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The soil-borne basidiomycete Rhizoctonia solani (strain AG2-2) incite root rot disease 

in sugar beet (Beta vulgaris). The overall objective of this thesis work was to enhance 

the genomic knowledge on this pathogen and induced responses in the host to promote 

breeding of better performing cultivars. The AG2-2IIIB R. solani isolate sequenced in 

this project had a predicted genome size of 56.02 Mb and encoded 11,897 genes. In 

comparisons with four other R. solani genomes, the AG2-2IIIB genome contained more 

carbohydrate active enzymes, especially the polysaccharide lyase group represented by 

the pectate lyase family 1 (PL-1). When predicting for small, cysteine rich and secreted-

proteins (effectors) 11 potential candidates were found to be AG2-2IIIB strain specific. 

In parallel, transcript data was generated from sugar beet breeding lines known to express 

differential responses to R. solani infection. After extensive data mining of the achieved 

information a handful of genes with potential roles in sugar beet defence were identified. 

Particularly three Bet v I/Major latex protein (MLP) homologous genes caught the 

interest and were further investigated together with three R. solani (Rs) effector 

candidates selected based on their transcript profiles during infection of sugar beet 

seedlings. They are: a rare lipoprotein-A like protein (RsRlpA), the chitin-binding lysin 

motif effector (RsLysM) and a cysteine-rich protein (RsCRP1). The three fungal 

effectors were induced upon early infection and were heterologously expressed in 

Cercospora beticola, a sugar beet leaf spot fungus, facilitating functional analysis. 

RsLysM showed perturbation of chitin-triggered plant immunity as expected but did not 

protect fungal hyphae from degradation. RsRlpA is localized to the plant plasma 

membrane and has capacity to suppress the hypersensitive response. When monitoring 

cellular localization of RsCRP1 it was found to target both plant mitochondria and 

chloroplasts. RsCRP1 was also used in pull-down experiments followed by amino acid 

sequencing from which a potential interacting protein, a plasma membrane intrinsic 

protein, BvPIP1;1 was proposed to be a candidate. The studies on the fungal effectors 

and the potential plant defence candidates involving BvMLPs and BvPIP1;1 are on-going 

including assays of gene homologs in Arabidopsis to promote mechanistic understanding 

of the sugar beet – R. solani interactions together with protein-protein interactions and 

associated assays. Results to be implemented in resistance breeding. 
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Rhizoctonia solani är en jordburen svamp som tillhör Basidiomycota och orsakar rotröta 

i sockerbetor (Beta vulgaris). Det övergripande målet för denna avhandling var att 

studera R. solani AG2-2IIIB genomet för att identifiera faktorer som har betydelse vid 

infektionen av sockerbeta samt att få bättre förståelse för hur sockerbetor reagerar vid en 

infektion. Målet på sikt är att kunna utveckla bättre kontrollstrategier för sockerbeta mot 

infektion av R. solani. R. solani AG2-2IIIB hade ett predikterat genom på 56,02 Mb och 

11 897 gener. I jämförelse med fyra andra R. solani genom var AG2-2IIIB det största 

och hade fler kolhydrataktiva enzymgrupper, speciellt polysackarid lyaser innehållande 

pektatlyas-familjen 1 (PL-1), än övriga grupper. Små, cystein-rika och utsöndrade 

proteiner (effektorer) predikterades i genomet och 11 potentiella kandidater unika för 

AG2-2IIIB kunder urskiljas. Parallellt genererades transkriptdata från sockerbetslinjer 

med olika resistensnivåer mot Rhizoctonia infektion. Efter omfattande dataanalyser 

identifierades en handfull gener som potentiellt har betydelse för sockerbetsförsvaret. I 

synnerhet tre gener homologa till Bet v I/Major latex proteiner (MLP) urskildes och 

undersöktes ytterligare. Även tre R. solani (Rs) effektorkandidater: ett sällsynt 

lipoprotein-A (RlpA)-liknande protein, den kitinbindande lysinmotiv (LysM) effektorn 

och ett cystein-rikt protein (CRP1), utvalda baserat på deras genexpression vid infektion 

av sockerbetsplantor studerades i detalj. De tre svamp-effektorgenerna inducerades vid 

tidig infektion och för att kunna göra funktionella analyser transformerades de in i 

Cercospora beticola, en bladfläcksorsakande sockerbetspatogen. RsLysM visade som 

förväntat en störning av kitin-utlöst växtimmunitet men skyddar inte svamphyferna från 

nedbrytning orsakad av kitinaser. RsRlpA lokaliseras till växtplasmamembranet och kan 

undertrycka hyperkänslig respons. Den cellulära lokaliseringen av RsCRP1 fanns både i 

växt-mitokondrier och kloroplaster. RsCRP1 användes också i proteininteraktionsstudier 

där neddragningsförsök följt av aminosyrasekvensering visade att ett plasma-membran 

protein, BvPIP1;1 potentiellt interagerar med RsCRP1. Studier av svamp-effektorerna 

och de potentiella resistensgenerna i sockerbeta som innefattar BvMLP gener och 

BvPIP1;1 pågår och inkluderar proteininteraktioner och analyser av genhomologer i 

Arabidopsis för att öka förståelsen av händelser mellan sockerbeta och R. solani. 

Resultaten av dessa studier är tänkta att användas vid resistensförädling. 

Nyckelord: Beta vulgaris, Cercospora beticola, effektorer, LysM, MLP, resistens, Rhizoctonia solani, RNA 

sekvensering, sockerbeta 
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Sugar is a common molecule that makes our food taste better and act as a 

preservative. Sugar beet is one of two main sources of sugar and contributes 

about 20% of the world’s sugar production; the rest mainly derives from sugar 

cane (International Sugar organization, 2017). The end product extracted from 

the plants, white table sugar, is composed of pure sucrose and is the same product 

regardless of which of the two plant species it is extracted from. There are other 

sources of sugar in nature, for example maple syrup, agave nectar, honey and 

dates, but sucrose is most concentrated in sugar beets and sugar cane (Phillips et 

al., 2009). Another sweetener, 100-300 times sweeter than sucrose and with no 

calories, is stevioside extracted from Stevia rebaudiana (Goyal et al., 2010). 

Besides the white table sugar, sugar beets are also used for animal feed and 

bioethanol production. Beside humans and animals, many microorganisms are 

attracted to tissue enriched in sugar, where they pose a threat to crop production 

if large-scale multiplication occurs. Pathogenic organisms need to be taken care 

of in one or another way to ensure sugar beets of good quality. One strategy is 

to control pests and pathogens with chemical applications. This is costly, not 

always effective and most of all not beneficial for the environment. Another (and 

more environment-friendly) alternative is to grow resistant varieties. In many 

cases there is a negative correlation between disease resistance and high sugar 

yield and it is a difficult task for the breeders to combine the two characters.  

 

In this project next generation sequencing technologies have been used in an 

attempt to better understand the interaction between sugar beet and Rhizoctonia 

solani. Results are envisioned to be implemented in on-going breeding work.  

1 Introduction 



14 

 

1.1 Sugar beet 

1.1.1 The history of sugar beet breeding 

It was as late as 1747 that a scientist succeeded to extract sugar from a sugar beet 

for the first time. This progress was made by Andreas Sigismund Marggraf and 

in 1801 his student Franz Carl Achard built the first pilot factory in France 

(Cooke and Scott, 1993). During the Napoleonic period at the beginning of the 

19th century a lot of factories were built all over Europe as a result of the high 

prices of imported cane sugar. This time is considered as the start for sugar beet 

breeding. Achard discovered that roots from different species, and even from 

seeds from the same plant, differed a lot in sugar content and he started to breed 

for high sugar content. In the 1870s breeding diverged into two beet types, high 

sugar content or high root yield. The challenge was to combine the two 

polygenetic characters to obtain a big root with high sugar content.  

Early on it was understood that the beet cyst nematodes were a problem if beets 

were repeatedly grown in the same field (Cooke and Scott, 1993). By the end of 

the 19th century farmers had learned to handle the nematode infestations by 

widening the crop rotation schemes. Other diseases were now noticed, like the 

fungal disease Cercospora leaf spot and the viral disease curly top. 

