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The prevalence of overweight in dogs is increasing. Canine overweight is associated with 

reduced quality of life, shorter life expectancy and metabolic variations such as insulin 

resistance and postprandial hyperlipidaemia. Previous metabolic research on overweight 

dogs has been performed mainly in fasting condition and studies on spontaneously 

overweight dogs using dynamic metabolic tests are scarce. This thesis therefore 

evaluated metabolic variations in spontaneously overweight dogs using a feed-challenge 

test.  

Lean and overweight healthy Labrador Retriever dogs underwent a feed-challenge 

test. Blood and urine samples collected at fasting and after food intake were analysed 

with serum biochemistry, ELISA and metabolomics techniques. Multivariate and mixed 

model repeated measurements analyses were used to evaluate responses between body 

condition groups and/or between time points in the feed-challenge test.  

Postprandial serum triglycerides were higher in prominently overweight dogs compared 

with lean, while no differences between groups were found at fasting. Only one fasted 

plasma phosphatidylcholine showed higher concentration in prominently overweight 

compared with lean dogs. Postprandial urine metabolomes, but not fasting metabolomes, 

distinguished between lean and overweight groups of dogs. Prominently overweight dogs 

had higher fasting urine cortisol/creatinine ratio than lean dogs, and overweight dogs 

showed signs of amino acid catabolism in postprandial urine. The acetylcarnitine 

response in overweight dogs indicated low fatty acid oxidation at fasting and metabolic 

inflexibility to food intake. Overweight dogs also showed lower carnitine and taurine 

status than lean dogs, potentially representing an interrelated insufficiency that could 

theoretically slow down lipid metabolism.  

In conclusion, spontaneously overweight Labrador Retriever dogs displayed 

variations in metabolic parameters compared with lean dogs. Use of a feed-challenge test 

allowed detection of subtle metabolic variations not noticeable in fasted condition, 

emphasising the importance of using dynamic tests in metabolic research on canine 

overweight. Six parameters, all directly or indirectly associated with lipid metabolism, 

differed between overweight and lean dogs. In this thesis, the complexity of lipid 

metabolism in canine overweight was revealed by identifying previously known and new 

metabolic variations in spontaneously overweight Labrador Retriever dogs. 
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1.1 Increasing overweight in humans and in dogs 

During the past 25 years, the prevalence of human obesity has doubled in many 

countries (Collaborators, 2017). Daily work has become less laborious and spare 

time more sedentary, in combination with intake of high-calorie dense food that 

has become more readily available (Kopelman, 2000). The current lifestyle 

probably makes a profound contribution to the obesity epidemic that is spreading 

among both children and adults (Abarca-Gómez et al., 2017). Obesity is defined 

as excess body fat (body mass index (BMI)  ≥30 kg/m2) with negative health 

effects and it develops when energy intake exceeds energy expenditure (Grundy, 

2004).   

According to data from the World Health Organization (WHO), in 2016 the 

prevalence of overweight (BMI ≥25 kg/m2) reached 40-50% in Europe and 

≥50% in the USA. Worldwide, the WHO reports that on average, 39% of adults 

are overweight and 13% are obese (WHO, 2016) (Figure 1).  

 

1 Introduction 
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Figure 1. Overweight adults as a percentage of total adult population per country in 2016, where 

overweight is defined as body mass index ≥25 kg/m2 (WHO, 2016). Diagram from 

http://apps.who.int/bmi/index.jsp. 

Two prominent co-morbidities of human overweight are increased risk of 

cardiovascular disease and type 2 diabetes mellitus (Chandler et al., 2017; 

Collaborators, 2017; Kopelman, 2007). In fact, type 2 diabetes is suspected to 

increase with overweight and with an older population, and is predicted to affect 

about 360 million people by 2030 (Wild et al., 2004). Human obesity is 

classified as a disease and is one of the most feared threats to our future health 

(Kopelman, 2000). 

Pet dogs are often seen as family members and largely share the lifestyle of 

their owners. The overweight dog population has increased in recent years, with 

a prevalence of up to 60% now being reported for some countries (German et 

al., 2018; Corbee, 2013; Courcier et al., 2010). In annual reports from Banifeld 

Pet Hospitals in the USA, the prevalence of overweight in dogs in general 

practice increased by almost 40% over the five years preceding 2016 and 

overweight was diagnosed in one-third of adult animal patients in 2016 

(Banifeld, 2016). 

Being overweight is the most common nutritional disorder in dogs. At a 

meeting of the World Small Animal Veterinary Association One Health 

(Atlanta, USA 2016), obesity in dogs was officially classified as a disease, as it 

is in humans (Kopelman, 2000). Canine overweight is a serious condition 

associated with severe health complications such as increased risk of chronic 

diseases early in life, a shortened life span and reduced quality of life (Adams et 

al., 2018; Yam et al., 2016; German et al., 2012a; Kealy et al., 2002). 

http://apps.who.int/bmi/index.jsp
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While owner-dog relationships may be complicated, owners and dogs clearly 

influence each other’s health. Overweight dog owners have been shown to be 

more likely to have overweight dogs (Nijland et al., 2010; Kienzle et al., 1998). 

On the other hand, dog owners may have a higher physical activity level than 

the general population (Christian et al., 2013). In addition, dog owners have been 

shown to have a reduced risk of death in general, and death due to cardiovascular 

disease in particular, compared with people who do not own a dog (Mubanga et 

al., 2017). A one-health perspective to combat human and dog obesity has been 

proposed by several research groups (Chandler et al., 2017; Sandøe et al., 2014; 

Day, 2010). In a survey-based study in 10 European countries, dog owners were 

asked for their opinions on obesity counselling in a one-health perspective, and 

almost 70% of around 3000 respondents were positive to collaborations between 

human and animal healthcare disciplines (Muñoz-Prieto et al., 2018). 

The true prevalence of canine overweight is difficult to determine. Previous 

studies have used various approaches, such as data from veterinary records, 

general veterinary estimations, body condition scoring at dog shows or dog 

shelters and dog-owner estimated body condition scoring (German et al., 2018; 

Muñoz-Prieto et al., 2018; Royal-Canine, 2017; Banifeld, 2016; Ricci et al., 

2007). These studies all suffer from potential selection bias and the results could 

also be influenced by the use of different scoring scales and personal scoring 

skills, as dog owners might underestimate the body condition score compared 

with veterinarians (Courcier et al., 2011; White et al., 2011). The prevalence of 

overweight dogs in Sweden is probably increasing, as reported in other 

countries. A study in 1999 reported 16% dog owner-estimated overweight in 

Swedish dogs (Sallander et al., 2010), but the prevalence today is believed to be 

30-50%, according to an online survey of dog owners and to general veterinary 

estimations, both studies performed in 2017 (Muñoz-Prieto et al., 2018; Royal-

Canine, 2017). 

1.1.1 Evaluation of body composition in dogs 

High body weight may correlate to high percentage body fat, but possibly also 

to large stature or large muscle mass. The actual body weight of an individual 

dog therefore needs to be assessed together with body condition score (BCS) and 

preferably in conjunction with a muscle mass score, especially in obese, ill or 

elderly dogs that are at risk of losing lean body mass (Baldwin et al., 2010).   

Morphometric assessments of body composition, such as dimensional 

evaluation and body condition scoring, are semi-quantitative techniques for 

assessing body fat content in dogs that are frequently used by healthcare 

professionals and by researchers. Dimensional evaluation involves 
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measurements of the animal’s length and girth (Hawthorne et al., 2005), but 

large breed differences need to be accounted for in dogs (Jeusette et al., 2010). 

Different body condition scoring systems have been developed for dogs, using 

1-5 and 1-9 point scoring scales. The 9-point body condition scale, where a score 

of 6-9 is defined as overweight, has been validated in dogs and the body fat 

percentage increases by approximately 5% with each additional point on the 

scale (Laflamme, 1997). The 5-point scale may be easier to use than the 9-point 

scale for non-health-care professionals such as dog owners. However, there is a 

risk of the body fat percentage estimated by this scale being inaccurate, or of 

dogs with slight overweight being classified as normal weight (Muñoz-Prieto et 

al., 2018; Witzel et al., 2014). Unfortunately, grossly obese dogs (>45% body 

fat) exist today and these dogs exceed the 9-point scoring scale. Therefore a body 

fat index (BFI) scoring system has been developed for assessment of normal 

weight to gross obesity in dogs (Witzel et al., 2014). The 1-9 body condition 

scoring scale and body fat index both involve assessment of visual and palpable 

body characteristics known to correlate with total body fat percentage measured 

with a quantitative method (Witzel et al., 2014; Laflamme, 1997).  

Quantitative measurements of body composition, other than body weight, can 

be made using e.g. dual energy x-ray absorptiometry (DEXA), magnetic 

resonance (MR) or computed tomography (CT) scanning techniques. These 

techniques have the advantage of determining the exact composition of lean and 

adipose tissues in the body, but are quite costly and require sedatives or general 

anaesthesia to be performed accurately. The fat-cell hormone leptin has been 

analysed as an alternative of quantitative measurement of body composition in 

dogs (Ishioka et al., 2007). This hormone has been shown to have a significant 

positive association with body fat content in dogs, does not seem to be influenced 

by gender or age and might be useful as a complement in the assessment of body 

composition in dogs (Ishioka et al., 2007).  

1.1.2 Risk factors for canine overweight 

Risk factors for overweight in dogs can be divided into dog-related factors and 

owner-related factors. Dog-related factors such as breed, neutering and 

increasing age have been described as important drivers for overweight in 

several studies (Muñoz-Prieto et al., 2018; Gossellin et al., 2007; Colliard et al., 

2006; Lund et al., 2006). The Labrador Retriever dog has often been described 

as greedy, with a great food interest, and this claim is supported by the recent 

discovery of a mutation in the pro-opiomelanocortin (POMC) gene (associated 

with greediness and increased adiposity), which is present in 22% of Labrador 

Retriever dogs (Raffan et al., 2016).  
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Owner-related factors include low family income, increasing owner age and 

the owner’s attitude to physical activity and healthy foods (Muñoz-Prieto et al., 

2018). The owner’s perception of the dog’s attitude to physical activity has also 

been shown to be important (Westgarth et al., 2017). It has been shown that 

overweight dog owners are more likely than normal weight people to have 

overweight dogs (Nijland et al., 2010). In a recent survey-based study in Europe 

that included Sweden, overweight in dog owners was not associated with 

overweight in their dogs, but owners’ lifestyle and habits still clearly influenced 

the body composition of their dogs (Muñoz-Prieto et al., 2018). That survey 

found that owners who spent little time with their dog, shared food with their 

dog, were smokers or did not believe obesity to be a disease were more likely to 

have overweight dogs. Interestingly, a high value of owner-estimated body fat 

in dogs was positively associated with a perception by owners that their dog 

became ill easily and was inversely associated with a perception that their dog 

was happy. 

1.1.3 Treatment of canine overweight 

Weight reduction in dogs is often challenging and involves energy restriction by 

using a diet designed for weight loss (German, 2016). Such diets are energy-

restricted by having an increased fibre, water and air content, while still 

containing all the key nutritional factors in sufficient amounts (Hand et al., 

2010). The ideal weight of a particular dog can be estimated based on the obese 

weight in combination with the assigned BCS (German et al., 2009). Dogs are 

then fed individually adjusted amounts of resting energy requirements according 

to the calculated ideal weight (Hand et al., 2010). 

Re-assessment and monitoring is important, as energy requirements are 

individual. Energy restriction aims for a 1-2% weight loss per week, which is 

considered safe for dogs (Laflamme et al., 1997). Increased exercise is 

preferably included in the weight loss programme, to avoid a weight loss plateau 

and to preserve lean body mass (Vitger et al., 2016). However, as many dogs 

suffer from other health problems, this is not always possible (Lund et al., 2006). 

Weight loss in dogs is often challenging for pet dogs and for their owners. Owner 

commitment and good communication between veterinarian and dog owner are 

crucial factors for success in weight reduction. In a long-term study, it was 

shown that only 60% of overweight dogs reached their target ideal weight and 

of these, half re-gained weight (German et al., 2012a; German et al., 2012b). A 

large part of the dog population is suffering from overweight and this condition 

could be considered the most important metabolic disease of dogs today. 
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1.2 General metabolic parameters 

Blood glucose increases after food intake, but the meal composition has been 

shown to affect the time to peak and the exact concentration of peak postprandial 

glucose concentration in dogs (Nguyen et al., 1994). Insulin is an anabolic 

hormone that is secreted from β-cells in the pancreas under stimulation of 

glucose in the blood stream. The presence and binding of insulin mediates the 

incorporation of glucose transporters in the cell surface and glucose is then 

eliminated from the blood (Frayn, 2009). Glucagon is a catabolic hormone 

secreted from α-cells in the pancreas and is present in high concentrations in 

blood under fasting conditions. It mediates gluconeogenesis, lipid catabolism 

and hunger and through those actions keeps blood glucose and energy levels 

stable when no food is present (Frayn, 2009). Postprandial glucagon 

concentration in the blood stream decreases after intake of glucose, but may rise 

after intake of amino acids or lipids (Carr et al., 2010). 

Leptin is a fat-cell hormone that is released by adipocytes into the blood 

stream. Leptin has a role in the long-term regulation of energy intake, body 

weight and hunger (Frayn, 2009). Higher concentrations in overweight subjects 

compared with lean have been reported in humans and in dogs (Ishioka et al., 

2007; Friedman & Halaas, 1998). Adiponectin, another hormone derived from 

adipocytes, is involved in glucose homeostasis, fatty acid catabolism and energy 

homeostasis (Goldstein & Scalia, 2004). However, in contrast to leptin, 

adiponectin has been shown to decrease in obese humans (Matsubara et al., 

2002). 

1.2.1 Lipid metabolism in dogs 

Upon intake of dietary fat, triglycerides are hydrolysed by pancreatic lipase in 

the gut lumen and micelles are formed with gall salts and diffuse into the 

intestinal epithelial cells, i.e. enterocytes. Inside the enterocytes, triglycerides 

are reformed and, together with phospholipids and cholesterol, chylomicrons are 

created. Chylomicrons constitute one of several classes of lipoproteins and are 

responsible for transport of dietary lipids to adipose and muscle tissues, by 

secretion first into the lymphatic circulation and later into the blood circulation 

(Frayn, 2009). Triglycerides measured postprandially are mainly transported in 

chylomicrons and reflect dietary fat intake (Xenoulis & Steiner, 2010). 

