

are documented and critically important for the colonization of new sites (Kristiansen, 1996), 

very little is known about their quantitative aspect, their geographical range, and how they 

impact communities composition dynamics across scales.  

Furthermore, it is known that body size and dispersal mode are important traits that can 

modulate the exchange rates of individuals between sites and then affect the structure of 

communities across scales. So far, their role has been mainly investigated by comparing very 

large taxonomic groups (e.g. bacteria, macroinvertebrates, fishes; De Bie et al., 2012) or 

generic dispersal types (e.g. active and passive dispersers; Shurin et al., 2009; Soininen, 2016), 

but see Schwalb et al. (2015). In diatoms, the role of traits and guilds was studied in highly 

connected metacommunities (Liu et al., 2013; Algarte et al., 2014; Vilmi et al., 2017). 

However, one may also expect that differences in dispersal capacities among diatoms species 

could have an effect on the structure of diatom communities at larger scales. Interspecific 

variation in dispersal-related traits like body size or cell attachment to the substrate could affect 

niche and dispersal related processes and partly explain diversity distribution patterns at 

different scales. 

Multi-scale spatial analyses offer a powerful framework because patterns observed in 

communities and the ecological processes that generate them are not occurring at one single 

scale. Thus, multi-scale variation partitioning based on spatial eigenfunction analyses (Dray et 
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al., 2012) could potentially be an effective means of decomposing patterns and separating 

processes. However, unravelling the impact of environment and space from metacommunities 

to biogeographical regions require extensive datasets with good representativeness of each 

investigated spatial scale with precise and harmonized diatom identification, and a good 

assessment of environmental factors. 

In this paper, we aim to investigate the role of environment and space in determining diatoms 

communities across multiple scales to uncover and explain biogeographical signals. We 

analysed a large dataset of 616 diatoms communities sampled across Sweden. This high-quality 

dataset combines harmonized fine-resolution taxonomy and wide geographic coverage and 

allows us to study diatoms spatial patterns at three different scales, possibly bridging 

metacommunities and biogeography (see Heino et al., 2017). We used variation partitioning 

and Moran eigenvector maps (MEMs) to separate the effect of environment and space across 

scales. We performed variation partitioning using both multivariate community-based analyses 

(Verleyen et al., 2009; Bennett et al., 2010) and multiple univariate species-based (i.e. species-

by-species) analyses (Ovaskainen et al., 2017). We completed our study by relating the amount 

of explained variation of the different partitions to cell length and cell attachment to the 

substrate. Assuming these two traits have a significant impact on species dispersal capacity, 

we expected the amount of explained variation to be different between small and large cells 

and between attached and non-attached ones. These analyses will improve our understanding 

of ecological processes that drive diatom community structures from local to biogeographical 

scale. 

Material and Methods 

Sampling 
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The study area encompasses entire Sweden covering a surface of 450000 km². The climate of 

this area is subarctic north of 60°N and temperate in the southern part. We used a large dataset 

of 616 sites sampled in stream and rivers. Selected sites are separated at least by 5 km and none 

are located downstream of another. The location of each site is represented on the Figure 1. 

The sampling points are densely distributed allowing to map and study fine, medium and large 

scale patterns. 

Diatom abundance data 

Diatom samples were collected and prepared following standard protocols (European 

Committee for Standardization, 2003, 2004). Samples were collected during autumn, 

coinciding with the maximal development of diatom communities. At least 400 valves were 

counted and identified to the lowest taxonomic level possible, usually species, with the aid of 

literature in the Swedish standard (see Havs och Vattenmyndigheten, 2016). Species names 

were harmonized according to conventions adopted by the Nordic-Baltic Network for Benthic 

Algae in Freshwater (Kahlert & Albert, 2005). Unidentified valves and valves identified to 

genus level were not included in the analysis. To promote statistical robustness in the species-

based analyses, species present in less than 15 sites have been excluded. The cleaning 

procedure resulted in a loss of 35 rare genera and ≈ 8% of valves/site. Counts were converted 

to relative abundances and were Hellinger-transformed (i.e. division of cell values by row sums 

and square root of the quotient; Legendre & Gallagher, 2001) prior to the analyses, as this 

transformation is recommended for variation partitioning based on linear ordination methods 

(Peres-Neto et al., 2006). Correspondence analysis was performed on non-transformed relative 

abundance data. 