Early sugar beet cultivation was associated with labour-intensive work 

eliminating weeds from the fields and plant thinning. The seeds were multigerm, 

meaning that three or more shoots emerged from each seed (Fig. 1). The rows 

had to be thinned leaving only one plantlet to grow, and this was hard work.  

 
Figure 1. Germinating sugar beet seeds. Left multigerm seeds and right monogerm seeds. Photo: 

L. Holmquist 

A great success was the discovery of a monogerm plant in the 1930s. The first 

monogerm variety was produced and marketed in the United States (1957) and 

in Western Europe from the mid-1960s (Draycott, 2006). The first herbicide, 

propham, was available to growers in the USA in the 1950s after an extensive 
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research programme and together with the monogerm seed these developments 

drastically decreased the workload for the farmers. Another important step 

forward in sugar beet breeding was the detection of cytoplasmic male sterility 

(CMS), which is used today in the breeding of hybrid varieties (Owen, 1945). 

More information on this can be found in section 1.1.3. 

The first factory in Sweden was built in 1854 in Landskrona and during the 

1880s the sugar production in Sweden increased 10-fold with eight new sugar 

factories built in the southern parts of the country (Bosemark, 1997). The first 

breeding activities in Sweden started in Landskrona in 1907 and by 1928 only 

seeds from Hilleshög, the Swedish breeding company, were planted in Sweden.  

An important step forward for the sugar beet research came in 1989 when 

molecular markers were implemented in the breeding programmes. 

1.1.2 Sugar beet production 

4.5 million hectares of sugar beets were harvested in the world in 2016 of which 

75% were grown in Europe (www.fao.org/faostat/en/#data/QC, 20180807). 

Sugar beets are grown commercially throughout the world in cooler and 

temperate climates (Fig. 2). The main producing regions are the European 

Union, the United States, the Russian Federation, Turkey, Ukraine, Iran, Japan 

and China. Sugar beets are a good complement to sugar cane in terms of growth 

requirements. Sugar cane grows in tropical regions, has a 12 months growth 

period and needs more water than sugar beet that grows in temperate regions and 

with a 6-month growth period.  

 
Figure 2. Countries where A, sugar beets (green) and B, sugar cane (blue) were grown and 

harvested in 2016. Colour indicates hectares of harvested sugar beets/sugar cane per country. 

Information collected from www.faostat.com 
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The seeds are drilled in the spring and the roots are harvested in the autumn 

ahead of frost. The highest sugar concentration is in the lower part of the root 

and gradually decreases towards the crown (Fig. 3). Commercial sugar beet 

yields are between 50 and 100 metric tons of clean beet/ha, with a sugar 

concentration of 17-18% of fresh weight, yielding 8-18 tons of sugar/ha 

(Draycott, 2006). Besides pure sugar several useful by-products are produced in 

the sugar refinery, for example pulp and molasses for feed supplements for 

livestock (Elferink et al., 2008) and waste lime as a soil amendment to increase 

soil pH levels. Sugar beets are also used as raw material for the ethanol 

component in biofuel production. From one ton of fresh sugar beet roots 100-

120 litres of ethanol can be produced (Panella, 2010). This makes it one of the 

most efficient crops for ethanol production per hectare. New potential areas of 

application are as bioplastics (Liu et al., 2011) or as a blood supplement through 

the extraction of haemoglobin (Leiva-Eriksson et al., 2014).  

 
Figure 3. Sugar beet. A indicates the crown of the plant. Photo: MariboHilleshög Research 

The production of sugar within the European Union has been regulated since 

1968 when support was introduced for growers as part of the Common 

Agricultural Policy to improve food self-sufficiency within EU (Bureau et al., 

1997). This quota system was abolished in 2017 and the market is now 

deregulated. It is speculated that this change will lead to an increase in sugar beet 

production due to the free choice of growing as much as a farmer wants and the 

refiners are free to export sugar outside of EU. Whether higher access to sugar 

will lead to a decrease in prices within EU is still unclear. 
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1.1.3 Sugar beet breeding 

Sugar beet, Beta vulgaris ssp. vulgaris, belongs to the subfamily Betoideae in 

Amaranthaceae (Schwichtenberg et al., 2016). It is a diploid plant with nine pairs 

of chromosomes and it originates from the Mediterranean region. The sea beet 

Beta vulgaris subsp. maritima is a wild relative often used in breeding. Sea beet 

is resistant to many pathogens and insects, tolerant to drought, heat and salinity 

and it can easily be crossed with sugar beet (Biancardi et al., 2012). Introgression 

of traits from Beta vulgaris subsp. maritima is the main source for broadening 

the narrow gene pool of sugar beet. All cultivated beets are biennial and require 

a cold period, vernalization, to change from vegetative to reproductive stage. 

The reproductive stage is used in breeding and seed production to develop new 

varieties whereas the vegetative stage is used in farmer production. To generate 

as high yield as possible the growing season needs to be as long as possible and 

one way of prolonging the season is to plant early in spring (Draycott, 2006). 

This increases the risk for seed stalk development, bolting, that can be induced 

by low spring temperatures and therefore there is a need for bolting tolerance. 

Flower induction is influenced by day length as well as temperature, and 

manipulation of these factors can be used to shorten the breeding cycle. Many 

of the wild Mediterranean forms of Beta species are annuals, a trait regulated by 

the dominant B gene. Plants carrying this gene bolt extremely quickly if light 

and temperature are favourable, which could be used to speed up breeding. On 

the other hand, the presence of the dominant B gene in commercially cultivated 

beets is strongly negative since it will result in beets that will bolt and flower in 

the fields. This makes it very difficult to use the B gene in breeding. The B gene, 

or BvBTC1 as it is also called, interacts with two other genes to control 

flowering, BvFT1 and BvFT2. It is suggested that the biennial-growth habit of 

the cultivated beet emerged from a selection of partial loss-of-function in the 

BvBTC1 allele (Pin, 2012). 

Commercial sugar beets are 3-way hybrids. To be able to produce these hybrids 

a male sterility system is used. There are two types of male sterility, a 

combination of nuclear and cytoplasmic sterility and only nuclear (genetic) 

sterility (Biancardi et al., 2005). The first type of male sterility provides a 

complete control of pollination while the second type is used for cross-

pollinations. The genetic-cytoplasmic male sterility (CMS) is maternally 

transmitted. In hybrid production, CMS plants are pollinated by maintainer 

plants (O-types), which carry the same sterility genes as the male sterile plants 

but in normal cytoplasm (Draycott, 2006). The offspring, which is referred to as 

an F1MS line, is also male sterile and is used as a mother plant in a second cross 

with a third line that is referred to as a pollinator. The new seed is now what we 

call the hybrid seed produced for the market. 
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1.1.4 Sugar beet pests and diseases 

Sugar beet attracts a lot of different pathogens causing a number of diseases. 

More or less all soils where sugar beets are grown around the world are infested 

with the plasmodiophorid Polymyxa betae which transmits the beet necrotic 

yellow vein virus causing Rhizomania disease (Tamada and Asher, 2016). The 

risk of Rhizomania disease is thus high and the only way to handle the disease 

is by growing resistant cultivars. Beet cyst nematodes (Heterodera schachtii) 

(Bohlmann and Sobczak, 2014) are also a worldwide problem and using 

nematode tolerant or resistant varieties are important. In Scandinavia, the most 

prevalent diseases are Aphanomyces damping off and root rot (Aphanomyces 

cochlioides) and Ramularia leaf spot (Ramularia beticola) (Windels, 2000; 

Videira et al., 2016). Both diseases are caused by pathogens which prefer a 

cooler and humid climate. In warmer climates like southern Europe, Rhizoctonia 

root rot (Rhizoctonia solani) and Cercospora leaf spot (Cercospora beticola) are 

the most common fungal diseases (Sneh et al., 1996; Weiland and Koch, 2004). 

In the United States all of the diseases mentioned above are more prevalent and 

more severe than in Europe. More information on resistance genes can be found 

in section 1.5.1. 