Lipoprotein lipase in the capillaries of adipose tissue is activated by insulin and 

triglycerides are eliminated from plasma by incorporation into adipocytes 

(Frayn, 2009). Under situations of withheld food, such as in overnight fasting, 

lipid catabolism provides the main source of energy and free fatty acids are 

released from adipose tissue and enter the blood stream. Free fatty acid 
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concentrations in serum decline after insulin stimulation and food intake (Frayn, 

2009). 

Endogenously synthesised lipids are transported by other lipoprotein classes 

in the blood, namely very low-density lipoprotein (VLDL), low-density 

lipoprotein (LDL) and high-density lipoprotein (HDL). Of these classes, VLDL 

is the lipoprotein that has triglycerides as the main lipid component in humans. 

In dogs, VLDL and LDL contribute equally to the plasma triglyceride content 

(Maldonado et al., 2001). The content of the remaining lipoprotein classes 

consists mainly of different phospholipids or cholesterol esters. In dogs, the most 

abundant lipoprotein is HDL, which is the main carrier of phospholipids, 

cholesterol esters and free cholesterol, followed by LDL and VLDL. In contrast 

to humans, who have cholesterol-ester rich plasma, dogs have 

phospatidylcholine-rich plasma. In dog plasma, HDL carries more than 80% of 

the total lipid content, while this function is exerted by LDL in humans 

(Maldonado et al., 2001). 

Due to the absence of an enzyme (cholesteryl-ester transfer-protein enzyme) 

present in humans (Guyard-Dangremont et al., 1998), HDL2 molecules in dogs 

constantly acquire cholesterol esters and form HDL1 molecules, which are 

unique to dogs. This lack of enzyme probably explains why cholesterol esters 

are not evenly distributed among lipoprotein fractions and why, unlike humans, 

dogs have much more efficient reverse cholesterol transport from peripheral 

tissue to the liver (Xenoulis & Steiner, 2010; Maldonado et al., 2001).  

In normal weight dogs, plasma phospholipid composition has been shown to 

be equal between all lipoprotein classes (Maldonado et al., 2001), while data on 

lipoprotein changes in overweight dogs are inconsistent. In some studies, 

increased VLDL, LDL and HDL concentrations have been reported in 

overweight dogs, whereas overweight humans may instead show decreased 

HDL cholesterol concentration (Usui et al., 2015; Xenoulis & Steiner, 2010; 

Yamka et al., 2006; Jeusette et al., 2005; Bailhache et al., 2003).  

1.2.2 Current knowledge of metabolic variations in canine overweight 

In canine metabolic research, two main approaches are commonly used to study 

metabolic variations in overweight. In the first approach, dogs are exposed to 

either acute overfeeding, mostly not exceeding three months, or to chronic 

overfeeding (>3 months). Experimental set-ups are then often used and one dog 

breed is commonly included in the experiment. In the second approach, privately 

owned lean or overweight/obese dogs of various breeds are used for sample 

collection, but these dogs are seldom followed over longer periods unless 

undergoing weight reduction interventions (German, 2006) (Table 1). 
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The metabolism works in constant dynamic shifts between fasted and 

postprandial states and what is seen at fasting does not necessarily reflect what 

will appear in a challenge, such as a feed-challenge test or an oral lipid or sugar 

test (Morris et al., 2015; Krug et al., 2012; Pellis et al., 2012) (Table 1). A meal 

challenge represents a dynamic test of the metabolism, a somewhat realistic 

situation that gives information on how the metabolism reacts to a meal. The 

background diet may influence metabolic parameters, but the postprandial 

plasma metabolome (e.g. the composition of different metabolites in plasma) in 

humans has been shown to be more stable and less dependent on the regular diet 

than the fasted metabolome (Karimpour et al., 2016). In the past, researchers 

have mainly collected samples from dogs in fasted condition, but postprandial 

interventions have also been performed (Table 1). 

Metabolic variations in canine overweight and obesity that have been 

commonly described are increased or higher glucose, insulin, triglyceride, 

cholesterol and leptin concentrations (Table 1). Decreased adiponectin 

concentrations, increased systolic blood pressure and variations in metabolites 

related to lipid metabolism have also been described in overweight and obese 

dogs (Table 1). Many of these metabolic variations of overweight dogs resemble 

features of human metabolic syndrome (Alberti et al., 2006), and therefore 

attempts have been made to perform similar classifications for dogs (Kawasumi 

et al., 2012; Tvarijonaviciute et al., 2012). The classifications proposed for 

canine metabolic syndrome differ in the suggested inclusion parameters and 

their reference limits, as well as the cut-off for overweight (José Lahm Cardoso 

et al., 2016). Moreover, the definitions have the drawback of being based only 

on parameters measured in fasted condition (Table 1). In addition, neutering has 

been shown to be a factor associated with metabolic syndrome in dogs (Table 

1). The relevance of metabolic syndrome classification in dogs has been 

questioned (Verkest, 2014), as dogs do not seem to progress to type 2 diabetes 

due to the metabolic syndrome criteria (Chandler et al., 2017; Verkest et al., 

2011) and reports on cardiovascular disease other than hypertension are scarce 

(Table 1). Nevertheless, overweight dogs have an increased risk of short life 

expectancy (Adams et al., 2018; Kealy et al., 2002), motivating research within 

the field. 
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Table 1. Reported metabolic variations in canine overweight with relevance to this thesis  

Publication/s Study design  Body-condition 

assessment  

Dogs included Samplings Metabolic variations in overweight dogs 

(Verkest et al., 

2011) 

Spontaneously obese and 

lean dogs. Feed-challenge 

test 

BCS 9 obese, 9 lean. 

Various breeds 

F, PP serum Fasting insulin and triglycerides were higher in obese dogs. 

Postprandial glucose, insulin and triglycerides were higher in obese 

dogs 

(Tvarijonaviciu

te et al., 2016; 

Tvarijonaviciut

e et al., 2012) 

Weight loss intervention in 

spontaneously obese 

dogs/spontaneously obese 

dogs with or without ORMD 

BCS, DEXA/  

BCS, DEXA 

35 obese. Various 

breeds/8 neutered 

obese. Various 

breeds  

F plasma/ 

F plasma 

Systolic blood pressure, cholesterol, triglycerides and insulin 

decreased after weight loss and adiponectin increased. MS was 

present in 20% of overweight dogs/variations in proteins related to 

lipid metabolism were found in dogs with ORMD 

(Adolphe et al., 

2014) 

Acute and chronic 

overfeeding and weight loss 

intervention in dogs. OST 

BCS, CT 8 neutered 

beagles 

F, PP plasma Fasting glucose, heart rate and systolic left ventricular thickness 

increased in acute overweight and obesity and adiponectin 

decreased. Fasting insulin was higher in chronic obesity. Not all 

parameters were normalised after weight loss 

(RC de Godoy 

et al., 2015) 

Acute and chronic 

overfeeding in dogs 

BCS 5 beagles F plasma Amino acid- and lipid metabolites showed a bi-phasic pattern with 

an increase in acute phase and normalisation or decrease in chronic 

phase. Leptin, triglycerides and insulin were higher in obesity 

(José Lahm 

Cardoso et al., 

2016) 

Spontaneously obese, 

overweight and lean dogs 

BCS 170 overweight 

or obese, 101 

lean. Various 

breeds 

F plasma Glucose, cholesterol, triglycerides and systolic blood pressure were 

higher in obese than in lean dogs. MS was present in 36% of 

overweight or obese dogs and those had more pronounced 

metabolic variations. Neutering was positively associated with MS 

(Forster et al., 

2018) 

Spontaneously obese, 

overweight and lean dogs  

BCS 22 obese, 27 

overweight, 17 

lean. Various 

breeds 

F plasma and 

urine 

Various lipid- and protein metabolites were increased in overweight 

and obese dogs compared with lean dogs 

BCS, body condition score; CT, computed tomography scan; DEXA, Dual energy x-ray absorptiometry; F, fasting; MS, metabolic syndrome; ORMD, obesity-related metabolic 

dysfunctions; OST, oral-sugar test; PP, postprandial
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1.2.3 Taurine and carnitine in dogs 

 Taurine is a sulphur-amino acid involved in a variety of body functions, 

including fat metabolism, reproduction and the nervous system. Taurine has an 

essential role in lipid metabolism as a bile acid conjugator, aiding fat absorption 

in the small intestine (Xie et al., 2012). Taurine deficiency in dogs may cause 

dilated cardiomyopathy in some breeds and treatment with taurine supplement 

for this condition has been suggested (Sanderson, 2006; Kittleson et al., 1997). 

Dogs absorb taurine from their diet, but also have the capacity for taurine 

biosynthesis from cysteine and methionine in the liver (Ko et al., 2007). Taurine 

is freely filtered in the kidneys (Hayes & Sturman, 1981). No compensatory 

kidney re-absorption during prolonged fasting has been detected in dogs (Gray 

et al., 2015) and plasma taurine concentration is therefore crudely reflected in 

urine (Hayes & Sturman, 1981). Taurine is not required in commercial dog foods 

and is usually not added (Hand et al., 2010). 

Carnitine, a component of all animal cells, is often described as a vitamin-

like metabolite (Rebouche & Paulson, 1986). Carnitine is essential for fatty acid 

oxidation and energy production, as it transports long-chain and medium-chain 

fatty acids into the mitochondria for beta-oxidation (Hand et al., 2010). Dogs 

absorb carnitine from dietary animal proteins, but can also produce it 

endogenously. Biosynthetic production of carnitine requires several steps, the 

last of which takes place in the liver and is rate-limiting (Bremer, 1983). 

Carnitine is derived from lysine and methionine, but other co-factors such as 

vitamin B6 are also required (Borum & Bennett, 1986). Carnitine deficiency in 

humans may cause muscle weakness, hypoglycaemia and cardiomyopathy, but 

patients can also be asymptomatic (Stanley, 1987).   

Although low carnitine status in overweight dogs has not been firmly 

established, dietary carnitine supplementation has been proposed for weight loss 

in dogs (Floerchinger et al., 2015; Roudebush et al., 2008). The suggested 

mechanisms are that carnitine preserves lean body mass, decreases fat mass and 

to some extent increases weight loss (Floerchinger et al., 2015; Shoveller et al., 

2014; Roudebush et al., 2008; Ibrahim et al., 2003). Carnitine supplementation 

has been suggested to improve fatty acid oxidation and insulin sensitivity 

(Schooneman et al., 2013), but studies in rodent models of obesity using 

carnitine supplementation aimed to improve fatty acid oxidation have not 

yielded consistent results (Schooneman et al., 2016; Vigerust et al., 2012). In 

two studies of short-term overweight in dogs, no differences in plasma carnitine 

concentrations between lean and overweight dogs were found (RC de Godoy et 

al., 2015; Diez et al., 2004). L-carnitine addition (300 ppm dry matter) to 
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complete dog foods aimed for weight loss or maintenance is currently 

recommended, but not always followed (Hand et al., 2010). 

1.3 Metabolic inflexibility in overweight humans 

A flexible metabolism is able to switch from fatty acid oxidation during fasting 

to suppression of fatty acid oxidation and a shift to glucose uptake, oxidation 

and storage under conditions with insulin stimulation (Kelly 2000). The term 

“metabolic inflexibility”, first introduced by Kelley et al. (1999), refers to 

lowered capacity of the mitochondria to switch freely between carbon fuels 

derived from different substrates (fatty acids, glucose or amino acids) (Muoio, 

2014; Kelley et al., 1999). Metabolic inflexibility is considered a link between 

overweight and insulin resistance and is included as part of human metabolic 

syndrome (Collaborators, 2017; Bergouignan et al., 2011; Kopelman, 2007). 

Obesity-related metabolic dysfunctions such as metabolic inflexibility have been 

speculated to contribute to energy dysregulation in obesity, and metabolic 

inflexibility has been proposed as a possible driver for overweight (Muoio, 

2014). Use of acetylcarnitine concentration as a measure of metabolic 

inflexibility has been suggested in humans and in rodents (Prior et al., 2014; 

Muoio et al., 2012; Noland et al., 2009), as this metabolite is commonly derived 

from fatty acids but can be formed from all substrates used for mitochondrial 

oxidation (Randle, 1998). 

In humans, different treatments for metabolic inflexibility, i.e. overloaded 

mitochondrion or generally decreased oxidation rates, have been discussed in 

terms of different weight reduction diets. All treatments involve relieving the 

workload and gridlock for the mitochondria, e.g. increased physical exercise, 

reduced intake of carbohydrates (high-fat low-carb diets) or intermittent fasting 

(five-two diets) (Muoio, 2014). Recent studies on intermittent fasting methods 

for dogs showed promising results, with no adverse metabolic effects in the 

parameters investigated and maintained energy requirements post weight loss 

(Leung et al., 2018; Pan et al., 2018). 
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Figure 2. The Labrador Retriever dogs Specs and Wille in action. Photo: Lena Holm. 
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The overall aim of this thesis was to evaluate metabolic variations in 

spontaneously overweight dogs in fasted and postprandial condition, using the 

Labrador Retriever as a model. The hypotheses tested were i) that overweight 

dogs display variations in metabolic parameters compared with lean dogs and ii) 

that feed-challenge tests permit detection of subtle metabolic variations not 

noticeable in fasted condition. 

 

 

Specific objectives were: 

 

 To study serum responses of metabolic hormones and biochemistry 

parameters in lean and overweight dogs during a feed-challenge test  

(Paper I). 

 

 To study metabolic profiles in fasted and postprandial urine in lean and 

overweight dogs (Paper II). 

 

 To study plasma metabolite responses in lean and overweight dogs during a 

feed-challenge test (Paper III). 

 

 To study plasma acylcarnitines and phospholipid profiles in lean and 

overweight dogs during a feed-challenge test (Paper IV). 

 

2 Aims of the thesis 
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This chapter describes the cohort of dogs used in the thesis and provides a 

summary of sample collection and the different methods used in Papers I-IV. 

More detailed descriptions of the methods and statistics can be found in the 

individual papers. 

3.1 Recruitment procedure and dogs recruited 

Data collection for all papers (I-IV) was performed during one year at the 

University Animal Hospital and at the Swedish University of Agricultural 

Sciences, Uppsala, Sweden. All dogs were sampled once, at the same time of 

day, according to a pre-designed study protocol. The experiment was approved 

by the Ethics Committee for Animal Experiments, Uppsala, Sweden, and owner 

consent was obtained for each dog.  

The study population consisted of 28 privately-owned healthy intact male 

show-type Labrador Retriever dogs. The Labrador Retriever breed is the most 

popular and common breed in Sweden and is used as a pet and as a utility dog 

(https://www.skk.se), which was the main reason for selection of this particular 

breed. To qualify for inclusion in the study, each dog had to be considered 

healthy by its owner, pass a health examination including haematology and 

serum biochemistry and have had stable body weight for at least three months. 

