
 

 

Biogas production from lignocellulosic 
agricultural residues 

Microbial approaches for enhanced efficiency 

Tong Liu 
Faculty of Natural Resources and Agricultural Sciences 

Department of Molecular Sciences 

Uppsala 

  

Doctoral thesis 

Swedish University of Agricultural Sciences 

Uppsala 2019 



 

 

Acta Universitatis agriculturae Sueciae 

2019:5 

ISSN 1652-6880 

ISBN (print version) 978-91-7760-328-3 

ISBN (electronic version) 978-91-7760-329-0 

© 2019 Tong Liu, Uppsala 

Print: SLU Service/Repro, Uppsala 2019 

Cover: Scanning Electron Microscope (SEM) photo showing pure cultured 

Clostridium sp. Bciso-3 degrading cellulose, isolated from an industrial-scale 

anaerobic digester. 

 (Photo: Tong Liu. Colorized by Johnny Isaksson) 

 



 

 

Methane, produced through microbial anaerobic digestion of various organic materials, 

is seen as a promising sustainable bioenergy source with the potential to reduce the 

current dependence on fossil fuels. Among organic materials, lignocellulosic materials, 

especially agriculture residues, are highly interesting due to high abundance and 

potential for methane production. However, low nutrient content and highly recalcitrant 

structure often limit process efficiency. This thesis presents the results of in-depth 

studies conducted in order to obtain new information about lignocellulose-degrading 

bacteria in biogas processes and to identify ways to enable more efficient biogas 

production.  

Different biogas processes were investigated in terms of their overall microbial 

community (bacteria and archaea) and potential lignocellulose degraders. The results 

showed that the biogas processes differed with regard to overall microbial community 

and chemical composition, but also composition of the cellulose-degrading bacterial 

community. These differences significantly influenced the degradation efficiency of 

both cellulose and wheat straw in batch digestion systems and also performance during 

start-up of semi-continuous stirred tank reactor (CSTR) processes. A positive 

correlation was found between lignocellulose degradation efficiency and relative 

abundance of Clostridium cellulolyticum. Ammonia level in the inoculum was 

identified as the most significant factor potentially affecting microbial community 

structure and methane production from lignocellulosic materials. Microbial and 

chemical composition of the original inoculum sources also influenced long-term 

degradation of lignocellulose in CSTR and appeared to influence residual methane 

potential. Different molecular methods for microbial community analysis were 

explored, with the aim of building an appropriate pipeline for in-depth studies of 

lignocellulose degraders in anaerobic reactors. 

This thesis provides novel information about the microbial communities involved in 

degradation of lignocellulosic materials and possible connections to process 

parameters. This information could potentially enable biogas production to be steered 

towards a more efficient and controllable process for degradation and biogas 

production from agriculture residues and plant-based materials. 

Keywords: anaerobic digestion, lignocellulose, glycoside hydrolase families 5 and 48, 

biomethane potential, continuous stirred-tank reactor, co-digestion, residual methane 

potential, next-generation amplicon sequencing, terminal restriction fragment length 

polymorphism (T-RFLP). 
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Abstract 



 

 

 

Metan, som produceras genom mikrobiell nedbrytning av olika organiska material 

under anaeroba förhållanden, ses som en lovande hållbar bioenergikälla med potential 

att minska det nuvarande beroendet av fossila bränslen. I detta sammanhang 

representerar jordbruksrester, som finns tillgängligt i stor mängd, en stor 

metanpotential. Tyvärr har denna typ av material ofta ett lågt näringsinnehåll och ett 

högt innehåll av lignocellulosa, som är svårt att bryta ner och därför begränsar 

processens effektivitet. Denna avhandling presenterar resultat från studier som 

genomförts för att ta fram ny information om bakterier som bryter ner lignocellulosa i 

biogasprocesser. Målet var att identifiera sätt att möjliggöra en effektivare 

biogasproduktion. 

Olika biogasprocesser undersöktes med avseende på sammansättningen av det 

mikrobiella samhället (bakterier och arkeer) och bakterier med potentiell förmåga att 

bryta ner lignocellulosa. För den mikrobiella analysen användes olika molekylära 

metoder. Resultaten visade att de olika biogasprocesserna var olika i avseende både till 

den kemiska sammansättningen och det mikrobiella samhället, inklusive de 

cellulosanedbrytande bakterierna. Dessa skillnader påverkade signifikant 

nedbrytningseffektiviteten av cellulosa och vetehalm i satsvisa 

metanproduktionsprocesser. Under dessa försök identifierades en negativ korrelation 

mellan nedbrytningseffektiviteten och halten ammoniak, samt en positiv korrelation 

med mängden av en specifik cellulosanedbrytande bakterie, Clostridium cellulolyticum. 

Uppstart av semi-kontinuerligt omrörda biogasreaktorer (CSTR) visade också tydliga 

skillnader i processprestanda beroende på ympens ammoniakhalt och på 

sammansättningen av det mikrobiella samhället. En koppling mellan låg 

nedbrytningseffektivitet och resterande metanpotential identifierades också.   

Kunskap som genererats i denna avhandling kan potentiellt möjliggöra styrning mot 

en mer effektiv och kontrollerbar process för nedbrytning och biogasproduktion från 

jordbruksrester och växtbaserade material. 

Nyckelord: anaerob nedbrytning (rötning), lignocellulosa, glykosidhydrolas familj 5 

och 48, biometanpotential, CSTR, samrötning, restgas produktion, pyrosekvensiering, 

T-RFLP. 
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The development of the petroleum industry has led to a rapid rise in the 

world economy in the past century. However, the underlying resource, fossil 

fuel, is recognised as a limited energy resource. Furthermore, emissions of 

greenhouse gases (e.g. fossil fuel-derived carbon dioxide (CO2) emissions) 

have become a global concern, since about 88% of global energy consumption 

derives from fossil fuels (Achinas et al., 2017; Agency, 2015). To meet the 

environmental challenges and overcome the dependence on fossil fuel, 

European Union (EU) member states have decided to increase the proportion 

of renewable energy to 20% of total consumption by 2020 (Karmellos et al., 

2016). Progress towards this target is measured every two years and was 

proposed on 30 November 2016 to reach at least 27% renewables in final 

energy consumption in the EU by 2030 (Scarlat et al., 2018). 

Biogas is seen as one of the most important renewable energy resources that 

can replace part of the fossil fuel-based energy used today, and it shows great 

potential and many advantages, including both climate and economic benefits 

(Meyer-Aurich et al., 2016). A biogas process can be implemented in small or 

large scale, which is important when designing flexible and sustainable energy 

solutions in both industrialised and developing countries (Holm-Nielsen et al., 

2009). Materials that can be used for biogas production include various types 

of waste products, such as manure, straw, municipal wastewater, food waste 

etc., and dedicated energy crops (Vasco-Correa et al., 2018; Appels et al., 

2011). Among these substrates, lignocellulosic materials, such as agricultural 

residues, are of great interest due to their high abundance and potential for 

biogas production (Azman et al., 2015). By controlled use of wastes in a 

biogas process rather than e.g. dumping household waste in landfill or storing 

farm manure in open tanks, it is possible not only reduce the number of waste 

deposits, but also to decrease emissions of carbon dioxide and other 

greenhouse gases (Borjesson & Mattiasson, 2008). The biogas produced, 

containing the energy carrier methane, can be used for production of heat, 

1 Introduction 
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electricity and vehicle fuel after upgrading (removal of carbon dioxide and 

trace gases) (Holm-Nielsen et al., 2009). The residues left after biogas 

production are rich in mineral nutrients and can be used as a fertiliser during 

crop production to replace fossil energy-requiring mineral fertilisers, thus 

enabling recycling of nutrients between urban and rural areas (Vasco-Correa et 

al., 2018; Möller & Müller, 2012; Weiland, 2010; Holm-Nielsen et al., 2009). 