Rhizoctonia root and crown rot 

Rhizoctonia root and crown rot of sugar beet is caused by the widespread soil-

borne fungus Rhizoctonia solani. The disease was first reported in 1915 in the 

United States by Howard Austin Edson (Mukhopadhyay, 1987). Rhizoctonia 

root and crown rot is primarily a disease causing symptoms on the root. It affects 

sugar beets in all growing areas but is more severe in hot climates and in heavy, 

poorly drained and wet fields (Cooke and Scott, 1993; Harveson et al., 2009; 

Bolton et al., 2010). The disease is estimated to affect 24% of the acreage in the 

United States and 5-10% in Europe (Harveson et al., 2009). In recent years an 

increase of the disease has been seen both in the United States as well as in 

Europe (Ithurrart et al., 2004; Bolton et al., 2010). Commercial varieties with a 

strong resistance to the disease are available but the drawbacks are a lower yield 

potential in the absence of the disease and lack of resistance to other important 

diseases (Jacobsen et al., 2004; Strausbaugh et al., 2013). Farmers in the United 

States rely on fungicides instead of highly resistant cultivars and the risk for 

fungicide resistance is threatening. Many different fungicides with different 

active ingredients are available for the control of the disease (Arabiat and Khan, 

2016). Timing of application is difficult and critical since it needs to be done 

early, prior to initial infection to prevent disease establishment (Bolton et al., 

2010). In Europe there are no registered fungicides available and the only way 
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to handle the disease is by agronomical strategies like crop rotation, plant residue 

management and soil tillage practices and most importantly availability of 

resistant varieties (Buhre et al., 2009). 

 
Figure 4. Sugar beet seedlings infected with Rhizoctonia solani. Photo: F. Dölfors 

The disease can appear in different forms and with different symptoms; root rot 

and crown rot, damping off and foliar blight. The fungus can cause a pre-

emergence damping-off (Mukhopadhyay, 1987). The dead sprouts are difficult 

to observe in the soil because of their relatively small size and farmers often 

think they have a poor stand due to poor quality of seeds rather than to pre-

emergence damping off. A more common symptom is damping-off of emerged 

seedlings (Fig. 4). It starts with a dark brown to black lesion on the hypocotyl 

just at the soil surface (Cooke and Scott, 1993; Harveson et al., 2009). The 

fungus continues to advance along the hypocotyl and a sharp line between 

diseased and healthy tissue can be seen (Fig. 4). The collar (crown) of an infected 

seedling breaks easily at or near the soil line, but the roots generally remain 

healthy until the plant dies (Mukhopadhyay, 1987). When the hypocotyl is 

heavily colonized the plants rapidly collapse.  

 
Figure 5. Rhizoctonia root rot infection of sugar beets in field. Photo: L. Holmquist 



20 

 

The first sign of root and crown rot is a sudden wilting and chlorosis of the leaves 

and with dark brown to black lesions at the base of the petioles (Cooke and Scott, 

1993; Harveson et al., 2009). The leaves then collapse, fall to the ground and 

die, but remain attached to the crown (Fig. 5). Soil infection is often patchy and 

symptoms are not always seen above ground even though roots are heavily 

infected. Crown rot starts in the crown of the root and extends down the taproot 

(Fig. 6). The disease development is often associated with soil being deposited 

on the crown during cultivation (Harveson et al., 2009).  

 
Figure 6. Rhizoctonia crown rot on sugar beet root. Photo: MariboHilleshög Research 

Root rot on the other hand often starts in the tip of the root and progresses 

upwards on the taproot. Roots show varied degrees of dark brown to black rot 

(Cooke and Scott, 1993). Deep cracks or holes can sometimes emerge that 

deform the root (Harveson et al., 2009). Inside the root there is generally a sharp 

line between diseased and healthy tissue (Fig. 7). The infected tissue is often 

located in the periderm of the root and is not spread into the root until the disease 

is severe (Harveson et al., 2009).  

 
Figure 7. Sugar beet root with severe root rot symptoms caused by Rhizoctonia solani. Photo: 

L. Holmquist 

Dry rot canker is another form of the disease which is less common. The 

symptoms are dark brown, circular lesions on the surface of the root, about 1.5-



21 

 

25 mm in diameter (Cooke and Scott, 1993; Harveson et al., 2009). Beneath the 

lesions deep cankers filled with fungal mycelium can be seen. Under warm, 

humid conditions there are certain strains of R. solani that can induce foliar 

blight (Cooke and Scott, 1993). Cotyledons are diseased and lesions appear on 

older leaves. Foliar blight is favoured by heavy rain that splashes infested mud 

onto the foliage (Mukhopadhyay, 1987). 

1.2 Genome sequencing 

The first complete protein-coding gene sequence, the coat protein of 

bacteriophage MS2, was elucidated in 1972 using the 2-D fractionation method 

(Min-Jou et al., 1972). This method was replaced by Sanger's ‘plus and minus’ 

system in 1975 and at the same time Maxam and Gilbert developed a method 

using radiolabelled DNA (Heather and Chain, 2016). The Maxam and Gilbert 

method was the first technique to be widely adopted, and thus might be 

considered the ‘first-generation’ DNA sequencing method. However the major 

breakthrough came with the introduction of the Sanger sequencing method 

(Sanger et al., 1977). This method is also called the chain termination method 

because of the dye-labelled chain-terminating dideoxy-nucleotides used. The 

advantages with this method were high-quality and relatively long DNA 

sequences. 

Pyrosequencing was licensed by 454 Life Sciences and seen as the first next 

generation sequencing (NGS) technique (Ronaghi et al., 1998). In 1998 

Balasubramanian and Klenerman founded the Solexa company where they 

developed a new method called sequencing-by-synthesis (Balasubramanian, 

1999). Solexa and its technology was acquired by Illumina in 2007 and this 

technology is by far the most common today. Platforms other than Illumina 

available today are Ion Torrent and Pacific Biosciences (Quail et al., 2012). In 

the last few years the development has gone quickly and longer sequences and 

pair-end data with higher accuracy can now be generated. Next generation 

sequencing approaches have also been a revolution for speed and costs of 

sequencing. Today a human genome can be sequenced in a single day compared 

to when the first draft human genome was sequenced using Sanger sequencing 

and took a whole decade. The cost of sequencing has fallen dramatically and a 

whole human genome is now down to less than US$1,000 (Goodwin et al., 

2016). The techniques are constantly being improved and the sequence 

information gets more reliable. Today the problem is not the lack of data but 

rather the limited time available to analyse data as well as advanced 

bioinformatics tools to understand the data generated. 
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1.2.1 Genome sequencing of plants 

Arabidopsis thaliana was the first plant genome to be sequenced (The 

Arabidopsis genome initiative, 2000) followed by rice and black cottonwood, 

Populus trichocarpa (Goff et al., 2002; Tuskan et al., 2006). Today hundreds of 

plant genomes, many of them important crops (Table 1), are sequenced and 

publicly available and of great use for plant science.  

Table 1. Genome size and number of predicted gene models for some important crops  

Crop Latin name Genome size No. protein 

coding genes 

Reference 

Wheat Triticum 

aestivum 

17 Gb 104,091 Clavijo et al., 

2017 

Corn Zea mays 2.3 Gb 32,000 Schnable et al., 

2009 

Sugar beet Beta vulgaris 567 Mb 27,421 Dohm et al., 

2014 

Soybean Glycine max 1.1 Gb 46,430 Schmutz et al., 

2010 

Rice Oryza sativa 389 Mb 37,544 International rice 

genome 

sequencing 

project, 2005 

Barley Hordeum vulgare 4.79 Gb 39,031 Mascher et al., 

2017 

Potato Solanum 

tuberosum 

844 Mb 39,031 Xu et al., 2011 

1.2.2 Genome sequencing of fungi 

The ascomycete Saccharomyces cerevisiae, was the first fungus to have its 

genome sequenced (Goffeau et al., 1996) and the crust forming fungus, 

Phanerochaete chrysosporium, the first basidiomycete (Martinez et al., 2004). 