Environmental descriptors 
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We extracted 26 parameters from the Swedish national database (http://miljodata.slu.se/) to 

describe the chemical and physical local conditions of the sites. Nonparametric random forest 

algorithm was used to complete the missing values (14.9% of the data). In order to avoid 

redundancies and high correlations (> 0.8) a subset of 10 parameters was selected, based on 

expert knowledge of their importance for diatoms. The final set included concentrations in total 

nitrogen, total phosphorus and total organic carbon, pH, alkalinity, water colour (measured as 

absorbance at 420 nm), turbidity, altitude, upstream catchment area and proportion of 

urbanized land cover in the upstream catchment area. Parameters were log transformed where 

necessary. 

Spatial descriptors 

We generated spatial descriptors in order to test the effect of space on diatom diversity across 

different scales using Moran Eigenvector Maps (MEMs; Dray et al., 2006). This method 

consists on eigenvector decomposition of a spatial weighting matrix. The spatial weighting 

matrix (SWM) describes the spatial relationship among the different sites and is the product of 

a connectivity matrix (defining which sites are connected) and a weighting matrix (providing 

the intensity of the connections). Since there is no straightforward way to choose a SWM 

definition, Dray et al. (2006) recommend to use a data-driven approach to select the best SWM 

among different candidates. 

We used the following procedure to generate 45 sets of MEMs which will be used later in the 

analyses as potential spatial descriptors. First, we generated 45 SWM based on 9 connectivity 

schemes combined with 5 weighting schemes. Connectivity matrices were created using the 

influence circle graph method (Legendre & Legendre, 2012) with 9 different radii ranging from 

100 to 260 km. We weighted the connectivity matrices by a function based on Euclidean 

distance among sites: f = 1−(d/dmax)^α where d is the distance between sites and dmax is the 
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maximum distance between two connected sites. The five weighting schemes correspond to 5 

different values for the coefficient α: 0, 1, 2, 3 and 4. Second, we computed the MEMs 

separately for each SWM. In each set, we kept only the MEMs associated with positive 

eigenvalues (i.e. exhibiting positive spatial autocorrelation). Third, we estimated the scale 

represented by each MEM. This is done for a given MEM by computing its spline-

correlogramm and then finding the minimum distance for which a negative autocorrelation is 

estimated. Therefore, each MEM can be classified as fine scale (<30km), medium scale (30-

100km) or large scale (>100km). 

Community-based analyses 

We selected the set of MEMs among the 45 candidates with the best fit to the community 

matrix using a multivariate AIC-like method (Godínez Domínguez & Freire, 2003) as 

recommended by Dray et al. (2006). To limit the number of variables included in the model 

and prevent type I error inflation, we selected a subset of spatial predictors within the selected 

set of MEMs using a forward selection procedure with double stopping criterion (Blanchet et 

al., 2008). A similar forward selection approach was used to select the best environmental 

descriptors. 

We used correspondence analysis and principal component analysis to examine the spatial 

variation of diatoms communities and environmental parameters, respectively. Partial 

redundancy analyses (pRDA; Borcard et al., 1992) were used to examine the pure effects of 

space and environment on the community matrix. Multivariate analyses results were mapped 

using ordinary kriging to interpolate sites scores over a 5000 × 5000 cells grid covering the 

study area. 
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Next, we performed variation partitioning based on multiple pRDAs to quantify and test the 

variation in the community matrix that can be related to environmental predictors and spatial 

predictors (divided in fine, medium and large scale). Hierarchical partitioning of the shared 

fractions (Legendre et al., 2012) was used to take into account the orthogonality of the spatial 

eigenfunction submodels. The variation explained by each fraction is reported using unbiased 

adjusted R² (Peres-Neto et al., 2006). The individual fractions (i.e. the pure effects of 

environment and space at fine, medium and large scale) were tested by permutation. 