Microorganisms are essential for degrading organic material to biogas, in a 

process that involves various anaerobic digestion pathways and requires the
 combined activity of several groups of microorganisms with differing 

metabolic capacities (Angelidaki et al., 2011). To obtain a stable biogas 

process, all these conversion steps and microorganisms must work in a 

synchronised manner (Vanwonterghem et al., 2014a). When plant-based 

materials (e.g. agricultural residues) are used for biogas production, the first 

step of the microbiological process, hydrolysis, becomes rate-limiting. It has 

been suggested that the crystalline structure of the lignocelluloses obstructs 

degradation in the initial step, and thus the hydrolysis of these insoluble 

compounds becomes slow (Mulat & Horn, 2018; Lynd et al., 2002a; Noike et 

al., 1985). 

Some of the obstacles with degradation of these types of materials can be 

overcome by various pre-treatment methods, making the material more 

accessible to microbial and enzymatic attack (Martínez-Gutiérrez, 2018). An 

alternative strategy is to increase the efficiency of the active microbial 

community. Numerous studies have been devoted to examining anaerobic 

cellulose-degrading bacteria and their enzymatic capabilities, in efforts to 

clarify the degradation mechanisms and identify ways to enhance degradation 

rates. Most of these studies have been performed on samples from gut and soil 

ecosystems (Tsavkelova & Netrusov, 2012; Lynd et al., 2002a) (Do et al., 

2018; Ransom-Jones et al., 2012; Morrison et al., 2009b; Miron et al., 2001), 

while only a few have examined cellulose-degrading bacteria in biogas 

digesters (Jia et al., 2018; Bozan et al., 2017; Azman et al., 2015; Sun et al., 

2013; Yan et al., 2012). Consequently, insufficient information is available on 

cellulose-degrading communities in biogas processes and on possibilities to 

enhance the degradation rate by ‘microbial steering’, i.e. by supporting the 

growth of highly efficient cellulose-degrading bacteria or communities. 
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1.1 Hypothesis  

 

The overall hypothesis tested in this thesis work was that: Increased knowledge 

of the microorganisms involved in hydrolysis of lignocellulosic materials can 

enable biogas production to be steered towards a more efficient and 

controllable process for degradation and biogas production from agriculture 

residues and plant-based materials. 

 

1.2 Aim  

 

The main aim of this thesis was to provide novel information about 

lignocellulose-degrading bacteria in biogas processes and thereby enable a 

more efficient biogas production from lignocellulosic materials. 

 

Specific objectives of the work described in Papers I-IV were to: 

 

1. Search for correlations between the degradation rate of cellulose and 

straw and the bacterial community structure, including potential 

cellulose-degrading bacteria (I). 

 

2. Investigate the importance of the inoculum source for efficient biogas 

production from lignocellulosic materials in a continuously operated 

process and the dynamics of the microbial community shaped by the 

substrates and operating parameters used (II, III). 

 

3. Examine the impact of adding an energy-rich co-substrate to anaerobic 

reactors operating with different lignocellulosic based substrates, 

regarding the reactor performance and microbial community (IV). 
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Biogas is the name given to a biologically produced specific gas mixture 

mainly composed of methane (52-85%), carbon dioxide (14-48%) and some 

small quantities of nitrogen, oxygen, hydrogen, hydrogen sulphide, ammonia 

and hydrocarbons (C2-C7) and some traces of organic compounds of sulphur, 

chlorine, fluorine, silicon etc. (Zamorska-Wojdyła et al., 2012). Methane (CH4) 

is an energy-rich and economically valuable energy resource. Methane can be 

produced through anaerobic digestion, a complex microbiological process 

requiring the combined activity of several groups of microorganisms with 

different metabolic capacities (Schnürer, 2016). At least four different groups 

of microorganisms (i.e. performing hydrolysis, acidogenesis, acetogenesis and 

methanogenesis) are involved (Schnürer, 2016) (Figure 1). 

The substrate fed to a biogas process, such as manure, crop residues, food 

wastes or municipal sewage sludge, is mainly composed of polysaccharides 

(such as starch, cellulose, hemicellulose, pectin etc.), proteins and lipids. Most 

of these complex organic compounds are too large for a single organism to 

bring into the cell for its metabolism. Thus, in the first degradation step, the 

compounds are degraded (hydrolysed) to soluble sugars, peptides, amino acids 

and fatty acids, by the action of extracellular enzymes produced by 

microorganisms (Adekunle & Okolie, 2015). In the second step, the fermenting 

bacteria use these monomers as carbon and energy sources in their metabolism 

and, as a result, they produce alcohols, organic acids, carbon dioxide, 

hydrogen, hydrogen sulphide and ammonia (sometimes called intermediate 

products). These compounds can then be utilised by acetogens in the third step, 

producing mainly acetic acid, hydrogen and carbon dioxide. In the last step, 

methanogens (archaea) use mainly acetate, formate, methyl compounds, 

hydrogen and carbon dioxide as carbon and energy sources, forming carbon 

dioxide and methane (biogas) as the final products. According to the known 

methanogenic pathways, these methanogens can be categorised as 

hydrogenotrophic methanogens, acetoclastic methanogens and methylotrophic 

2 Biogas production 
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methanogens (Kleinsteuber, 2018). The hydrogenotrophic methanogens 

perform a very important role, as they ‘pull’ many of the preceding oxidation 

reactions, e.g. oxidation of acids. These oxidation reactions are endergonic 

under standard conditions and can only proceed at a low partial pressure of 

hydrogen, i.e. in the presence of hydrogenotrophic methanogens. The hydrogen 

and carbon dioxide produced during the acidogenesis and acetogenesis steps 

can be converted to acetate through homoacetogenesis, which can also affect 

the partial pressure of hydrogen (Ye et al., 2014; Collet et al., 2005). The 

conversion of acetate to methane can proceed through two different pathways, 

depending on prevailing environmental conditions such as ammonia and 

volatile fatty acid (VFA) level and temperature: 1) the acetoclastic pathway, 

which involves acetoclastic methanogens cleaving acetate into methane and 

carbon dioxide; and 2) the syntrophic acetate oxidation (SAO) pathway, where 

acetate is first metabolised into hydrogen and carbon dioxide by syntrophic 

acetate-oxidising bacteria (SAOB) and is later used by hydrogenotrophic 

methanogens for methane production (Westerholm et al., 2016; Schnürer et al., 

1999; Zinder & Koch, 1984).  
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Figure 1. The anaerobic digestion process leading to biogas production. Organic materials are 

first hydrolysed to soluble organic compounds such as amino acids, fatty acids and sugars (1. 

Hydrolysis). Then, depending on different kinds of microorganisms, these soluble organic 

compounds are converted to intermediate products such as alcohols and fatty acids (2. 