Exclusion criteria included previous or current systemic or organ-related disease 

and treatment with antibiotics, non-steroid anti-inflammatory drugs, steroids, 

deworming drugs or proton pump inhibitors within three months prior to the 

examination day. All dogs were tested for hypothyroidism and diabetes mellitus, 

and basal cortisol/creatinine ratio in morning urine was tested to exclude    

hyperadrenocorticism. Dogs were also excluded if vital parameters, 

haematology or serum biochemistry were outside reference ranges for healthy 

dogs on the day of examination. 

3 Comments on material and methods 

https://www.skk.se/
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Dogs were recruited by personal letters to 715 owners (mostly located within 

100 km of Uppsala) of potentially eligible male Labrador Retrievers registered 

by the Swedish Kennel Club. Sixty owners replied and their dogs were examined 

for eligibility by an on-line survey of dog health status and feeding and exercise 

routines. Thirty-two dogs were not invited for further data collection, based on 

information stated in the online surveys that met the exclusion criteria. The 

remaining 28 dogs were invited to participate in data collection in the feed-

challenge test. All dogs proved to be healthy, there were no missing data in the 

collected samples (with the exception of two urine samples) and none of these 

28 dogs was excluded.  

As breed, gender, age and neutering are factors shown to influence body 

condition in dogs (Gossellin et al., 2007; Colliard et al., 2006; Lund et al., 2006), 

only intact dogs of one breed and gender were included in the study. The dogs 

were allocated to lean, slightly overweight and prominently overweight groups 

and all had similar mean age (Paper I) (Table 2). The strict inclusion criteria 

probably minimised inter-dog variation and made it easier to detect subtle 

metabolic variations depending on body condition score, despite quite a small 

dog cohort. However, the strict inclusion criteria also reduced the total number 

of eligible dogs living within a reasonable distance from the University Animal 

Hospital in Uppsala.  

Table 2. Descriptive statistics for the 28 Labrador Retriever dogs studied in Papers I-IV and the 

amount of test food given in the feed-challenge test*. Table modified from Paper I 

 Lean Slight overweight Pronounced 

overweight 

 (BCS 4-5) n=12 (BCS 6) n=10 (BCS >6) n=6 

Age (year) 5.3 ± 1.4a 4.6 ± 1.4a 6.2 ± 1.6a 

Body weight (kg) 34.8 ± 2.5a 36.9 ± 2.3ab 43.9 ± 4.2b 

Ideal body weight**(kg) 34.8 ± 2.5a 34.4 ± 2.2a 39.2 ± 2.7b 

Test-meal size*** (g) 222 ± 12a 220 ± 11a 243 ± 12b 

*Variables are expressed as mean ± SD. Within each row, values with different superscript letter (a or b) 

differ significantly (P<0.05).  

**Ideal body weight of overweight dogs was calculated as previously described (Verkest et al., 2011; 

Laflamme, 1997).  

***Hills Science PlanTM Canine Adult Performance.  

It would have been desirable to include a larger number of dogs that were obese, 

rather than overweight, but unfortunately such dogs proved extremely difficult 

to enrol. Possible reasons for this are that the owners of obese dogs did not realise 

their dogs were obese, that they somehow felt guilty for the overweight or that 

their dogs did not meet the criteria due to health issues.  
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Our intention was to create a ‘natural’ model of spontaneous overweight that had 

preferably persisted for at least three months prior to participation in the study, 

even though most of the overweight dogs had been overweight for longer than 

three months according to their owners. Acute experimental studies tend to be 

dominating on overweight dogs and there is a need for data on spontaneously 

overweight or obese dogs (German, 2006). 

3.2 General study design 

The dogs were fasted in the home environment from 6 pm on the day before 

clinical sampling. In the morning of the examination day, water was withheld 

and a voided urine sample was taken from each dog by the owner. On arrival at 

the University Animal Hospital (between 8 and 9:30 am), the dogs were 

examined by the same veterinarian (Josefin Söder) and fasting blood samples 

were taken, followed by intake of a test meal. Postprandially, blood samples 

were collected hourly from one to four hours and voided urine was sampled at 

three hours (Figure 3).  

 
Figure 3. Overview of the sampling procedure conducted in the same way on each participating 

Labrador Retriever dog. Voided urine was sampled twice, at home after an overnight fast and 3 

hours postprandially in the feed-challenge test. The postprandial period stared at the first bite of the 

test meal. 
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3.2.1 Diet in the home environment  

No adjustments were made to the dogs’ regular home diet of complete 

commercial dog foods and treats prior to participation in the study, presumably 

lowering the risk of changes in body weight preceding sample collection. 

Dietary history was acquired by daily food diaries provided by the dog owners 

during two weeks preceding the study. According to the food diaries, all dogs 

had their main energy supply from dry or wet (one dog) complete commercial 

diets and the most common protein source in the complete diets was chicken. A 

limited number of dogs of different body conditions were fed a low-fat, calorie-

restricted diet or a diet containing carnitine additives, and it is therefore unlikely 

that this would have had an impact on the total group differences in measured 

parameters. The frequency with which the dogs were awarded table scraps, treats 

or dog chews did not differ between body condition groups (Paper III). 

3.2.2 Assessment of health status and body condition  

Each dog underwent a standard physical examination (assessment of general 

condition, skin condition, rectal temperature, visible mucus membranes, 

palpable lymph nodes, heart and lung auscultation, abdominal palpation and 

gait) and were weighed (Table 2) and photographed (Figure 4). Routine 

haematology and serum biochemistry analyses (alanine aminotransferase, 

alkaline phosphatase, fasting bile acids, creatinine, urea, glucose, fructosamine, 

total protein, albumin, C-reactive protein, total thyroxine, thyroid stimulating 

hormone, sodium, potassium and chloride) were performed on fasting blood 

samples. Urine was analysed by a standard dipstick chemistry test and by 

refractometry for urine specific density. Some minor health problems (slightly 

stiff gait and mild lameness, signs of mild periodontitis, palpable peri-articular 

osteophyte formation and skin furunculosis) were detected in 11 dogs. None of 

these dogs was excluded, as vital parameters, haematology, serum biochemistry 

and urine analysis were within the reference ranges for healthy dogs.  

The dogs were assigned a clinical body condition score (BCS) on a 9-point 

scale (Laflamme, 1997) by the same veterinarian (Josefin Söder) and the cut-off 

for overweight (BCS ≥6) as suggested by the scoring scale was applied. Two 

dogs did not fit perfectly into the criteria of the scoring scale and were classified 

as BCS 6.5 (defined as a dog fulfilling all criteria of BCS 7 but with less well-

defined fat deposits). In the feed-challenge test, these two dogs were fed 

according to lean body weight of BCS 6. 
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Based on BCS, the 28 dogs were assigned to one of three groups: a lean group 

(BCS 4-5), which consisted of 12 dogs; a slightly overweight group (BCS 6), 

which consisted of 10 dogs and a prominently overweight group (BCS >6) which 

consisted of six dogs (Paper I). Only one dog in the prominently overweigt group 

was obese (BCS 8). In Papers II-IV, where multivariate models were used, the 

dogs were assigned to two groups in order to get sufficient numbers of dogs in 

each group in the multivariate models. These were: a lean group (BCS 4-5), 

which consisted of 12 dogs, and an overweight group (BCS ≥6), which consisted 

of 16 dogs. 

 
Figure 4. Photos of participating Labrador Retriever dogs showing increasing body condition score 

(BCS). A) BCS 5, B) BCS 6, C) BCS 7 and D) BCS 8. Photos: Josefin Söder. 

The fat-cell hormone leptin was analysed in fasting serum samples and leptin 

concentration was found to be positively associated with BCS (Figure 5). 

Slightly overweight dogs (BCS 6) did not differ significantly from lean dogs 

(BCS 4-5) in fasting leptin concentration (one-way analysis of variance 

(ANOVA) with Tukey-Kramer adjustment), while prominently overweight dogs 

had higher leptin concentration than both lean and slightly overweight dogs 

(P<0.05).  
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Figure 5. Leptin concentration measured in fasting serum samples as a function of assigned body 

condition score (significant association, linear regression R2 = 0.41, P<0.0001). Re-analysis based 

on leptin data presented in Papers I-IV. 

Slightly overweight dogs (BCS 6) were included in the study mainly for two 

reasons. First, the dogs scored BCS 6 were judged clinically to be slightly 

overweight, with palpable slight excess fat covering the ribs and a discernible 

waist, but not as prominent and well defined as the waist of a dog scored BCS 5 

(Figure 4). Second, in-house clinical experience is that these slightly overweight 

dogs represent a great proportion of the dog population. Many pet dogs suffer 

from overweight today but, at least in Sweden, the majority of these overweight 

dogs could be described as slightly to moderately overweight. Inclusion of 

slightly overweight dogs in metabolic research is therefore motivated, as it is of 

interest to determine whether these dogs display the metabolic variations seen in 

more prominently overweight dogs.  

According to a previous validation of the scoring scale used (Laflamme, 

1997), total body fat percentage increases by 5% per unit higher body condition 

score. An objective measurement of body fat percentage, e.g. DEXA scan, would 

have been a good complement to the body condition scoring, but was not 

available at the University Animal Hospital. Although other objective 

techniques (i.e. MR or CT scanning) could have been useful in the body 

composition evaluation, it should be noted that the study design did not allow 

sedation without another day of sampling, which would have been difficult to 

achieve when dealing with privately owned dogs.  

3.2.3 Feed-challenge test  

The intention with the study design was to attain a natural model of spontaneous 

overweight with no intervention other than the feed-challenge test. A meal 

challenge represents a dynamic test of the metabolism, a physiological situation 

that reflects how the metabolism reacts to a daily meal and with the potential to 
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detect subtle metabolic changes in the postprandial state (Badoud et al., 2015; 

Krug et al., 2012; Pellis et al., 2012).  

All dogs were exposed to the same feed-challenge test, in which they were 

given half their daily energy requirement as a high-fat mixed meal. The equation 

used to compute daily energy requirement (DER) (131 kcal x body weight kg
0.75) 

is designed specifically for adult intact Labrador Retriever dogs (Kienzle & 

Rainbird, 1991). To minimise the risk of giving overweight dogs too much food 

in comparison with lean dogs, the lean body weight of all overweight dogs (BCS 

≥6) was calculated by subtracting the weight of the average fat content according 

to the estimated BCS and gender (Verkest et al., 2011; Laflamme, 1997). The 

dogs were then fed according to the DER of ideal weight, using the actual body 

weight in lean dogs and the calculated lean body weight in overweight dogs 

(BCS ≥6). The calculated lean body weight of prominently overweight dogs 

(BCS >6) was higher than the actual body weight of dogs with BCS 4-5 and the 

calculated lean body weight of dogs with BCS 6 (Table 2). A possible 

explanation is that these dogs were not only fatter, but also larger in overall body 

stature (which was supported by visual observations).  

The test meal was weighed and served with water added (same amount in 

grams as in the individual test meals). The test feed (Science PlanTM Canine 

Adult Performance, Hills, Etten Leur, the Netherlands) provided 4230 kcal/kg, 

with 51% of the metabolisable energy as fat, 26% as carbohydrate and 23% as 

protein (taurine, omega-3 and omega-6 fatty acids, betacarotene and vitamin A, 

C, D and E were added, according to the manufacturer). The idea behind 

choosing a high-fat meal was to challenge lipid metabolism, as overweight dogs 

have previously been reported to show variations in lipid parameters (see Table 

1). Nutrient composition and energy content of the batch of test feed used were 

confirmed by an independent authorised laboratory (Paper III). The postprandial 

period started at the first bite and all 28 dogs voluntarily consumed all food and 

water within 10 minutes of being served. The dogs were given nothing further 

to eat or drink and were kept indoors until completion of the postprandial 

samplings.  

3.2.4 Blood- and urine sample collections 

A catheter was placed in the distal cephalic vein (Figure 6) and blood samples 

were collected 15 minutes before (fasting), and then hourly for four hours after 

the test meal (postprandial period). Fasting serum and plasma EDTA were used 

for health verification biochemistry and haematology analyses. At fasting and 

all postprandial time points, both serum and lithium-heparinised plasma were 

collected for analyses in Papers I, III and IV. 
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Prior to the examination day, the dog owners had accustomed their dogs to 

the urine sampling procedure for a minimum of three times. On the examination 

day, naturally voided morning urine was collected at home using a free-catch 

sampling device and was kept chilled on ice during transport. Total emptying of 

the bladder after morning urination could not be confirmed, as the dogs were 

still at home at that time, and there is a small but existing risk of a mix of fasting 

and postprandial urine being present in the postprandial samples obtained from 

some dogs. Fasting morning urine was used for the health verification analyses. 

Three-hour postprandial urine samples were collected by the owner as described, 

and both fasting and postprandial urine samples were used for analyses in Papers 

I and II. Full details of sample collection can be found in the individual papers. 

 
Figure 6. Blood sample collection from a Labrador Retriever dog by the veterinarian (Josefin 

Söder). Photo: Sanna Truelsen Lindåse. 

3.3 Serum-, plasma- and urine analyses  

ELISA assays and serum biochemistry analyses 

Personnel blinded to dog identity performed enzyme-linked immunosorbent 

assay (ELISA) according to the manufacturers’ instructions. Serum leptin 

concentration was analysed in fasting samples, whereas serum insulin and 

glucagon were analysed in fasting and postprandial samples. Cortisol and 

creatinine were analysed in fasting and 3-hour postprandial urine. Commercially 

available canine ELISA kits were used to analyse serum leptin (Canine Leptin 

ELISA, Millipore, Missouri, USA) and insulin (Canine Insulin ELISA, 



33 

 

Mercodia, Uppsala, Sweden) and urine creatinine (Canine Urinary Creatinine 

ELISA, Arbor, Michigan, USA) concentrations. The ELISA kits for urine 

cortisol (Cortisol Urine ELISA, IBL, Hamburg, Germany) and serum glucagon 

(Human Glucagon ELISA (25 µL), Mercodia, Uppsala, Sweden) were validated 

for use in dog urine and serum (Paper I) before the analyses were performed. 

Urine creatinine concentrations were used for normalisation of urine cortisol. 

All samples were analysed in duplicate, and the mean of the two values was used 

in statistical analyses.  