Species-based analyses 

Species-based variation partitioning has been carried out using the same procedure as for 

community-based variation partitioning. However, in this case, the procedure is applied 

independently, species by species. Hence, for each species, appropriate environmental and 

spatial descriptors were selected and used in a variation partitioning procedure based on 

multiple partial regressions. This approach generates a collection of N variation partitionings, 

with N being the number of species under study. 

Performing one variation partitioning per species allowed us to relate the amount of variance 

explained by each fraction to the species traits. As the fractions of variance range from zero to 

one, we used beta regression models (Simas et al., 2010; Soininen, 2014, 2016) to assess the 

effects of individual size and attachment to the substrate on the proportion of variance 

explained by pure spatial effects at fine, medium and large scale. We used the trait dataset from 

Rimet and Bouchez (2012) to test the effects of two traits: the cell length and the attachment to 

the substrate which is a binary categorical variable stating whether the species is attached to 

the substrate (by their valve face, their girdle view or by a pad or a stalk of mucilage) or non-

attached (free moving or planktonic). 
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Software 

We performed all the statistical analyses with R 3.3.1 software (R Development Core Team, 

2016). MEMs were computed with the package adespatial (Dray et al., 2016). Spline 

correlograms were estimated with the ncf package (Bjørnstad, 2016). Kriging was computed 

using gstat (Pebesma, 2004). We performed multivariate ordinations and variation partitioning 

with vegan (Oksanen et al., 2016) and the additional code provided in Legendre et al. (2012). 

Finally, beta regression models were adjusted using the betareg package (Cribari-Neto & 

Zeileis, 2010). 

Results 

Community-based analysis 

The variable selection procedure selected the 10 environmental parameters and 31 MEMs (19 

at large scale, 12 at medium scale and none at fine scale). Both diatom communities and 

environmental parameters appeared to be spatially structured and correlated (Figure 2, see 

Appendix S1 for species loadings values) with an important contrast between the north and the 

south (axes 1 of the two analyses) and between the northern west mountains and the northern 

east coast (axes 2 of the two analyses). Northern species commonly found in boreal region of 

Sweden were Eunotia bilunaris var. mucophila Lange-Bertalot & Nörpel, Peronia fibula 

(Brébisson & Kützing) Ross, Eunotia exigua var. exigua (Brébisson & Kützing) Rabenhorst, 

Eunotia incisa var. incisa Smith & Gregory and Eunotia rhomboidea Hustedt, which all are 

known to prefer acid or very acid conditions. Species commonly found in agricultural regions 

in the south of Sweden were Amphora pediculus (Kützing) Grunow, Rhoicosphenia abbreviate 

(Agardh) Lange-Bertalot, Navicula tripunctata (O. Müller) Bory and Eolimna subminuscula 

Moser, Lange-Bertalot & Metzeltin, known for their preference of nutrient rich conditions, and 
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Achnanthidium lauenburgianum (Hustedt) Monnier, Lange-Bertalot & Ector, a species typical 

for very high alkalinity, such as occurring on Gotland, a large limestone island in the south of 

Sweden. Typical for the mountain area in the west of Sweden are Gomphonema 

lateripunctatum Reichardt & Lange-Bertalot, Rossithidium nodosum (Cleve) Aboal, 

Sellaphora stroemii Mann, Encyonopsis cesatii (Rabenhorst) Krammer and Hannaea arcus 

(Ehrenberg) Patrick, species that are commonly found in these mountains, but are rarer in 

Central Europe. 

Mapping the two first axes of the pRDA of the community matrix explained by space after 

removing the effect of environment (Figure 3A) revealed large patches spread across the study 

area. On the other hand, the pRDA of the community matrix explained by environmental 

variables after removing the effect of space (Figure 3B) displayed a first axis where 

communities are primarily discriminated by altitude, the load of nutrients and alkalinity and a 

second axis mostly driven by the catchment area, pH and organic matter. 

Results of variation partitioning are presented in Figure 4. The whole model including 

environment and space explained 24% of the total community matrix variation. Among the 

pure individual fractions, environment explained 6% of variance (p-value < 0.001). The effect 

of space was the strongest at large scale (6% of explained variation, p-value < 0.001) but was 

also detected at medium scale (1%, p-value < 0.001). No effect of space was found at fine scale, 

since no MEMs were selected. An important joint effect of environment and space (i.e. 

spatially-structured component of environmental factors) was found at large scale (10%). 