Acidogenesis). In the next step, the intermediate products are utilised by acetogens to form 

hydrogen (H2), carbon dioxide (CO2) and acetate (3. Acetogenesis and syntrophy). Finally, 

methanogens consume mainly CO2, H2 and acetate to produce methane (CH4) and CO2 as the 

metabolic end-products (4. Methanogenesis). Diagram adapted from Pap et al. (2016) and 

Schnürer et al. (2016) (Pap & Maróti, 2016; Schnürer, 2016). 
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2.1 Current status of biogas production in the EU and 
Sweden 

 

Biogas production has been continually increasing in the EU and its member 

states for some years. By 2015, there were more than 17,400 biogas plants 

installed in the EU, producing in total 18 billion m3 methane (equal to ~654 

PJ), which corresponded to 50% of global biogas production in 2015 (Scarlat et 

al., 2018). The biogas production situation and applications vary between EU 

countries from several perspectives, including: 1) the production sources (i.e. 

landfill gas, wastewater treatment, anaerobic digestion and thermochemical 

processes); 2) the feedstock used (i.e. energy crops, agricultural residues, 

biowaste and municipal waste, industrial waste, sewage etc.); and 3) the 

downstream usage of the biogas (i.e. for electricity, heat and transportation) 

(Scarlat et al., 2018). For example, in Germany biogas is mainly produced 

through the anaerobic digestion process using around half energy crops and 

half agricultural waste (calculation based on wet weight of material), while in 

Sweden it is mainly produced from sewage sludge at wastewater treatment 

facilities (Stambasky et al., 2016). In contrast to other EU countries, the biogas 

produced in Sweden is mainly upgraded to vehicle fuel (65%), while less is 

used for generation of electricity and heat (Johan & Linus, 2018). Sweden is a 

world leader in the use of upgraded biogas in the transportation sector, where 

the amount used corresponds to 75% of all biogas used for vehicles in Europe 

(Scarlat et al., 2018) (Figure 2). 

 

Figure 2. Biogas buses refuelling at a biogas station (Photo: Anna Schnürer, Uppsala). 
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Moreover, the EU has adopted the target of increasing the share of 

renewables to at least 27% of final energy consumption by 2030 (final, 2014). 

This target could be achieved by contributions from further development of the 

biogas sector. The increase in biogas production in the EU after 2003 was 

achieved in the first instance by the development of anaerobic digestion 

processes (treating various organic materials, including energy crops), 

followed by landfill gas and biogas from wastewater treatment (Scarlat et al., 

2018). Organic wastes, especially agricultural wastes, have been highlighted as 

having great potential for future biogas production (Scarlat et al., 2018; Meyer 

et al., 2017). Within the EU target for 2030, Sweden has a more specific target 

of reaching 49% renewables in final energy consumption and reducing use of 

fossil fuels in the transport sector by 80% from 2010 to 2030 (https://2030-

sekretariatet.se/english/). The theoretical biogas production potential in 

Sweden has been calculated to be about 54 PJ/year, which is nearly seven 

times the current annual production of biogas (around 7.6 PJ/year). The 

agricultural waste sector has again been suggested to represent a major part of 

this potential (Meyer et al., 2017) (Figure 3). 

 

Figure 3. Grass bedding mixed with cattle manure, an agricultural waste with high potential for 

biogas production. 

  

https://2030-sekretariatet.se/english/
https://2030-sekretariatet.se/english/
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When lignocellulosic materials are used as a substrate for anaerobic digestion, 

the first step, hydrolysis, usually becomes rate-limiting for the whole process, 

due to the recalcitrant structure of the plant cell wall (Mulat & Horn, 2018; 

Lynd et al., 2002a). Moreover, lignocellulosic materials are characterised by 

low nutrient content, giving low methane yield compared with other substrates, 

such as food and municipal wastes (Li et al., 2013; Chynoweth et al., 1993). 

To overcome this disadvantage of using lignocellulosic materials, many 

approaches have been suggested, involving both substrate optimisation (e.g. 

pre-treatment and co-digestion) and optimisation of process configuration (e.g. 

improved process design). These are discussed in more detail below. 

3.1 Structure of lignocellulose 

 

Lignocellulose is widely present in plants in the form of microfibrils in the cell 

wall, which makes plants strong (Li et al., 2009). It is abundant in most kinds 

of plants, comprising e.g. around 100% in cotton flower parts (Bayané & 

Guiot, 2010) and around 40-50% in different agriculture residues (e.g. rice 

straw, rice husk, maize stalks etc.) (Gani & Naruse, 2007). In the linear 

structure of microfibrils, acetal bonds provide a strong binding force between 

each cellulose unit. Each linear cellulose strain interacts with the neighbouring 

strains forming a sheet structure, which is similar to the β-sheet structure in the 

DNA molecule. These cellulose strains are covered by hemicellulose, which 

has several branched glucose structures that are further reinforced by the mesh 

of lignin (Figure 4). Lignin is a complex aromatic structure that cannot be 

significantly degraded by microorganisms in the anaerobic environment 

(Prochazka et al., 2012). The rigid structure of the plant cell wall, 

3 Lignocellulosic materials as a substrate 
for biogas production 
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lignocellulose, is almost unreachable by enzymes produced by microorganisms 

(Akin, 1988), thus restricting the degradation efficiency (Bayané & Guiot, 

2010). Consequently, the hydrolysis rate is the main limitation in biogas 

production using lignocellulosic materials (Mulat & Horn, 2018; Noike et al., 

1985). 

 

 

Figure 4. Microstructure of a typical plant cell wall, indicating the relationship between cellulose, 

hemicellulose and lignin (Modified from https://www.total.com). 
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3.2 Lignocellulosic substrate optimisation 

 

As mentioned above, the biodegradability of lignocellulosic materials can be 

increased by a pre-treatment with the purpose of removing lignin, hydrolysing 

hemicellulose, decreasing cellulose crystallinity, increasing the porosity of 

materials and making the material more accessible to microbial and enzymatic 

attack (Monlau et al., 2013). Different pre-treatment methods for 

lignocellulosic materials have been explored, for example mechanical, thermal, 

chemical and biological methods (Monlau et al., 2013). However, most pre-

treatment methods require expensive specialist equipment with substantial 

energy requirements. In addition, toxic products such as furfurals, 5-

hydroxymethylfurfural (HMF), organic acids and phenols may be formed and 

cause inhibition of the microbial process (Sawatdeenarunat et al., 2015).  

Lignocellulose-rich materials typically also have a high carbon to nitrogen 

(C/N) ratio, low levels of micronutrients and, often, a low energy content (Li et 

al., 2013). However, through co-digestion, the substrate mixture can be 

designed to optimise the composition of nutrients, balance the C/N ratio etc. 

and achieve higher methane yields (Ebner et al., 2016; Macias-Corral et al., 

2008; Lehtomäki et al., 2007; Sosnowski et al., 2003). Many substrates have 

been tested for co-digestion in biogas production from lignocellulose-rich 

material. For example, lignocellulose-rich cattle manure has been evaluated in 

co-digestion with food waste (Awasthi et al., 2018; Ebner et al., 2016) and 

stillage (Westerholm et al., 2012) and co-digestion has been shown to give 

enhanced methane yield compared with mono-digestion of the manure. Process 

stability and volumetric biogas yield from lignocellulose-rich materials with a 

low C/N ratio, such as corn stovers (Li et al., 2014), switchgrass (Zheng et al., 

2015) and other agricultural residues, have been shown to improve when these 

materials are co-digested with nitrogen-rich animal manure (Neshat et al., 

2017; Zhang et al., 2013). 