Serum glucose, triglycerides, free fatty acids (Free Fatty Acid Reagent, Wako 

NEFA-HR(2), Neuss, Germany) and total cholesterol were analysed by routine 

automatic methods (Architect c4000, Abbott Park, IL, USA) at the Clinical 

Pathology Laboratory, University Animal Hospital, Swedish University of 

Agricultural Sciences, Uppsala, Sweden. 

Nuclear magnetic resonance (NMR) 

A total of 47 metabolites were identified in urine using each spectrum and the 

ChenomX database (https://www.chenomx.com/software/libraries) and their 

concentrations were quantified in mM relative to the internal standard added 

after accounting for overlapping signals. As creatinine and urea were present at 

much higher concentrations than other metabolites, any small change in their 

concentrations would cause a large change in the relative ratio of other 

metabolites and influence the robustness of the model (Favé et al., 2011). These 

two metabolites were therefore excluded from the datasets, after which 45 

metabolites remained.  

Normalisation of urine data is crucial for comparisons of metabolite 

concentrations between different time points or studies. Normalisation to 

creatinine is generally used in veterinary medicine to account for differences in 

urine concentrations (Adamko et al., 2007; Braun et al., 2003) and that approach 

was used in Paper I. However, the suitability of creatinine as a general 

normalisation factor in urine metabolomics has been questioned, especially in 

analyses of postprandial urine, as meat-based food intake has been found to 

increase creatinine excretion (Xu et al., 2013; Favé et al., 2011). To account for 

different concentrations in the urine samples, the data from both fasting and 

postprandial time points were transformed to relative concentrations (% of total 

mM) using the following formula: [(mM of metabolite)/(sum (mM) of all 45 

metabolites)] x100. Relative metabolite concentrations cannot easily be used for 

comparisons between studies using other normalisation approaches. However, 

in Paper II this normalisation approach was crucial to enable comparison 

between fasting and postprandial sampling time points and between lean and 

overweight dogs, while at the same time accounting for differences in urine 
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specific density. For details of nuclear magnetic resonance (NMR) spectral 

acquisition, identification and quantification of urine metabolites, see Paper II. 

A set of 55 plasma metabolites was selected for quantification and the 

concentrations of these metabolites were determined in all experimental spectra 

using a previously described slightly modified strategy for automated 

quantification algorithm (AQuA), which accounts for complex overlap of 

experimentally observed signals (Röhnisch et al., 2018). The AQuA was 

modified for the experimental spectra from the dog plasma samples in this thesis 

and estimated the concentrations (µM) of all 55 metabolites in all experimental 

spectra. It proved possible to quantify 43 of these 55 metabolites with acceptable 

quality using AQuA (quality indicators: coefficient of variation (CV) ≤20%, 

metabolite occurrence ≥50% of all samples, and no target signal positional 

deviation between the experimental spectra). Of these 43 metabolites, 41 were 

included in the multivariate and univariate statistical analyses. For details of 

NMR spectral acquisition, identification and quantification of plasma 

metabolites, see Paper III. 

Liquid chromatography-time of flight mass spectrometry (LC-TOFMS) 

Based on previous findings of variations in the lipid metabolism of overweight 

dogs (Söder et al., 2017; RC de Godoy et al., 2015), a list of interesting plasma 

metabolites related to lipid metabolism (i.e. acylcarnitines and taurine) was 

created and the metabolites included (n=61) were searched for in plasma based 

on compound accurate masses using the generated liquid chromatography-time 

of flight mass spectrometry (LC-TOFMS) spectra. The chromatographic peak of 

each metabolite was detected and relative intensity was determined. Six 

metabolites were found to be above the limit of quantification and were used in 

mixed model repeated measures analyses (Paper IV). 

The presence of 317 phospholipids in plasma was determined by LC-

TOFMS. Quantification of the detected phospholipids (nM) was carried out 

using four phospholipid internal standards. Phospholipids that had zero values 

in more than 50% of the observations were excluded. To handle the remaining 

zero values, all observations in the dataset for the remaining 118 metabolites had 

0.01 nM added to the measured concentration (Paper IV). 
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3.4 Univariate statistical analyses 

One-way ANOVA, t-test and non-parametric test 

One-way analysis of variance and Kruskal-Wallis tests were used for normally 

and non-normally distributed comparisons, respectively, of data for lean (BCS 

4-5), slightly overweight (BCS 6) and prominently overweight dogs (BSC >6) 

(GraphPad Prism 5.0, San Diego, California). Paired and unpaired t-tests, the 

Wilcoxon signed-rank test and the Mann-Whitney U test were used to compare 

normally and non-normally distributed data between time points and between 

lean (BCS 4-5) and overweight groups (BCS ≥6). A value of P<0.05 was 

considered significant in univariate comparisons. Univariate statistics were 

preceded by multivariate selection as described below, with the exception of the 

descriptive dog statistics in Paper I-IV (Table 2) and the hypothesis-driven 

selection of phospholipids (Paper IV). 

Mixed model repeated measures analysis 

Responses to the feed-challenge test were evaluated by mixed model repeated 

measures analysis in SAS (Cary, 2015; Fitzmaurice et al., 2012; Littell et al., 

2007). In the statistical model, body condition group was defined as an 

independent variable and the fasting value was included as a time point. Multiple 

comparisons within the model were corrected for by Tukey-Kramer adjustment. 

The model analysed the overall response over time and the overall differences 

between the lean (BCS 4-5), slightly overweight (BCS 6) and prominently 

overweight dogs (BCS >6) (Paper I) and between lean (BCS 4-5) and overweight 

dogs (BCS ≥6) (Papers III and IV). Thus, the model was capable of overall and 

pair-wise comparisons within time points. Logarithmic transformation of raw 

data was performed to correct for non-normality when necessary for a parameter 

(based on the distribution of residuals). In Paper I, all biochemistry and hormonal 

parameters were tested with this model. In Paper III ketone bodies were tested, 

in Paper IV all metabolites related to lipid metabolism were tested (based on 

physiological importance for all). Otherwise, only discriminant metabolites 

identified by multivariate models were tested in mixed model repeated measures 

analysis (Papers III and IV). Bonferroni correction for multiple comparisons was 

applied to the results from the repeated measures model in all papers except in 

Paper I.  
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Homeostasis model of assessment of basal insulin sensitivity 

Basal insulin sensitivity was estimated using the homeostasis model assessment 

(HOMAIS) (Levy et al., 1998) for fasting glucose (mmol/L) and insulin (µU/mL) 

concentrations. The calculations were made using the non-linear HOMA 

Calculator (version 2.2.3; Diabetes Trial Unit, University of Oxford, UK). 

Fasting serum insulin concentrations less than 2.9 µU/mL (the minimum 

concentration accepted in the calculation) were entered as 2.9 µU/mL. Kruskal-

Wallis tests were used for non-normally distributed comparisons between body 

condition groups (Paper I). 

3.5 Multivariate statistical analyses 

Metabolomics analyses such as NMR and LC-TOFMS often generate extensive 

datasets in comparison with conventional biochemical analyses or ELISA. Using 

multivariate approaches, large datasets, i.e. metabolomic profiles, can be 

compared between groups and/or before and after different interventions. 

Various multivariate models were therefore used as a starting point for 

identification of important and discriminant metabolites or phospholipids that 

varied over time in the feed-challenge test or were related to the lean and 

overweight groups of dogs. Discriminant metabolites were thereafter further 

investigated by t-tests or non-parametric tests or by mixed model repeated 

measures analyses, as described above. Multivariate analyses were performed in 

the SIMCA program (SIMCA-P + 13.0 Umetrics, Umeå, Sweden). 

Randomisation of raw data, pareto-scaling and step-wise removal of up to five 

outliers in each multivariate model were implemented. Metabolite and 

phospholipid concentrations were used as x-variables in all comparisons. 

Principal component analysis (PCA) 

Principal component analysis (PCA) was used to identify and remove outliers 

and the ellipse was set at 95% confidence interval. Gaussian distribution of the 

whole dataset was then tested by normal probability plotting. The PCA model 

was used to visualise any unconstrained clustering of fasting and postprandial 

time points (including all 28 dogs), as well as any clustering of lean and 

overweight dogs within each time point. In an unconstrained multivariate model, 

as in a PCA, the computer program is unaware of any pre-designed grouping of 

the samples, which enables an unconditional and exploratory approach to the 

dataset. Any observed clustering was thereafter tested for significance with 

constrained models. 
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Partial least-squares discriminant analysis (PLS-DA) 

In a constrained multivariate model, such as partial least-squares discriminant 

analysis (PLS-DA), the computer program is aware of the grouping and/or 

clustering of the samples and can evaluate whether there are any differences 

between treatments. The PLS-DA models were used to find differences in 

metabolite profiles between time points, or between lean and overweight groups 

of dogs, in Papers II and III.  In the model, R2Y represents the percentage of 

variation in the dataset explained by the model (a measure of fitness) and Q2Y 

represents the percentage of variation in the dataset predicted by the model. A 

model with a Q2Y>0.3 was considered significant and the significance of each 

model was further confirmed using cross-validated analysis of variance (CV-

ANOVA) (see below). 

I am aware that this multivariate model does not take into account the pairing 

of samples between different time-points. At the time of analyses, it was not 

known that such a multivariate model (orthogonal partial least-squares effect 

projection analysis (OPLS-EP)) existed, and it is possible that pairing the 

samples could have generated even stronger multivariate models in Papers II and 

III. 

Orthogonal partial least-squares discriminance analysis (OPLS-DA) 

Orthogonal partial least-squares discriminance analysis (OPLS-DA) is a type of 

constrained multivariate model similar to PLS-DA. However, in addition to 

expressing the covariation between the metabolite data and different classes 

(lean and overweight groups of dogs), it also expresses the orthogonal variation 

that is not related to classes. The reason for using OPLS-DA models in Paper IV 

(instead of PLS-DA as used in Papers II and III) was that a paired orthogonal 

model (OPLS-EP) was used for analysis of the time effects, and thus an 

orthogonal model was chosen for the comparison between body condition 

groups. 

Orthogonal partial least-squares effect projection analysis (OPLS-EP) 

A paired multivariate model, OPLS-EP, was used to compare each postprandial 

time point with fasting (Paper IV). This paired model compares responses (with 

the fasting concentration subtracted from each postprandial time point) as x-

variables to a target value of y=1 (Jonsson et al., 2015). The OPLS-EP model 

expresses the structure of the data and can identify individuals with a deviating 

metabolic response to an intervention, i.e. the feed challenge. In Paper IV, four 

OPLS-EP models were constructed (with the fasting concentration subtracted 

from each postprandial time point) using unit variance scaling (UVN) for x-
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variables and no scaling for the y-variable, as recommended by the model 

inventors (Jonsson et al., 2015). 

Cross-validated analysis of variance (CV-ANOVA) 

The discriminance models including OPLS-EP were verified for significance 

using CV-ANOVA (Eriksson et al., 2008), where P<0.05 was considered 

significant. 

Variable importance of projection (VIP) 

Variable importance of projection (VIP) is a type of P-value that indicates how 

conservatively multivariate metabolite selection has been performed. 

Discriminative metabolites were identified using VIP in a PLS-DA, OPLS-DA 

or OPLS-EP model. Metabolites with VIP >1 (Papers II and III) and VIP >1.5 

(Paper IV) and for which the corresponding jackknife-based 95% confidence 

interval were not close to or including zero were considered discriminative and 

significant for the observed separations. A more conservative VIP value was 

used in Paper IV (compared with Papers II and III) because of the many 

phospholipids identified in the LC-TOFMS dataset. 

Stepwise logistic regression analysis 

For each time point, binary (i.e. lean and overweight groups of dogs) stepwise 

logistic regression (Olsson, 2002) was used to identify metabolites that were 

related to overweight (BCS ≥6), (Paper III). The Logistic procedure in the SAS 

package (2014, 9.4 Institute Inc., Cary, NC) was used for this purpose. 

3.6 Statistical analyses performed specifically for this 
thesis 

Originally, in Papers I-IV dogs were divided into two or three body condition 

groups depending on the statistical procedures performed. In Paper I, mixed 

model repeated analysis was performed on three body condition groups for the 

parameters studied. In Papers II-IV, where a multivariate selection approach was 

used as a starting point, dogs were divided into two groups to get sufficient 

observations within each dog group in the multivariate models. To facilitate 

comparison between results from different papers and to give insights into the 

parameters for which slightly overweight dogs displayed metabolic variations, 

in addition to the original grouping (in Paper II-IV), the results are also presented 

here in groups of lean (BCS 4-5), slightly overweight (BCS 6) and prominently 
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overweight dogs (BCS >6). To make comparisons between these three groups 

of dogs over time in the feed-challenge test, the mixed model repeated 

measurements approach (adjusted for multiple comparisons with Tukey-Kramer 

adjustment) constructed for Paper I was used to test the six identified metabolic 

parameters that differed between body condition groups (Paper I-IV). Where re-

analysis of original data was performed by mixed model repeated measurements 

analysis including the three groups, this is stated in the Results section and within 

the legend to each figure.
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This chapter summarises the main results from Papers I-IV, focusing on 

metabolic variations identified between body condition groups and/or time-

dependent metabolic variations in the feed-challenge test, using mixed model 

repeated measures and multivariate analyses as main tools. When re-analyses 

were performed on data from Paper I-IV, this is clearly stated.  

Section 4.1 provides a general metabolic description of the dog cohort. The 

main results from Papers I-IV are described in section 4.2 and summarised in 

Table 3. Section 4.3 describes the main metabolic variations observed, divided 

into:  

 

 Time-dependent variations between body condition groups 

 Variations between body condition groups  

 Variations between sampling time points

4 Results 
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4.1 General metabolic description of the dog cohort 

In Paper I, analyses of fasted serum from lean, slightly overweight and 

prominently overweight dogs revealed no differences between body condition 

groups in terms of fructosamine, TSH and tT4 concentrations (data analysed as 

part of the general health examination), or in basal fasting insulin sensitivity 

measured by HOMAIS. Glucose, insulin, glucagon, free fatty acids and total 

cholesterol concentrations did not differ between body condition groups at 

fasting or in the postprandial response. Fasting triglyceride concentrations did 

not differ between body condition groups, but postprandial triglycerides showed 

time-dependent variations between body condition groups (Paper I) (Figure 7). 

Prominently overweight dogs (BCS >6) showed higher fasting urinary 

cortisol/creatinine ratio than lean dogs (Paper I) (Figure 8). 

