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Salvage logging effects on regulating and supporting
ecosystem services — a systematic map
Alexandro B. Leverkus, José María Rey Benayas, Jorge Castro, Dominique Boucher, Stephen Brewer,
Brandon M. Collins, Daniel Donato, Shawn Fraver, Barbara E. Kishchuk, Eun-Jae Lee, David B. Lindenmayer,
Emanuele Lingua, Ellen Macdonald, Raffaella Marzano, Charles C. Rhoades, Alejandro Royo, Simon Thorn,
Joseph W. Wagenbrenner, Kaysandra Waldron, Thomas Wohlgemuth, and Lena Gustafsson

Abstract: Wildfires, insect outbreaks, and windstorms are increasingly common forest disturbances. Post-disturbance manage-
ment often involves salvage logging, i.e., the felling and removal of the affected trees; however, this practice may represent an
additional disturbance with effects on ecosystem processes and services. We developed a systematic map to provide an overview
of the primary studies on this topic and created a database with information on the characteristics of the retrieved publications,
including information on stands, disturbance, intervention, measured outcomes, and study design. Of 4341 retrieved publica-
tions, 90 were retained in the systematic map. These publications represented 49 studies, predominantly from North America
and Europe. Salvage logging after wildfire was addressed more frequently than after insect outbreaks or windstorms. Most
studies addressed logging after a single disturbance event, and replication of salvaged stands rarely exceeded 10. The most
frequent response variables were tree regeneration, ground cover, and deadwood characteristics. This document aims to help
managers find the most relevant primary studies on the ecological effects of salvage logging. It also aims to identify and discuss
clusters and gaps in the body of evidence, relevant for scientists who aim to synthesize previous work or identify questions for
future studies.
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Résumé : Les feux de forêt, les épidémies d’insectes et les tempêtes de vent sont des perturbations forestières de plus en plus
fréquentes. À la suite d’une perturbation, l’aménagement implique souvent une coupe de récupération, c.-à-d., l’abattage et le
prélèvement des arbres endommagés. Cependant, cette pratique peut constituer une perturbation additionnelle et avoir des
effets sur les services et processus de l’écosystème. Nous avons développé une carte systématique destinée à fournir un aperçu
des études originales sur ce sujet et créé une base de données contenant de l’information sur les caractéristiques des publications
retenues, incluant des informations sur les peuplements, la perturbation, l’intervention, les résultats mesurés et la méthodolo-
gie de l’étude. Des 4341 publications trouvées, 90 ont été retenues dans la carte systématique. Ces publications représentaient
49 études menées principalement en Amérique du Nord et en Europe. La coupe de récupération après feu a été étudiée plus
fréquemment qu’après des épidémies d’insectes ou des tempêtes de vent. La plupart des études portaient sur la coupe après une
seule perturbation et le nombre de répétitions de peuplements récupérés dépassait rarement 10. Les variables réponse les plus
fréquentes étaient la régénération de la strate arborescente, le couvert végétal et les caractéristiques du bois mort. Ce document
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vise à aider les gestionnaires à trouver les études les plus pertinentes portant sur les effets écologiques de la coupe de récupéra-
tion. Il vise aussi à identifier et examiner les points forts et les lacunes parmi l’ensemble des arguments pertinents pour les
scientifiques qui cherchent à synthétiser les travaux antérieurs ou à identifier les sujets de futures études. [Traduit par la
Rédaction]

Mots-clés : coupe de récupération, coupe d’assainissement, feu de forêt, épidémie d’insectes, chablis.

Introduction
Large, episodic, severe forest disturbances such as those caused

by wildfires, insect outbreaks, and windstorms are part of the
natural dynamics of forest ecosystems across the world (Noss et al.
2006; Turner 2010; Johnstone et al. 2016). However, the frequency,
severity, and extent of such disturbances have increased in recent
decades due to anthropogenic activity (Seidl et al. 2017) and are
predicted to further increase in the future (Schelhaas et al. 2003;
Kurz et al. 2008; Pausas and Fernández-Muñoz 2012; Seidl et al.
2017). As a result, it is crucial to identify and adopt management
strategies that promote regeneration and maintain ecosystem
functions of post-disturbance forests, whether through active in-
tervention or passive management (Crouzeilles et al. 2017). A com-
mon post-disturbance management approach in many parts of
the world is salvage logging, i.e., the widespread felling and re-
moval of the affected trees (McIver and Starr 2000; Lindenmayer
et al. 2008; Thorn et al. 2018). Salvage logging has been reported
after wildfires (Lindenmayer et al. 2018), volcanic eruptions (Titus
and Householder 2007), insect infestations (Thorn et al. 2017),
windstorms (Waldron et al. 2014), and ice storms (Sun et al. 2012).
It is frequent in disturbed production forests but also common in
protected forests in some parts of the world (Schiermeier 2016;
Leverkus et al. 2017; Müller et al. 2018). However, there is concern
that the additional logging-related disturbance can imperil eco-
system recovery and affect biodiversity and ecosystem services
(Karr et al. 2004; Beschta et al. 2004; Donato et al. 2006;
Lindenmayer et al. 2008). Besides the mechanical disturbance,
salvage logging affects ecosystems through the removal and mod-
ification of large amounts of biological legacies, i.e., the organ-
isms, organic materials, and organically generated environmental
patterns that persist through a disturbance and constitute the
baseline for post-disturbance recovery and regeneration (Franklin
et al. 2000).

The most frequent motivation for salvage logging across the
world is the recovery of some part of the economic value of the
forest (Müller et al. 2018). Tree-killing disturbances trigger a set of
processes that can rapidly reduce the timber value due to reduc-
tions in wood quality (e.g., stain, decay, and the activity of insect
borers) and to pulses in wood supply to the market (Prestemon
and Holmes 2010). Rapid post-disturbance harvest is a frequent
response to disturbance that aims to avoid further deterioration
of the damaged wood (Prestemon and Holmes 2010; Lewis and
Thompson 2011). In some parts of the world such as regions of
North America, large-scale wildfires and insect outbreaks have
become so frequent that salvage logging is no longer a hasty re-
sponse to unexpected events but rather constitutes an expected
source of wood to fill market demands (Mansuy et al. 2015). How-
ever, the logging of disturbed forests is not profitable in all cases
(e.g., Leverkus et al. 2012), and it may also aim to fulfil other
management objectives. Salvage logging can target the reduction
of the risk of subsequent disturbances such as pest outbreaks and
wildfire through the elimination of the substrate or fuel gener-
ated by the initial disturbance (Schroeder and Lindelöw 2002;
Collins et al. 2012). The simplification of post-disturbance ecosys-
tem structure through the removal of fallen trunks is intended to
ease subsequent active restoration activities such as reforestation
(Leverkus et al. 2012; Man et al. 2013). Finally, there is a general
negative aesthetic perception of disturbed forests that may be
offset by removing the visual evidence of what is generally con-

sidered a “calamity” (Noss and Lindenmayer 2006). However,
these motivations are not always based on scientific evidence, but
rather on traditional practices, perceptions, and deductions, as is
often the case in conservation-related decision-making (Pullin
et al. 2004; Sutherland et al. 2004).

The lack of scientific evidence on the effects of salvage logging was
highlighted in 2000 (McIver and Starr 2000). In 2004, Lindenmayer
and colleagues (Lindenmayer et al. 2004) called for a revision of
post-disturbance management policies, arguing that salvage log-
ging can have long-lasting negative effects on biodiversity, under-
mine the — largely unrecognized — ecological benefits of natural
disturbances, and impair ecosystem recovery. Numerous studies
were established in subsequent years to assess the ecological con-
sequences of this practice, covering a wide array of disturbance
types and severities, biomes, forest compositions, logging methods,
and response variables (Thorn et al. 2018). As a result, the above-
mentioned motivations for salvage logging have been challenged
(e.g., wildfire risk (Donato et al. 2006) and economics (Leverkus et al.
2012)), and many other effects of this practice have been described
(e.g., Lindenmayer et al. 2008; Beghin et al. 2010; Priewasser et al.
2013; Wagenbrenner et al. 2015; Hernández-Hernández et al. 2017).
Nonetheless, under some circumstances, salvage logging can meet
both management and conservation objectives and address soci-
etal concerns. For example, salvage logging after bark beetle in-
festation of lodgepole pine forests in Colorado commonly reduces
canopy fuels and regenerates new stands without negatively af-
fecting native plant diversity or soil productivity (Collins et al.
2011, 2012; Fornwalt et al. 2018; Rhoades et al. 2018). As a conse-
quence, controversy surrounding salvage logging among manag-
ers, environmentalists, politicians, and academics remains lively
(Schiermeier 2016; Leverkus et al. 2017; Lindenmayer et al. 2017;
Müller et al. 2018).