When diluted agricultural residues (such as liquid manure) are used, co-

digestion with lignocellulosic materials can also be applied to achieve a higher 

organic loading rate (OLR), with only minor effects on hydraulic retention 

time (HRT). This is particularly important, as relatively long hydraulic 

retention time is typically needed for degrading lignocellulose-rich materials 

(Neshat et al., 2017; Mata-Alvarez et al., 2014). Positive effects, such as 

increased methane yield, of combining lignocellulose-rich agricultural 

substrates with various high-energy co-substrates, including protein- and sugar-

rich materials, have been demonstrated in several different studies (Ahlberg-

Eliasson et al., 2017; Neshat et al., 2017; Mata-Alvarez et al., 2014) and in this 

thesis (III, IV).  



28 

 

An issue to consider when selecting a co-substrate for lignocellulosic 

materials is that some co-materials can result in decreased degradation 

efficiency. For example, a negative effect of proteins on anaerobic digestion of 

carbohydrate-rich materials has been observed and has been attributed to high 

ammonia levels (Breure et al., 1986). Similar results are presented in this 

thesis, with negative effects, specifically on cellulose degradation, observed 

following high levels of ammonia release during degradation of proteins (I, II). 

A decrease in the degree of degradation efficiency and specific methane 

production was also observed in this thesis work when digesting 

lignocellulose-rich material with milled feed wheat, resulting in elevated 

ammonia levels (III). The low degree of degradation efficiency is 

unfavourable, as it represents a loss of energy and could potentially lead to 

higher methane emissions during digestate storage (Liebetrau et al., 2013); 

(III). 

3.3 Anaerobic digestion process configurations for 
lignocellulose-rich material 

 

Various configurations can be used for biogas production depending on the 

practical needs (e.g. different production purposes, characteristics of the 

feedstock etc.). Depending on the feeding frequency, biogas plants are 

generally categorised as batch, fed-batch or continuous processes (Schnürer, 

2016). 

In a batch process, all the materials are added at once and the four steps of 

the biogas production process proceed in one reactor at the same time. The 

advantages of the batch process are that it is cheap, easy to operate and allows 

nearly 100% degradation of the organic material in a substrate. However, the 

batch process usually requires a long time to digest the organic material and 

toxic compounds such as ammonia can accumulate, since the internal reactor 

contents are not exchanged during the process (Schnürer & Jarvis, 2018; 

Raposo et al., 2012). Batch-type processes are typically used for small-scale 

production of biogas, mainly in Asia, but are also common in Germany, 

especially for dry materials (total solids content >15%), which are often rich in 

lignocellulosic material (Kothari et al., 2014; Rajendran et al., 2012). 

Batch processes are also commonly used in laboratory biogas trials, for 

example during determination of the biomethane potential (BMP) of a certain 

substrate (Schnürer et al., 2017) (I, II, III, IV). BMP value is usually high for 

substrates like food waste, vegetable oil, and cheese whey while substrates like 

agriculture and forest residuals, containing high levels of lignocellulose, have 
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lower biomethane potential (Labatut et al., 2011). The final biomethane 

potential and the degradation efficiency (time to reach the final biomethane 

potential) of a substrate can be used to guide the set-up of the biogas reactor. 

The biomethane potential can also be used to evaluate the importance of 

different inocula for the degradation of various materials (Perrotta et al., 2017; 

Elbeshbishy et al., 2012) (I, II, III) (Figure 5). For lignocellulose-rich 

materials, a significant difference in degradation was seen in this thesis 

depending on the characteristics of inoculum, with different physicochemical 

and microbial components (I, III) (De Vrieze et al., 2015b; Gu et al., 2014).  

 

 
Figure 5. Sealed serum bottles on a rotary shaker in a biomethane potential (BMP) test. 

In a fed-batch process, materials are added successively over time, which 

allows for a more constant rate of gas production and a higher level of dilution 

of any toxic compounds accumulated compared with the batch process (Lim & 

Shin, 2013). However, the amount of gas produced rises quickly at the start of 

feeding and decreases gradually over time and the digester needs to be filled 

and emptied at intervals, which causes irregular gas production compared with 

a continuous process (Li et al., 2011). Examples of using lignocellulosic 

material in a methanogenic fed-batch process are rare in the literature. 

However, one study found that using a fed-batch process gave a higher 

methane yield than a batch or semi-continuous process when degrading 

lignocellulosic material (grass and maize silage) with anaerobic sludge from 

pig slurry fermentation after supplementation of rumen anaerobic fungi 

(Prochazka et al., 2012). 
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A continuous process is the most commonly used method in industrial 

biogas production (Schnürer et al., 2017). The major advantages of a 

continuous process are that the substrate is added continuously or semi-

continuously, in parallel with removal of the reactor contents, thus giving 

constant production of biogas. Continuously stirred tank reactors (CSTR) are 

often used for a continuous process (or a semi-continuous process) (Moestedt 

et al., 2014; Usack et al., 2012). Continuously stirred tank reactors can be 

applied at different scales from a few litres (laboratory-scale) to hundreds of 

cubic metres (commercial or full-scale) (Schnürer, 2016). Thus, a CSTR can be 

used as a laboratory or pilot test system before scaling up (Kaparaju et al., 

2009; Kaparaju et al., 2008) (Figure 6). Previous studies have also shown 

similar process performance during laboratory-scale and full-scale operation 

(Westerholm et al., 2018; Grim et al., 2015; Moestedt et al., 2014). There are 

many studies on the use of CSTR with lignocellulosic materials, focusing on 

various research questions, e.g. comparisons of methane yield using different 

lignocellulosic feedstocks (Martínez-Gutiérrez, 2018), evaluations of the 

importance of seeded inoculum (II, III), effects of co-digestion (Li et al., 

2014; Comino et al., 2012; Nges et al., 2012) (IV), impacts of pre-treatment 

(Carrere et al., 2016), process operating parameters (e.g. hydraulic retention 

time, organic loading rate and temperature) (Shi et al., 2017; Zhou et al., 2017; 

Risberg et al., 2013) or feeding strategy (Mauky et al., 2015) (III) and 

determination of lignocellulolytic microbes (Yu et al., 2018; Zhou et al., 2017; 

Sun et al., 2015; Qiao et al., 2013; Lissens et al., 2004) (II, III). Continuously 

stirred tank reactors have also been shown to give higher efficiency of 

lignocellulosic material degradation than other types of continuous reactor 

configurations, such as the leach bed-upflow anaerobic sludge blanket (USAB) 

(Fu & Hu, 2016; Nizami & Murphy, 2010). 

