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Summary: The additive main effects and multiplicative interaction (AMMI) model is a statistical 

model that is used for analysis of series of crop variety trials. This model can be fitted to a matrix of 

observations from a set of genotypes or crop varieties that have been investigated in a set of varying 

environments or locations. The model includes additive effects of genotypes and environments, and 

multiplicative effects of genotype-by-environment interaction. The multiplicative interaction terms are 

obtained through singular value decomposition. This paper describes the simple parametric bootstrap 

method, which can be used for testing significance of multiplicative terms. The simple parametric 

bootstrap method assumes that observations are normally distributed. Through simulation it is 

confirmed that the simple parametric bootstrap method performs well provided that the assumptions of 

normality and homogeneity of variance are fulfilled. However, when the distribution is non-normal, 

the frequency of Type I error is not maintained at the nominal significance level. The results of the 

simulation study suggest that a non-parametric bootstrap method would be needed. 
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1. Introduction 

 

Crop varieties are usually tested at several locations in order to investigate genotype-by-environment 

interaction. The additive main effects and multiplicative interaction (AMMI) model was proposed by 

Mandel (1971) and recommended for series of crop variety trials by Kempton (1984) and Gauch 

(1988, 1992). Using this model, genotype-by-environment interaction is studied through singular value 

decomposition. The interaction is written as a sum of multiplicative terms that are sorted according to 

decreasing importance. Thus, the first interaction term is the most important; the second is the second 

most important, and so on. Usually, only a few of the first terms are interpreted, since it is most likely 

that the last terms express random noise rather than any systematic pattern. Commonly in applications, 

two terms are retained, since this choice facilitates a two-dimensional graphical presentation in the 

form of a biplot (Gabriel, 1971). The adequacy of this rank-two approximation is often not assessed 

(Yang et al., 2009). Thus it might be that only the first multiplicative term is significant or that more 

than two terms would be needed to describe the actual interaction. 

 Forkman and Piepho (2014) reviewed tests of significance and proposed a new method to 

statistically test the multiplicative terms of the AMMI model. According to this simple parametric 

bootstrap method, the test statistic, which is computed from the data, is compared to a reference 

distribution that is derived through repeated sampling of matrices of standard normally distributed 

values. Section 2 describes the simple parametric bootstrap method for testing multiplicative terms in 

AMMI analyses of complete series of crop variety trials. 

 The simple parametric bootstrap method performs well with regard to power and frequency of 

Type I error (Forkman and Piepho, 2014). However, this result assumes that observations are normally 

distributed and homoscedastic. The present paper reports the results from a simulation study that 

investigates performance of the simple parametric bootstrap method when observations are non-

normally distributed or heteroscedastic. Five distributions, which differ with regard to skewness, 

kurtosis and heterogeneity of variance, are investigated. Section 3 gives the details of the simulation 

study, and Section 4 presents the results. 

 

 

2. The simple parametric bootstrap method 

 

Let ��� denote the observation from �th environment and �th genotype. Consider the additive main 

effects model 

 ��� = � + 	� + 
� + ��� , 
 

(1) 



 

3 

 

where � is an intercept, and 	� and 
� are main effects of the �th environment and �th genotype, 

respectively, and ��� is the residual associated with ���. When 
 genotypes have been observed in � 

environments, the observations ��� can be compiled into an � × 
 matrix	�. Possible genotype-by-

environment interaction effects are included in the errors ��� in (1). AMMI analysis explores this 

interaction using singular value decomposition (SVD). The SVD is carried out on the	� × 
 matrix �� of 

residuals from a fit of (1). Explicitly, the matrix	��, with elements	�̂��, is obtained from	� through 

 �̂�� = ��� − ���. − ��.� + ��... 
 

where ���. = ∑ ������� 
� , ��.� = ∑ ������� �⁄  and ��.. = ∑ ∑ ����������� ��
 � . The SVD of �� provides ! = min	�� − 1, 
 − 1  positive singular values	λ��,	λ�&, …,	λ�(. We shall use the convention that the 

first singular value is the largest; the second is the second largest, and so on. Thus	λ�� 	> λ�& >	… 	>	λ�( > 0. The SVD also provides left- and right singular vectors corresponding to the singular values. 

We shall let +,�-  denote the .th element of the �th left-singular vector of ��, and /0�- the .th element of 

the �th right-singular vector of ��. 

