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Abstract. X-ray absorption spectroscopy (XAS) includes well-established methods to study 

the local structure around the absorbing element – extended X-ray absorption fine structure 

(EXAFS), and the effective oxidation number or to quantitatively determine the speciation of 

an element in a complex matrix – X-ray absorption near-edge structure (XANES). The 

increased brilliance and intensities available at the new generation of synchrotron light sources 

makes it possible to study, in-situ and in-operando, much more dilute systems with relevance 

for natural systems, as well as the micro-scale variability and dynamics of chemical reactions 

on the millisecond time-scale. The design of the BALDER beamline at the MAX IV 

Laboratory 3 GeV ring has focused on a high flux of photons in a wide energy range, 2.4–40 

keV, where the K-edge is covered for the elements S to La, and the L3-edge for all elements 

heavier than Sb. The overall design of the beamline will allow large flexibility in energy range, 

beam size and data collection time. The other focus of the beamline design is the possibility to 

perform multi-technique analyses on samples. Development of sample environment requires 

focus on implementation of auxiliary methods in such a way that techniques like Fourier 

transform infrared (FTIR) spectroscopy, UV-Raman spectroscopy, X-ray diffraction and/or 

mass spectrometry can be performed simultaneously as the XAS study. It will be a flexible 

system where different instruments can be plugged in and out depending on the needs for the 

particular investigation. Many research areas will benefit from the properties of the wiggler 

based light source and the capabilities to perform in-situ and in-operando measurements, for 

example environmental and geochemical sciences, nuclear chemistry, catalysis, materials 

sciences, and cultural heritage. 

1.  Introduction 

The low emittance 3 GeV ring at the MAX IV Laboratory in Sweden is undergoing commissioning 

and will be taken in operation in 2016. The BALDER beamline, dedicated to X-ray absorption 

spectroscopy (XAS) is one of the first phase beamlines under construction and is expected to initiate 

user operation in second half of 2016. XAS is one of few techniques that will provide detailed 

molecular information on elements in complex matrices. Very often regarded as a non-destructive 

technique where a minimum of pre-treatment is required, only very small amounts of material are 

needed, and concentrations of the studied elements are often low, XAS has become an indispensable 

tool in research areas such as life sciences, environmental and geochemical sciences and nuclear 

chemistry, catalysis and materials sciences, and cultural heritage. The design of the BALDER 

beamline has focused on a high flux of photons in a wide energy range, 2.4–40 keV, with flexibility in 
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beam size and data collection time, and with focus towards implementation of multi-technique 

analyses on samples. 

2.  Beamline design 

The BALDER beamline requires high flux, broad energy range, high energy resolution, high beam 

stability and fast energy scanning capability. These requirements are incorporated into the beamline 

design, which is based on an in-vacuum wiggler source and includes four main optical elements, see 

Figure 1: 

 Vertically collimating mirror with Si and Ir stripes, water cooled 

 Double crystal monochromator with Si(111) and Si(311) LN2-cooled crystals 

 Toroid focusing mirror with Si and Ir torus  

 Harmonic rejection mirrors with Si and Ir stripes (in experimental hutch, not shown in Figure 1) 

Figure 1. Conceptual optical layout of the BALDER beamline. The “QEXAFS Mono” (quick 

monochromator) is a possible device for future upgrades. 

2.1.  The Source 

The design concept for the BALDER beamline is based on an in-vacuum wiggler source. The wiggler 

design of choice is an in-vacuum wiggler developed at SOLEIL. The wiggler is composed of 38 

periods of 50 mm producing a magnetic peak field of 2.1 T at a minimum gap of 5.5 mm. The 

magnetic system consists of a sequence of NdFeB permanent magnets with a magnetic remanence of 

1.2 T at ambient temperature [1]. 

As pointed out by E. Welter [2], a multi-pole wiggler installed at a low-emittance storage ring 

produces a non-uniform beam. We confirm this statement by using two calculation programs – 

SPECTRA [3] and xrt [4], see Figure 2. 