4.2 Main results from Papers I-IV 

In Paper I, serum biochemistry variables and hormones of importance for basic 

canine metabolism were analysed (Table 3). In Papers II and III, explorative 

approaches were used and a broad spectrum of urine and plasma metabolites 

were identified with NMR analyses (Table 3). In Paper IV, findings from Papers 

I-III, together with previously reported metabolic variations in overweight dogs 

and humans, formed a base for LC-TOFMS analysis directed towards 

metabolites related to lipid metabolism and phospholipids (Table 3).  
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Table 3. Main results from Papers I-IV, based on the study cohort of spontaneously lean and overweight Labrador Retriever dogs (n=28) 

Paper Study design Main results Conclusions 

I 12 lean (BCS 4-5), 10 slightly overweight 

(BCS 6) and six prominently overweight 

dogs (BCS>6). Serum samples in the feed-

challenge test and urine samples at fasting 

and 3 hours after food intake. Serum 

biochemistry and ELISA 

Serum concentrations of insulin, glucagon, triglycerides, glucose 

and urine cortisol/creatinine ratio increased postprandially in all 

dogs. Prominently overweight dogs had higher postprandial 

triglyceride peak and higher overnight cortisol excretion than lean 

dogs 

The higher postprandial triglyceride response 

and higher cortisol excretion in prominently 

overweight dogs might be early signs of 

metabolic imbalance 

II 12 lean (BCS 4-5) and 16 overweight dogs 

(BCS ≥6). Urine samples at fasting and 3 

hours after food intake. 45 metabolites 

were quantified with NMR 

Fasting and postprandial urinary metabolomes differed in all dogs. 

Lean and overweight dogs were separated by their postprandial 

urinary metabolomes, but not by their fasting urinary 

metabolomes. Overweight dogs had lower postprandial urinary 

taurine excretion than lean dogs 

Postprandial urinary metabolomes might be 

more useful than fasting metabolomes in 

detecting metabolic variations in canine 

overweight. The lower urinary taurine excretion 

in overweight dogs could indicate alterations in 

lipid metabolism 

III 12 lean (BCS 4-5) and 16 overweight dogs 

(BCS ≥6). Plasma samples in the feed-

challenge test. 41 metabolites were 

quantified with NMR 

All postprandial plasma metabolomes differed from the fasting 

plasma metabolome in all dogs and 11 amino acids contributed to 

the separations. Carnitine was related to overweight at all time 

points and overweight dogs had overall lower carnitine response 

than lean dogs in the feed-challenge test 

A postprandial amino acid response was 

detected in all dogs but no time-dependent 

variations between body condition groups were 

found. The lower carnitine status in overweight 

dogs could indicate an insufficiency related to 

spontaneous adiposity and altered lipid 

metabolism 

IV 12 lean (BCS 4-5) and 16 overweight dogs 

(BCS ≥6). Plasma samples in the feed-

challenge test. Six metabolites 

(acylcarnitines and taurine) and 118 

phospholipids were quantified with LC-

TOFMS 

Propionylcarnitine, stearoylcarnitine and nine phospholipids 

increased in response to food intake, while vaccenylcarnitine 

decreased. At fasting, acetylcarnitine status was lower in 

overweight dogs than in lean and it did not decrease in response to 

food intake as it did in lean dogs. One fasting phosphatidylcholine 

was higher in prominently overweight (BCS >6) than in lean dogs 

The acetylcarnitine pattern in overweight dogs 

indicated decreased fatty acid oxidation at 

fasting and metabolic inflexibility to food 

intake. The potential role of metabolic 

inflexibility in the metabolism of overweight 

dogs merits further investigation 

BCS, body condition score; ELISA, enzyme-linked immunosorbent-assay; LC-TOFMS, liquid chromatography-time of flight mass spectrometry; NMR, nuclear magnetic resonance.
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4.3 Metabolic variations 

4.3.1 Time-dependent variations between body condition groups 

In Paper I, serum concentrations of insulin, glucagon, triglycerides, glucose and 

urine cortisol/creatinine ratio increased postprandially in all dogs. Of these 

parameters, serum triglycerides and urine cortisol were found to show time-

dependent variations between body condition groups (Paper I).  

The overall triglyceride response in the feed-challenge test was higher in 

prominently overweight dogs (BCS >6, n=6) than in lean dogs (BCS 4-5, n=12) 

and slightly overweight dogs (BCS 6, n=10) (P=0.001 and P=0.02, 

respectively), whereas slightly overweight and lean dogs did not differ 

significantly in overall triglyceride response (Figure 7). Pairwise comparisons 

between body condition groups at peak postprandial time point demonstrated 

that triglyceride concentration was almost two-fold higher in prominently 

overweight than in lean dogs at 3 hours postprandially (P<0.001) (Figure 7). 

 
Figure 7. Triglyceride concentrations in the feed-challenge test. Mixed model repeated measures 

analysis was applied and values are expressed as mean ± SEM. Fasting serum samples were taken 

15 minutes before serving of a test meal at time 0 (arrow) and triglyceride concentrations are shown 

as response curves from fasting to 4 hours after feeding. Significant differences in overall responses 

between body condition groups are indicated by asterisks (*P<0.05, ***P<0.001). Different letters 

(a and b) indicate significant differences between body condition groups within time point 

(P<0.001). Diagram modified from Paper I. 
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Re-analysis of cortisol data from Paper I based on the three body condition 

groups showed that slightly overweight dogs (BCS 6, n=8 due to missing data) 

and prominently overweight dogs did not differ significantly in 

cortisol/creatinine ratio between the fasting and postprandial time points 

(P>0.05). Lean dogs showed time-dependent variation, with an increase in 

urinary cortisol/creatinine ratio from fasting to 3 hours postprandially (P=0.01) 

in the feed-challenge test (Figure 8). Prominently overweight dogs (BCS >6, 

n=6) had higher fasting urinary cortisol/creatinine ratio than lean dogs (BCS 4-

5, n=12) (Figure 8). 

 
Figure 8. Overnight and postprandial excretion of urinary cortisol measured in voided urine. 

Cortisol was normalised to urinary creatinine concentration. Mixed model repeated measures 

analysis (log-transformed) was applied and values are expressed as mean ± SEM. Fasting urine was 

collected at home, a test meal was served at time 0 (arrow) and postprandial urine was collected at 

the clinic at 3 hours postprandially. Different letters (a and b) indicate significant differences 

between body condition groups within time point (P<0.05). Note: the large SEM in slightly 

overweight dogs (BCS 6) postprandially might partly explain the lack of time-dependent response 

in that group. Re-analysis and new diagram based on data from Paper I.  

In Paper II, 45 urine metabolites were quantified with NMR and in the 3-hour 

postprandial urinary metabolomes a clear multivariate separation between lean 

and overweight dogs was shown in PCA (Paper II) (Figure 9A). Using VIP 

analyses based on PLS-DA (1 comp: R2Y=0.5, Q2Y=0.36; CV-ANOVA: 

P=0.005), discriminant postprandial metabolites separating lean and overweight 

dogs were identified as taurine, allantoin and guanidoacetate (Paper II) (Figure 

9B). The most discriminant metabolite was taurine and overweight dogs 

excreted about half the amount in urine compared with lean dogs at the 

postprandial time point (Paper II). However, fasting urine metabolomes showed 
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no multivariate separation between overweight (BCS ≥6, n=16) and lean dogs 

(BCS 4-5, n=11). At fasting time point, mean urinary taurine/creatinine ratio was 

calculated to be 0.099 (95% CI: 0.06, 0.14) for all dogs (n=28) (Paper II). 

 

 
Figure 9. A) Lean (body condition score (BSC) 4-5, n=11 due to removal of one outlier, in green) 

and overweight dogs (BCS ≥6, n=16 in red) showed a clear visual separation in principal component 

analysis (PCA) score plot of the postprandial urine metabolome. A total of 45 metabolites 

quantified by nuclear magnetic resonance were included in this unconstrained model. Principal 

component (PC) 1 explained 8% of the total variance and PC2 4%. Partial least-squares 

discriminant analysis verified the separation between body condition groups and was used for 

variable importance of projection (VIP) analyses. B) Taurine, allantoin and guanidoacetate 

(highlighted with black dots in loading plot corresponding to the PCA) were significant VIPs 

separating lean and overweight dogs. Diagram modified from Paper II. 

Re-analysis of taurine data from Paper II based on the three body condition 

groups showed that urinary taurine excretion in prominently overweight (BCS 



47 

 

>6, n=6) and slightly overweight dogs (BCS 6, n=10) was not affected by food 

intake. In lean dogs, taurine excretion showed time-dependent variation, as it 

increased (P=0.001) from fasting to 3 hours postprandially (BCS 4-5, n=12) 

(Figure 10). Postprandially, prominently overweight and slightly overweight 

dogs showed lower urinary taurine excretion compared with lean dogs (P≤0.03) 

(Figure 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Urinary taurine excretion measured by nuclear magnetic resonance and normalised to 

total metabolite concentration of each dog. Mixed model repeated measures analysis was applied 

and values are expressed as mean ± SEM. Fasting urine was collected at home, a test meal was 

served at time 0 (arrow) and postprandial urine was collected at the clinic at three hours 

postprandially. Different letters (a and b) indicate body condition groups that differed significantly 

within time point (P<0.05). Re-analysis and new diagram based on data from Paper II.  

In Paper IV, six plasma metabolites were quantified with LC-TOFMS analysis. 

Propionylcarnitine and stearoylcarnitine increased in response to food intake in 

all dogs (n=28), while vaccenylcarnitine and acetylcarnitine decreased (Paper 

IV). Re-analysis of acetylcarnitine data from Paper IV based on the three body 

condition groups showed that the overall acetylcarnitine response in the feed-

challenge test was lower in prominently overweight dogs (BCS >6, n=6) and 

slightly overweight dogs (BCS 6, n=10) than in lean dogs (BCS 4-5, n=12) 

(P≤0.02 for both). Slightly overweight and prominently overweight dogs did not 

differ in overall acetylcarnitine response (Figure 11). At fasting, prominently 

overweight and slightly overweight dogs showed lower acetylcarnitine signal 

area than lean dogs (P≤0.005). In prominently overweight and slightly 

overweight dogs, the acetylcarnitine signal area was not affected by food intake, 
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while lean dogs showed time-dependent variation and the acetylcarnitine 

response decreased from fasting to one hour after feeding (P<0.0001) (Figure 

11).  

 
Figure 11. Acetylcarnitine signal areas measured by liquid chromatography-time of flight mass 

spectrometry in plasma. Mixed model repeated measures analysis (log-transformed) was applied 

and values are expressed as mean ± SEM. Fasting plasma samples were taken 15 minutes before 

serving of a test meal at time 0 (arrow) and acetylcarnitine signal areas are shown as response curves 

from fasting to 4 hours after feeding. Significant differences in overall responses between and 

within body condition groups are indicated by asterisks (*P<0.05, ***P<0.001). Different letters 

(a and b) indicate significant differences between body condition groups within time point 

(P<0.01). Re-analysis and new diagram based on data from Paper IV. 

4.3.2 Variations between body condition groups  

In Paper III, plasma metabolite profiles generated by NMR analysis showed no 

visual separation between overweight (BCS ≥6, n=16) and lean dogs (BCS 4-5, 

n=12) in PCA models, either at fasting time point or at postprandial time points. 

This was confirmed by the finding that none of the PLS-DA models could be 

fitted using lean and overweight dogs as pre-defined groups. In logistic 

regression analyses using the plasma metabolite dataset (n=41) generated by 

NMR, the metabolite carnitine was shown to be related to overweight (BCS ≥6) 

at fasting and all postprandial time points (P≤0.03 for all), while no other 

metabolites were identified by this statistical model (Paper III). At fasting, 

overweight dogs (BCS ≥6, n=16) showed about two-thirds of the carnitine 

concentration measured in lean dogs (BCS 4-5, n=12). No time-dependent 
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variations between body condition groups were found in the NMR metabolite 

dataset, which besides carnitine mostly contained amino acids (Paper III).  

Re-analysis of carnitine data from Paper III based on the three body condition 

groups showed that prominently overweight dogs (BCS >6) had an overall lower 

carnitine response (P=0.03) in the feed-challenge test than lean dogs (BCS 4-5) 

(Figure 12). Slightly overweight dogs (BCS 6) did not differ significantly from 

lean or from prominently overweight dogs, although there was a trend for an 

overall lower carnitine response in slightly overweight dogs compared with lean 

(P=0.06). Consequently, the carnitine concentrations in the feed-challenge test 

showed variations between body condition groups, but the responses were not 

time-dependent (Figure 12). 

 
Figure 12. Carnitine concentrations measured by nuclear magnetic resonance in plasma. Mixed 

model repeated measures analysis (log-transformed) was applied and values are expressed as mean 

± SEM. Fasting plasma samples were taken 15 minutes before serving of a test meal at time 0 

(arrow) and carnitine concentrations are shown as response curves from fasting to 4 hours after 

feeding. Significant differences in overall responses between body condition groups are indicated 

by asterisks (*P<0.05). Re-analysis and diagram based on data from Paper III. 

In Paper IV, plasma phospholipid profiles generated by LC-TOFMS analysis 

showed no multivariate separation in OPLS-DA models between overweight 

(BCS ≥6, n=16) and lean dogs (BCS 4-5, n=12) at fasting or at postprandial time 

points (Paper IV). A total of 118 phospholipids were quantified and nine 

phospholipids were found to increase in response to food intake (Paper IV). One 

fasting phosphatidylcholine (PCaa C38:4) was higher in prominently overweight 

(BCS >6, n=6) than in slightly overweight (BCS 6, n=10) and lean dogs (BCS 

4-5, n=12). Only fasting plasma concentrations according to the original 
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hypothesis-driven approach are shown in Paper IV and Figure 13. Re-analysis 

of phosphatidylcholine (PCaa C38:4) by mixed model repeated measurements 

showed no time-dependent variations between body condition groups (data not 

shown), although fasting concentrations were different between the three body 

condition groups (Figure 13). 

 

 

 

 

 

 

 

 

 

 

Figure 13. Phosphatidylcholine (PCaa) C38:4 concentrations measured in plasma at fasting by 

liquid chromatography-time of flight mass spectrometry. Data were analysed by one-way ANOVA 

with Tukey Kramer adjustment (P=0.003). Values presented are mean ± SD. Different letters (a 

and b) indicate significant differences between body condition groups (P<0.05). Diagram modified 

from Paper IV. 

4.3.3 Variations between sampling time points 

In Paper II, urinary metabolomes generated by NMR analyses differed between 

fasting and 3-hour postprandial time points, all dogs included (n=28; PLS-DA 

Q2Y 0.32, CV-ANOVA P=6×10-5). Using VIP analyses, discriminant 

metabolites separating fasting and 3-hour postprandial time points were 

identified as taurine, allantoin, citrate and malonate (Paper II).  