 

Figure 6. Left: A series of continuously stirred tank reactors (CSTR). Right: SLU full-scale biogas 

plant at Lövsta (Photo: Anna Schnürer). 
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The anaerobic digestion process configuration can also be categorised by 

different process stages, e.g. single-stage, two-stage and multiple-stage 

processes (Achinas et al., 2017). In a single-stage process, all materials are 

digested in a single reactor and the four degradation steps in the biogas 

production process take place at the same time and in the same chemical 

environment. To achieve better biogas performance, the biogas process can 

also be set up as a multiple-stage system (Ward et al., 2008). In the example of 

a two-stage anaerobic digester, all four degradation steps proceed in both 

digesters, but the second digester is fed with the reactor contents from the first 

reactor (Parawira et al., 2008). This type of design allows two digesters to 

work with different operating parameters (such as temperature, agitation speed 

etc.) and allows the first stage to focus on hydrolysis and acidogenesis. It has 

been used for complex substrates, such as lignocellulose-based materials 

(Akobi et al., 2016; Ward et al., 2008). Higher methane concentration and 

greater efficiency can be achieved with a two-stage process design compared 

with a single-stage design (Colussi et al., 2013; Parawira et al., 2008; 

Taherzadeh & Karimi, 2008).  

However, an obvious drawback of multiple-stage anaerobic digestion is the 

high cost compared with the one-stage process. Thus, there are few commercial 

multiple-stage anaerobic digestion systems for processing lignocellulose-based 

materials in operation today (Achinas et al., 2017). Multiple-stage anaerobic 

digestion processes (as opposed to multiple-phase anaerobic digestion systems) 

sometimes also include recirculation of reactor contents (e.g. from 

methanogenic phase to hydrolytic phase) (Azbar & Speece, 2001). This has 

been applied as an additional approach to optimise the degradation of 

lignocellulosic materials. For example, by recirculating the reactor contents in 

an anaerobic digestion process, it is possible to: 1) achieve a longer retention 

time and consequently the time available for degradation can be prolonged 

(Estevez et al., 2014); 2) reach optimal conditions for hydrolytic bacteria (in 

terms of pH, water content and alkalinity), which are better maintained in the 

process (Dandikas et al., 2018); and 3) preserve micronutrients (Aslanzadeh et 

al., 2013). Thus, several studies using this concept for degradation of 

lignocellulosic material have found increased methane yield compared with a 

non-recirculating reactor. 
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3.4 Process regulating parameters 

 

In addition to digester configuration, different operating parameters, such as 

organic loading rate (OLR), hydraulic retention time (HRT), temperature and 

stirring, need to be considered during set-up of an anaerobic digestion process 

(Schnürer, 2016). Important parameters are e.g. OLR and HRT, which are 

often interlinked so that a higher OLR usually leads to shorter HRT. The 

organic loading rate can be defined in kilograms or grams of volatile solids 

(VS) per day and cubic metre or litre of reactor volume. Overloading with 

organic materials may cause accumulation of volatile fatty acids (VFAs), as the 

methanogenic step cannot keep up with the acidogenic and acetogenic steps 

(Franke-Whittle et al., 2014). However, due to the slow degradation rate, the 

risk of VFA accumulation due to overloading is relatively low when using 

lignocellulosic material compared with when using e.g. sugar-rich or lipid-rich 

materials (Schnürer & Jarvis, 2018; Cavaleiro et al., 2009). A high load can 

also reduce the HRT, which, as mentioned above, can have a negative impact 

on the degradation efficiency. Hydraulic retention time is defined as the time 

that the substrate remains in a digester. In a CSTR, the HRT can be 

approximated as volume of liquid phase divided by effluent flow rate. The 

HRT varies in different biogas digesters and normally ranges from 10 to 30 

days, but is sometimes longer (Mao et al., 2015). The actual magnitude of the 

HRT applied is dependent on many different parameters, such as the 

characteristics of the input substrate and the operating temperature. Due to the 

intricate structure of lignocellulosic materials limiting the hydrolysis efficiency 

in an anaerobic digestion process, a comparatively long HRT (>30 days) is 

typically needed (Shi et al., 2017). 

Another important parameter for the anaerobic digestion process is the 

operating temperature, where an appropriate temperature can potentially 

improve the methane production performance (Schnürer et al., 2017). For a 

digester operating with lignocellulosic materials, the operating temperature is 

usually set around 37 °C (Sawatdeenarunat et al., 2015) (I, II, III, IV). 

However, studies have shown that digestion of lignocellulosic materials at 

different temperatures is possible (Risberg et al., 2013; El-Mashad et al., 

2004). A higher operating temperature has been suggested to give a higher 

hydrolysis rate of lignocellulosic material and even a higher methane yield 

(Moset et al., 2015; Labatut et al., 2014; Veeken & Hamelers, 1999). However, 

some studies have found no significant difference in performance and methane 

yield using the same substrate (manure/straw) at different temperatures 

(Risberg et al., 2013). 
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Feeding regime (e.g. different feeding intervals) is another parameter that 

could be used to achieve flexible and efficient biogas production in a 

continuous process (Mulat et al., 2016). However, the effect of feeding regime 

on biogas production performance can vary depending on the substrate used 

and the feeding interval (Piao et al., 2018; Ziels et al., 2018; Ziels et al., 2017; 

Mulat et al., 2016; Mauky et al., 2015; De Vrieze et al., 2013). Very few 

studies have investigated the effect of feeding regime on the degradation of 

lignocellulosic materials. In this thesis, a less frequent feeding regime that 

involved adding milled feed wheat as a co-substrate load all at once, compared 

with in two portions two hours apart, in CSTRs operating with a grass-manure 

mixture was found to give slightly higher cellulose conversion activity (III). 

One additional parameter recently suggested to be of importance for the 

efficiency of degradation of lignocellulosic material and the final methane 

yield is the nature of the inoculum, including both physicochemical and 

microbial characteristics (Perrotta et al., 2017; De Vrieze et al., 2015a; De 

Vrieze et al., 2015b) (II, III). For example, in Paper I lower cellulose 

degradation efficiency was seen in batch processes seeded with inoculum taken 

from biogas plants fed with wheat-based stillage, slaughterhouse waste and 

grass, compared with inoculum from a process fed with mixed sludge. In Paper 

II, CSTRs operating with different inoculum sources showed a significant 

difference in degradation efficiency for a grass-manure mixture, especially in 

the initial phase of the process. In Paper III, it was concluded that the original 

inoculum can profoundly influence biogas production performance in the long 

term and affect microbial responses to process operation changes. 

3.5 Process monitoring parameters 

 

When an anaerobic digestion process is set up, parameters of the reactor 

contents, such as volatile fatty acid concentration, pH, alkalinity and ammonia 

level, and parameters of the gas phase, such as methane, carbon dioxide and 

hydrogen sulphide, are regularly monitored and can be used in combination to 

evaluate the biogas production performance (Schnürer et al., 2017). These 

parameters can be further subdivided into process efficiency measures, such as 

specific methane production (SMP), volatile solids reduction etc., and process 

stability measures, such as volatile fatty acid concentration, ammonia level etc.  

Specific methane production is defined as the normalised volume of 

methane produced per gram of volatile solids in the substrate. A decreasing 

value of SMP for a substrate with a certain biomethane potential (BMP) may 

indicate less efficient substrate degradation (III). However, for a biogas plant, 
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the volumetric yield is often continuously recorded, while SMP might be less 

frequently considered. For example, decreased degradation efficiency caused 

by a recalcitrant substrate such as lignocellulosic materials can be masked by 

increased volumetric yield due to increased load, as shown in this thesis (III). 