By 2016 over 1,000 fungal species genomes had been sequenced and available 

to the public and this has rapidly increased since then (Aylward et al., 2017). Of 

the 1,090 genome sequences available in 2016, the largest category (35.5%) 

comprised of pathogenic species of which plant pathogens form the majority. Of 

the 191 plant pathogenic fungal species with available genomes, 61.3 % cause 

diseases on food crops. The genomes of plant pathogens are slightly larger than 

those of other fungal species sequenced to date and they contain fewer predicted 

coding sequences in relation to their genome size (Table 2). 
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Table 2. Genome size and number of protein coding genes for some important plant pathogens 

Plant pathogen Disease Genome size No. protein 

coding genes 

Reference 

Rhizoctonia solani 

AG2-2IIIB 

Rhizoctonia root 

rot 

56 Mb 11,897 Wibberg et al., 

2016a,b 

Magnaporthe 

grisea 

Rice blast 

 

40 Mb 

 

11,109 

 

Dean et al., 2005 

 

Ustilago maydis Corn smut 20 Mb 6,902 Kämper et al., 2006 

Blumeria graminis Powdery mildew 82 Mb 6,540 Wicker et al., 2013 

Fusarium 

graminearum 

Head blight 36 Mb 11,640 Cuomo et al., 2007 

Leptosphaeria 

maculans 

Blackleg disease 45 Mb 12,469 Rouxel et al., 2011 

Puccinia graminis 

f. sp. tritici 

Stem rust 89 Mb 17,773 Duplessis et al., 2011 

Phytophthora 

infestans 

Potato blight 240 Mb 17,797 Haas et al., 2009 

1.3 Rhizoctonia solani 

Rhizoctonia solani Kühn (teleomorph: Thanatephorus cucumeris) is a soil-borne 

basidiomycete and a pathogen on a wide range of crops and plant species 

(Harveson et al., 2009). The asexual stage of R. solani is often seen as its 

predominant stage, whereas the sexual stage can rarely be found in agricultural 

fields (Cubeta and Vilgalys, 1997). Thanatephorus basidiospores are very 

difficult to germinate and if single basidiospore isolates have been successfully 

produced they are usually less virulent and have more limited saprophytic 

capabilities (Cubeta and Vilgalys, 1997). Basidiospores can be wind spread and 

serve as inoculum for foliar diseases but in general basidiospores are not the 

primary inoculum for disease. Most R. solani infections are initiated by sclerotia 

or mycelia from debris which can survive in the soil for many years (Cubeta and 

Vilgalys, 1997).  

Hyphae are characteristic, coarse, pale- to dark brown and they branch near the 

distal septum of the hyphal cell, usually at right angles in young vegetative 

hyphae and are constricted at the point of origin. Individual cells are 

multinucleate with 4 to 14 nuclei per cell. Isolates of R. solani vary greatly in 

their cultural appearance, in their growth characteristics and in their 

pathogenicity towards plants, both in terms of host-plant specialization and in 

terms of virulence (Sneh et al., 1996).  

The most common method to categorize R. solani is based on hyphal cell wall 

fusion between different isolates. The resulting fusion products form the division 
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into anastomosis groups (AGs).  AGs are widely used since they reflect diversity 

between isolates. Some AGs have very specific hosts while others have a broad 

host range (Table 3). Some AGs are further divided into subgroups based on host 

range, colony morphology, pathogenicity, zymogram patterns and other 

characteristics (Sneh et al., 1996). Among molecular methods used for 

distinguishing between AGs and different subgroups, sequencing of the 

ribosomal region’s internal transcribed spacer (ITS) is the most widely used 

strategy (Sharon et al., 2006). Phylogenetic analysis based on ITS sequences can 

in many cases cluster similar AGs and subgroups together. AG and subgroup 

specific PCR primers are available in many cases and can be used as a diagnostic 

tool (Bounou et al., 1999; Salazar et al., 2000, Grosch et al., 2007).  

 Table 3. Estimated genome size, number of predicted protein coding genes, host range and genome 

sequencing reference of Rhizoctonia solani anastomosis groups and subgroups 

Anastomosis 

group & 

subgroup 

Genome size 

(Mb) 

No. protein 

coding genes 

Host range Genome reference 

AG1-1A 36.9 10,489 Rice Zheng et al., 2013, 

Nadarajah et al., 

2017 

AG1-1B 42.8 12,616 Bean, rice, soybean, figs, 

hydrangea, cabbage, 

lettuce 

Wibberg et al., 2013 

AG2-1   Cauliflower, canola, 

oilseed rape, cabbage 

 

AG2-2IIIB 56.02 11,897 Sugar beet, soybean, 

maize 

Wibberg et al., 

2016a,b 

AG2-2IV   Sugar beet  

AG3 51.0 12,720 Potato, tomato, cotton, 

tobacco, maize 

Wibberg et al., 2017; 

Cubeta et al., 2014 

AG4   Canola, tomato, potato, 

soybean, cotton, oilseed 

rape, cabbage, sugar beet 

 

AG5   Potato, soybean  

AG8 39.8 13,420 Wheat, barley, canola, 

legumes 

Hane et al., 2014 

AG9 

AG10 

  Potatoes, canola 

Canola 

 

AG11   Wheat  

 

R. solani lives in the soil as a primitive organism with modest nutrient 

requirements (Mukhopadhyay, 1987). As a saprophyte it can utilize many 

organic compounds as an energy source and thus can live on dead or 
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decomposing plant debris for months. R. solani survives as thickened hyphae, 

sclerotia, bulbils or basidiospores in crop residues and soil (Harveson et al., 

2009) and is generally spread by rain, irrigation, or flood-water, or with tools or 

anything else that carries contaminated soil (Sneh et al., 1996).  

AG2-2 is the main isolate type attacking sugar beets. When temperatures reach 

12°C the overwintered propagules of R. solani germinate and infect the beet 

seedlings. The fungus is active between 12-35°C with optimal activity at 25-

33°C when the soil is wet. Sclerotia are the primary survival structures and 

therefore an important source of inoculum. The sclerotia germinate under humid 

conditions by producing new mycelia threads (Mukhopadhyay, 1987). Exudates 

from germinating seedlings and actively growing roots stimulate sclerotia to 

form hyphae which initiate colonization upon reaching the plant root 

(Mukhopadhyay, 1987; Sneh et al., 1996).  

Based on current knowledge, the different AGs have slightly variable ways of 

infecting the plant host but a generalized procedure is as follows. The hyphae 

have first a round shape and grow over the plant surface without being attached 

to the plant. They then become flat and firmly attached to the plant, forming side 

branches at right angles (T-shaped branches). At this stage the infection process 

can continue in two ways. Either the branches give rise to short swollen hyphae, 

which is most common for isolates infecting foliage; alternatively multiple T-

shaped branches are formed resulting in dome-shaped infection cushions, often 

the way for stem and root infecting isolates. The hyphae in the infection cushion 

also have swollen tips that adhere tightly to the host surface. Several of the 

swollen tips simultaneously form infection pegs that penetrate the surface. The 

penetration is probably a combination of mechanical pressure and enzyme 

activity but this is not confirmed. The invading hyphae rapidly ramify through 

the host tissue, causing it to turn brown and collapse. 

1.4 Plant defence mechanisms 

The understanding of plant defence and related mechanisms has grown 

extensively the last 15 years and is described in many review articles (Gohre and 

Robatzek, 2008; Spoel and Dong, 2012; Mengiste, 2012; Muthamilarasan and 

Prasad, 2013; Newman et al., 2013; Wang et al., 2014; Bigeard et al., 2015; 

Presti et al., 2015). Since plants cannot move and escape a threatening invader 

they have different ways to protect themselves. Plant pathogens are commonly 

divided into three groups based on life-style: biotrophs that require living host 

cells for growth, necrotrophs that kill and thrive on dead host cells, or 

hemibiotrophs that have an initial period of biotrophy followed by necrotrophy. 