In Paper III, plasma metabolomes generated by NMR analyses differed 

between fasting and all postprandial time points, all dogs included (n=28; PLS-

DA Q2Y 0.31-0.63, CV-ANOVA P≤1.4×10-4). Using VIP analyses, 11 

discriminative amino acids were identified, of which nine showed increasing 

concentrations postprandially and one showed decreasing concentrations. None 

of the amino acids identified showed time-dependent variations between body 

condition groups (Paper III).  

In Paper IV, plasma phospholipid profiles generated by LC-TOFMS showed 

significant models in three paired multivariate OPLS-EP comparisons between 

time points (i.e. fasting concentration subtracted from 2-, 3- or 4-hour 

postprandial time point; P≤2.8×10-5 for all), all dogs included (n=28). Visual 
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interpretation of the significant OPLS-EP models could not detect any 

cluster/groups of dogs and no time-dependent phospholipid profile response 

related to body condition was therefore present. The original grouping of 

overweight (BCS ≥ 6, n=16) and lean dogs (BCS 4-5, n=12) could neither be 

visually separated in the model. These visual interpretations were in line with 

the finding that no OPLS-DA could separate lean and overweight dogs at any 

time point using their phospholipid profiles.  

The most predictive OPLS-EP model was the 4-hour postprandial time point 

minus fasting (one predictive component and two orthogonal components; Q2 

0.91, CV-ANOVA P=4.9×10-9). Based on this OPLS-EP model, 12 significant 

phospholipids discriminating between fasting and the 4-hour time points were 

identified (Figure 14A). Mixed model repeated measures analysis of the 12 

discriminant phospholipids showed that nine had overall increasing responses 

after food intake (P≤0.003 for all), but none showed time-dependent responses 

between body condition groups. The two most discriminating phospholipids 

(based on VIP values) in the postprandial response are displayed in Figures 14B 

and 14C. 
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Figure 14. A) Variable importance of projection (VIP) values, based on orthogonal partial least-

squares effect projection analysis (4-hour time point minus fasting) of the 118 plasma phospholipid 

concentrations quantified by liquid chromatography-time of flight mass spectrometry. Values are 

displayed as VIP and confidence interval (CI). Discriminant phospholipids adding significant 

structure to the model are displayed (VIP >1.5 and for which the corresponding jackknife-based 

95% CI were not close to or including zero). B, C) Phosphatidylethanolamine (PEaa) C36:2 and 

C36:3 concentrations, presented as mean ± SEM. Mixed model repeated measures analyses were 

applied. Fasting plasma samples were taken 15 minutes before serving of a test meal at time 0 

(arrow) and the phosphatidylethanolamine concentrations are shown as response curves from 

fasting to 4 hours after feeding. PEaa C36:2 and  PEaa C36:3 concentrations were significant 

between time points (P<0.0001 for both), but the overall response did not differ between lean (BCS 

4-5, n=12) and overweight dogs (BCS ≥6, n=16). Diagram from Paper IV.  
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The work presented in this thesis was based upon analysis of a cohort of well-

defined healthy Labrador Retriever dogs with a clinical body condition score of 

4-8. The original hypotheses tested were i) that spontaneously overweight dogs 

display variations in metabolic parameters in comparison with lean dogs and ii) 

that the use of a feed-challenge test permits detection of subtle metabolic 

variations not noticeable in fasted condition. 

Of the measured parameters, six were shown to differ between lean and 

overweight dogs and all of these were directly or indirectly associated with lipid 

metabolism. Concentrations of urinary cortisol, one plasma phosphatidylcholine 

(PCaa C38:4) and peak postprandial triglycerides were higher in prominently 

overweight dogs (BCS >6) than in lean dogs. Plasma carnitine concentration was 

lower in prominently overweight (BCS >6) than lean dogs and acetylcarnitine 

and urinary taurine concentration were both lower in slightly overweight (BCS 

6) and prominently overweight dogs (BCS >6) than in lean dogs. Triglycerides, 

acetylcarnitine, taurine and cortisol showed time-dependent variations related to 

body condition status in the feed-challenge test. 

5.1 Metabolic inflexibility in overweight dogs 

In the dog cohort studied in this thesis, metabolic inflexibility may have been 

present already in slightly overweight dogs. At fasting, both slightly overweight 

and prominently overweight dogs showed signs of decreased fatty acid 

oxidation, as demonstrated by lower acetylcarnitine signal area in plasma 

compared with lean dogs. Most importantly, slightly overweight and 

prominently overweight dogs did not show the postprandial decrease in 

acetylcarnitine response after food intake seen in lean dogs. The lack of 

postprandial acetylcarnitine response is an example of metabolic inflexibility, 

5 General discussion and future 
perspectives 
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which has been proposed as a link between obesity and insulin resistance in other 

species (Miyata & Shimomura, 2013; Randle, 1998). Even though overweight 

dogs often become insulin resistant, to my knowledge acetylcarnitine 

concentrations in a feed-challenge test have not been investigated previously.  

It has been proposed that overweight subjects oxidise more than one substrate 

at a time and thereby decrease the total mitochondrial oxidation rate (Muoio, 

2014; Ramos-Roman et al., 2012). This is similar to what probably occurred in 

overweight dogs in the cohort studied in this thesis. In lean dogs, the fuel switch 

from using endogenously stored lipids to  recently absorbed nutrients from the 

test meal was evident by their postprandial acetylcarnitine decrease, representing 

a flexible metabolic response to food intake. The transition from catabolic to 

anabolic state was thus evident in lean dogs, but not in overweight dogs. These 

results indicate a need for further research on energy-restricting methods for 

overweight dogs that are directed towards alleviating the workload of the 

mitochondria to promote more flexible oxidation (e.g. intermittent fasting, as has 

been recently described in dogs) (Leung et al., 2018; Pan et al., 2018). 

Signs of metabolic inflexibility in overweight dogs were also found in 

postprandial urinary metabolomes. The observed trend for higher allantoin and 

guanidoacetate concentrations in urine after food intake in overweight dogs, but 

not in lean, could be associated with a postprandial metabolism directed towards 

amino acids (Shestopalov et al., 2006; Wyss & Kaddurah-Daouk, 2000). In 

addition, overweight dogs showed lower urinary taurine excretion postprandially 

compared with lean dogs, which might be interpreted as a non-physiological 

reaction, as all dogs had recently eaten a high-fat meal that also contained taurine 

supplements. These findings should be interpreted with caution, but could 

indicate that overweight dogs performed protein catabolism postprandially and 

were slower in shifting to using recently absorbed nutrients. Other studies have 

found higher plasma and urine lipid and protein metabolites in overweight 

compared with lean dogs (Forster et al., 2018) and changes in proteins related to 

lipid metabolism in dogs with metabolic syndrome (Tvarijonaviciute et al., 

2016). However, substrate oxidation studies of mitochondria from both lean and 

overweight dogs in fasted and postprandial state are needed to confirm the results 

and to gain a deeper knowledge of substrate switching and metabolic 

inflexibility in overweight dogs. 

In this thesis, cortisol excretion overnight was higher in overweight 

compared with lean dogs, a trait also reported in obese humans (Pasquali et al., 

2006). Increased glucocorticoid level due to increased metabolic stress in human 

obesity has been suggested (Muoio, 2014; Pasquali et al., 2006) but the exact 

role and mechanisms are debated (Abraham et al., 2013). One study has shown 

increased cortisol concentrations in plasma after a stimulation test in overweight 
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dogs (Martin et al., 2006), but to my knowledge increased overnight urinary 

cortisol excretion has not been shown previously in spontaneously overweight 

dogs. A link to metabolic stress due to metabolic inflexibility is possible. Apart 

from metabolic functions, cortisol is a hormone involved in physiological stress 

reactions. Interestingly, overweight dogs were incapable of reacting with 

increased cortisol excretions postprandially in the manner observed in lean dogs, 

and instead showed equally high cortisol ratios at fasting and postprandial time 

points. Thus, prominently overweight dogs showed higher stress levels and signs 

of metabolic inflexibility. The potential relationship between cortisol excretion, 

overweight and normal response to stressful stimuli is intriguing. The cohort 

examined in this thesis only contained a few dogs (n=6) with pronounced 

overweight and the findings need to be interpreted with caution and confirmed 

using larger cohorts.  

To summarise, this thesis is the first study to report signs of decreased fatty 

acid oxidation and metabolic inflexibility in spontaneously overweight dogs, as 

demonstrated by acetylcarnitine and cortisol responses and by postprandial 

metabolites in urine. Interestingly, slightly overweight dogs displayed the same 

acetylcarnitine pattern as dogs with more pronounced overweight.  

5.2 Metabolic variations in slightly overweight dogs 

One of the hypotheses tested was that overweight dogs (BCS ≥6) show variations 

in metabolic parameters compared with lean dogs (BCS 4-5). This hypothesis 

was confirmed by the data, but division of dogs coherently into lean (BCS 4-5) 

slightly overweight (BCS 6) and prominently overweight dogs (BCS >6) in the 

analyses of all six differentiating parameters showed two distinct patterns, where 

overweight dogs had lower or higher levels than lean dogs. Fasting urinary 

cortisol, one phospholipid in plasma (fasting PCaa C38:4) and serum peak 

postprandial triglyceride concentrations were higher in prominently overweight 

dogs (BCS >6), while plasma carnitine concentration was lower in prominently 

overweight dogs (BCS >6) than in lean dogs and acetylcarnitine and urinary 

taurine concentrations were lower in both slightly overweight (BCS 6) and 

prominently overweight dogs (BCS >6) than in lean dogs. All parameters that 

showed variations in overweight dogs compared with lean dogs were directly or 

indirectly associated with lipid metabolism. The lower carnitine and taurine 

status could potentially slow down lipid metabolism in overweight dogs and the 

higher triglyceride levels and cortisol ratio could be early signs of metabolic 

imbalance (Table 3). Most importantly, based on their acetylcarnitine response, 

dogs with only slight overweight (BCS 6) displayed similar signs of decreased 
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fatty acid oxidation at fasting and metabolic inflexibility to food intake as 

observed in dogs with more pronounced overweight (BCS >6).  

In humans, metabolic inflexibility is considered to be a link between 

overweight and insulin resistance and is included as part of human metabolic 

syndrome, which predisposes for cardiovascular disease and type 2 diabetes 

(Collaborators, 2017; Bergouignan et al., 2011; Kopelman, 2007). Being 

overweight significantly decreases life expectancy in dogs, but whether slight 

overweight affects life expectancy has not been investigated in life-long dog 

studies, to my knowledge. Whether metabolic inflexibility should be considered 

a potential health risk in dogs, as it is in humans, is not known. Metabolic 

inflexibility in dogs, as in humans, might be reversible by lifestyle interventions 

such as diet or exercise modifications, but this needs to be specifically tested in 

dogs. In humans, it has been shown that metabolic inflexibility becomes more 

severe with lower physical activity (Bergouignan et al., 2011), which indicates 

that physical inactivity negatively affects metabolic flexibility in the same way 

as energy surplus and mitochondrion overload (Muoio, 2014). Occurrence of 

metabolic syndrome in dogs has been indicated in a few studies showing that 

metabolic features recognised in human metabolic syndrome may also be found 

in overweight and obese dogs (José Lahm Cardoso et al., 2016; Kawasumi et 

al., 2012; Tvarijonaviciute et al., 2012). The major difference between species 

probably lies in the co-morbidities, as there is little evidence at the moment that 

overweight dogs develop cardiovascular diseases other than hypertension 

(Adolphe et al., 2014) and currently no evidence of development of type 2 

diabetes (Davison et al., 2017; Verkest et al., 2011) as consequences of meeting 

metabolic syndrome inclusion criteria. A hypothetical acyclic graph showing 

possible relationships between overweight and metabolic inflexibility in dogs 

and humans is shown in Figure 15. As metabolic inflexibility was found already 

in slightly overweight dogs in the cohort studied in this thesis, overweight can 

be a possible confounder, a mediator or both in the development of metabolic 

inflexibility in the graph. Once developed, metabolic inflexibility is taken as a 

possible driver for overweight (Figure 15). 

 
Figure 15. A hypothetical acyclic graph illustrating possible relationships between different factors 

in the development of metabolic inflexibility in people and dogs. Illustration Josefin Söder. 

Healthcare professionals should preferably bring up slight overweight early with 

dog owners. A slightly overweight dog has the advantage compared with an 
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obese individual that there is not too much extra fat mass to lose before reaching 

lean weight. Animal healthcare professionals should inform dog owners of the 

importance of keeping their dogs lean, and good arguments in this discussion are 

essential. This thesis adds to current knowledge by showing that even slightly 

overweight dogs may demonstrate variations in metabolic parameters associated 

with lipid metabolism and may be at risk of developing metabolic inflexibility. 

The occurrence of metabolic inflexibility to food intake in overweight dogs and 

the relevance of the finding needs to be confirmed in other cohorts of overweight 

dogs, but metabolic inflexibility might potentially lead to insulin resistance, 

metabolic syndrome or more pronounced overweight (Figure 15).  

5.3 Carnitine status in overweight dogs 

In Papers III and IV, the results for spontaneously overweight (BCS ≥6) 

Labrador Retriever dogs indicated that being overweight might be associated 

with lower plasma free carnitine concentrations. This in turn might slow down 

lipid metabolism, as carnitine mediates transport of fatty acids to the inside of 

mitochondria for oxidation (Hand et al., 2010). Lower carnitine status may thus 

contribute to increased adiposity, which makes this an important finding. 

Notably, carnitine concentration in overweight dogs (9.4±4.2 µM) was at the 

lower range of the proposed reference interval (8-36 µM) for normal fasting 

plasma carnitine concentrations in dogs (Sanderson, 2006), and could therefore 

be referred to as potential carnitine insufficiency.  

With the study design used, it was not possible to evaluate whether the lower 

carnitine concentration was a cause and/or a consequence of overweight in the 

dog cohort studied. A few scenarios are possible, e.g. free carnitine could have 

been depleted, there may be higher demand for carnitine in overweight dogs, 

carnitine status could be diet-dependent or endogenous production could be 

lower in overweight dogs.  