 Let � denote the � × 
 matrix of elements	���. The simple parametric bootstrap method was 

derived using the model � = 1 + 2 

 

where 1 is a fixed part, and 2 is a random part. Specifically it was assumed that 1 has 3 singular 

values that are not zero and 2 is a matrix of independent identically normally distributed values. Under 

the null hypothesis, the AMMI model can be written as 

 ��� = µ+ α� + 
� + γ��λ�δ�� + γ�&λ&δ�& + ⋯+ γ�5λ5δ�5 + 6��, 

 

where �γ��, γ�&,… , γ�7  is the �th left-singular vector, �δ��, δ�&,… , δ�7  is the �the right-singular vector, λ�, λ&	, … λ7 are the singular values, and 6�� is a normally distributed residual error. An AMMI model 

with 3 multiplicative terms is called an AMMI3 model. 

 We are interested in the value	3, which can be regarded as the true dimensionality of the 

genotype-by-environment interaction. This is the dimensionality when the random errors (i.e. 2 	are 

ignored. Thus we would like to test the null hypothesis that 3 equals some specified value	:, that is, 

 

 ;<: 3 = :, 
 

 

against the alternative hypothesis 
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 			;�: 3 > :. 

 

 

 The simple parametric bootstrap method for AMMI analysis is performed as follows (Forkman 

and Piepho, 2014): 

 

1. Compute the singular values	λ��,	λ�&, …,	λ�( of �� and let > = λ�?@�& ∑ λ�-&(-�?@�� . 

2. For	A = 1, 2, ..., B, where B is large, do the following: 

i. Sample an �� − 1	 − : × �
 − 1 − :  matrix ��CD of independent N�0, 1  distributed 

errors. 

ii. Compute the singular values	λ�C�,	λ�C&, …, λ�CF of ��CD, where G = min�� − 1	 − :, 
 − 1 −: , and from these compute >C = λ�C�& ∑ λ�C-&F-��� . 

3. Estimate the H-value as the observed frequency of >C larger than	>. 

 

 

3. Design of the simulation study 

 

Three real datasets that were also investigated by Forkman and Piepho (2014) were used as a basis for 

the simulations: 

 

1. The New York soybean dataset with seven genotypes investigated in ten environments 

(Gauch, 1992; Zobel et al., 1988). 

2. The international maize and wheat improvement center (CIMMYT) maize dataset with nine 

genotypes in 20 environments (Cornelius et al., 1996; Crossa et al., 2002). 

3. The Ontario winter wheat dataset with 18 genotypes in nine environments (Yan et al., 2007; 

Yan and Tinker, 2006; Yang et al., 2009). 

 

For each real dataset, statistics were computed as specified in Table 1. 

< Table 1 close to here > 

 Type I error rates were estimated through simulation. For each investigated distribution (see 

below) and model, 100,000 sample datasets were generated. The simplest model included only an 

intercept and a random error. With this model, the significances of the additive main effects were 

tested at significance level 0.05. For : = 0, 1, 2, 3	and	4, the AMMI: model estimated from the data 

was used for generation of sample datasets, and the significance of the �: + 1 th term was tested, also 

at level 0.05. The simple parametric bootstrap method used B = 1000 bootstrap samples. 
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 Simulations were made using six distributions as specified by Table 2. These distributions differ 

with regard to skewness, kurtosis and heterogeneity of variance. For a random variable N, skewness 

and kurtosis are defined as O��N − O�N  P σP⁄  and O��N − O�N  R σR − 3⁄ , respectively, where σ 

is the square root of O��N − O�N  & . For the normal distribution, skewness and kurtosis are	0. 

< Table 2 close to here > 

 The first distribution is a normal distribution with homogeneous variance. Forkman and Piepho 

(2014) used this distribution in their simulation, so this part is a repetition of their study. In biological 

data, the standard deviation is often increasing with the mean, whereas the coefficient of variation, that 

is, the standard deviation divided by the mean, is approximately constant. The second distribution is a 

normal distribution with homogeneous coefficient of variation. 

 When the coefficient of variation is approximately constant, it is often more plausible to assume a 

lognormal distribution than a normal. The third distribution is a lognormal distribution with 

homogeneous coefficient of variation. The lognormal distribution that was used for simulation when 

testing additive effects has expected value and variance equal to the estimates �̂ and	S,&, respectively, 

that are specified in Table 1. The coefficient of variation is	S, μ,⁄ . The lognormal distribution used for 

simulation when testing multiplicative effects has expected value �̂���?  and variance	S,�? & �̂���? & �̂&⁄ . 

The coefficient of variation is	S,�? �̂⁄ . Thus, the coefficients of variation were the same for the 

lognormal distribution as for the heterogeneous normal distribution. The lognormal distribution is 

positively skewed. Table 3 lists coefficient of variation, skewness and kurtosis of the simulated 

lognormal distributions. For the lognormal distribution, skewness and kurtosis have limit 0 as the error 

variance on the logarithmic scale decreases. Thus, it is no coincidence that skewness and kurtosis 

decreases (Table 3) as the complexity of the model increases, that is, when more multiplicative terms 

are added. 