Furthermore, several studies have shown that low efficient substrate 

degradation can increase the risk of methane emissions during storage of the 

digestate (i.e. residual methane potential, RMP), which is unfavourable from 

both an economic and an environmental perspective (Ahlberg-Eliasson et al., 

2017; Ruile et al., 2015) (IV). This risk can be measured as the volatile solids 

(VS) reduction in reactor contents (i.e. VS of substrate compared with VS of 

the reactor contents). Moreover, a combination of BMP/RMP analysis has 

recently been proposed for the anaerobic digestion process, to better evaluate 

the degradation efficiency of the substrate (Li et al., 2017; Rico et al., 2015). 

Volatile fatty acids are intermediate products produced during anaerobic 

digestion of organic compounds and the VFA concentration is considered one 

of the most important indicators for judging the stability of an anaerobic 

digestion process (see Chapter 2 of this thesis) (Drosg, 2013). Accumulation of 

VFAs can be caused by e.g. temperature fluctuations and substrate overloading 

(Schnürer et al., 2017; Ferguson et al., 2016). It can lead to a pH drop, which 

inhibits the methanogens and results in a decrease in methane production 

(Schnürer et al., 2017). When the rate of acidogenesis is higher than the rate of 

methanogenesis, acetate and propionate often accumulate more than other 

VFAs such as butyrate and valerate, as demonstrated in this thesis (II, III). A 

high propionate to acetate ratio can be used as an early indicator of a risk of 

process failure (Marchaim & Krause, 1993). Methods to remedy VFA 

accumulation in an anaerobic digestion process include reducing the organic 

loading rate, extending the hydraulic retention time and adding trace elements, 

aiming to rebalance the relative rate of the acidogenesis and methanogenesis 

steps (Choong et al., 2016; Ferguson et al., 2016; Moestedt et al., 2013). 

The level of alkalinity indicates the buffering capacity within the anaerobic 

digestion process. When acids such as VFAs accumulate, the alkalinity 

typically shows a decrease before a pH drop (Drosg, 2013). Thus, the 

VFA/alkalinity ratio can be measured to monitor the stability of a reactor, 

especially when there is a high risk of acidification (Schnürer et al., 2017). 

Ammonium is formed during the degradation of protein-rich materials. Free 

ammonia, in equilibrium with ammonium, is toxic to microbes and strongly 

inhibits the anaerobic digestion process (Westerholm et al., 2016) (I, II). 

However, a gradual increase in ammonia level permits development of 

ammonia-tolerant communities (Müller et al., 2016). Decreasing the 

temperature and the pH can push the equilibrium between ammonium (NH4
+) 
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and ammonia (NH3) towards the ammonium side, and is thus often used to 

mitigate ammonia inhibition (Schnürer, 2016). 

Another important factor is pH, which is affected by process parameters 

such as temperature, alkalinity, VFA concentration and ammonium level. 

(Fitamo et al., 2017; Shi et al., 2017; Franke-Whittle et al., 2014). Different 

microbes have different optimal growth pH ranges. For the acidogenic bacteria, 

a pH range down to 4.5-5.0 can be tolerated (Chandra et al., 2012), while the 

optimal pH range for methanogens is around 6.7-8.0. Thus, most single-stage 

biogas plants operate at around neutral pH to maximise the methanogenesis 

step (Schnürer et al., 2017). 

When using lignocellulosic materials as the main substrate, 

ammonia/ammonium and VFAs are unlikely to accumulate due to the high C/N 

ratio, slow hydrolysis rate and relatively long hydraulic retention time and low 

organic loading rate applied in the anaerobic digestion process (Cavaleiro et 

al., 2009; Ward et al., 2008). However, process imbalances can still arise, as 

lignocellulosic materials are often combined with co-substrates, such as 

proteins, to balance the C/N ratio and improve the gas yield (Neshat et al., 

2017) (III). 

In addition, recent studies have suggested microbial monitoring as a 

possible way to evaluate and manage the process (Carballa et al., 2015; 

Lebuhn et al., 2015). By following the community dynamics or analysing 

specific key groups, such as the methanogens, and correlating their abundance 

to specific process parameters, it may be possible to predict instability or steer 

the community in a desired direction. These correlations are discussed in more 

detail in Chapter 4.  
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As mentioned in Chapter 2, biogas is produced by a complex network of 

microbes with differing and complementary metabolisms. Thus, to optimise 

and achieve better regulation of a biogas process, an in-depth understanding of 

the important microbial agents is needed (Kleinsteuber, 2018; Carballa et al., 

2015; Lebuhn et al., 2015; Vanwonterghem et al., 2014b). In a typical 

methanogenic CSTR, members of the phyla Firmicutes and Bacteroidetes are 

often found to dominate the bacterial community, while members of the 

phylum Euryarchaeota tend to dominate the archaeal community (Güllert et al., 

2016; Luo et al., 2016; Pore et al., 2016; Satpathy et al., 2016; Watanabe et al., 

2016; Sun et al., 2015; Lu et al., 2014) (I, II, III, IV). However, some other 

bacterial phyla such as Proteobacteria, Chloroflexi and Fibrobacteres can also 

be abundant (Schnürer, 2016; Vanwonterghem et al., 2014a) as confirmed here 

(I, II, III, IV). Moreover, within the fungal community, the phylum 

Neocallimastigomycota has been shown to dominate (Dollhofer et al., 2015). 

4 Microbial communities 
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Many recent studies have found that microbial communities can be shaped 

by the operating parameters of the anaerobic digestion process and can thus 

affect the biogas production performance (Grohmann et al., 2017; Pap & 

Maróti, 2016; Satpathy et al., 2016; Sun et al., 2016; Westerholm et al., 2016; 

De Francisci et al., 2015; Rui et al., 2015; Sundberg et al., 2013; Cardinali-

Rezende et al., 2012; Kampmann et al., 2012).  This was also demonstrated in 

Papers I-IV in this thesis (Figure 7).  

 
Figure 7. Operating parameters affecting microbial community and thus potentially biogas 

production performance. 
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4.1 Lignocellulose degraders in the anaerobic 
environment 

 

In studies using different isolation and molecular microbiological methods, 

various anaerobic lignocellulose degraders have been found in diverse 

anaerobic environments, including soil, anaerobic digesters, aquatic 

environments such as sludge and sediment, animal gut environments such as 

the rumen, termites, dung beetles, etc. (Saini et al., 2017; Azman et al., 2015; 

Dollhofer et al., 2015; Estes et al., 2013; Ransom-Jones et al., 2012; Morrison 

et al., 2009a; Lynd et al., 2002b; Leschine, 1995) (I, II, III, IV). These 

anaerobic lignocellulose degraders are widely distributed in genera within the 

bacteria and fungi domain, but have also been found recently in the archaea 

domain (Cragg et al., 2015). 

Many types of anaerobic bacteria have been demonstrated to have the 

ability to degrade or potentially utilise lignocellulose as a carbon source. These 

can be found in genera such as Clostridium, Ruminococcus, Fibrobacter, 

Acetivibrio, Butyrivibrio, Halocella, Bacteroides, Spirochaeta, Thermotoga, 

Echinicola, Mahella, Marinilabilia, Prevotella, Flavobacterium and 

Streptomyces (Azman et al., 2015; Sun et al., 2013; Tsavkelova & Netrusov, 

2012) (I, II, III) (Figure 8).  
 