Species-based analysis 

The species-approach generated 278 variation partitioning analyses. The distribution of each 

fraction is presented in Figure 5. The whole model including environment and space explained, 
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on average, 17.9% of the species variation. The effect of environment was found rather low 

compared to the community-based approach (mean explained variation = 2.4%). The effect of 

space was found to be the strongest at fine scale (mean explained variation = 5.5%), then at 

large scale (mean explained variation = 3.8%) and finally at medium scale (mean explained 

variation = 2.3%). Similarly to the community-based analysis, joint effect of space and 

environment was found at large scale (3.3%) while this effect was found below 0.5% at medium 

and fine scale. 

Globally, the explained variation in each fractions varied strongly among species. However, 

the studied traits failed to explain this variation. Beta regressions pseudo-R² ranged from 0.001 

for the medium scale pure spatial fraction model to 0.029 for the fine scale pure spatial fraction 

model. Cell length, attachment mode and their interaction were not significantly associated to 

any of the tested fractions (all p-values < 0.05, Appendix S2). 

Discussion 

Diatoms communities have been considered to be mainly structured by local environmental 

conditions for a long time. However recent studies have stressed the importance of spatial 

processes at different scales to understand species assemblage variation and pointed out the 

need for fine-grained multi-scales studies on large geographical area (Soininen, 2007; 

Vyverman et al., 2007; Verleyen et al., 2009; Heino et al., 2010; Vilmi et al., 2017). We found 

support for both environmental and spatial control of diatoms communities.  

Both the community-based and the species-based analyses highlighted the control of 

environment on species distribution and communities' composition. The part of variation that 

can be related to environmental factors is traditionally interpreted as species sorting (Cottenie, 

2005). These results are consistent with previous works which have clearly demonstrated the 
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primary role of local environmental factors in determining benthic algae assemblage (Leland 

& Porter, 2000). The strong differences of ecological preferences among species and the direct 

effect of environment on diatom communities is also the reason why diatoms are widely 

recognized as efficient biological indicators of environmental conditions (Lowe & Pan, 1996; 

Stevenson & Smol, 2003). 

In addition, pure spatial patterns were detected both in the community-based and the species-

based analyses. Spatial patterns should be interpreted carefully as they can be the result of 

different dispersal-related processes: limitation or homogenization (Heino et al., 2015); but can 

also reflect species sorting if important spatially structured variables are missing (Legendre & 

Legendre, 2012). In this study, we included as many environmental descriptors as possible, 

from dissolved nutrients to local land cover. The descriptors we used are known to be important 

drivers of diatom communities and we assume they give a general picture of the chemical and 

physical local conditions of the sites under study. However, it should be noted that some 

identified sources of variation were not covered in this paper. For example, local substrate 

composition and disturbance regime data are missing while they can have an important effect 

on diatom assemblages (Jüttner et al., 1996; Passy, 2001; Cardinale et al., 2006). Furthermore, 

biotic interactions are part of the species sorting perspective and Göthe et al. (2013) have shown 

that biotic predictors can capture a significant part of the variation in diatoms communities. 

Including the biotic component to diatoms biogeographical studies is a real challenge given the 

complexity of interactions networks but would probably improve our models and 

understanding of the processes underlying community structures both in time and space. At 

larger scale, climate (Pajunen et al., 2016; Jyrkänkallio-Mikkola et al., 2017) and geology 

(Lavoie et al., 2010) are also important to take into account although it can be challenging to 

decouple their direct effects from pure spatial effects. Overall, the total amount of variance 

explained by our models may seem low (e.g. R²adj = 24% for the community-based analyses). 
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However, low amount of explained variation are frequently reported in empirical works using 

variation partitioning to study diatoms (e.g. Heino et al., 2010; Algarte et al., 2014, respectively 

26% and 16.8%). Low explanatory power of models in microbial ecology are discussed by 

Vilmi et al. (2017) and can be explained by the complexity of communities with many rare 

species, the lack of important explanatory variables or the high frequency of stochastic events 

that cannot be integrated into models. 