In order to smoothen the radiation distribution, one can perform tapering – varying the magnetic 

gap along the wiggler. While SPECTRA is capable of calculating tapered insertion devices, it cannot 

represent both spatial and energy domains at the same time. We therefore use xrt to study the result of 

tapering. Low energy radiation is more prone to create the spatial and energy fringes. In Figure 3 we 

present the most difficult case – the lowest beamline energy, 2.5 keV. For an energy band of 200 eV, 

one can see the chromatic fringes in the spatial distribution and a non-uniform energy distribution. 

Both features are gone as one gradually increases the tapering up to 2% (in Δgap/gap). At higher 

energies, tapering can be smaller, e.g. down to ~0.5% at 9 keV. Moreover, inevitable random errors in 

the alignment of magnetic poles facilitate the smoothing both in spatial and energy domains. 
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Figure 2. Beam cross-sections calculated with SPECTRA [3] and xrt [4] at two photon energies. 

SPECTRA represents intensity by color mapping; xrt represents intensity by brightness while colors 

represent energy. Xrt additionally shows two 1D positional histograms. Apart from these two different 

ways of representation, the results look very similar. 
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Figure 3. Beam cross-sections and energy distributions 

calculated with xrt at different gap tapering levels. 

2.2.  The Optics 
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The front end accepts 0.4h×0.1v mrad
2
 of the wiggler radiation with up to 1.2 kW power in the beam. 

This power is distributed among three filters, a collimating mirror and the first crystal of a double 

crystal monochromator (DCM). The latter typically absorbs up to 500 W, in one particular regime – up 

to 750 W. Therefore, the monochromator is cryogenically cooled. The collimating mirror absorbs up 

to 800 W and is cooled via grooves filled with liquid metal. 

The beam at the sample is focalized into a ~100h×100v µm
2
 spot by a toroid mirror. There are two 

toroids with different coatings to serve different energy ranges. In order to minimize the realignment 

time, the two toroids have equal sagittal radii. The beam at the sample can be unfocused up to 

~4.5h×2v mm
2
 by going off the nominal 2 mrad pitch angle of the mirrors. In order to minimize the 

realignment time and simplify the end station, the height of the focusing mirror and all the 

downstream elements is kept invariant under changes of the mirror pitch angle. This can be achieved 

by a relatively long range of the fixed exit offset of the DCM within 10–32 mm. The DCM is foreseen 

to be operated in fixed exit mode, but with the possibility to be operated in pseudo channel-cut mode 

as well, for faster data acquisition time. The DCM has direct drive mechanism in order to operate the 

Bragg angle at a speed of up to 5⁰/s. The transmitted flux onto the sample by the two DCM crystal 

pairs, Si 111 and Si 311, is 10
12

–10
13 

ph/s as estimated by ray tracing using xrt [4] in various 

assumptions about optical quality of the mirrors. 

3.  The experimental station 

The experimental station requires an easy exchange between different experimental set-ups for both 

transmission and fluorescence XAS measurements, as well as auxiliary instrumentation and sample 

preparation laboratory. It is required to have a variety of detectors for fluorescence measurements 

accessible to the users. An ongoing project is in-house development of an X-ray emission 

spectrometer, which will be used as the standard florescence detector, for performing site selective 

XAFS spectroscopy measurements and also as an X-ray Raman spectrometer for probing soft X-ray 

absorption edges. The spectrometer is also presented in this proceedings volume [5]. Additional 

detection system that will be available to the user community is a set of standard fluorescence 

detectors, ranging from Lytle and PIPS detectors to a four-element energy dispersive silicon drift 

detector. The silicon drift detector will be equipped with an Xpress 3 pulse processor that gives count 

rates of 3·10
6
 counts/element. 

Additional instrumentation available for user experiment is a closed cycle cryo-cooler that operates 

with exchange gas in the sample compartment for temperatures down to 4 K, and a gas delivery 

system, for pressures ranging from atmospheric pressure to up to 30 bar, equipped with a mass 

spectrometer. The experimental station is developed to incorporate auxiliary methods in such a way 

that techniques like Fourier transform infrared (FTIR) spectroscopy, UV-Raman spectroscopy, X-ray 

diffraction and/or mass spectrometry can be performed simultaneously as the XAS study. It will be a 

flexible system where different instruments can be plugged in and out depending on the needs for the 

particular investigation. 
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