Basal resistance or innate immunity is the first level of defence that protects 
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plants against a broad category of pathogens. General elicitors, or microbe-

associated molecular patterns (MAMPs), are conserved structures of microbes 

that are sensed by a broad spectrum of plants. MAMPs are recognized by pattern-

recognition receptors (PRRs) that trigger immediate defence responses leading 

to basal or non-host resistance. MAMPs represent a broad category of 

compounds and all are essential for microbial life including pathogens, hence 

named pathogen-associated molecular patterns (PAMPs). The activation of PRR 

signalling results in rapid responses that include the accumulation of reactive 

oxygen intermediates, activation of ion channels, activation of specific defence-

related mitogen-activated protein kinase (MAPK) cascades, and extensive 

transcriptional reprogramming of the host (Boller and Felix, 2009). Collectively 

this leads to an accumulation of antimicrobial compounds including proteinases, 

chitinases and glucanases that damage pathogen structures. Also enzyme 

inhibitors directed toward molecules produced by the pathogen are formed, as 

well as other non-proteinaceous antimicrobial molecules. Specialized pathogens 

are able to overcome basal host immunity by either avoiding the detection of 

PAMPs or interfering with pathogen-triggered immunity (PTI) by delaying, 

suppressing or reprogramming host responses.  

A general definition of effectors is pathogen-produced molecules that have a 

specific effect on one or more genotypes of a host or non-host plant 

(Vleeshouwers and Oliver, 2014). The recognition of pathogen effectors by plant 

resistance (R) proteins may generate a hypersensitive response (HR) and local 

cell death, an event often leading to effector-triggered immunity (ETI) (Wang et 

al., 2014). For biotrophs this leads to failure to survive and infect. For 

necrotrophs this leads to effector-triggered susceptibility (ETS) and the pathogen 

can continue the colonization of the host. The majority of known R genes in 

plants encode nucleotide-binding leucin-rich repeat (NB-LRR) proteins (Dangl 

and Jones, 2001). Effector perception by NB-LRRs is highly specific and can be 

either direct (with the receptor binding the effector) or indirect (involving 

accessory proteins) (Dodd and Rathjen, 2010). Accessory proteins can be 

pathogen virulence targets or structural imitators of such targets. PTI and ETI 

responses are similar but often differ in their strength to protect the plant from 

disease development (Jones and Dangl, 2006; Presti et al., 2015). 

1.5 Marker-assisted breeding 

Marker-assisted breeding uses molecular markers to indirectly select for traits of 

interest. A DNA marker is a variation in the DNA, i.e. point mutation, insertion, 

deletion or error in replication of tandem repeated DNA (Collard and Mackill, 

2008). Quantitative trait loci (QTLs) are phenotypically defined chromosomal 
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regions that contribute to allelic variation for a biological trait. Many 

agronomically important traits like yield, quality, abiotic stress and some disease 

resistance are inherited quantitatively, meaning many genes control these 

complex traits and each gene has a small and cumulative effect on the target trait. 

Linkage maps are used for the identification of quantitative traits using QTL 

analysis.  

Marker-assisted selection (MAS) uses molecular markers known to be 

associated with a trait of interest to facilitate selection of a desirable allele 

influencing the target trait (Bhat et al., 2016). The MAS application is most 

effective for traits that are controlled by fewer numbers of QTL having major 

effect on trait expression. Genomic selection is however more efficient for traits 

controlled by many QTL regions. Genomic selection estimates the genetic value 

of each individual, based on a large set of markers distributed across the whole 

genome, and is not based on few markers as in MAS (Bhat et al., 2016). In 

genomic selection a prediction model based on genotypic and phenotypic data 

of a training population is used to derive genomic estimated breeding values for 

all the individuals of a breeding population from their genomic profile 

(Meuwissen et al., 2001). All molecular markers available for a candidate trait 

are used to predict the breeding value and the outcome is used to predict 

individuals that will perform better and are suitable to select as parents of the 

next generation.  

Genome wide association mapping or GWAS, finds single nucleotide 

polymorphisms (SNPs) within the whole genome that are associated with a trait 

of interest. GWAS can be performed on the same population as genomic 

selection (Zhang et al., 2014). The genetic architecture revealed by association 

mapping can be used to inform the genomic selection models, for example if 

highly significant SNPs are revealed by a genome wide association study, these 

SNPs could be fitted as fixed effects in a genomic selection model (Begum et 

al., 2015). 

1.5.1 Resistance genes, QTLs and molecular markers in sugar beet 

Disease resistance in a crop can either be due to one major gene or regulated 

quantitatively by several genes. In the sugar beet reference genome 715 

resistance gene analogs have been predicted (Dohm et al., 2014). The predicted 

domain distribution is: 518 with similarity to the serine (threonine) protein 

kinase domain, 80 have nucleotide-binding site (NBS) and leucin rich repeat 

(LRR) domains, 57 have a single NBS domain and 60 have only a LRR domain. 

Examples of resistances encoded by a major gene are the Rz1 and Hs1 genes for 

resistance to the Rhizomania virus disease and the nematode (Heterodera 
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schachtii) resistance (Cai et al., 1997; De Biaggi et al., 2010). Presently, four 

QTLs located on four different chromosomes are known to promote resistance 

to Rhizoctonia root and crown rot in sugar beet (Lein et al., 2008; Kraft personal 

communication). The QTL regions are wide (in total covering 10-15% of the 

genome) and include several negative traits as well. It is important to make the 

mapping more precise to be able to identify recombinants and thereby remove 

some of the yield drag associated with Rhizoctonia resistance. 

Different types of DNA-based markers have been used for genetic analyses in 

sugar beet over time (Barzen et al., 1992; Uphoff and Wricke, 1995; 

Schondelmaier et al., 1996; Laurent et al., 2007; Schneider et al., 2007; 

Smulders et al., 2010; Izzatullayeva et al., 2014; Stevanato et al., 2014). For a 

long time simple sequence repeat (SSR) markers were preferred in plant 

breeding, due to their high reproducibility, hypervariability, multiallelism, 

codominant inheritance, extensive genome coverage, chromosome-specific 

location and easy automated detection by PCR (Taški-Ajduković et al., 2017). 

In sugar beet, a few hundred SSR markers have been developed for various 

purposes (Rae et al., 2000; Arnaud et al., 2003; Richards et al., 2004; Viard et 

al., 2004; Laurent et al., 2007; McGrath et al., 2007; Fénart et al., 2008; Arnaud 

et al., 2009). Today, SNP markers are almost exclusively used in sugar beet 

breeding. Even though they are bi-allelic and therefore less informative, the 

screening is much easier to automate and therefore many more markers can be 

used as a compensation for less information. Different methods are available for 

the detection of SNPs; hybridization, enzymatic cleavage, ligation and primer 

extension (Kim and Misra, 2007). One of the first methods was restriction 

fragment length polymorphism (RFLP) that uses allele-specific restriction 

enzymes to cleave DNA at a certain base (Botstein et al., 1980). A widely used 

method today is the TaqMan system (De La Vega et al., 2005) which combines 

hybridization and nuclease activity using fluorescently-tagged, allele-specific 

probes detected with PCR. For high-throughput analysis different chip 

technologies, like microarrays, are often used (Thomson, 2014). These multiplex 

solutions is suitable for largescale studies requiring genotypic data for individual 

samples with thousands of SNPs. For crop improvement when only low to 

medium number of markers are needed but for a large number of samples it is 

more suitable to use uniplex systems like TaqMan or KASP (Kompetitive allele 

specific PCR) (Semagn et al., 2014). 
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Soils infested with Rhizoctonia solani are increasing. The situation has led to a 

demand for resistant hybrid cultivars. In Europe there are no registered chemical 

treatments against the pathogen that is causing root rot of sugar beets. In the 

United States chemical treatments are available but the timing of application is 

difficult and a combination with resistant varieties is necessary.  

 

The emphasis of this work was to study the plant pathogen Rhizoctonia solani 

and its interaction with the host Beta vulgaris.  

  

 

Specific objectives were to: 

 

➢ Sequence the genome of a Rhizoctonia solani AG2-2IIIB, a highly 

pathogenic, disease-inciting pathogen to sugar beet   

 

➢ Run comparative genomics to study host specificity, pathogenicity 

factors and especially effectors potentially responsible for host 

infection. 

 

➢ Analyse sugar beet transcriptomes, comparing partially resistant and 

susceptible genotypes, with the aim of finding genes involved in the 

defence response. 

 

 

 

 

 

 

 

2 Aims of the study 
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3.1 Rhizoctonia solani comparative genomics 

Rhizoctonia solani is an important disease on many crops and other plants 

around the world (Harveson et al., 2009). Different crops are infected by 

different anastomosis groups of R. solani. The host specificity and infection 

mechanisms are areas of low knowledge and understanding.  