The ecological impacts of salvage logging can broadly be cate-
gorized according to whether they affect the following.

(a) The physical structure of ecosystems — An immediate con-
sequence of logging is the reduction in parameters such as stand-
ing and downed woody material, living canopy cover, and habitat
structural complexity (Lee et al. 2008; Waldron et al. 2013;
Peterson et al. 2015).

(b) Particular elements of the biota and species assemblages —
The removal of deadwood can affect many species, particularly
deadwood-dependent taxa (as concluded in a recent global review
on this topic; Thorn et al. 2018).

(c) Forest regeneration capacity — Salvage logging has the po-
tential to alter residual growing stock, soil seed bed, canopy and
soil seed banks, and species interactions such as competition,
seed dispersal, seed predation, and herbivory (Greene et al. 2006;
Collins et al. 2010; Puerta-Piñero et al. 2010; Castro et al. 2012;
Castro 2013).

(d) Key ecosystem processes and services — Ecosystem services
are the benefits that people obtain from ecosystems; they are the
link between particular elements of the ecosystem or functions
that they perform (i.e., the biophysical component), the benefits
that society obtains, and ultimately, the value placed on them
(i.e., the human well-being component; Fig. 1; Haines-Young and
Potschin 2010). They are categorized into provisioning, cultural,
regulating, and supporting services (Millennium Ecosystem
Assessment 2003). As outlined above, salvage logging is most
often conducted to recover the value of the affected wood. In the
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case of timber and other provisioning services, the human well-
being component is often well defined and quantified. However,
salvage logging also may affect cultural, regulating, and support-
ing ecosystem services throughout the ecosystem services cas-
cade. This implies that some of the effects outlined in (a), (b), and
(c) can also be considered to fall into the category of ecosystem
services (Fig. 1; Leverkus and Castro 2017). In the case of support-
ing and regulating services, the biophysical component is usually
better understood than the human well-being component (Boerema
et al. 2017), and this is likely also the case regarding the responses to
salvage logging (Leverkus and Castro 2017).

Although ecosystem services have seldom been explicitly ad-
dressed in the scientific literature on salvage logging, they pro-
vide a common framework that allows balancing economic
benefits from timber against the wide array of ecological variables
that are also affected by post-disturbance management (Leverkus
and Castro 2017). This framework represents an ecosystem ap-
proach (Secretariat of the Convention on Biological Diversity
2000), i.e., the consideration of multiple benefits provided by eco-
systems — rather than only market values — to guide sustainable
management decisions.

Salvage logging can affect ecosystem services by altering pro-
cesses such as soil erosion and hydrological regimes (Wagenbrenner
et al. 2016), nutrient cycling (Kishchuk et al. 2015), carbon seques-
tration (Serrano-Ortiz et al. 2011), seed dispersal (Castro et al.
2012), vegetation cover (Macdonald 2007), tree regeneration
(Castro et al. 2011; Marzano et al. 2013; Boucher et al. 2014), resis-
tance to invasive species (Holzmueller and Jose 2012), resilience to
subsequent disturbances (Fraver et al. 2011), and many others

(McIver and Starr 2000; Karr et al. 2004; Beschta et al. 2004;
Lindenmayer and Noss 2006; Lindenmayer et al. 2008). Some au-
thors argue that ecological responses to salvage logging may re-
sult in synergistic effects due to the two successive disturbance
events (the natural disturbance and then logging) occurring close
in time (Van Nieuwstadt et al. 2001; Wohlgemuth et al. 2002;
Karr et al. 2004; Lindenmayer et al. 2004; DellaSala et al. 2006;
Lindenmayer and Noss 2006). Others have found that environ-
mental drivers other than salvage logging are more important in
determining ecosystem regeneration (Kramer et al. 2014; Peterson
and Dodson 2016; Royo et al. 2016; Rhoades et al. 2018). Further,
studies often report contradictory results, and there is currently
no comprehensive, global assessment of the studies that have
addressed salvage logging effects on ecosystem processes.

Systematic maps aim to collate the empirical evidence on par-
ticular topics and describe the characteristics of the studies on
those topics (James et al. 2016). In contrast to systematic reviews,
they do not aim to synthesize the results of individual studies.
Rather, they help managers identify the literature on a topic that
is most relevant to their needs, as well as knowledge clusters and
knowledge gaps to suggest future systematic review lines and
topics for further empirical study.

Here, we provide a systematic map addressing the ecological
effects of salvage logging with a focus on regulating and support-
ing ecosystem services. The focus on ecosystem services intends to
leverage the relevance and applicability of academic studies for
non-academic stakeholders, including land managers who face
the question of how to manage disturbed forests, as well as the
general public. A global overview of this subject that also ad-

Fig. 1. Ecosystem services cascade illustrated for the case of seed dispersal by European jays (Garrulus glandarius L.) within a post-fire
management experimental setting. The diagram shows the link between the biophysical and the human well-being components of ecosystem
services. Particular elements of the ecosystem perform functions that produce benefits for society via an ecosystem service. Society places a
value on these benefits, whether economic or not. The resulting value feeds back to affect the ecosystem elements through management
decisions. In the example (shown in the dashed boxes below each component of the conceptual diagram), burnt snags represent a supporting
element for the seed caching activity of a major seed disperser, whose activity yields natural colonization of the burnt area and reduces the
economic cost of reforestation. Appreciation of this value can enhance the likelihood that snags be retained in post-fire management. Figure
adapted from Haines-Young and Potschin (2010), Martín-López et al. (2014), and Leverkus and Castro (2017). References in the diagram:
(1), Molinas-González et al. (2017b); (2), Castro et al. (2012); (3), Leverkus et al. (2016); (4), Leverkus and Castro (2017). [Colour online.]
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dresses potential reasons for heterogeneity in the effects mea-
sured by different studies could aid managers and policy-makers
worldwide in finding the necessary scientific information to make
decisions regarding salvage logging. Such decisions require an-
swering questions such as “Is salvage logging likely to enhance
the recovery of disturbed forests under particular forest types and
disturbance conditions?” and “Does the trade-off between provi-
sioning and other kinds of ecosystem services result in a positive
overall balance for specific management interventions?”. We de-
scribe the state of the literature that addresses these questions.

Materials and methods
We followed the guidelines for systematic reviews in environ-

mental management as prescribed by the Collaboration for Envi-
ronmental Evidence (Centre for Evidence-Based Conservation
2010) and several other texts (Sutherland et al. 2004; Pullin and
Stewart 2006; Koricheva et al. 2013; James et al. 2016). The meth-
ods described below are an expansion of those presented in our
protocol (Leverkus et al. 2015a).

Research questions
We established a search strategy to identify the studies answer-

ing the following primary research question:

Does post-disturbance salvage logging affect regulating and
supporting ecosystem services?

This question implies the following key elements:

• Population: forests affected by one of the following disturbances:
windstorms, pest insect outbreaks, or wildfire

• Intervention: salvage logging, i.e., the harvesting of trees from
areas after disturbance events

• Comparator: forests after disturbance where no salvage logging
was conducted

• Outcome: variables that could be regarded as indicators of reg-
ulating or supporting ecosystem services.

We expected that the studies collectively would provide varying
and apparently contradictory answers to the primary research
question. To search for potential reasons underlying this hetero-
geneity, we considered the secondary research question:

Does the response of ecosystem services to post-disturbance
salvage logging vary with the

• type and severity of the disturbance?
• geographic region?
• intensity, method, or timing of salvage logging?
• forest type?
• type of study design?

Literature searches
The primary literature search was conducted in English in Web

of Science (WoS) and Scopus with the aim of answering the pri-
mary research question. The terms were searched in titles, ab-
stracts, and keywords and were based on the population and the
intervention elements. The final search string (Supplementary
Table S11) was established after the scoping exercise described in
the protocol (Leverkus et al. 2015a). The search in WoS was ini-
tially made on 18 August 2015 and updated on 5 May 2017 to
encompass all studies published until 31 December 2016. In WoS,
the search was restricted to the fields of environmental sciences
and ecology, forestry, biodiversity conservation, zoology, plant
sciences, meteorology and atmospheric sciences, entomology,
and water resources. In Scopus, the search was restricted to agri-

cultural and biological sciences, environmental science, earth and
planetary sciences, and multidisciplinary studies.

We performed secondary searches to find other publications,
including grey literature, with simplified population and inter-
vention terms. These searches were made in the Directory of Open
Access Journals (https://doaj.org/), the CABI database of forest sci-
ence (http://www.cabi.org/forestscience/), and websites of the Ca-
nadian Forest Service (http://cfs.nrcan.gc.ca/publications) and the
USDA Forest Service (http://www.treesearch.fs.fed.us/). We also
searched in Google Scholar. For complete search terms, see Sup-
plementary Table S11.