Community-based analysis revealed a significant pure spatial effect in diatoms communities. 

This result is in line with others research studying diatom biogeographical patterns at regional 

(e.g. Heino et al., 2010; Bottin et al., 2014) and at global scale (e.g. Vyverman et al., 2007). In 

our study, most of the pure spatial effect is detected at large scale (>100km) suggesting that 

dispersal limitation plays an important role over large distances. Dispersal limitation is known 

to be a prominent factor at continental and inter-continental scales (Potapova & Charles, 2002; 

Vyverman et al., 2007; Verleyen et al., 2009; Bennett et al., 2010) but it has also been 

suggested that diatoms dispersal limitation can be significant at smaller scale in boreal streams 

(Soininen et al., 2004; Heino et al., 2010). Our study is in line with these results and shows 

that dispersal limitation can have a noticeable impact from a distance of a few hundreds 

kilometres. 

At finer scale, community-based analysis found no pure spatial structure. The absence of pure 

spatial structures at fine scale (<30km) can be interpreted as an evidence that dispersal-related 

processes are non-existent or obscured by other processes. Other studies have stressed that 

species sorting is likely to dominate at fine scale (e.g. Verleyen et al., 2009; Bennett et al., 

2010) and have reported an effect of space that increase linearly and monotonously with 

distance (cf. Soininen, 2007). However, unlike the community approach, the species-based 

analysis detected pure spatial structures at fine scale. As mentioned above, pure spatial patterns 
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can be the result of species sorting in a fragmented landscape as important environmental 

factors varying at fine scale may have been missed. Alternatively, a pure spatial effect at fine 

scale can be the signature of mass-effect (i.e. net emigration of individuals from source sites to 

sink sites where environmental conditions are sub-optimal). So far, mass-effect has only been 

considered in highly connected meta-community networks. However, given the microscopic 

nature of diatoms and the fundamental idea that microbial species have strong dispersal 

capacities, our results raise the question of the scale and context to which the mass-effect 

applies with diatoms. Additional work should be done to investigate further overland dispersal 

capacities of diatoms and the possible implications for community dynamics. 

The differences found between the community-based approach and the species-based approach 

are obviously important. They can be explained by the fact that the species-based approach 

decompose the community matrix species-by-species while the community-based approach 

uses partial RDAs that focus on patterns of covariation between species. Large regions detected 

by community level analyses are large scale geographical units inferred from the combined 

distribution of taxa. However, the fact that diatoms species populations can disperse does not 

guarantee that species associations and combinations are conserved from site to site at fine 

scale. Hence, the use of multivariate community-based analyses that focus on the total 

community variation can be unsuitable to capture species-specific mechanisms. This is likely 

to be strengthened if the pool of species is large and several species are ecologically 

interchangeable (i.e. share the same niche). Thus, further to the fact that dispersal is a species-

specific mechanism, the large taxonomic diversity of diatoms and the strong role of 

stochasticity and instability in shaping microbial communities assemblage (Stegen et al., 2012) 

could explain the limits of multivariate analyses in detecting spatial effects at the finest scales. 

Finally, it should also be noted that the community-based approach is more likely to detect 

large scale patterns than the species-based approach for species having a restricted distribution 
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range. In our study, this bias is limited by excluding species occurring in less than 15 sites, 

ensuring that the species included in our analyses have a sufficiently large distribution. 

Overall, we found a high degree of joint effect of environment and space on diatom 

communities. Joint effect is the result of a strong covariation of the environmental parameters 

with space which is clearly depicted in Figure 2. Interestingly, we found this joint effect at 

large scale indicating that the main components of environment investigated in this study are 

autocorrelated over large distances. This result also suggests that environmental local 

heterogeneity has a lower effect at fine scale. Studies using variation partitioning frequently 

report a large part of variation explained by the joint effect of environment and space. This 

fraction is hard to interpret in terms of ecological mechanisms because the effects of space and 

environment are inextricable (Cottenie, 2005). The detected biological patterns delineate three 

large biogeographical regions: the south, the north and the mountainous region located in the 

north-eastern part of Sweden. Sites of these regions have contrasted environmental conditions 

(water chemistry, anthropogenic pressures, and climate) and are separated by potential physical 

barriers (long overland distances, mountains). Hence, it is likely that both species sorting and 

dispersal limitation act together at large biogeographical scale. 