< Table 3 close to here > 

 The fourth and fifth distributions are gamma�	, 
  distributions, where 	 is the shape parameter, 

and 
 the scale parameter. The expected value of the gamma�	, 
  distribution is		
, and the variance 

is		
&. Thus, the used distributions are centered about �̂ and 	�̂���?  with variances S,& and S,�? &  when 

evaluating tests of additive and multiplicative effects, respectively. Skewness and kurtosis of a gamma 

distribution with shape parameter 	 = 4 are	1 and	3 2⁄ , respectively. The exponential distribution is a 

gamma distribution with shape parameter		 = 1. This distribution has skewness 2 and kurtosis	6. 

 The sixth distribution is a uniform distribution centred about the mean. The variance of the W�X, A  

distribution is	�A − X & 12⁄ , so the used distributions have variances S,& and	S,�? & , for tests of additive 

and multiplicative effects, respectively. The uniform distribution has skewness 0 and kurtosis −6 5⁄ . 
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4. Results of the simulation study 

 

Table 4 presents the results of the simulation study in terms of observed frequencies of Type I errors. 

< Table 4 close to here > 

 For each dataset, the first and the second rows refers to tests of main effects of environments and 

genotypes, respectively. These observed frequencies are close to the nominal significance level 0.05, 

which confirms the well-known (e.g. Moore and McCabe, 2003) robustness of analysis of variance F-

tests. 

 The simple parametric bootstrap method performed well when the assumptions of normality and 

homoscedasticity were fulfilled. For all datasets and all null models, the Type I error rate was close to 

0.05. This outcome was expected, since the same good performance of the simple parametric bootstrap 

method was observed by Forkman and Piepho (2014). 

 When the distribution was normal with a heterogeneous variance, the Type I error rate was 

consistently too high, but decreasing with the number of multiplicative terms. The lognormal 

distribution, with the same coefficients of variation as the heterogeneous normal distribution, 

performed similarly. The simulated lognormal distributions were only slightly skewed, so the high 

Type I error rates observed for the lognormal distribution was probably mainly due to heterogeneity. 

 The gamma distributions also produced too high frequencies of Type I errors. The gamma 

distribution with shape parameter 	 = 4 performed better than the heavily skewed exponential 

distribution, that is, the gamma distribution with shape parameter		 = 1. Notice that in these cases, 

variance was homogeneous. 

 The uniform distribution produced too low Type I error rates. This distribution and the exponential 

are extreme cases that are not plausible in crop variety trials. 

 

 

5. Conclusion 

 

The results of the simulation study indicate that the simple parametric bootstrap method has excellent 

performance with regard to the Type I error rate, provided that the data is normally distributed and 

homoscedastic. When the distribution of the observations is non-normal or the data is heteroscedastic, 

the simple parametric bootstrap method does not maintain the nominal Type I error rate. In these 

situations, the reference distribution, which is obtained from sampling of normally distributed values, 

does not match the distribution of the test statistic. For this reason, it is in practice essential that the 

data is approximately normally distributed with approximately homogeneous variance. Observations 

might need to be transformed before analysis. It is an open question how a similar method performs if 
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resampling is made from the correct distribution and not from a standard normal distribution. It is also 

concluded that a non-parametric bootstrap method for AMMI analysis would be useful. 
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Table 1 

 

Statistic Equation 

Overall mean �̂ = y�.. 
Environment effect 	,� = ���. − ��.. 
Genotype effect 
0� = ��.� − ��.. 
Sum of [ multiplicative terms θ����? = ] 0,										: = 0

^γ,�-λ�-δ��-?
-�� ,							1 ≤ : ≤ ! − 2 

Fixed part of the AMMI[ model �̂���? = �̂ + 	,� + 
0� + θ����? ,							0 ≤ : ≤ ! − 2 

Variance of the observations S,& = ∑ ∑ a��� − ��..b&�������� �
 − 1  

Variance of the AMMI[ model S,�? & = 1�� − 1 �
 − 1 ^ λ�-&(
-�?@� 	,							0 ≤ : ≤ ! − 2, 
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Table 2 

 