 

Figure 8. Scanning electron microscope (SEM) image of material isolated from an industrial-

scale anaerobic digester, showing pure-cultured Clostridium sp. Bciso-3 degrading cellulose.  
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The relative abundance of these genera typically varies depending on the 

anaerobic environment. For example, the best-studied genus, Clostridium, has 

been found to be more abundant in landfilled sludge than genera such as 

Fibrobacter and Ruminococcus, but less abundant in the rumen (Ransom-Jones 

et al., 2012; Burrell et al., 2004). In anaerobic digestion processes operating 

with lignocellulosic materials as the main substrate, the relative abundance of 

different genera can also vary depending on factors such as the composition of 

the substrate, process configuration and operating parameters (Azman et al., 

2015). However, the phyla Bacteroidetes and Firmicutes often dominate, 

followed by phyla such as Proteobacteria and Actinobacteria (Güllert et al., 

2016; Azman et al., 2015; Sun et al., 2013). This was also the case in the 

anaerobic digestion processes studied in this thesis (I, II, III, IV). Recent 

studies using metatranscriptomics and metaproteomics approaches have 

revealed information on the active, lignocellulose degraders in the anaerobic 

digestion processes, rather than simply all microbes present. The results 

confirm the important roles of lignocellulose degradation by the genus 

Clostridium (Jia et al., 2018; Güllert et al., 2016; Lü et al., 2014). New 

knowledge on members of the genus Clostridium has also been used to guide 

the design of bioaugmentation strategies for improving the lignocellulose 

degrading efficiency and methane yield in different anaerobic digestion 

processes (Tsapekos et al., 2017; Poszytek et al., 2016).  

For fungi, the best-studied anaerobic cellulase producers are members of 

the family Neocallimastigaceae, including the genera Neocallimastix, 

Orpinomyces and Piromyces (Cheng et al., 2018; Dollhofer et al., 2015; 

Viikari et al., 2009). These genera have been widely found in the 

gastrointestinal tract of ruminants and most non-ruminant herbivores 

(Dashtban et al., 2009), but have lately been identified also as part of the 

community in anaerobic digesters (Dollhofer et al., 2015). The first anaerobic 

lignocellulolytic fungus to be identified was Neocallimastix frontalis, isolated 

from sheep rumen fluid (Orpin, 1975; Braune, 1913). Later studies have 

demonstrated that members of the genera Neocallimastix, Orpinomyces and 

Piromyces are able to utilise different carbohydrates and produce hydrogen, 

carbon dioxide, acetate, formate, lactate and ethanol as metabolic end-products 

(Gruninger et al., 2014; Dashtban et al., 2009; Hodrová et al., 1998; Joblin & 

Naylor, 1989). Notably, these fungi can also develop an invasive rhizoid 

system that penetrates plant cell walls, combined with secretion of various 

carbohydrate-hydrolysing enzymes, thus improving the accessibility of plant 

structures to bacterial action (Dollhofer et al., 2015). Moreover, an ability of 

anaerobic fungi to degrade lignin has been reported in several studies 

(Dollhofer et al., 2015; Gruninger et al., 2014; Haitjema et al., 2014; Kazda et 
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al., 2014). This suggests the potential to enhance degradation of lignocellulosic 

material for biogas production by enhancing the growth of these fungi.  

A few species of hyperthermophilic archaea belonging to the genus 

Pyrococcus, such as Pyrococcus furiosus, Pyrococcus horikoshii and 

Pyrococcus glycovorans, have also been found to produce endoglucanases 

such as glycoside hydrolase (GH) families 5 and 12 (Kishishita et al., 2015; 

Ando et al., 2002; Barbier et al., 1999). These archaea can live under 

extremely high temperatures (around 100 °C) and in high-salt environments, 

and could thus potentially be applied in a pre-treatment step before biogas 

production. 

4.2 Enzymatic depolymerisation of cellulose and 
hemicelluloses 

 

Lignocellulose is degraded by the collective action of multiple carbohydrate-

active enzymes, including glycoside hydrolases, produced by microorganisms 

(Jia et al., 2018; Young et al., 2018; Cragg et al., 2015; Malherbe & Cloete, 

2002). The glycoside hydrolases are classified based on amino acid sequence 

similarities and grouped into different enzyme families, such as GH 5, 6, 7, 8, 

9, 10, 11, 12, 26, 44, 45, 48, 51, 60, 61 and 74 (Henrissat, 1991). Notably, most 

cellulases secreted by the anaerobic cellulose-degrading bacteria belong to GH 

families 5, 9 and 48 (endo-β-1,4-glucanase) (Vanwonterghem et al., 2016; 

Pereyra et al., 2010) (Figure 9).  

 

Figure 9. Structure of the cellulose chain.  

 

Depending on the environment (aerobic/anaerobic), the strategy used by 

microbes for cellulose degradation is somewhat different (Tomme et al., 1995). 

In the aerobic environment, fungi (such as the phyla Ascomycetes and 

Basidiomycetes) and bacteria (such as the genera Cellulomonas, Cellvibrio and 

β-(1,4) 
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Cytophaga) typically use non-complexed cellulase systems, which secrete 

cellulase-hydrolysing enzymes (Malherbe & Cloete, 2002; Mullings & Parish, 

1984). However, in the anaerobic environment, fungi (such as the family 

Neocallimastigaceae) and bacteria (such as the genus Clostridium) typically 

contain a relatively more complex cellulase system, including a membrane-

bound enzyme complex (cellulosome) (Gruninger et al., 2014; Pereyra et al., 

2010).  

The cellulosome assists in the degradation process by synchronising 

different type of enzymes performing different reactions (Bayer et al., 2004). A 

typical cellulosome contains a scaffolding protein chain (without enzymatic 

activity), which has many enzyme binding domains, named cohesions. There 

are also different types of cohesins, e.g. Clostridium thermocellum has two, 

type I and type II. A corresponding domain on glycoside hydrolases, called 

dockerin, can selectively bind to the type-I cohesins of the primary 

scaffolding protein CipA. The terminal X-dockerin dyad of CipA can then bind 

to three types of type-II cohesins of anchoring scaffoldings, named SdbA, 

Orf2p and OlpB. These three types of type-II cohesins bind to the cell surface 

with an S-layer homology module (Bayer et al., 2008; Boisset et al., 1999; 

Bayer et al., 1998). Cellulose is bound by the carbohydrate binding module 

(CBM) on the scaffolding protein chain, which results in linkage of the 

cellulosic material and the cellulosome complex (Shoseyov et al., 2006). 