In the first of these scenarios, carnitine could be depleted due to excessive 

acylcarnitine formation and buffering in obesity, as has been suggested in a 

previous review (Harmeyer, 2002). This scenario cannot completely be ruled out 

in the present case, but the fact that two long-chain acylcarnitines were not 

present in higher concentrations in overweight dogs makes it unlikely (Paper 

IV). Higher carnitine demand in obesity has been proposed due to higher 

metabolic stress (Muoio, 2014; Vigerust et al., 2012). Overweight dogs in this 

thesis did in fact have higher overnight urinary cortisol excretion than lean dogs, 

but it is not known whether this leads to increased carnitine demand in 

overweight dogs. Carnitine status could be dependent on the fat content of the 

regular diet, as suggested in overweight humans and rodents (Noland et al., 



58 

 

2009; Cederblad, 1987). Differences in total fat intake between lean and 

overweight dogs in this thesis cannot be excluded, as the fat content and exact 

amount of table scraps and treats fed were not possible to assess from the food 

diaries. However, the frequency with which dogs were given table scraps and 

treats did not differ between the lean and overweight groups. Dogs obtain 

carnitine from dietary protein and from biosynthetic production, so the type and 

amount of protein fed could have influenced plasma carnitine status, as 

suggested in humans (Lombard et al., 1989). Although complete commercial 

dog foods may vary in their concentration of available free carnitine, healthy 

dogs fed a variety of solely complete commercial diets (Shug & Keene, 1991) 

have been found to be well within recommended reference ranges for plasma 

free carnitine at fasting (Sanderson, 2006). In addition, lean and obese dogs fed 

high- or low-protein diets over a three-week period in a cross-over design study 

did not show changes in their plasma carnitine concentrations (Xu et al., 2017). 

All dogs in the present cohort were fed complete diets based on animal proteins, 

and therefore they are unlikely to have suffered from protein-related carnitine 

insufficiency. Whether endogenous production is lower in overweight dogs is 

not known. It can therefore be suggested that the adiposity and possible 

metabolic stress of overweight dogs might had a greater impact on carnitine 

metabolism than potential differences in fat or protein intake alone. 

5.4 Taurine status in overweight dogs 

In Paper II, the results for spontaneously overweight (BCS ≥6) Labrador 

Retriever dogs indicated that being overweight might be associated with lower 

postprandial urinary taurine excretion. In Paper IV, overweight dogs showed a 

trend for lower overall plasma taurine response in the feed-challenge test (P-

value not significant after correction for multiple comparisons). Lean dogs in 

Paper II showed a time-dependent urinary taurine response, with increased 

taurine excretion in postprandial compared with fasting urine, while slightly 

overweight and overweight dogs showed no response to feeding.  

Increased urinary taurine excretion postprandially, as found in lean dogs, has 

been reported previously (Gray et al., 2015). However, compared with findings 

in healthy Labrador Retriever dogs by Gray et al. (2015), there was a much lower 

relative increase in lean dogs in this thesis (40% and 286%, respectively) (Gray 

et al., 2015). These discrepancies between study results could be related to use 

of different normalisation approaches for urine concentrations or to different fat 

contents in test diets. In previous tests in cats, cooked and raw diets resulted in 

different taurine losses to faeces and taurine and its metabolites were also 

metabolised by microbes in the gut (Backus et al., 1994; Hickman et al., 1992). 
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A high-fat test diet was used in this thesis, which could have resulted in greater 

gastrointestinal taurine losses in faeces compared with in urine as taurine aids 

bile-acid conjugation (Hardison, 1978). In support of this suggestion, it has been 

proposed that obesity induced by a high-fat diet results in taurine depletion in 

rodents, although that study proposed reduced taurine biosynthesis as the main 

reason for low taurine status in overweight rodents (Tsuboyama-Kasaoka et al., 

2006). 

The findings presented in this thesis suggest that reduced taurine status could 

be linked to adiposity in dogs and such a connection is in line with findings in 

humans and rodents (Murakami, 2015; Xu et al., 2013; Waldram et al., 2009; 

Schirra et al., 2008; Tsuboyama-Kasaoka et al., 2006; Lee et al., 2003). It has 

been suggested that taurine supplementation could alleviate adipose tissue 

inflammation and increase beta oxidation. Conversely, taurine insufficiency 

could promote obesity and obesity-related disorders in a vicious cycle 

(Murakami, 2015; Tsuboyama-Kasaoka et al., 2006). Consequently, the lower 

taurine status in overweight dogs could be linked to less efficient lipid turnover, 

as could low carnitine status. Evidence of the effects of dietary taurine 

supplementation on reduced body weight and serum lipid concentrations has 

been found in rodents, but evidence from human studies is more uncertain 

(Tsuboyama-Kasaoka et al., 2006; Zhang et al., 2004; Nakaya et al., 2000). 

5.5 Possible interrelation of carnitine and taurine status 
in overweight dogs 

Both taurine and carnitine concentrations were found to be lower in overweight 

dogs in the present cohort, findings which might be inter-related. Linear 

regression analysis of fasting plasma carnitine and taurine concentrations (re-

analysis of data from Paper IV) showed a relatively weak but significant positive 

association (P=0.03, R2 0.17) between the two plasma metabolites, with mutual 

decreasing concentrations in overweight dogs. Taurine and acylcarnitines (i.e. 

carnitine bound to fatty acids) are secreted into bile (Charles & Hermann, 1998; 

Rashed et al., 1995; Huxtable, 1992) and potential long-term high fat intake 

causing subsequent increased losses in faeces is possible for both metabolites in 

overweight dogs. A general lower intake of foods containing carnitine and 

taurine in overweight dogs or, as proposed earlier, increased demand for these 

metabolites in comparison with lean dogs are also plausible. In addition, both 

taurine and carnitine require the amino acid methionine for biosynthetic 

production (Krajcovicova-Kudlackova et al., 2000), so synergistic lower 

endogenous production in overweight dogs due to low methionine status could 

be suggested. Taurine biosynthesis rate has been shown to be lower in dogs with 
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low maintenance energy requirements (Ko et al., 2007). Overweight compared 

with lean dogs could have lower energy requirements, especially at a weight-

loss plateau. In certain breeds of dogs, taurine or combined taurine and carnitine 

deficiency has been suggested as a underlying cause of dilated cardiomyopathy 

(Kittleson et al., 1997) and a genetic predisposition or low maintenance energy 

requirements have been suggested (Fox et al., 1999). Unfortunately, taurine and 

carnitine concentrations in faeces or carnitine concentrations in urine were not 

measured in this thesis. However, the lower urinary taurine excretion of 

overweight compared with lean dogs could be interpreted as a compensatory 

sparing mechanism in the suspected generally low taurine status.  

Many questions still need to be answered about whether, and by what 

mechanisms, spontaneous overweight dogs might reach insufficient carnitine 

and taurine status. Further studies that measure physiological carnitine and 

taurine concentrations in dogs with spontaneous overweight and examine the 

effects of carnitine and taurine supplementation in weight loss trials are 

warranted. Possible influences of a long-term, high-fat diet on carnitine and 

taurine metabolism in dogs also need further investigation. There may be room 

for advances in therapy for spontaneously overweight dogs, e.g. by dietary 

changes or individually adjusted taurine or carnitine supplementation. 

5.6 Acute and chronic models of canine overweight 

In relation to acute or spontaneous models of canine overweight, it is of interest 

to discuss two different types of abnormal fatty acid oxidation: 1) Decreased and 

complete, where the fatty acid oxidation reaches two carbon units but at a slow 

rate, and 2) increased and incomplete, where fatty acid oxidation exceeds the 

capacity of the tricarboxylic acid cycle and accumulation of acylcarnitines of 

different lengths may occur (Baker et al., 2015; Schooneman et al., 2013). In 

acutely overfed dogs, increased concentrations of long-chain acylcarnitines have 

been found in plasma (RC de Godoy et al., 2015), which could be interpreted as 

a sign of increased and incomplete fatty acid oxidation. In the present cohort of 

spontaneous, more chronically overweight dogs, the short-chain acetylcarnitine 

and carnitine were present in lower levels in overweight dogs than in lean, and 

there was no increase in long-chain acylcarnitines in overweight dogs, which 

could be a sign of decreased complete fatty acid oxidation. Thus, discrepancies 

between acylcarnitine patterns in plasma might be attributable to different types 

of abnormal fatty acid oxidation in acute and chronic canine overweight. 

Variants of abnormal fatty acid oxidation, as described above, have been 

reported in humans and rodent models, where associations between acute and 
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spontaneous overweight and the presence of different acylcarnitines in muscle 

and plasma have been shown (Schooneman et al., 2013; Noland et al., 2009). 

While increased levels of long-chain acylcarnitines with acute weight gain were 

observed in a study by Godoy et al. (2015), free plasma carnitine concentrations 

were found to be unaffected during a 12-week weight gain period. Another study 

using short-term weight reduction found no changes in plasma carnitine 

concentrations (Diez et al., 2004). In both studies, a limited number of laboratory 

dogs of different sexes and neutering status underwent short-term interventions. 

The reason for the discrepancies in carnitine results between those acute models 

and the spontaneous model of chronic overweight reported in this thesis is not 

known, but possible explanations could be differences between analytical 

techniques or that carnitine metabolism, as shown by the acylcarnitine patterns, 

may differ in acute experimental and spontaneous overweight in dogs.  

The differences in results from different studies highlight the need for both 

acute and chronic models of overweight in canine metabolism research, as 

carnitine metabolism and fatty acid oxidation might be affected differently under 

these circumstances. Both models are important and have different advantages 

and drawbacks, such as different costs and time requirements, controlled diets 

versus a natural environment, breed diversity, concurrent diseases etc. In future 

dog studies, carnitine and acylcarnitines in both muscle and plasma should be 

assessed and the use of metabolomics analyses capable of detecting short-chain, 

medium-chain and long-chain acylcarnitines would be an advantage. It is of 

interest to test acute and chronic experimental set-ups and spontaneous 

overweight, in order to gain more insights into fatty acid oxidation  and general 

oxidation rates, and how this might fit into the proposed theory of metabolic 

inflexibility of canine overweight.  

5.7 The importance of dynamic metabolic tests 

Evaluation of single metabolic parameters revealed four time-dependent 

variations related to body condition status in the feed-challenge test. These 

results emphasise the importance of including a dynamic test in metabolic 

research on canine overweight. If only fasting samples had been used, important 

information such as the novel finding of metabolic inflexibility in overweight 

dogs of the present cohort would have been missed. 

Metabolite and phospholipid profiles also showed time-dependent responses 

in the feed-challenge test, but with no variations between lean and overweight 

groups of dogs, with the exception of the postprandial urinary metabolome. 

Likewise, human studies have found significant changes in metabolite profiles 

after feed-challenge tests compared with fasting conditions and in some 
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publications specific group responses have been identified (Rådjursöga et al., 

2018; de Toro-Martín et al., 2017; Moazzami et al., 2014).  Differences in 

metabolite profiles between lean and overweight groups of dogs were seen in 

postprandial urine, but not in any other metabolite or phospholipid profile, in the 

study cohort in this thesis. These results indicate that multivariate variations in 

metabolic profiles in overweight dogs might be more prominent in postprandial 

than in fasting events, but further studies are needed to confirm this suggestion. 

Future research should aim at including dogs with a wider range of body 

condition, different breeds and also different types of feed-challenges (such as 

low-fat, high-protein or oral sugar tests). The composition of the test feed, length 

of fasting period and length of postprandial sampling period should be carefully 

considered. It would also be of interest to perform exercise tests on lean and 

overweight dogs, to investigate whether the metabolism of overweight dogs is 

inflexible to physical challenge. 

5.8 Lipid metabolism in overweight dogs 

Prominently overweight dogs (BCS >6) showed postprandial hyper-

triglyceridaemia compared with lean dogs, although no difference was found 

between body condition groups at fasting. The postprandial triglyceride 

concentrations in lean and slightly overweight dogs were within the range 

previously reported for healthy lean dogs of mixed breeds (Elliott et al., 2011). 

A slight postprandial increase in plasma triglycerides, especially after a high-fat 

meal, is considered a physiological response in dogs (Downs et al., 1997). The 

postprandial triglyceride concentration at or above which postprandial 

hypertriglyceridaemia occurs, and which might have negative health effects in 

dogs, has not been established, but attempts have been made to create reference 

ranges for dogs (Elliott et al., 2008).  

It should be noted that triglycerides measured postprandially reflect the sum 

of recently absorbed dietary fat transported in chylomicrons and fat in 

endogenously produced very high density lipoprotein (VLDL) (Frayn, 2009). 

Higher concentrations of serum triglycerides in overweight could be due to 

increased adipose tissue lipolysis, decreased plasma clearance or both. As free 

fatty acids did not differ between lean and overweight dogs, this suggests that 

reduced triglyceride clearance in serum of overweight dogs was the main reason 

for the postprandial triglyceride increase, as also suggested in obese humans 

(Couillard et al., 1998). Unfortunately lipoproteinlipase activity, as a measure of 

triglyceride clearance in serum, was not possible to assess. Reduced inhibition 

of VLDL release into the circulation under insulin stimulation in overweight 

subjects is also possible (Frayn, 2009). In a study on bed-rested humans, the fate 
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of dietary lipids was recorded and it was demonstrated that reduced lipid 

clearance accounted for the increase in postprandial triglycerides, although the 

study suggested inactivity as the main reason and not the surplus in energy intake 

(Bergouignan et al., 2011).   

Although prominently overweight dogs had twice as high peak postprandial 

triglyceride concentrations as lean dogs, the values measured were only 

approximately half those reported in a study of obese dogs (Verkest et al., 2012). 

Another study of obese dogs found increased triglyceride concentrations also at 

fasting (Tvarijonaviciute et al., 2012). Taken together, these results support a 

positive association between serum triglyceride concentrations and body fat 

content, as previously reported in both humans and dogs (Miller et al., 2011; 

Peña et al., 2008). However, more pronounced overweight or obesity probably 

needs to be reached before fasting triglyceride values become altered in dogs, as 

indicated by the results in this thesis.  

In the cohort studied here, lean and overweight dogs had similar free fatty 

acid concentrations at fasting and showed a similar declining response following 

food intake. This indicates comparable hydrolysis of triglycerides and release of 

free fatty acids into the blood stream during overnight starvation. However, the 

mitochondrion oxidation rate overnight differed between the groups, based on 

their fasting acetylcarnitine status. It can be speculated that a general lower 

oxidation rate of all substrates, rather than only decreased fatty acid oxidation, 

might be the reason for this pattern, as the overweight dogs did not accumulate 

free fatty acids during overnight starvation. 