Distribution Test of additive effects Test of multiplicative effects 

1. Normal distribution with 

homogeneous variance 
���~N��̂, S,&  ���~Na�̂���? , σd�? & b 

2. Normal distribution with 

homogeneous coefficient of 

variation 

���~N��̂, S,&  
���~Na�̂���? , +�? & �̂���? & b, +�? = σd�? �̂⁄  

3. Lognormal distribution with 

homogeneous coefficient of 

variation 

���~ln	N�f, g& , g&=log(S,& �̂&⁄ + 1 , f = log��̂ − g& 2⁄  

���~ lnNaf�? , g�? & b, g�? & =log(S,�? & �̂&⁄ + 1 , f�? = log �̂���? − g�? & 2⁄  

4. Gamma distribution with 

shape parameter i = j 

���~	�̂ + N − 2S,, N~gamma�4, S,/2  ���~	�̂���? + N − 2S,�? , N~gammaa4, S,�? /2b 

5. Exponential distribution 
���~	�̂ + N − S,, N~gamma�1, S,  ���~	�̂���? + N − S,�?  , N~gammaa1, S,�? b 

6. Uniform distribution 

���~�̂ + l, 

l~Un−o3S,&, 	√3S,&q 

���~�̂���? + R, 
R~U s−t3S,�? & , 	t3S,�? & u 
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Table 3 

 

Model under vw CV Skewness Kurtosis 

New York soybean data 

Intercept 0.336 1.05 2.00 

AMMIw 0.160 0.48 0.42 

AMMIx 0.067 0.20 0.07 

AMMIy 0.038 0.12 0.02 

AMMIz 0.029 0.09 0.01 

AMMIj 0.017 0.05 0.00 

CIMMYT maize data 

Intercept 0.279 0.86 1.34 

AMMIw 0.132 0.40 0.28 

AMMIx 0.087 0.26 0.12 

AMMIy 0.071 0.21 0.08 

AMMIz 0.056 0.17 0.05 

AMMIj 0.041 0.12 0.03 

Ontario winter wheat data 

Intercept 0.236 0.72 0.94 

AMMIw 0.091 0.28 0.13 

AMMIx 0.066 0.20 0.07 

AMMIy 0.049 0.15 0.04 

AMMIz 0.040 0.12 0.03 

AMMIj 0.032 0.10 0.02 
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Table 4 

 

Model 

under vw 

Normal 

homogen. 

Normal 

heterogen. 

Lognormal Gamma 

 i = j 

Gamma 

 i = x 

Uniform 

New York soybean data 

Intercept
1
 0.050 0.051 0.049 0.048 0.046 0.051 

Intercept2 0.050 0.050 0.049 0.048 0.045 0.051 

AMMIw 0.049 0.187 0.207 0.100 0.252 0.023 

AMMIx 0.051 0.144 0.146 0.084 0.191 0.028 

AMMIy 0.050 0.086 0.086 0.074 0.147 0.033 

AMMIz 0.049 0.073 0.072 0.063 0.102 0.040 

AMMIj 0.049 0.060 0.060 0.056 0.073 0.047 

CIMMYT maize data 

Intercept
1
 0.049 0.050 0.050 0.050 0.049 0.051 

Intercept2 0.050 0.051 0.050 0.051 0.047 0.050 

AMMIw 0.050 0.190 0.210 0.113 0.329 0.020 

AMMIx 0.050 0.179 0.184 0.099 0.272 0.024 

AMMIy 0.048 0.142 0.146 0.089 0.224 0.026 

AMMIz 0.048 0.120 0.120 0.082 0.189 0.029 

AMMIj 0.049 0.110 0.111 0.076 0.161 0.033 

Ontario winter wheat data 

Intercept1 0.050 0.049 0.049 0.050 0.047 0.050 

Intercept
2
 0.049 0.050 0.050 0.049 0.048 0.051 

AMMIw 0.050 0.228 0.237 0.114 0.320 0.021 

AMMIx 0.049 0.178 0.179 0.098 0.268 0.024 

AMMIy 0.049 0.170 0.169 0.091 0.227 0.027 

AMMIz 0.049 0.127 0.128 0.081 0.190 0.028 

AMMIj 0.048 0.120 0.121 0.074 0.160 0.030 

1 On this row, Type I error rates refers to tests of main effects of environments 

2
 On this row, Type I error rates refers to tests of main effects of genotypes 
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Table titles 

 

Table 1. Definition of statistics computed for the three datasets that were used as a basis for the 

simulation study 

 

Table 2. Distributions used in the simulation study 

 

Table 3. Coefficient of variation (CV) assumed for the heterogeneous normal and lognormal 

distributions, and skewness and kurtosis of the lognormal distributions used in the simulation study 

 

Table 4. Observed Type I error rates of the simple parametric bootstrap method for the six 

distributions that were specified in Table 2 

 

 