Sugar beet is mainly infected by the AG2-2 strain, which has a relatively wide 

host range (while AG3, for example, predominantly attacks potato). In an 

attempt to understand more about the R. solani - sugar beet pathosystem, the 

genome of a highly pathogenic R. solani AG2-2IIIB isolate was sequenced (I).  

Genomes of plant pathogenic fungi differ a lot in size (Table 2) for example 

Ustilago maydis has an estimated genome size of only 20 Mb, while many 

Pucciniomycete (rust) species have genomes larger than 100 Mb (Aylward et 

al., 2017). The average genome size of all sequenced basidiomycetes is 57 Mb 

compared to ascomycetes with an average size of 39 Mb. Rhizoctonia solani 

AG2-2IIIB has an estimated genome size of 56 Mb (I) and 11,897 predicted 

protein coding genes, placing it between Ustilago maydis with 6,902 and 

Puccinia graminis f. sp. tritici (89 Mb) with 17,773 predicted protein coding 

genes (Table 2). Explanations for the small number of genes and small genome 

size in Ustilago maydis are the absence of expansions of gene families and small 

or no introns (Kämper et al., 2006).  

Compared to other sequenced R. solani isolates the AG2-2IIIB isolate has the 

largest genome size (Table 3) but the number of predicted protein-coding genes 

is about the same for all AGs (I). The core genome of all five isolates analysed 

consists of only 2,704 predicted genes representing 19-25% of all genes (I). 

However, 4,908 genes are specific for the AG2-2IIIB isolate (I). This shows that 

3 Results and discussion 
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there is a huge variation between the different anastomosis groups and there is a 

need to improve the old fashion division of groups within this species.  

Plant pathogenic fungi secrete metabolites during their interaction with other 

organisms or with biological matter in the environment.  A secretory metabolite 

can be a hormone, enzyme, toxin and antimicrobial peptide. We predicted 1,142 

secreted proteins to be encoded in the AG2-2IIIB genome (I). Compared to the 

other R. solani isolates AG2-2IIIB has the highest number of secreted proteins. 

473 secreted proteins of the AG2-2IIIB isolate are unique compared to the other 

AGs.  

We chose to look more closely into two groups of genes that we believe are of 

importance for the fungus in the interaction with its host; cell wall degrading 

enzymes and additional effector proteins.   

3.1.1 Cell wall degrading enzymes  

The first barrier that a fungus needs to overcome to be able to infect its host is 

the cell wall. It is well known that plant cell wall degrading carbohydrate active 

enzymes (CAZymes) play important roles during fungal infection (Kubicek et 

al., 2014). A large number of genes encoding fungal cell wall degrading 

enzymes are present in phytopathogenic fungal genomes. However, the 

expression patterns and the exact roles of these enzymes during fungal infection 

and host colonization are not fully understood (Lyu et al., 2015). We assume 

that different sets of CAZymes in the different R. solani strains could be involved 

in host specificity. 

CAZymes are responsible for the breakdown, synthesis or modification of 

glycoconjugates and complex carbohydrates (Cantarel et al., 2008). A large 

group of the fungal secreted proteins are CAZymes. They are currently divided 

into five main CAZyme classes: glycosyltransferases (GTs), glycoside 

hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs) 

and auxiliary activities (AAs) as well as one associated class: carbohydrate-

binding modules (CBMs) (Levasseur et al., 2013).  

We identified 1,097 predicted CAZymes in R. solani AG2-2IIIB (I) which is 

a high number compared to other R. solani AGs and also compared to other 

basidiomycetes, ascomycetes and oomycetes (Table 4). All CAZy groups are 

expanded in R. solani AG2-2IIIB except in the comparison with the necrotrophic 

fungus Fusarium oxysporum. The PL group is largely expanded in R. solani 

AG2-2IIIB also in the comparison with F. oxysporum. Polysaccharide lyases are 

a group of enzymes that cleave uronic acid-containing polysaccharide chains via 

a β-elimination mechanism to generate an unsaturated hexenuronic acid residue 

and a new non-reducing end of the product (Yip and Withers, 2006). The most 
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abundant PL classes in R. solani AG2-2IIIB are PL1 and PL3 both representing 

pectate lyases (I). Pectate lyases are secreted from bacteria to cause soft rot in 

their hosts (Wegener, 2002). 

Table 4. Putative fungal genes for Carbohydrate-active enzymes (CAZymes) in the R. solani AG2-

2IIIB genome as compared to other fungal species. Total number of genes in the genome (Σ), 

Glycoside hydrolase (GH), glycosyltransferase (GT), carbohydrate esterase (CE), auxiliary 

activity (AA), carbohydrate-binding module (CBM), polysaccharide lyase (PL), total number of 

CAZymes (ΣCAZy). Information gathered from dbCAN 2014-09-01  

Basidiomycota Σ GH GT CE AA CBM PL ΣCAZy 

R. solani AG2-2IIIB 14250 399 112 176 171 136 103 1097 

R. solani AG1-IB 12713 347 100 141 132 130 92 942 

R. solani AG1-IA 10516 183 71 60 53 47 31 445 

R. solani AG3 12726 321 94 132 119 109 71 846 

R. solani AG8 13952 220 78 93 81 80 48 600 

Coprinopsis cinerea 13393 171 84 96 85 86 15 537 

Phanerochaete 

chrysosporium  
13602 176 75 62 80 53 7 453 

Ustilago maydis 6666 103 63 60 28 10 3 267 

Postia placenta 9083 134 32 61 27 22 1 277 

Schizophyllum 

commune 

16319 232 85 99 72 43 17 548 

Cryptococcus 

neoformans  
6552 90 68 29 15 16 5 223 

Serpula lacrymans 12917 179 70 85 0 44 7 385 

Laccaria bicolor 23132 163 87 60 38 31 7 386 

Puccia graminis 15979 322 204 148 48 32 14 768 

Ascomycota Σ GH GT CE AA CBM PL ΣCAZy 

Aspergillus nidulans 9520 253 91 105 75 61 20 606 

Saccharomyces 

cerevisiae 

4904 206 92 69 56 45 5 473 

Neurospora crassa 10785 185 86 66 57 52 4 450 

Trichoderma reesei  9115 46 53 13 6 10 0 128 

Fusarium oxysporum 26719 495 200 256 157 165 27 1300 

Verticillium dahliae 10535 277 101 123 102 92 37 732 

Oomycota Σ GH GT CE AA CBM PL ΣCAZy 

Pythium ultimum 14096 113 98 37 13 38 17 318 

 

Sugar beet roots have a high pectin content, up to 40–50% of the cell wall dry 

matter (Guillemin et al., 2005), and this may be a reason for the expanded PL 

groups. Maize on the other hand, which also is a host of R. solani AG2-2IIIB, is 
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a monocot and has a low content of pectin in the cell walls (Abedon et al., 2006). 

In general primary cell walls of dicotyledonous plants contain 35% pectin while 

grasses contain 2–10% pectin (Voragen et al, 2009). The expanded set of 

CAZymes in R. solani AG2-2IIIB may be an adjustment to be able to infect 

different hosts. 

3.1.2 Effectors important in host - pathogen interaction 

Effector proteins can function as toxins to directly induce plant cell death, but 

they can also suppress or evade plant defence responses and thereby favour an 

early pathogen colonization of the host. Many fungal effectors are known to be 

small, secreted and cysteine-rich proteins. We predicted 126 proteins with a 

signal peptide at the N-terminal and high cysteine content (Rafiqi et al., 2013). 

After removing proteins with longer sequences than 400 amino acids, 61 

predicted effectors remained (I). Among these 11 were unique to R. solani AG2-

2IIIB in comparison with the other AGs and their gene expression levels in a 

compatible system have been tested with qRT-PCR (I). Three of them; a 

cysteine-rich protein (RsCRP1), a rare lipoprotein-A-like protein (RsRlpA) and 

a CHAT domain protein showed a significantly higher expression level at an 

early time-point after host infection as compared to mycelia from culture (III, 

IV).  