As supplementary bibliographic searches, the reference lists of
relevant articles (review articles and books) were screened for
additional articles to complement the list identified using the
search terms. A list of the publications was sent to all of the
authors of this systematic map, most of whom have research ex-
perience on salvage logging. Authors were asked to identify rele-
vant articles that were omitted from the search, and these articles
were then assessed against the study inclusion criteria, as de-
scribed next.

Study inclusion criteria
To be considered for the systematic map, studies had to be

empirical and fulfil each of the following inclusion criteria:

(a) Relevant population: forest after wildfire, insect outbreak, or
windstorm disturbance. Prescribed burning was not considered,
as such fires tend to burn at lower intensity than uncontrolled
wildfires.

(b) Relevant intervention: salvage logging. Different methods of
wood extraction and intensities of intervention were considered.
We excluded studies in which salvage logging was confounded
with other subsequent interventions such as tree planting or in-
secticide application that were not conducted in the comparator.

(c) Relevant comparator: forest disturbed by the same distur-
bance event but not subject to salvage logging. We did not con-
sider areas of disturbed forest prior to logging as a comparator
(i.e., before–after (BA) study designs), as post-disturbance ecosys-
tems are highly dynamic and the effects of salvage logging could
be confounded with the effects of the time elapsed since the
disturbance. As comparators, we considered the disturbed but
unsalvaged areas of control–intervention (CI) and before–after
control–intervention (BACI) designs.

(d) Relevant outcome: response variable that could broadly be
regarded as a regulating or supporting ecosystem service. As it
was expected that ecosystem services would rarely be directly
addressed, we used variables considered to be indicators or prox-
ies for ecosystem services (e.g., the quality of stream water for
water purification, the abundance of seed dispersers for seed dis-
persal, plant biomass or cover for primary productivity, or the
abundance of invasive species for invasion resistance). We also
included studies addressing post-disturbance tree regeneration
such as seedling density, survival, and growth. Provisioning eco-
system services such as timber were excluded because they are
tightly linked to market conditions, which can vary considerably
across locations and time. Rather than neglecting the importance
of such ecosystem services (which are major drivers of the deci-
sion to salvage log disturbed forests), our intention was to com-
plement the list of ecosystem services that can be affected by this
practice. We also excluded cultural services because we expected
few studies on this topic. Also, any variables directly related to the
number of standing trees were excluded on the basis that the
intervention directly aims at their extraction and reductions are
thus a logical outcome. Finally, biodiversity was not included in

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfr-2018-0114.
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the systematic map because such responses were thoroughly re-
viewed in a recent meta-analysis (Thorn et al. 2018).

We did not explicitly impose geographic restrictions on the
studies, although the searches were restricted to publications in
English.

Article screening
The relevance of the articles resulting from the searches of the

literature was assessed through a stepwise elimination procedure.
The articles were screened in the following steps:

1. Each title was read in the first step, and articles with irrelevant
titles were discarded. This step was completed in a conserva-
tive way to avoid discarding any potentially relevant publica-
tions. Before screening all of the titles, two members of the
team (ABL and LG) screened 401 titles and the difference in
outcomes was assessed through a kappa test. As the results
indicated heterogeneity of application of selection criteria (see
Results), the inclusion criteria were discussed again prior to
screening all of the titles. After screening the titles, the word
“salvage” was searched in the titles, keywords, and abstracts of
all of the papers that were recorded as irrelevant based on
title. Their titles were screened again under a more inclusive
approach, and those considered potentially relevant were re-
included for the next step.

2. The abstracts of articles with relevant titles were read in the
second step, and articles with irrelevant abstracts were dis-
carded. To be classified as relevant in this step, the abstracts
had to fulfil the inclusion criteria a, b, and c. When there was
doubt about the relevance of a publication, it was kept for the
next step. Three authors (ABL, JC, and LG) initially revised
63 randomly chosen abstracts, and kappa tests were again
used to assess and improve homogeneity of application of
inclusion criteria.

3. The articles with potentially relevant abstracts were read in
full. At this stage, articles failing to fulfil any one of the study
inclusion criteria were discarded. To select studies that ful-
filled inclusion criterion d, the main objectives and the sam-
pling methods of the studies were assessed, as well as the
study-site descriptions (including tables and figures). Relevant
articles were categorized according to the study quality assess-
ment criteria defined below.

Study quality and validity assessment
Quality appraisal is not a necessary process in systematic map-

ping (James et al. 2016). Nevertheless, based on the retrieved liter-
ature, we identified some quality issues related to both the
methodology and the reporting in individual publications that
provided insight into the validity of the publication for inclusion
in the map. First, regarding quality in reporting, the lack of proper
description of the study site and the sampling methods (i.e., not
possible to assess study inclusion criteria and (or) study validity
based on methodological quality due to deficiencies in reporting)
led to study exclusion.

The remaining studies were placed in the following three broad
categories based on methodological quality:

1. Empirical studies with treatments applied at appropriate
spatial scales and with true replication at the scale of manage-
ment operations and with randomized allocation of treat-
ments to spatial units. An appropriate scale was considered as
one that would generally be used in post-disturbance manage-
ment under local conditions or that would reasonably allow
the measured responses to appear.

2. Studies as in (1) above, but without randomization in the allo-
cation of treatments to spatial units. This was often the case, as
the authors of the retrieved articles rarely had control over the
salvage logging process. This quality aspect is relevant from

the point of view of susceptibility to bias and it should be
considered in subsequent systematic reviews. Although we did
not use this criterion to reject studies in this systematic map,
we did record whether the spatial units where the interven-
tion and the comparator were established were chosen by the
researchers (see Systematic map database, below).

3. Empirical studies without true replication or at inappropriate
spatial scales. One of the most frequent cases was that of one
disturbance event affecting a reserve (unsalvaged comparator)
and adjacent, unprotected forest (salvaged intervention area).
Such designs are highly susceptible to confounding factors
related to the management history and objectives of the
different management (“treatment”) units and hence to bias,
so we decided to exclude them from the systematic map. As a
matter of consistency, we also eliminated all other studies that
contained only one true replicate unit per treatment. It should
be noted that in some studies, the degree of true replication
was hard to assess from the study site descriptions, and in
other cases, there was ambiguity in what could be considered
true replication. In such cases, other articles from the same
sites were assessed and, where necessary, authors were con-
tacted to clarify their study designs.

Systematic map database and data coding strategy
We constructed a database with information relative to each

publication, which included bibliographic information and data
related to the secondary research questions. This encompassed
data on stand, disturbance, and salvage logging characteristics,
study designs, and the response variables that were measured. For
a detailed description of the data included in the systematic map
database, see Appendix A.

Calculations and graphical output were produced in R (ver-
sion 3.3.1; R Core Team 2016).

Results and discussion

Literature searches
We retrieved 4341 publications from the primary searches

(Fig. 2). A total of 274 publications was assessed at full-text length,
and 90 were kept in this systematic map (Fig. 2; see Supplemen-
tary Table S21 for publications excluded at this stage and the rea-
sons for exclusion). For detailed descriptions of the results of the
literature searches and screening, see Appendix B. The remainder
of the systematic map is primarily grounded on the 90 publica-
tions that were kept, which are included in the systematic map
database (Supplementary Table S31; also available online with
open access, see Leverkus et al. 2018).

The following results are presented at the level that we consid-
ered most relevant for each addressed characteristic: some at the
level of publications (n = 90), others at the level of studies (n = 49)
(see Appendix A), and others at the level of stand types within
study sites or within publications (for example, in cases in which
more than one stand was addressed in a single study; n > 49). The
level of each result is always indicated in the text, and the data-
base allows assessing any data at any desired level.

Origin and distribution of publications
Of the 90 publications included in the systematic map database,

81 were obtained from the primary search in the Web of Science.
The cumulative number of publications has increased dramati-
cally in the last two decades and particularly in the last decade
(Fig. 3).

The 90 publications resulted from 49 studies, including studies
with multiple study sites. Individual studies produced an average
of 1.8 ± 1.2 publications (mean ± SD; range: 1–6), although it should
be noted that not all publications from all studies are included in
this systematic map (e.g., some papers from the Bavarian Forest
National Park in Germany that dealt with salvage logging effects
on biodiversity were excluded (Beudert et al. 2015; Thorn et al.
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2015a, 2015b)). Studies were generally established within one
clearly defined study area such as a publicly owned forest (e.g.,
National Forest) with adjacent private forestland, but eight stud-
ies (yielding 12 publications) either addressed two or more study
sites that were located in different regions (separated by more

than 100 km; e.g., Wagenbrenner et al. 2015) or had a sampling
design of regional scale with multiple sites (e.g., Priewasser et al.
2013) (Table 1).