Although postprandial triglyceride concentrations differed between lean and 

overweight dogs, the much more extensive phospholipid dataset showed no 

multivariate separation between body condition groups at any time point. This 

might be attributable to distinction of exogenous and endogenous lipid 

pathways. The exogenous pathway handles dietary lipids, mainly triglycerides 

in chylomicrons, and the endogenous pathway handles HDL, LDL and VLDL, 

which are mainly composed of phospholipids in dogs (Xenoulis & Steiner, 2010; 

Maldonado et al., 2001). Whether the phospholipid composition of lipoprotein 

fractions is different in overweight compared with lean dogs is not known. The 

results in this thesis do not address the distribution of lipoprotein fractions in 

overweight, as unfortunately it was not possible to measure those. However, it 

was found that overweight compared with lean dogs displayed signs of impaired 

exogenous handling of exogenous lipids, although no differences existed 

between groups in phospholipid profiles mainly representing the endogenous 

pathway.  

In the phospholipid datasets, some interesting findings previously detected in 

humans were revealed in the dog cohort by the hypothesis-driven analyses. First, 
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fasting phosphatidylcholine PCaa C38:4 was found to be positively associated 

with overweight. The prominently overweight dogs (BCS >6) had significantly 

higher concentrations than lean and slightly overweight dogs. Associations of 

the same phosphatidylcholine to body mass index and waist circumference have 

been found in humans, even when the effect of lipoprotein fractions is accounted 

for (Bachlechner et al., 2016; Lacruz et al., 2016). In overweight humans, 

elevated phosphatidylcholines have been shown to be associated with insulin 

resistance and lipotoxicity (Rauschert et al., 2016) or pro-inflammatory 

properties of the compounds have been proposed as underlying causes 

(Pietiläinen et al., 2007). In this thesis, overweight dogs did not differ from lean 

dogs in terms of insulin sensitivity assessed by a fasting homeostasis model of 

assessment or in high sensitivity C-reactive protein concentrations (Hillström et 

al., 2015). This is possibly explained by the quite moderate and spontaneous 

overweight in the cohort, or by species differences between dogs and humans. 

Further studies including heavily obese dogs and using more sensitive measures 

of insulin sensitivity are needed for better interpretation of the importance of 

elevated phosphatidylcholines in lipid metabolism of overweight dogs.  

Second, the multivariate models of the phospholipid datasets showed a clear 

distinction between fasting and all but the one-hour postprandial time points in 

the dog cohort studied in this thesis. Time-dependent responses were mainly 

attributable to postprandial increases in phosphatidylethanolamines, which 

could be related to recent dietary fat intake. In an oral lipid challenge in humans, 

PEaa C36:2 and C36:3 showed an almost two-fold increase at two hours 

postprandially (Morris et al., 2015). Interestingly, the dogs in this thesis 

displayed a comparable increase in the same phosphatidylethanolamines in 

response to the high-fat feed-challenge test. This implies that recent fat intake 

could also be measured by postprandial phosphatidylethanolamines in dogs. 

Future studies of lipid parameters in overweight dogs should aim at including 

measurements of different lipoprotein fractions, lipoprotein-lipase activity, in 

addition to phospholipid profiles using feed-challenge tests, to further deepen 

understanding of variations in lipid metabolism in overweight dogs.  
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It was found in this thesis that spontaneously overweight Labrador Retriever 

dogs displayed variations in metabolic parameters compared with lean dogs and 

that the use of a feed-challenge test allowed detection of subtle metabolic 

variations not noticeable in fasting conditions. Six parameters differed between 

spontaneously overweight and lean dogs, and all those parameters were directly 

or indirectly associated with lipid metabolism. The results presented in this 

thesis highlight the complexity of lipid metabolism in canine overweight by 

identifying previously known and new metabolic variations in spontaneously 

overweight Labrador Retriever dogs. These were: 

 

 Triglycerides, acetylcarnitine, taurine and cortisol showed time-dependent 

variations related to body condition status, emphasising the importance of 

dynamic tests, such as feed-challenge tests, in metabolic research on canine 

overweight. 

 Metabolic variations in general and metabolic inflexibility in particular may 

develop early in canine overweight, potentially already in slightly overweight 

dogs, as suggested by their acetylcarnitine response. Slightly overweight and 

prominently overweight dogs showed signs of low fatty acid oxidation at 

fasting and metabolic inflexibility to food intake without being profoundly 

insulin-resistant.  

 Slightly overweight and prominently overweight dogs showed compromised 

carnitine and taurine status, potentially representing an interrelated 

insufficiency that could theoretically slow their lipid metabolism in 

comparison with lean dogs. 

 

6 Concluding remarks 
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 Postprandial urine metabolomes distinguished between lean and overweight 

dogs, but no other metabolite or phospholipid profile was able to separate 

body condition groups. Metabolite and phospholipid profiles distinguished 

effectively between sampling time points in the feed-challenge test, but 

whether postprandial metabolomes might be more useful than fasting 

metabolomes in differentiating between lean and overweight dogs merits 

further investigation. 

 Prominently overweight dogs showed postprandial hypertriglyceridaemia 

without having hyperlipidaemia at fasting, but had higher concentrations of 

only one plasma phosphatidylcholine than slightly overweight and lean dogs. 

Prominently overweight dogs also showed high overnight cortisol excretion 

in urine, which together with the postprandial hypertriglyceridaemia might 

be early signs of metabolic imbalance. 
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Under de senaste 25 åren har förekomsten av fetma hos människor fördubblats i 

många länder. Detta reflekterar sannolikt att vi blivit allt mer stillasittande 

samtidigt som kalorität snabbmat har blivit mer lättillgänglig. Våra hundar 

räknas idag ofta som familjemedlemmar och de delar i stor utsträckning vår 

livsstil. Övervikt hos hundar är också ett ökande problem. Det rapporteras att så 

stor andel som uppemot 60% av alla hundar i vissa länder är överviktiga. Det är 

visat att överviktiga hundar i större utsträckning riskerar att drabbas av kroniska 

sjukdomar, få sänkt livskvalité samt kortare livslängd. Vid övervikt påverkas 

hundens ämnesomsättning (metabolism) och hundar liksom människor drabbas 

av minskad känslighet för insulin (resistens) samt förhöjda blodfetter (bl.a. 

triglycerider) efter födointag. Vilka övriga förändringar som kan ske i 

ämnesomsättningen vid övervikt hos hundar är inte tillräckligt utrett. Det 

övergripande målet med denna avhandling var att undersöka variationer i 

ämnesomsättningen vid spontant uppkommen övervikt hos hundar vid fasta samt 

efter födointag. Teorierna var att överviktiga hundar uppvisar metabola 

variationer jämför med normalviktiga hundar samt att användningen av ett 

foderprovokationstest avslöjar variationer som varit svåra eller omöjliga att 

upptäcka vid analys av prover endast vid fasta. Tjugoåtta friska, okastrerade 

hanhundar av rasen Labrador retriever inkluderades och provtogs. Deltagande i 

studien innebar inte någon förändring av vad eller hur mycket hundarna åt 

normalt i sin hemmiljö men foderdagböcker fylldes i av hundägarna under två 

veckor innan provtagningen utfördes. Efter att hunden fastat över natten samlade 

djurägarna ett spontankastat urinprov i hemmiljön och reste sedan tillsammans 

med sin hund in till kliniken (Universitetsdjursjukhuset, Sveriges 

lantbruksuniversitet, Uppsala). Alla hundar hullbedömdes av samma veterinär 

enligt en hullbedömningsskala (Body condition score, BCS) som sträcker sig 

från ett till nio. Tolv hundar bedömdes som normalviktiga (BCS 4-5), tio som 

lindrigt överviktiga (BCS 6) och sex som tydligt överviktiga (BCS >6). På 

kliniken lades en permanent infart (venkateter) i ett blodkärl på frambenet 
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varefter fastande blodprover togs. Hundarna utfodrades sedan med en portion 

högfettsfoder som motsvarade halva deras dagliga energibehov justerat till deras 

normalvikt. Efter födointaget (postprandiellt) samlades blodprover varje timme 

under totalt fyra timmar. Vid tre timmar efter måltiden insamlades ytterligare ett 

urinprov. Blod- och urinproverna analyserades och en stor mängd data erhölls. I 

delarbete I analyserades vanliga biokemiska- och hormonella parametrar för att 

få viktig baskunskap om de normalviktiga och överviktiga hundarnas 

ämnesomsättning. I delarbete II och III användes mer utforskande 

analysmetoder och en mängd nedbrytningsprodukter från ämnesomsättningen 

(metaboliter) identifierades i urin och i blod. I delarbete IV analyserades 

metaboliter och en stor grupp av fetter (fosfolipider). Urvalet av analyser till 

delarbete IV baserades på resultaten från delarbete I-III samt från tidigare studier 

av andra överviktiga hundar och människor. De statistiska analyser som gjordes 

i samtliga delarbeten inriktades mot skillnader mellan olika hullgrupper och mot 

förändringar som uppstår mellan fasta och efter födointag. Sex av de analyserade 

parametrarna skilde sig mellan normalviktiga och överviktiga hundar och alla 

dessa parametrar var direkt eller indirekt kopplade till fettmetabolismen. 

Kortisol (stresshormon) i urinen, en fosfolipid och triglycerider i blodet efter 

födointag var högre hos de mest överviktiga hundarna. Metaboliterna carnitin 

och acetylcarnitin i blodet samt metaboliten taurin i urinen var istället lägre hos 

överviktiga hundar jämfört med normalviktiga. Fyra parametrar (triglycerider, 

acetylcarnitin, taurin och kortisol) skiljde sig mellan normalviktiga och 

överviktiga hundar i hur de utvecklades över tid från fasta till efter födointag. 

Dessa resultat visar på vikten av att använda sig av dynamiska tester såsom en 

foderprovokation i forskning om ämnesomsättning vid övervikt hos hund. 

Dessutom uppvisade de överviktiga hundarna tecken på en minskad 

fettnedbrytning vid fasta och svårigheter för ämnesomsättningen att växla 

mellan fasta och födointag (s.k. metabol inflexibilitet). Att det förekom 

svårigheter att växla i ämnesomsättningen hos överviktiga hundar i denna studie 

stöddes också av deras kortisolsvar och förekomsten av vissa metaboliter i 

urinen efter födointag. Hos de mest överviktiga hundarna var blodnivåerna av 

triglycerider efter födointag förhöjda, vilket överensstämmer med resultaten av 

tidigare studier. Intressant nog kunde dock inte några förhöjningar påvisas i fasta 

och endast en av de identifierade fosfolipiderna visade sig vara högre hos de 

mest överviktiga hundarna. Överviktiga hundar visade tecken på låga nivåer av 

metaboliterna carnitin och taurin vilket möjligen skulle kunna vara brister som i 

teorin skulle kunna göra fettomsättningen långsammare i denna grupp. 

Resultaten från denna avhandling belyser komplexiteten i fettmetabilismen hos 

överviktiga hundar genom att identifiera tidigare kända samt nya variationer i 

ämnesomsättningen hos spontant överviktiga Labrador retrievers. 
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Over the past 25 years, the prevalence of overweight and obesity in humans has 

doubled in many countries. People have become more sedentary and calorie-

dense food has become more readily available. Pet dogs are often seen as family 

members today and they largely share their owner’s lifestyle. Problems with 

overweight in dogs are also increasing, e.g. in some countries up to 60% of the 

dog population is reported to be overweight. Overweight dogs are at risk of 

developing chronic illnesses early in life, suffering reduced quality of life and 

having shorter life expectancy. In overweight dogs, the metabolism is affected, 

e.g. overweight dogs have been shown to have resistance to insulin and elevated 

blood fats (e.g. triglycerides) after food intake, but knowledge of any other 

changes that may occur in the metabolism of overweight dogs is insufficient. 

The overall aim of this thesis was to evaluate variations in the metabolism of 

spontaneously overweight dogs under fasting conditions and after food intake. 

It examined whether overweight dogs display differences in metabolic 

parameters compared with lean dogs and whether a feed-challenge test allows 

detection of subtle metabolic variations not noticeable in fasting conditions. 

Twenty-eight healthy, intact privately-owned male Labrador Retriever dogs 

underwent sampling during one year. No changes were made to the diets in the 

home environment, but food diaries were filled in by the dog owners during two 

weeks before sample collection. After an overnight fast, the owners collected a 

urine sample at home and then travelled with their dog to the clinic (University 

Animal Hospital, Uppsala). At the clinic, a permanent infusion catheter was 

inserted into the blood vessel on the forelimb and fasting blood samples were 

taken. All dogs were evaluated by the same veterinarian using a 1-9 body 

condition scoring (BCS) scale. Twelve dogs were considered to be lean (BCS 4-

5), 10 slightly overweight (BCS 6) and six prominently overweight (BCS >6). 

The dogs were fed a high-fat meal that corresponded to half their daily energy 

requirement, adjusted to their lean weight. After food intake (postprandially), 
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blood samples were collected every hour for four hours. At three hours after the 

meal, another urine sample was taken. 

Blood and urine samples were analysed for common biochemical and 

hormonal parameters, to gain basic knowledge on the metabolism of lean and 

overweight dogs in the cohort. More exploratory analytical methods were also 

used and a large number of small particles from the metabolism (metabolites) 

were identified in urine and in blood. The results of these analyses and existing 

data on overweight dogs and humans were used to select target metabolites and 

a large group of fats (phospholipids) for analysis. The statistical analyses in all 

cases focused on differences between lean and overweight dogs and changes 

between fasted condition and after food intake. 

Six of the parameters analysed differed between lean and overweight dogs, 

and all of these parameters were directly or indirectly linked to fat metabolism. 

Concentration of cortisol (stress hormone) in urine, one phospholipid and 

triglycerides in the blood after food intake were higher in prominently 

overweight dogs than in lean dogs, while the metabolites carnitine and 

acetylcarnitine in blood and taurine in urine were lower. Four metabolic 

parameters (triglycerides, acetylcarnitine, taurine and cortisol) differed between 

lean and overweight dogs in terms of the changes over time from fasting to after 

food intake. These results show the benefit and importance of using dynamic 

tests (such as the feed-challenge test) in metabolic research on overweight dogs. 

In addition, overweight dogs showed signs of reduced fat degradation at fasting 

and difficulties in switching the metabolism between fasted and postprandial 

state (so-called metabolic inflexibility). This was supported by their cortisol 

response and the presence of certain urinary metabolites after food intake. 

Prominently overweight dogs had elevated triglycerides after food intake but, 

interestingly, no increase was observed at fasting and only one of the identified 

phospholipids proved to be present in higher concentrations in prominently 

overweight dogs. Overweight dogs showed compromised carnitine and taurine 

status, which could theoretically slow down fat metabolism in this group of dogs. 

This thesis revealed more about the complexity of fat metabolism in overweight 

dogs by identifying previously known and new variations in the metabolism of 

spontaneously overweight Labrador Retriever dogs. 
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