Necrosis-inducing proteins were first discovered in Fusarium oxysporum 

where the necrosis and ethylene inducing protein, Nep1, was purified and shown 

to be capable of triggering plant cell death (Bailey, 1995). Since that time many 

other Nep1-like proteins (NLPs) have been discovered in a variety of organisms 

including fungi, oomycetes and bacteria. NLPs are proposed to perform dual 

functions in the plant−pathogen interactions, acting both as triggers of immune 

responses and as toxin-like virulence factors known to promote leaf necrosis 

(Zaparoli et al., 2011). R. solani is a necrosis inducing pathogen and even though 

we expected to find NLPs, none were predicted for any of the R. solani AGs 

sequenced so far (I).  

LysM is another class of conserved fungal effectors that carry no recognizable 

protein domains other than lysin motifs (LysMs) (Garvey et al., 1986; Béliveau 

et al., 1991). LysM effectors occur in both pathogenic and non-pathogenic fungi. 

Effectors with a LysM domain can mask fungal chitin so that the pathogen can 

escape detection by the plant and in some cases they also affects appressorial 

function (Kombrink and Thomma, 2013; Takahara et al., 2016). In R. solani 

AG2-2IIIB we have identified one protein containing two LysM domains 

(RsLysM) (I). The RsLysM gene was highly induced upon sugar beet infection 

(III). 
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3.1.3 Three effector proteins with potential roles in host infection 

There are protocols describing transformation of R. solani (Robinson and 

Deacon, 2001; Wu and O´Brien, 2009; Liu et al., 2010; Ying-qing et al., 2011) 

but to my knowledge no one has succeeded to repeat them to set up a stable 

transformation system for R. solani AG2-2IIIB to evaluate gene functionality. 

Instead we used the leaf spot inducing fungus Cercospora beticola and 

transformed with the three effector-protein coding genes RsLysM, RsRlpA and 

RsCRP1 sequences, driven by the PgdpA constitutively expressed promoter 

(III;IV). C. beticola overexpressing RsLysM (RsLysM+) or RsCRP1 

(RsCRP1+) showed an increase in necrotic lesion size compared to wildtype 

(Ty1) when inoculated on sugar beet leaves (III;IV). This was not seen for the 

RsRlpA overexpressing strain (RsRlpA+) (III). Fungal biomass in inoculated 

sugar beet leaves was higher for RsLysM+ and RsRlpA+ strains compared to 

wild type and empty vector (III;IV). The data also shows that RsRlpA suppresses 

the hypersensitive response in N. benthamiana leaves; this may be the 

explanation for the absence of increased necrotic lesion size in inoculated sugar 

beet leaves. RsLysM was expressed in Pichia pastoris and the protein was 

purified and used in a chitin-binding assay were it bound to all tested forms of 

chitin (III). The LysM in R. solani is probably masking chitin in the same way 

as LysM from ascomycetes. All together the data indicate a role of the three 

effectors in virulence to sugar beet. In addition RsCRP1 was seen to target both 

mitochondria and chloroplasts when Agro-infiltrated in N. benthamiana leaves 

(IV). To target such diverse plant organelles can be a good strategy for a fungus 

with a relatively broad host range.  

3.1.4 Pathogen effector putatively interacts with a membrane protein in 

sugar beet plant cells 

The predicted effector gene RsCRP1 was highly induced as early as 4 days after 

inoculation to sugar beet (IV) and is therefore an interesting candidate effector 

gene. We were interested to know how this protein interacts with the host sugar 

beet. Pull-down analysis followed by MALDI MS/MS analysis showed a 

potential interaction between RsCRP1 and a plasma membrane intrinsic protein, 

PIP1;1 in sugar beet (IV). According to the RNAseq analysis, the gene coding 

for BvPIP1;1 was differentially expressed between the different genotypes at 

5dpi. Further studies to evaluate the importance of this transmembrane protein 

for the interaction between R. solani and sugar beet are in progress. 
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3.2 Sugar beet response to fungal invasion 

Known resistance to R. solani in sugar beet is quantitative and the QTL regions 

are large. Within these regions there are, in addition to the resistance genes, 

unwanted traits that give rise to an undesirable yield drag. If we can identify 

genes associated with the disease resistance trait, new markers can be developed 

and used so that the selection can be made on smaller regions. In this way the 

unwanted traits can be reduced and the performance of the resistant varieties can 

be improved.  

We studied gene expression differences between partially resistant and 

susceptible genotypes. In an early response to the pathogen, 217 genes were up-

regulated in partially resistant genotypes and gene ontology (GO) analysis 

showed that 11 of these genes had functions related to biotic stress (II). Four of 

them were peroxidase homologs and three were annotated as NBS-LRR disease 

resistance genes and these are potentially involved in an early host response to 

R. solani. 

In a comparison between partially resistant and susceptible genotypes at 

different time-points after inoculation 660 genes were significantly differentially 

expressed (II). EuKaryotic Orthologous Group (KOG) analysis of these genes 

revealed four genes associated to known defence mechanisms and nine genes 

annotated to the cell wall category. Of the genes differentially expressed at the 

later time-point, three genes were in the response to biotic stimulus GO group,  

all three annotated as Major latex protein (MLP)-like protein 43 encoding genes. 

Other genes that were differentially expressed in the dataset were genes with 

AP2/ERF domains, cytochrome P450 genes, xyloglucan endotransglucosylases, 

WRKY transcription factors, an ethylene response factor, a cysteine-rich 

receptor-like protein kinase, a COBRA-like protein (cell wall structure), and a 

pectinesterase inhibitor (II). Gene expression for some of these genes was 

confirmed with qRT-PCR. 

We chose to investigate the MLP genes and their effect on resistance in more 

detailed studies. 

3.2.1 MLPs might be important for resistance 

Major latex protein (MLP) was first identified in the opium poppy latex  (Nessler 

et al., 1990; Nessler and Burnett, 1992). Homologs called MLP-like proteins 

(MLPs) have been found in many other plants (Aggelis et al., 1997; Wu et al., 

2008; Yang et al., 2015; Gai et al., 2018; Zhang et al., 2018). In cotton, a gene 

called GhMLP28 is involved in resistance against the pathogen Verticillium 

dahliae (Yang et al., 2015) and in mulberry a MLP gene is involved in disease 

tolerance against phytoplasma (Gai et al., 2018). Gene expression differences of 
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the three BvMLP genes described earlier were confirmed with qRT-PCR and the 

partially resistant genotypes showed an increased expression at the later time-

point for two of these genes (II). In an attempt to show the effect of the BvMLP 

genes, they were transformed into Arabidopsis thaliana (II). A. thaliana is 

susceptible to R. solani AG2-2IIIB, and we could test the effect of the 

overexpression lines as well as of knock-out mutants by inoculation with the 

fungus (II). Results were ambiguous: only one overexpressed line showed a 

decrease in fungal colonization. For the knock-out mutants we could not detect 

a significant effect (II). We believe that the MLP genes in sugar beet are 

recessive and we speculate that we could get a clearer result from Arabidopsis 

double mutants. 

3.2.2 Genes with similar expression patterns  

Weighted gene co-expression network analysis (WGCNA) can be used for 

investigating how genes jointly affect complex diseases. All sugar beet genes 

expressed in the RNAseq experiment were divided into modules depending on 

their expression profiles (II). We looked for biotic stress related genes as well 

as cell wall related genes and found nine modules containing such genes. Only 

one of those had differentially expressed genes including the same three MLP 

genes as found earlier. Other differentially expressed genes in the same module 

were a MYB46 transcription factor, a plant disease resistance response protein 

(DRR206) and a flavonoid O-methyltransferase protein. MYB46 is involved in 

the regulation of secondary wall formation by the biosynthesis of cellulose, 

hemicellulose and lignin components. DRR206 is involved in R. solani 

resistance in pea and is therefore also an interesting candidate in sugar beet.  