Species-based analysis highlighted that the pure effect of environment and space on diatom 

distribution can vary greatly from species to species. Previous studies have shown that body 

size and other dispersal related traits have important effect on metacommunity structure among 

different groups of organisms (Hillebrand et al., 2001; Drakare et al., 2006; De Bie et al., 

2012). More recently, Liu et al. (2013) and Dong et al. (2016) have shown that flow-mediated 

downward dispersal has a stronger impact on loosely attached diatoms. However, our results 

do not support the idea that dispersal-related traits could explain the species variation explained 

by pure environmental or spatial effects. This could be explained by the fact that we used 
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different traits and we are investigating communities at larger scale and in a different context 

where dispersal is probably mainly mediated through animals and atmospheric deposition. 

Thus, it can be argued that the tested traits were not appropriate or sufficient to represent 

overland dispersal capacities and that other physiological, morphological or life history missing 

traits would be important to include. Moreover, it is also possible that at large scale diatoms 

dispersal capacities are comparable among species. Cell length and attachment may not vary 

enough to significantly discriminate diatom species in function of their dispersal capacities. 

Finally it should be noted that traits may impact both species sorting and dispersal-related 

mechanisms. For example, while we investigate the potential role of cell attachment on 

dispersal capacity, Heino and Soininen (2006) reported the niche breadth of non-attached 

diatoms species to be significantly larger than the niche breadth of attached species. They 

argued that it could be explained by the better capacity of attached species to persist in disturbed 

environment rather than a difference of dispersal capacity between attached and non-attached 

species. This example illustrate how intricate niche requirements and dispersal capacities can 

be in explaining habitat occupancy. 

Our results have also practical implications since diatoms are commonly used as bioindicators. 

Dispersal limitation over large biogeographical regions can limit the power of biological 

indices and can motivate the development of regional indices (Soininen, 2004). Sweden, for 

example, is using diatom biomonitoring indices at a national scale (Naturvårdsverket, 2007). 

However, further investigations are required, in particular because anthropogenic effects have 

not been separated in our study but included as any other ecological factor. Recent studies have 

also investigated the potential of species distribution modelling techniques to test the role of 

biotic interactions (Bottin et al., 2016) or climate (Pajunen et al., 2016) on diatom communities 

structures. Including explicitly multiscale dispersal-related mechanisms into these models 
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could improve their performances and reliability in estimating species realized niche (Guisan 

& Thuiller, 2005; Boulangeat et al., 2012).  
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Figures and Tables 

 

Figure 1. Map of Sweden showing the locations of the 616 sampling sites (black dots). 
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Figure 2. Maps of interpolated sites scores for (A-B) the correspondence analysis on the 

community matrix (Axis 1 and Axis 2 accounting for 4% and 3% of the variation 

respectively) and (C-D) for the principal component analysis on the environmental 

parameters matrix (Axis 1 and Axis 2 accounting for 33% and 23% of the variation 

respectively). For loadings values see Appendix S1.  
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Figure 3. (A) Maps of interpolated sites scores for the partial redundancy analysis of the 

community matrix constrained by space after partialling out the effect of environment (Axis 1 

and Axis 2 accounting for 2.3% and 1.5% of the variation respectively). (B) Ordination plot 

for the partial redundancy analysis of the community matrix constrained by the environment 

after partialling out the effect of space (Axis 1 and Axis 2 accounting for 3.1% and 1.9% of 

the variation respectively). For loadings values see Appendix S1. 
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Figure 4. Venn diagram showing the results of the variation partitioning analysis on the 

community matrix (community-based approach). Adjusted R-squared is given for each 

fraction. 
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Figure 5. Boxplot showing the appended results of the variation partitioning analyses 

performed on each species (species-based approach). 

 