The publications included in the database were overwhelm-
ingly concentrated in North America and Europe, with only two

Fig. 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram. Shown are the number of publications
retrieved in the literature searches and the number excluded in each step. Diagram adapted from Moher et al. (2009). [Colour online.]
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publications from another continent and no representation from
the tropics or the Southern Hemisphere (Fig. 4; Table 1). Even
within these two geographic clusters, the publications were not
equally distributed. In North America, there were nearly twice as
many publications from the United States than from Canada, and
even publications from Canada were more abundant than those
from all Europe (where half of the publications came from Spain).
One could predict that studies on post-disturbance logging would
occur more frequently in places where more natural disturbance
occurs or where natural disturbance is more often followed by
logging. However, disturbances are common across forests glob-
ally (Seidl et al. 2017), and there is no obvious reason to consider
that the countries not included in the systematic map lack salvage
logging.

A possible explanation for the paucity of studies in the tropics
lies in differences in human-related causes and consequences of
disturbances across regions. Disturbances such as wildfire in re-
gions at the frontline of land-use change, as in many tropical
regions, often constitute an instrument for deforestation and land
conversion rather than a natural process followed by regenera-
tion. In contrast, developed countries have generally reached
more stable land uses, so that disturbed forests will be expected to
regrow, either for production or for nature conservation. In this
way, assessing the effects of salvage logging on ecosystems makes
more sense in cases where management or conservation objec-
tives are to maintain forest cover, as is more often the case in
Europe and North America than in other regions. Even in the few
exceptions where salvage logging was addressed in tropical areas,
the research was conducted by foreign researchers (Van Nieuwstadt

et al. 2001). Most of the studies outside these two zones, including
studies in Chile (Smith-Ramírez et al. 2014) and Australia (Blair
et al. 2016), failed to pass the inclusion criteria regarding the
relevance of response variables. Other non-mutually exclusive
reasons for the predominance of European and North American
studies, as highlighted in a systematic map on active interven-
tions for biodiversity conservation (Bernes et al. 2015), are (a) the
large extents of forest, (b) the greater abundance of researchers
and availability of funding, and (c) the large emphasis on research
in ecology and environmental management in Europe and North
America. Finally, an important factor could be the language se-
lected for the literature search (English), which was originally
aimed at identifying scientific studies from over the world but was
biased against studies from nations where English is either not
the official language or not spoken at a sufficient level of profi-
ciency to facilitate publication in indexed journals.

Disturbance characteristics
Wildfire was the most frequent disturbance type, with 51 publica-

tions (27 studies), followed by wind (26 publications, 12 studies),
and insect outbreaks (13 publications, 11 studies). McIver and Starr
(2000) conducted a review that highlighted several mechanisms
through which burnt forests could be particularly vulnerable to
subsequent logging disturbance, including effects on burnt soil
and vegetation. This review also noted a lack of empirical evi-
dence regarding the consequences of post-fire logging, which trig-
gered numerous research projects on logging after wildfire (e.g.,
McIver and McNeil (2006); Donato et al. (2006); Castro et al. (2010)).
Wildfire produces some unique ecological responses such as sig-
nificant reductions in small-diameter aboveground biomass, as
well as direct and indirect wildlife mortality. Wildfire also gener-
ates direct impacts on people living in or near fire-prone forests
and spectacular images in the media. These factors have likely
generated more public and political demand for understanding
the various implications of wildfire as compared with windstorms
or insect outbreaks, including impacts related to subsequent sal-
vage logging. However, logging after large storms (e.g., Kramer
et al. 2014) and after massive insect outbreaks (e.g., Collins et al.
2011) have recently attracted increasing attention. The three kinds
of disturbances addressed here have increased — and will likely
continue to increase — in frequency and extent due to climate
change and other factors related to ecosystem conversion and
changes in land-use intensity (Seidl et al. 2017). Addressing ques-
tions related to post-disturbance management is a logical re-
sponse to increasingly prevalent situations.

Many ecological responses to disturbances depend largely on
disturbance severity, which highlights the relevance of studying
the response to disturbance and to subsequent logging under dif-
ferent degrees of severity. The severity of natural disturbance
among the retrieved publications ranged between 10% and 100%
(Fig. 5A; note the limitations in these data described in Appendix A).
We found that wildfire was generally described as having greater
disturbance severity than insect outbreaks or windstorms. Studies
on logging after wildfire or insect outbreaks were generally
tightly clustered at high severity values, whereas disturbance se-
verity by wind was less severe and more variable. Most of the
studies included in the systematic map were performed within
patches subject to disturbances of specific severity, thereby con-
trolling for this factor as much as possible. In only a few cases
(8 out of 49) did the studies directly address disturbance severity
as an explanatory variable, either through the selection of stands
within different degrees of severity (e.g., Brewer et al. 2012) or by
sampling severity gradients within plots (e.g., Royo et al. 2016).
Although the selection of plots of different disturbance severity is
an appropriate way to increase the robustness of the study design,
it may come at the cost of lower replication. In contrast, measur-
ing disturbance severity at smaller scales as a covariate can help
increase the explanatory power of management variables without

Fig. 3. Cumulative number of publications per disturbance type
included in this systematic map. [Colour online.]
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Table 1. Distribution of publications and study sites across geo-
graphic areas.

Continent Country
No. of
publications

No. of
studies

No. of
multisite
studies

North America USA 42 25 3
Canada 25 12 4

Europe Spain 10 4 0
Switzerland 4 1 1
Germany 2 2 0
Portugal 2 1 1
Estonia 1 1 0
Czech Republic 2 1 0

Asia Israel 1 1 0
South Korea 1 1 0

Total 90 49 9
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sacrificing replication. Of course, this is not always possible, and it
hinges on the spatial scale at which disturbance severity varies
and the spatial scale required to accurately assess the response
variable of interest.

We did not collect information on the spatial extent of the
disturbances because in many cases this information was not
available. However, it can be argued that large disturbances will
generally attract more research and provide opportunities for

greater replication. For example, disturbances in North America
commonly affect large areas (e.g., the 2016 fire near Fort McMurray,
Canada, which affected more than 0.5 million ha). Salvage logging
is, however, quite often performed in areas affected by small- or
medium-scale disturbances, which are common in Europe and
tend to be confined to areas with pre-existing road infrastructure.
Scientific studies performed in these areas might suffer from con-
straints in the sampling design (thus leading to exclusion from

Fig. 4. Location of the individual studies included in the systematic map. Number codes are indicated for reference (column Site_ref in the
systematic map database, Supplementary Table S31). Inset: Korean Peninsula.

Fig. 5. Disturbance and salvage logging characteristics. (A) Disturbance severity considered in the analyzed publications. This includes
1–3 points per publication, according to whether one general disturbance severity was reported or the publication explicitly included
sampling areas of different severity levels. (B) Time elapsed between the disturbance and subsequent salvage logging. Each data point
represents one publication. (C) Logging intensity in the analyzed publications. This includes 1–4 points per publication. Note that this applies
to the Intervention element only, as each publication also included a Comparator with 0% logging intensity. In all plots, the thick horizontal
lines are medians, and the boxes indicate the first and third quartiles of the values. Whiskers are either the minimum to maximum values or
1.5 times the interquartile range of the data, in which case outliers are shown as points. The values of disturbance severity and logging
intensity are broad approximations. Sample sizes for the graphics (panels A, B, and C, respectively): for fire, 53, 51, and 69; for insect
outbreaks, 15, 13, and 15; and for wind, 31, 26, and 21. [Colour online.]
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the systematic map), but in these situations, logging intensity is
likely to reach 100% across the disturbed area. As a consequence,
subjects worthy of in-depth analysis that are not covered by this
systematic map include the relationships among disturbance ex-
tent, the extent and intensity of salvage logging, and the ecologi-
cal response to disturbance and subsequent salvage logging.

Intervention characteristics
Ecological responses to salvage logging are often considered to

vary with the time elapsed between the disturbance and logging,
particularly in the case of discrete disturbance events such as
wildfire. For example, post-fire logging may have a greater impact
on soils if it is conducted directly after wildfire because it may
delay post-fire recovery (Wagenbrenner et al. 2016). If logging oc-
curs during or after the first growing season, natural regeneration
can be most severely affected due to the physical destruction of
resprouting stems and emerging seedlings (Martínez-Sánchez
et al. 1999; Castro et al. 2011). The studies included in the system-
atic map most often included information on when logging was
conducted, yet individual studies did not explicitly test the effect
of different timing of salvage logging. Salvage logging took place
between immediately and 10.5 years following the disturbance,
with an average of 1.8 ± 2.0 (mean ± 1 SD) years across publications.
Burnt stands were generally those salvage logged most quickly
(after 1.1 ± 0.8 years), followed by wind-affected stands (1.7 ±
0.8 years; Fig. 5B). In the case of disturbance by insects, salvage
logging often started several years after the beginning of the out-
break, and the variability in the timing of salvage logging was
much greater than for the other two disturbance types (4.4 ±
3.7 years). Insect outbreaks most often take several years to de-
velop, during which time each tree goes through several stages of
decline (Sullivan et al. 2010), and logging can take place at any
stage from before the beginning of the outbreak — pre-emptive
logging, not addressed here — to logging after several years of
infestation. Logging is sometimes conducted in an attempt to
prevent the infestation of particular stands or the expansion of
insect populations (Müller et al. 2018), and in other cases, it is
performed to avoid wood decay or the accumulation of fuel once
the stand has been affected. These are likely reasons for the
greater variability in the timing of salvage logging related to in-
sect outbreaks than after disturbance by fire or wind.