3.3 Rhizoctonia root rot phenotyping - a difficult task 

R. solani disease symptoms in sugar beet fields are often patchy and it is difficult 

to perform uniform disease trials. Artificial inoculation is often used to reduce 

variation in the field experiments and the fungus is then often proliferated on 

barley kernels or millet seeds (Scholten et al., 2001; Bolton et al., 2010). Despite 

this it is difficult to get reproducible results from year to year, mainly due to 

environmental factors. To evaluate resistance levels in sugar beet varieties, 

greenhouse trials can be used as a complement to field trials. However it can 

also be difficult in the greenhouse to get a good correlation between fungal 

mycelium and disease severity. Since R. solani rarely produces any spores it is 

difficult to inoculate with the same amount of the pathogen each time. Not even 

a given amount of fungal biomass in the plant does ensure a given level of 
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infection. To be able to make reproducible inoculation studies on sugar beet 

seedlings as well as Arabidopsis plants we developed an inoculation method 

based on maize flour and perlite (Dölfors et al., additional manuscript). 

Nevertheless, it is still difficult to correlate fungal biomass in soil as well as 

biomass in roots and whole plants with disease development and this may 

interfere with our and others’ results. In our experiments we used Arabidopsis 

as a model system for functional studies of sugar beet genes potentially involved 

in resistance. Arabidopsis is a dicot species with a different type of root system 

compared to sugar beet. The ambiguous results from our functional studies may 

be influenced by the difference in root structure between Arabidopsis and sugar 

beet. One strategy to improve the reproducibility would be to test hydroponic 

procedures as has been done in interaction studies of the soil-borne fungi 

Verticillium dahliae and V. longisporum (Fradin et al., 2011; Roos et al., 2015). 

3.4 Remaining work 

Experimentally several analyses remain to be performed to clarify the 

importance and function of the effector and defence candidates highlighted in 

this thesis. The work includes: various analyses on protein levels, microscopy, 

reactive oxygen species (ROS) detection, a range of validation experiments, 

optimization of Arabidopsis screens and scoring of additional single and double 

mutants, and last not least, new marker information to be evaluated in breeding 

materials. 
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Main conclusions from this thesis work are: 

 

➢ R. solani AG2-2IIIB, causing severe root rot disease of sugar beet, has 

the largest genome compared with other sequenced R. solani AGs 

isolates. 

 

➢ Pectate lyases are an expanded group of cell wall degrading enzymes in 

R. solani AG2-2IIIB and may be needed for the breakdown of the high 

amount of pectin in sugar beet roots. 

 

➢ Three R. solani effector candidates have been identified as potentially 

involved in the infection of sugar beet. 

 

➢ Three MLP genes in sugar beet are potentially involved in the resistance 

to R. solani AG2-2IIIB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Conclusions 
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For many years farmers have relied on fungicides to produce highly profitable 

crops. Today there are strong movements to change such procedures. For 

example, C. beticola, causing leaf spot disease on sugar beets, has been 

controlled with frequent applications of fungicides belonging to benzimidazoles, 

triazoles, organotin derivatives and strobilurins (Weiland and Koch, 2004). Such 

high chemical pressure has led to the development of fungicide resistant fungal 

strains in many sugar beet growing areas, which is a great threat to the sugar 

production. Today there is a strong need for new control methods in combination 

with high yielding and resistant sugar beet hybrids. 

The disease pressure incited by R. solani is presently increasing in Europe, 

and in US they are starting to see a loss of function of the applied fungicides 

(Arabiat and Khan, 2016; Khan per. comm.). Pyraclostrobin is no longer 

effective and only combinations of different active ingredients give an efficient 

control. This is serious and leads to an increasing demand for Rhizoctonia 

resistant varieties with a good performance in USA as well as in Europe. The 

development of new control strategies are an interesting future perspective 

where results from this study can give some clues on how these treatments needs 

to be designed. 

A new chemical protection strategy against Rhizoctonia would be welcomed, 

but most likely any such treatment should be combined with (or replaced by) a 

strong disease resistance in sugar beet. To be competitive with other profitable 

crops it is also necessary to combine resistance with high sugar yield. If we can 

validate that some of the genes identified in this project are indeed responsible 

for the resistance to Rhizoctonia, then this can contribute to a more efficient 

development of varieties that combine a good resistance level with high yield. 

 

 

 

5 Future perspectives 
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Sugar beets account for about 20% of the world’s sugar production. The sugar 

is produced in the taproot and accumulates throughout the growing season of 

five to eight months. In the soil where the beets are grown there are many 

different fungi and other pathogens that could cause disease on the sugar beet 

roots. Rhizoctonia solani is one fungus that is widespread in fields where sugar 

beets are grown. The fungus causes root rot disease on the beets, which suffer 

and either die or at best survive with a much lower sugar content. The process 

by which R. solani infects the host is not well understood and in this project we 

wanted to find out more about this. We therefore sequenced the genome of R. 

solani AG2-2IIIB and looked for genes potentially involved in the infection 

process. We identified three genes coding for proteins secreted by the fungus 

and showed in functionally studies that these proteins are involved in causing 

disease. For the functional studies we used the leaf spot disease causing fungus 

Cercospora beticola and transformed it with the three genes of interest, a lysin 

motif (LysM) effector, a rare lipoprotein-A (RlpA) like protein and a cysteine-

rich protein (CRP1). LysM and CRP1 caused increased lesion size on sugar beet 

leaves and LysM and RlpA gave higher fungal DNA content in the leaves. These 

results indicate a role of these genes in the infection process and can be used 

when new control strategies are being developed against R. solani. We also 

wanted to know more about resistance mechanisms in sugar beet against R. 

solani and we identified genes with different gene expression in partially 

resistant and susceptible genotypes when infected with the fungus. Especially 

three Major latex protein (MLP) genes were identified and further studied in 

Arabidopsis transgenic plants. We could see, for at least one of these genes 

overexpressed in Arabidopsis, an indication of a lower infection. MLP genes can 

perhaps be used in breeding to select more precisely for new genotypes with 

resistance to the disease. The interaction between the fungus R. solani and the 

host sugar beet remain complicated, with many unknown factors in this 

interplay, but the results from this project is a step towards more knowledge. 

Popular science summary 
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Sockerbetor står för cirka 20 procent av världens sockerproduktion. Sockret 

produceras i roten och ackumuleras under hela växtsäsongen från vår till sen 

höst. I jorden där betorna växer finns det många olika svampar och andra 

patogener som kan orsaka sjukdomar på sockerbetor. Rhizoctonia solani är en 

sådan svamp och den kan förekomma i de flesta odlingsområden men föredrar 

varmt och fuktigt klimat. Svampen orsakar rotröta på betorna vilket gör att 

växterna antingen dör eller i bästa fall överlever men med en betydligt lägre 

sockerhalt vid skörd. Miljöförändringar, så som ett varmare klimat, samt ändrade 

odlingstekniker och grödor i växtföljden har lett till en ökning av denna svamp i 

jorden. Man vet inte så mycket om hur svampen infekterar sockerbetor och ett 

av målen med denna avhandling var att studera gener i svampen som är 

involverade i infektionsprocessen. Svampgenomet sekvenserades och 

studerades i detalj och framför allt tre intressanta gener identifierades och de 

kodar för; en lysin-motiv innehållande effektor (LysM), ett sällsynt lipoprotein-

A (RlpA) likt protein och ett cysteinrikt protein (CRP1). För att studera dessa 

närmare transformerades de in i Cercospora beticola och dessa överuttryckta 

isolat användes för att infektera sockerbetor. Vi kunde då se att LysM och CRP1 

orsakade större bladfläckar jämfört med vildtypen och att LysM och RlpA gav 

högre svamp DNA i bladen. Dessa resultat indikerar att generna är involverade 

i infektionsprocessen och de kan i framtiden användas när nya kontrollstrategier 

utvecklas. Ett annat mål med avhandlingen var att studera resistens mekanismer 

i sockerbeta mot R. solani. Genuttryck i sockerbetor med olika resistensnivåer 

studerades med hjälp av sekvensering av RNA och vi identifierade framför allt 

ett par ”Major latex protein” (MLP) gener av intresse. Dessa studerades i 

modellväxten Arabidopsis thaliana genom att överuttrycka samt slå ut dem. 

Resultaten var inte entydiga men vi såg en indikation på att en eller flera MLP 

gener kan vara av betydelse för resistensen och förhoppningsvis kan dessa 

användas i framtiden i sockerbetsförädlingen för att mer exakt kunna välja 

genotyper med resistens mot sjukdomen. 

Populärvetenskaplig sammanfattning 
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