The intensity of salvage logging can be another crucial factor
explaining salvage logging effects, as already identified more than
six decades ago (Roy 1956). The studies in the systematic map
included a wide range of salvage logging intensity for the three
disturbance types considered, although intensity was mostly cat-
egorized in excess of 90%. Salvage logging intensity ranged be-
tween 25% and 100% and averaged 80% ± 24% (including up to four
values per publication). Average intensity was 79% ± 24% for wild-
fire, 90% ± 15% for insect outbreaks, and 79% ± 27% for wind dam-
age (Fig. 5C; as with disturbance severity, note the limitations in
these data, described in Appendix A). In some cases, the effect of
different logging intensity was assessed within individual studies;
this often included qualitative differences in logging practices
such as the removal of slash or the retention of standing dead
trees. Notably, in one experimental study, stands under five
classes of logging intensity were established, ranging from 0% to
100% (Ritchie et al. 2013). The authors further assessed the effect of
the amount of basal area retained, which explained the variation
in some of the response variables better than the categorical ex-
perimental factor (Ritchie et al. 2013). Such studies can provide
important insights into the responses to salvage logging and can
evaluate the effectiveness of best management practices, as
logging — and other disturbances — may not necessarily produce
generalizable effects but rather effects that vary nonlinearly ac-
cording to disturbance intensity or severity (Buma 2015; Foster
et al. 2016; Leverkus et al. 2018a). This has long been acknowl-
edged in traditional green-tree silviculture in which the retention

forestry approach was created under the acknowledgement that
the effects of commercial clearcutting can be greatly mitigated by
leaving behind structures that favour the continuity of the forest
ecosystem (Gustafsson et al. 2012; Lindenmayer et al. 2012). The
rapid deterioration of wood quality following disturbance-induced
mortality reduces the profitability of salvage operations com-
pared with green-tree silviculture, and this could be a limitation
for retention approaches. Nevertheless, the potential benefits of
the retention of biological legacies (Franklin et al. 2000) during
post-disturbance harvest operations should be more profoundly
explored (Lindenmayer et al. 2018; Thorn et al. 2018).

The methods employed in salvage logging operations can also
modulate the effect of the intervention. For example, mechanized
harvesting equipment is more likely to compact soils than man-
ual cutting with chainsaws, but it may also produce novel, posi-
tive effects such as the formation of ruts that fill with water and
create persistent aquatic habitat (Ernst et al. 2016). Logging oper-
ations were often not described well enough in publications in-
cluded in the systematic map to identify logging methods,
sometimes because the operations were not observed by the re-
searchers. Harvesting with feller–bunchers was mentioned in
15 studies (not publications), and manual cutting was mentioned
in 10 studies. Ground-based yarding was mentioned in 20 studies,
and yarding by helicopter was mentioned in two studies. Extrac-
tion of wood by helicopter is well known to reduce soil impacts
compared with ground-based yarding. However, helicopter use is
extremely costly; this and the low economic value of disturbance-
affected timber and the depressed price that typically follows
large disturbance events are likely reasons for the scant use of
helicopters.

Stand characteristics
Of the 49 studies included in the systematic map, 11 were estab-

lished in broadleaf forests or included broadleaf stands, 33 were
established in or included conifer stands, 10 included mixed
stands, and 3 included combinations of stand types without dif-
ferentiation. In most cases, the stands fell into the “mature” cat-
egory. There were 37 tree species dominating or co-dominating
the stands addressed in the retrieved publications. For further
details on the characteristics of stands among the retrieved stud-
ies, see Appendix C.

Characteristics of study designs
True replication is an important factor reducing the potential

for bias of individual studies. True replication of salvage logging
generally did not exceed N = 10 stands (Fig. 6; presented at the
scale of publications because some publications of the same stud-
ies made use of different subsets of a larger design, e.g., Leverkus

Fig. 6. The number of spatially independent salvage logging replicate
units used in the 90 publications, classified by disturbance type.
[Colour online.]
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et al. 2014, 2016). Most studies addressed the issue of low replica-
tion by establishing hierarchical sampling designs (i.e., with sev-
eral subunits within salvage and control units) and by controlling
the effects of potentially confounding co-variables. These strate-
gies were also employed in many of the studies that were excluded
due to lack of true replication (Supplementary Table S21). As a
result, we do not discard the possibility that some of those ex-
cluded studies could provide valuable insights despite the lack of
true replication, yet for the purpose of inclusion in the systematic
map, we elected to stay with the study inclusion criteria estab-
lished in the protocol aimed at reducing the potential for bias
(Leverkus et al. 2015a).

In 11 of the 49 studies, the selection of stands for management
intervention was at least under partial control by the researchers
and included randomization in the allocation of treatments to
spatial units. In the rest of the studies, researchers made use
of areas that were either salvaged or left unsalvaged to achieve
management objectives rather than to conduct research. Both
approaches provided several advantages and disadvantages. Non-
experimental studies have a risk of bias between intervention and
comparator stands, for example, due to the selection of more
productive stands, or those nearest to roads, for salvage opera-
tions. Further, the choice not to salvage log particular stands is
sometimes justified by reasons such as fiscal constraints and liti-
gation; stream, hillside, and habitat protection; or inaccessibility
(McGinnis et al. 2010), highlighting the potential for bias. Still, in
non-experimental studies, care was generally taken to select sal-
vaged and unsalvaged stands of similar pre-disturbance condi-
tions to minimize such bias. In addition, some studies controlled
for random spatial variation by implementing a BACI design, i.e.,
by measuring how the response variables changed over time from
pre-logging to post-logging and in stands with and without the
salvage logging intervention, thus providing a robust method for
addressing bias. Such a BACI design was implemented in 36% of
the 11 studies in which salvage logging was performed experimen-
tally and in 19% of the 37 non-experimental studies. One good
example of experimental design is the one established after the
Summit Fire in Oregon, which included randomization, blocking,
treatments applied at an appropriate spatial scale, replication,
consideration of disturbance severity and salvage logging inten-
sity, and a BACI sampling design (McIver and Ottmar 2007). Such
studies are extremely difficult to implement, as exemplified by
one paper that reported the conceptualization of a randomized
complete block design that, however, could not be turned to practice
due to legal constraints and that resulted in a pseudo-replicated
design comparing salvaged private forest with unsalvaged public
land (Slesak et al. 2015), hence leading to exclusion from our sys-
tematic map.

Not all true experimental studies are necessarily ideal, and
some can suffer problems of inappropriate spatial scale and lack
of replication (e.g., Francos et al. 2018), but such problems were
not detected in the retrieved studies. However, a general disad-
vantage of experiments that were under the control of research-
ers is that the logging intervention was typically performed in
close compliance with environmental prescriptions (e.g., Ne’eman
et al. 1997; McIver and Ottmar 2007; Leverkus et al. 2014), thus
the intervention may have lesser effects than under non-
experimental, “real-world” management. Besides, some non-
experimental studies had the advantage that they could be
conducted at spatial scales larger than what would be possible
under experimental approaches by selecting several disturbance
patches with and without intervention that fulfilled certain crite-
ria across entire regions or countries (Priewasser et al. 2013; Águas
et al. 2014). In this systematic map, most studies (36) were estab-
lished within the perimeter of a single disturbance event, thereby
establishing the disturbance as the constraint on the inference
population. However, two studies (one post-fire study and one
post-insect study) included two disturbance events, four included

four events, one included five, one included 14, and one included
20 (all post-fire). Three studies on post-windthrow logging ad-
dressed one disturbance event (e.g., one storm) but within 7, 11, or
30 spatially independent blowdown patches; one study assessed
90 individual patches caused by two storms.

As a corollary of the previous discussion, it is difficult to apply
strict, identical quality criteria to all studies, and there is not one
single ideal study design. We consider all studies included in this
systematic map to be of sufficient quality for providing relevant
information under certain conditions.

Characteristics of the responses
Studies explicitly focusing on the response of ecosystem ser-

vices to salvage logging were scant. Most publications addressed
ecosystem elements and structures, fewer studied ecosystem
functions, and very few addressed the human well-being compo-
nent of ecosystem services directly (Fig. 1). This is consistent with
the findings of a global literature review on ecosystem service
studies (Boerema et al. 2017), and it highlights the need to better
address the human component of salvage logging effects to im-
prove the transferability of results to management decisions
(Leverkus and Castro 2017). On the other hand, most of the publi-
cations (79%) included data on one or two measurements of the
response variable undertaken at different times, and the maxi-
mum was 20 measurements (Fig. 7, inset). Four publications in-
cluded continuous measurements taken over 3 or 6 years.

The most frequent response variables examined were related to
tree regeneration (addressed by 51% of the publications; Fig. 7).
These included the density, basal area, growth, and survival of
trees established after disturbance. This was no surprise, as estab-
lishment of trees is perhaps the most direct indicator of the re-
covery of the previous ecosystem. Further, some agencies, e.g., the
USDA Forest Service, are required by law to monitor and rectify
tree regeneration failure associated with management activities.
In many situations, lack of appropriate regeneration means that
trees would have to be planted, so that natural regeneration pro-
vides direct value for society (Fig. 1). In fact, as early as in 1956, a
report (Roy 1956) already advised “When you find good reproduc-
tion, protect it. Try to save the high costs of artificial regeneration.”

Second in importance were the response variables related to
ground cover (addressed by 42% of publications). Typically, this
would include vegetation cover, a useful measure of protection
from soil erosion or of primary productivity. Cover of pits and
mounds, as well as cover of deadwood, may be used as indicators
of the microclimatic and microtopographic habitat availability
and heterogeneity. Bare soil cover could be an indicator of avail-
able seedbed in measurements made immediately after the dis-
turbance or of ground disturbance and lack of regeneration in
both early and subsequent measurements. Finally, skid trail cover
would indicate soil disturbance and compaction.

The third most frequent response variable type was related to
the availability and characteristics of deadwood (addressed by 41%
of publications). This included snags, downed logs, branches, and
twigs, often separated by species, size, and decay stage. Deadwood
after disturbance is an important component associated with
many post-disturbance specialists, including birds and beetles
(Thorn et al. 2018). Standing trees can act as habitat for species
that live in tree hollows (Lindenmayer and Possingham 1996) and
as perches or visual cues for seed dispersers (Castro et al. 2012;
Cavallero et al. 2013). Deadwood constitutes a pool of nutrients
that is released to the soil in the mid and long terms through
decomposition (Marañón-Jiménez and Castro 2013; Molinas-González
et al. 2017a). It can also ameliorate microclimatic conditions to
enhance tree regeneration (Castro et al. 2011) and help reduce
herbivory by large ungulates (Leverkus et al. 2015b). However,
there is also a risk that the wood left behind by disturbance con-
stitutes the means of propagation of a subsequent disturbance
such as wildfire or insect outbreaks. As a result, in many studies,
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the aim of deadwood characterization was to assess the amount
and features of fuels, including the modelling of future fuel char-
acteristics and of potential fire behaviour (McIver and Ottmar
2007; Keyser et al. 2009; Donato et al. 2013; Hood et al. 2017). One
publication with a chronosequence approach provides a thorough
assessment of the time frames at which fuels are enhanced or
reduced by salvage logging (Peterson et al. 2015). In fact, risk
reduction of subsequent disturbance is one of the main justifica-
tions for salvage logging (Müller et al. 2018), including fire but also
the risk of bark beetle outbreaks after windstorms (Leverkus et al.
2017) and other linked disturbances (Buma 2015). Nevertheless, we
identified only two studies addressing resilience to subsequent
wildfire as a response variable (Fraver et al. 2011; Buma and
Wessman 2012). This is likely due to the complex concatenation of
disturbance events required to assess such a variable empirically:
it requires both intervention and comparator stands to be fol-
lowed by the same subsequent disturbance and compliance with
the additional criteria established in our protocol. Fuel character-
ization and modelling of fire behaviour are thus logical ways to
address such questions, and our systematic map may have left out
relevant studies in this regard. Conversely, the amount of dead-
wood can also be used as an indicator of the size of the carbon pool
in disturbed ecosystems. The trade-off between C retention and
wildfire prevention can be solved by assessing the C cycle directly
(Serrano-Ortiz et al. 2011) or by focusing independently on recal-
citrant C pools (large trees, snags, coarse wood, and soil) and labile
fuels (understory shrubs, fine wood, and duff) (Powers et al. 2013);
the studies in the systematic map generally allow this approach
due to the explicit consideration of different size classes.

The fourth most frequent type of response variable was non-
tree vegetation (beyond mere percent cover values; addressed by
28% of publications). Although we avoided including biodiversity
responses in this map, we did include vegetation as an indicator of
the recovery of ecosystem structure, habitat, and soil retention.

Next, soil physical and chemical properties (addressed by 26% of
publications) included measurements related to soil fertility. The
remaining response variable categories were addressed by <15% of
the publications (Fig. 7). Both erosion control and the abundance
of exotic or invasive species were addressed in only six publica-
tions, which is surprising given that they constitute some of the
core concerns of managers after natural disturbances. Negative
results and the absence of invasive species could partially explain
the lack of published results on this topic (e.g., Leverkus et al.
2014). Next, non-deadwood C pool was addressed in five studies.
Biological indicators of nutrient cycling and riparian ecosystem
functioning were addressed in four publications. Again, the latter
variable comes as one of the main concerns regarding salvage
logging, yet with very little research (Karr et al. 2004). This likely
has to do with the spatial scale defined for inclusion in the sys-
tematic map (that of salvage logging intervention), which ex-
cluded several studies implemented at the scale of watersheds
and with problems of replication. Only one study addressed seed
dispersal and one addressed drinking water quality (perhaps the
one publication most clearly focusing on the human well-being
side of the ecosystem services cascade; Fig. 1). Avalanche protec-
tion in steep hills is another important ecosystem service affected
by salvage logging (Wohlgemuth et al. 2017), yet it was not in-
cluded in the systematic map as a response because the one study
addressing it (Schönenberger et al. 2005) lacked replication.

Conclusions
The systematic map presented here provides a rigorous account

of the empirical studies addressing the effects of salvage logging
on supporting and regulating ecosystem services that fulfil some
qualitative requirements. It shows that substantial research has
been conducted in the last two decades, particularly after the
publication of an article in Science in 2004 calling for a careful
revision of post-disturbance management practices (Lindenmayer

Fig. 7. Number of publications that reported different measured response variables, for each disturbance type. Water, drinking water quality;
Dispersal, seed dispersal; Resilience, capacity to regenerate after subsequent wildfire (i.e., wildfire after salvage logging); Nutrient, biological
indicators of nutrient cycling; Riparian, riparian ecosystem functioning; Carbon, non-wood carbon pool; Erosion, soil erosion by wind or
water; Invasives, invasive and (or) exotic species; Temp., air, water, or soil temperature; Soil chem., soil chemical properties; Soil phys., soil
physical properties; Vegetation, vegetation composition; Deadwood, stand structure and deadwood amount and characteristics; Cover, ground
cover, including cover of vegetation; Regen., tree regeneration. Note that biodiversity responses were excluded from the systematic map.
Inset: distribution of publications according to the number of individual measurements taken for the response variables. Both y axes have
the same meaning. [Colour online.]
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et al. 2004). Our systematic map is based on a comprehensive
and systematic screening of the scientific literature on post-
disturbance logging written in English and considers a range of
stand, disturbance, and logging characteristics and of outcomes.
It should help managers and policy-makers identify the most rel-
evant studies addressing the effects of salvage logging and thus
spare them the work of searching from scratch. It is also relevant
for scientists who aim to synthesize previous work and it identi-
fies knowledge gaps to help direct future work. For example, we
identified a large geographic gap across all continents except Eu-
rope and North America. We also found that there has been only
very limited research focusing on the link between ecosystem
elements and processes and the benefits and values for human
society, which ultimately define many management schemes. It
should also be noted that very few of the retrieved studies specif-
ically addressed the effects of deadwood retention. Whereas
small-scale retention is nowadays a well-known practice in green-
tree harvesting and much research has been conducted on the
topic (Fedrowitz et al. 2014), the benefits of such practices in dis-
turbed forests are not yet well known and require additional re-
search (Lindenmayer et al. 2018; Thorn et al. 2018). Finally, the
systematic map identified some areas with substantial research
where systematic review or meta-analysis can be performed:

• the effect of salvage logging on recalcitrant vs. labile deadwood
components (i.e., C pool vs. fuel loads) and how these vary over
time;

• the effect of salvage logging on tree regeneration;
• the effect of the time between disturbance and subsequent

logging on response variables; and
• the effect of disturbance type on the ecological effects of sal-

vage logging.
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Appendix A. Systematic map database and data
coding strategy

Databases for systematic maps are usually encouraged at the
level of individual study sites (James et al. 2016). However, due to
the characteristics of the retrieved studies, we decided that the
most coherent presentation of the data would be at the publica-
tion level. This was, on the one hand, because some publications
included two to several disturbance events and (or) study sites
across a region. Also, some study sites resulted in multiple publi-
cations that used different subsets of the overall experimental
design. In these cases, some variables such as forest type or repli-
cation varied even within one study site (e.g., Castro et al. 2012;
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Leverkus et al. 2014), and our database (Supplementary Table S3)
thus provides detailed information for each publication. Despite
the publication-level structure of the database, we included one
column with the name of the study site(s) of each publication to
allow relating publications from the same study and obtaining
study-level summary information.

We aimed to populate the database with information items
from each publication (see below), either directly from the publi-
cation or from different publications related to the same study or
directly from the authors; however, not all of this information
was always available and exceptions were noted in the database
with “NA”. For each publication, the database includes:

1. Bibliographic information. Columns: Authors, Year, Title,
Publication, Volume and pages, DOI.

2. Source of the publication. This was one of the following:
(a) primary search (in Web of Science or Scopus); (b) secondary
search (in specialized search engines and websites); (c) supple-
mentary search (in reference lists of review articles and other
publications). Column: Source.

3. Location of the study. Columns: Country, Region/State, X, Y.
4. Name of the study site. This variable aims to relate different

publications in the database to each other due to them ad-
dressing the same study. Columns: Site, Site_ref (the latter
relates to Fig. 4).

5. We also recorded whether a study addressed one or multiple
study sites or sites across a geographic region. Column: Regional
or multi-site (y = yes; n = no).

6. Type of disturbance: wildfire, insect outbreak, or windstorm.
Column: Disturbance type.

7. Disturbance severity. This was obtained in a coarse way
through indications of percent tree mortality or percent basal
area dead or through qualitative indications. Where a sever-
ity range was provided, we recorded the median of that range.
Some studies only provided a qualitative estimation of sever-
ity. On the basis of our experience in the relationship be-
tween qualitative and quantitative estimates in the retrieved
publications and with the aim of describing the retrieved
literature in homogeneous terms, we attributed the follow-
ing severity percentages to them: Low, 30%; Low to moderate,
45%; Moderate, 60%; Moderate to high or Mixed or Variable,
75%; High, 90%; and Severe, 100%. Where one publication
explicitly addressed sampling areas of different severities, we
included all values in separate columns. Note that distur-
bance severity can be spatially quite variable and that we only
provide one median value per publication or per severity
class within each publication. Columns: Disturbance Severity
(mean percentage, provided for all publications), Disturbance
Severity “b” (for publications that explicitly addressed a sec-
ond level of severity), and Disturbance Severity “c” (for pub-
lications that explicitly addressed a third level of severity). NA
values in the latter columns indicate that the publication did
not explicitly address a second or third disturbance severity
level.

8. Time between disturbance and logging. We obtained the time
(in years) elapsed between the disturbance and logging. As for
disturbance severity, we recorded median values in the cases
for which a range of values was provided. This was because
some studies included a range of time periods, for example,
due to disturbance not happening in one discrete moment
but over a period of time (particularly insect outbreaks), sal-
vage logging occurring over some period of time, or lack of
exact knowledge on when salvage logging took place. Column:
Time disturbance–logging.

9. Logging intensity. Similar to the data on disturbance severity,
we obtained an approximation of logging intensity through
quantitative or qualitative indications available in the publi-
cations. The quantitative indications referred to the percent

basal area or percent trees that were removed. For descriptive
purposes, we transformed qualitative indicators to percent-
ages as follows: intensity category Moderate to low, 50%; Mod-
erate or Variable, 75%; High, 90%; and Clearcut, 100%. When
one publication explicitly addressed sampling areas of differ-
ent logging intensity, we included all values in different
columns. Columns: Logging intensity (mean percentage, pro-
vided for all publications), Logging intensity “b” (for publica-
tions that explicitly addressed a second level of intensity),
Logging intensity “c” (for publications that explicitly ad-
dressed a third level of intensity), and Logging intensity “d”
(for publications that explicitly addressed a fourth level of
intensity). NA values in the latter columns indicate that the
publication did not explicitly address a second, third, or
fourth logging intensity level.

10. Logging method. We recorded any indication of machinery or
methods employed in the felling and extraction of the wood.
More than one method was employed in some studies, in
which case we recorded all of the methods that were men-
tioned. We categorized these logging methods into manual
cut or use of chainsaws; harvesting with feller–bunchers, har-
vesters, or similar machinery; ground-based yarding with
skidders, tractors, log forwarders, cable, or winch; and heli-
copter yarding. In the database, we provide one column con-
taining all of the methods mentioned in one publication
(column Logging method) and six columns with entries on
the use of each individual method (columns Tractor/Skidder/
Forwarder; Feller–buncher; Winch/cable yarding; Helicopter;
Manual cut/chainsaws; and Slash treatment).

11. Forest type. According to study descriptions, for each publi-
cation, we recorded whether it included broadleaf, conifer,
and (or) mixed stands or a combination of these with no dif-
ferentiation. The database contains four columns with bino-
mial entries (1/0) for each of Broadleaf, Conifer, Mixed, and
Scrambled (i.e., combination of stand types without differen-
tiation). Individual studies may have values of 1 for one or
more stand types.

12. Forest age before disturbance. We obtained information on
the age of stands, which was generally provided as a number
of years since previous stand-replacing disturbance. For con-
sistency of information among studies, we classified this in-
formation into three broad categories: (a) young forest
(<50 years old); (b) mature forest (50–99 years); and (c) old
forest (≥100 years). Columns: Young, Mature, and Old.

13. Dominant canopy species. We recorded the name of the spe-
cies dominating the studied stands. If there was more than
one, we recorded up to five dominant species, and above this
amount, we specified that it was a mixed stand. When one
study included multiple stands of different composition, we
recorded the names of all species dominating at least some of
the stands. The names of all dominant species in any individ-
ual study are provided in the column “Main tree species”. The
presence of each individual species is provided with binomial
entries in the columns “Abies alba” through “Tsuga mertensiana”.

14. Randomization. We recorded whether there was randomiza-
tion in the allocation of treatments to spatial units. Column:
Randomization.

15. Type of design: Control–Intervention (CI), Before–After
Control–Intervention (BACI), or a mixture of both approaches.
BA designs without controls were excluded, as indicated in
Study Inclusion Criteria. Column: Design (the entry CI/BACI
indicates that each approach was used for a subset of the
measurements).

16. Replication of population (disturbed forest). We recorded the
number of disturbance events that defined the study popula-
tion (i.e., excluding disturbances occurring after logging). In
the case of wildfire, this was relatively easy to define. For
insect outbreaks, we considered that one event affected a
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whole region. As wind does not produce continuous distur-
bance surfaces as fire does, we also recorded the number of
blowdown patches considered in windthrow studies. Col-
umn: N disturbed sites.

17. Replication of intervention. We assessed the number of
spatially independent stands or patches that were salvage
logged. This task was often difficult due to the great variabil-
ity in the scale of studies, sampling strategies, and plot lay-
outs. In designed experimental studies, the replication was
easy to obtain, but in other studies, we provided a minimum
number of replicates based on study site descriptions, maps,
or contact with authors. Column: Replication SL.

18. Number of measurements. We recorded the number of times
that field measurements were taken. Column: N measure-
ments.

19. Response variables measured. We recorded whether each
publication sampled each of the following: (a) stand structure
and deadwood amount and characteristics, (b) tree regenera-
tion, (c) ground cover (cover of plants, bare soil, rocks, etc.),
(d) soil physical properties, (e) soil chemical properties, (f) bio-
logical indicators of nutrient cycling, (g) vegetation, (h) soil
erosion (by wind or water), (i) abundance of exotic or inva-
sive species (Exotics/invasives), (j) temperature (air, soil,
water), (k) resilience to subsequent disturbance (e.g., tree
regeneration after another, subsequent disturbance), (l) ecosys-
tem C pools (excluding those in (a)), (m) riparian ecosystem
functioning, (n) seed dispersal, and (o) drinking water
quality.
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Appendix B. Literature searches and
screening — results

The initial search in Web of Science provided 3979 results, with
an additional 292 publications after the update in 2017 (Fig. 2). The
search in Scopus provided an additional 70 non-duplicated publi-
cations, for a total of 4341. Of these, roughly 10% (N = 401) were
randomly selected to assess homogeneity in the application of
criteria among reviewers. This initial exercise, performed by ABL
and LG, provided a kappa test value of � = 0.47, indicating only
“moderate” agreement among reviewers and thus heterogeneity
in the application of inclusion criteria (Landis and Koch 1977).
After revising the application of inclusion criteria and performing
the test again, the new � value was 0.69, which is considered
“substantial” agreement (Landis and Koch 1977). The subsequent
title selection resulted in 3649 titles being removed. Of these, 323
included the word “salvage” in the title, keywords, or abstract;
their titles were again screened and 47 were brought back to the
abstract selection phase. This resulted in 3602 titles being dis-
carded and 739 being kept. The secondary search provided an
additional 58 non-duplicated articles with a relevant title, yielding
797 abstracts to be reviewed.

Before abstract selection, homogeneity of application of inclu-
sion criteria was again assessed. In total, 63 articles were ran-
domly selected for independent evaluation by three members
of the review team. The values that were obtained were � = 0.68
(ABL & LG), � = 0.43 (LG & JC), and � = 0.43 (JC & ABL). After
discussing the criteria again and reassessing abstract inclusion,
the obtained � values were 0.71, 0.62, and 0.72, respectively, so

the process continued. Of the 797 abstracts, 466 were consid-
ered irrelevant and 247 were kept. An additional 27 studies
with relevant titles and abstracts were obtained from the ref-
erence lists of selected articles and reviews on the topic. This
resulted in a total of 274 full-length articles being assessed
(Fig. 2).

Of the full-text articles assessed, 90 were kept and 184 were
excluded for the reasons outlined in Table B1 (for references of
excluded publications and reasons for exclusion, see Supplemen-
tary Table S21). The most frequent cause for exclusion was the lack
of true replication, which led to the exclusion of 47 articles. Sec-
ond in frequency, 38 articles did not measure a response variable
that was appropriate for this systematic map. These studies
mostly focused on the response of individual organisms or biotic
communities, and they were excluded only at the last stage of
article screening (i.e., there was no limitation on the outcome in
the search string and the articles were allowed to pass the title and
abstract selection despite obvious focus on biodiversity compo-
nents). We chose not to broaden the scope of this systematic map
to include biodiversity as a response variable because this was the
target of another global review (Thorn et al. 2018). Next, 18 of
the retrieved studies included a response variable of interest, but
the same data were also found in another publication by the same
authors. This mostly included data related to study site descrip-
tions (e.g., percent ground cover of vegetation and other cover
categories) rather than dual publication of research outcomes.
The five following reasons for exclusion relate to the lack of an
appropriate design for inclusion (Table B1). We were not able to
obtain nine full-text documents. One article was excluded because
the methods were not described well enough to assess the inclu-
sion criteria, and one was excluded because we lacked fluency in
the publication’s language (Slovenian) despite it having an ab-
stract translation in English.
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Table B1. Reasons for exclusion from the systematic map at full-text
screening.

Reason for exclusiona

Criterion
type

No. of
articles

No true replication Validity 47
No appropriate response variable Inclusion 38
Redundant data Validity 18
No appropriate comparator Inclusion 14
Not empirical study Inclusion 13
Study design not appropriate Validity 13
No appropriate population Inclusion 11
Intervention confounded with

other interventions
Inclusion 10

Paper not available 9
No appropriate intervention Inclusion 6
BA (before–after) design Inclusion 3
Methods not well described Validity 1
Language Inclusion 1

Total 184
aIn cases where one study had more than one reason for exclusion, only the first

unmet study inclusion/validity criterion (in the order described in the methods)
was recorded.
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Appendix C. Stand characteristics

Results
Of the 49 studies included in the systematic map, 11 were estab-

lished in broadleaf forests or included broadleaf stands, 33 were
established in or included conifer stands, 10 included mixed
stands, and 3 included combinations of stand types without dif-
ferentiation (“scrambled”). Regarding pre-disturbance forest
age, 5 studies included young stands, 28 included mature
stands, 12 included old stands, and 10 studies did not provide
sufficient information to assess this variable. Note that these
figures add to more than 49 (the number of studies included in
the systematic map) because some studies included more than
one stand type and (or) forest age. Table C1 shows the number
of studies that included each stand type by stand age combina-
tion.

We recorded 37 tree species as dominating (or co-dominating)
the canopy of individual stands in the included studies (Table C2).
At the publication level, quaking aspen (Populus tremuloides) was
the most frequent dominant species among broadleaved tree spe-
cies and lodgepole pine (Pinus contorta) was the most frequent
among conifers (Table C2). Wind was the disturbance type in
which the largest number of dominant broadleaf species was in-
cluded among the identified studies (n = 10 vs. n = 4 for wildfire or
insect outbreak; Table C2). In contrast, wildfire studies contained
the largest number of dominant conifer species (n = 15 vs. n = 11 for
insect outbreaks and n = 10 for wind; Table C2).

Discussion
Conifer stands were the most frequent forest type addressed by

the studies on salvage logging. This can partially be explained by
the abundance of studies in boreal or sub-boreal areas of North
America and the fact that severe insect outbreaks often occur in
forests with low species diversity such as the even-aged, lodgepole
pine dominated forests of the Rocky Mountains. Wildfire is also
a major driver of the dynamics of conifer forests (Mutch 1970;
Kuuluvainen and Aakala 2011). Broadleaf species are also gener-
ally deciduous in temperate and boreal ecosystems, which makes
them less susceptible to major wind disturbances occurring in
winter (Mayer et al. 2005) and more likely to regenerate after
defoliation by insects.

Among the conifers, pines (Pinus), with 66 cases, were by far the
most frequent genus that dominated the study areas, followed
by spruce (Picea, 32 cases), fir (Abies, 14 cases), and Douglas-fir
(Pseudotsuga, 6 cases). The diversity of pine species and the genus’
adaptation to broad climatic conditions such as drought-resistant
species such as P. halepensis in the Mediterranean and cold-
resistant ones such as P. banksiana in boreal North America ex-
plain its abundance. The most common dominant broadleaf
genera were Populus (24 cases) and Fagus (6 cases). In combination,
these genera span large portions of Europe and North America;
this highlights the potential applicability of results from studies
included in this systematic map to post-disturbance management
in many places throughout these two regions. The distribution of
forest age can also be considered representative of typical forest
conditions in these regions. Most forests in developed nations are
under some form of management and should thus not be ex-
pected to be in the “old” category, as documented by the system-
atic map. However, lack of understanding regarding the effects
of disturbance and subsequent salvage logging on young for-
ests represents a significant knowledge gap, as this forest age is
relatively abundant. Although young and typically small-
diameter trees are less susceptible to windthrow and insect

Table C1. Number of studies containing stands of each stand type and
age combination.

Stand age

Stand type (number of studies)

Broadleaf Conifer Mixed Scrambled

Young 1 4 0 0
Mature 6 19 9 2
Old 2 8 2 0
N/Aa 2 7 1 1

aN/A = information not available.

Table C2. Distribution of publications relative to disturbance type
and the occurrence of dominant tree species.

Dominant tree
species

No. of publications by disturbance type

Wildfire
Insect
outbreak Windthrow Total

Broadleaves
Acer rubrum 0 0 1 1
Acer saccharum 0 0 1 1
Betula papyrifera 0 1 1 2
Carya spp. 0 0 2 2
Eucalyptus globulus 2 0 0 2
Fagus grandifolia 0 0 1 1
Fagus sylvatica 0 1 4 5
Populus balsamifera 5 1 0 6
Populus spp. 0 0 1 1
Populus tremuloides 12 1 4 17
Prunus serotina 0 0 1 1
Quercus ilex 1 0 0 1
Quercus spp. 0 0 2 2

No. of speciesa 4 4 10 13

Conifers
Abies alba 0 1 3 4
Abies balsamea 0 1 2 3
Abies grandis 1 0 0 1
Abies lasiocarpa 4 0 2 6
Larix occidentalis 1 0 0 1
Picea abies 0 3 4 7
Picea engelmannii 4 0 2 6
Picea glauca 7 1 0 8
Picea mariana 6 1 2 9
Picea spp. 0 1 0 1
Picea × lutzii 0 1 0 1
Pinus banksiana 5 0 4 8
Pinus contorta 7 6 3 16
Pinus densiflora 1 0 0 1
Pinus elliottii 0 0 1 1
Pinus halepensis 2 0 0 2
Pinus nigra 6 0 0 6
Pinus pinaster 11 0 0 11
Pinus ponderosa 12 2 0 14
Pinus spp. 0 1 0 1
Pinus sylvestris 4 0 0 4
Pinus taeda 0 0 2 2
Pseudotsuga menziesii 6 0 0 6
Tsuga mertensiana 0 1 0 1

No. of speciesa 15 11 10 24

Mixed broadleavesb 0 0 2 2
Mixed conifersb 1 0 1 2
Mixed conifers and

broadleavesb

0 0 1 1

aNumber of species with non-zero values.
bIncluded more than five dominant species in individual stands.
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attack, they are susceptible to wildfire and post-fire salvage log-
ging despite their comparatively low wood volume (Leverkus et al.
2018).
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