In addition, recent studies have regrouped glycoside hydrolase family GH 

61 and carbohydrate binding module CBM33 into a new family due to their 

capacity for catalysing oxidative cleavage of polysaccharides. This new family, 

which is called lytic polysaccharide monooxygenases (LPMOs) (Horn et al., 

2012), has been found in fungi, bacteria and viruses (Chiu et al., 2015; Kohler 

et al., 2015; Vaaje-Kolstad et al., 2010). These enzymes have been 

demonstrated to specifically break and loosen the polysaccharide chains, which 

creates new attack points for cellobiohydrolases (CBHs), thus increasing the 

accessibility of cellulose to microorganisms (Johansen, 2016; Hemsworth et 

al., 2015). It is known that LPMOs require molecular oxygen (O2) for their 

activity (Johansen, 2016). However, a recent study has shown that hydrogen 

peroxide (H2O2) can act as a co-substrate instead of molecular oxygen, which 

suggests that LPMOs can work under anaerobic conditions (Bissaro et al., 

2016). However, so far these enzymes have not been shown to be present in an 

anaerobic environment. 
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4.3 Lignocellulolytic communities and influence of 
digester parameters 

 

In an anaerobic digestion process, lignocellulose degradation is usually not 

performed by a single fungus or bacterium, but by a complex microbial 

community (Jia et al., 2018; Young et al., 2018; Pereyra et al., 2010). In this 

thesis and in other studies, the composition and structure of the 

lignocellulolytic community (as part of the overall microbial community) has 

been shown to be influenced by process parameters such as temperature, 

volatile fatty acid concentration and ammonia content (Jia et al., 2018; Sun et 

al., 2013) (I, II, III). 

Temperature is one of the most important factors shaping microbial 

communities. At different temperatures, community structure, diversity and the 

activity of microorganisms all vary and the stability of the reactor is then 

highly dependent on the resilience of the microbial community (Westerholm et 

al., 2018; Westerholm et al., 2017; Luo et al., 2016; De Vrieze et al., 2015c; 

Westerholm et al., 2015). Typically, higher operating temperature results in 

higher relative abundance of the phylum Firmicutes than of the phylum 

Bacteroidetes and lower microbial diversity compared with operation in 

mesophilic conditions (Westerholm et al., 2017; Luo et al., 2016; Westerholm 

et al., 2015; Moestedt et al., 2014). Studies specifically focusing on the 

response of the lignocellulolytic community to temperature changes in the 

anaerobic digestion process are rare. However, changing the operating 

temperature from 39 to 50 °C was shown to increase the ratio of Firmicutes to 

Bacteroidetes in a pilot-scale biogas reactor operating with rice straw (Yu et 

al., 2018). In another study, higher temperature (55 °C compared with 37 °C) 

resulted in an increase in the relative abundance of an uncultured order 

MBA08 (class Clostridia) and a decrease in community diversity in a CSTR 

process operating with steam-exploded straw and manure (Sun et al., 2015). 

Furthermore, temperatures below 4 °C and above 50 °C have been 

demonstrated to strongly decrease the degree of adhesion between bacteria and 

cellulose, thus potentially lowering the cellulose degradation efficiency (Miron 

et al., 2001).  

Volatile fatty acid content has been shown to inhibit microbial groups to 

different degrees (Ma et al., 2015; Chen et al., 2014; Franke-Whittle et al., 

2014). For the lignocellulolytic community, a negative correlation was seen in 

Paper I between the VFA content of the inoculum and the relative abundance 

of potential cellulose degraders, such as Mahella australiensis 50-1 BON and 

Echinicola vietnamensis. In Paper III, a decrease in the degrading efficiency of 

cellulose was also found to be associated with an increase in acetate and 
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propionate content. However, the correlation seen between VFA content and 

cellulose degradation could possibly be an indirect effect of ammonia 

inhibition, which often gives rise to accumulation of VFAs (III). 

Ammonia level, combined with temperature, also significantly affects 

microbial community structure, both the overall structure (Hu et al., 2017; De 

Vrieze et al., 2015c) (I) and that of specific groups of microorganisms, such as 

the community of acetogenic bacteria (Moestedt et al., 2016), syntrophic 

acetate-oxidising bacteria (SAOB) (Müller et al., 2016) and the methanogens 

(Westerholm et al., 2016). At present, there is little information available in the 

literature regarding the impact of ammonia on the degradation of lignocellulose 

and on lignocellulolytic bacteria. However, in this thesis work, ammonia level 

was shown to be negatively correlated with the relative abundance of 

specifically C. cellulolyticum (I) in a batch process and with the cellulose 

degradation efficiency in both a batch (I) and semi-continuous process (II). 
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Various methods can be employed to study microbial community structure. 

These are normally categorised into: 1) culture-dependent techniques, 

including e.g. clone library, isolation and characterisation; or 2) culture-

independent techniques. The culture-independent techniques can be further 

categorised based on different study purposes into: i) identification (cloning 

library, denaturing gradient gel electrophoresis (DGGE), terminal restriction 

fragment length polymorphism (T-RFLP), Sanger sequencing, microarray, 

next-generation sequencing etc.); ii) community dynamics changes (DGGE, T-

RFLP, single-stranded conformation polymorphism (SSCP), Sanger 

sequencing, next-generation sequencing etc.); iii) quantification (quantitative 

polymerase chain reaction (q-PCR), fluorescence in situ hybridisation (FISH) 

etc.) (I, II, III, IV) functionality (advanced FISH, stable isotope probing (SIP), 

metatranscriptomics, metaproteomics etc.) (Cabezas et al., 2015). 

Alternatively, these techniques can be classified according to the level of gene 

products recovered from e.g. transcripts and proteins into: metagenomics, 

metatranscriptomics and metaproteomics) (Hassa et al., 2018; Kameshwar & 

Qin, 2018; Kleinsteuber, 2018; Aguiar-Pulido et al., 2016; Gawad et al., 2016; 

Goswami et al., 2016; Prince et al., 2014; Fry, 2004). 

 

 

 

 

 

5 Microbial community analysis 
techniques 
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5.1 Methods applied to study lignocellulolytic 
communities 

 

Isolation and cultivation of pure culture is a very important way to study a 

lignocellulolytic microorganism. Many potential lignocellulolytic 

microorganisms, including aerobic and anaerobic fungi and bacteria, have been 

isolated from various environments such as termites, rumen, paper mill, 

manure, wood fermenter, anaerobic digestion process etc. (Pereyra et al., 2010; 

König et al., 2006; Schwarz, 2001). Anaerobic bacteria can be cultivated in an 

anaerobic medium, using the following preparation steps: boiling the medium 

(to reduce the amount of oxygen), adding reducing agents, adding a substrate 

such as cellulose, cellobiose, filter paper etc. (to enrich lignocellulolytic 

microorganisms), and exchange of gas phase in the bottle to nitrogen gas (N2) 

or N2/CO2 (Westerholm et al., 2010). Isolation often starts with enrichment of 

lignocellulolytic microorganisms, followed by e.g. use of the agar shake 

method to pick single colonies from a dilution series from the previously 

enriched culture (Sun, 2015) (Figure 10). 

 
Figure 10. Left: Anaerobic serum bottles of lignocellulolytic microorganism-enriched culture. 

Right: Anaerobic glass tubes with agar for picking single colonies.  

 

Besides the culture-based method, some molecular tools have been 

employed to study lignocellulolytic communities. As mentioned in section 3.2, 

lignocellulose is degraded by different glycoside hydrolases, which are 

grouped in different families based on amino acid similarities (Henrissat, 

1991). Based on this information, Pereyra et al. (2010) designed a degenerated 

primer set to specifically target the major glycoside hydrolase genes (cel5 and 

cel48) in anaerobic digestion processes (Pereyra et al., 2010). These primers 

were further adapted to quantitative PCR (qPCR) and revealed dynamic 

changes in these genes in two different biogas reactors (Pereyra et al., 2010). 

However, using qPCR can only show the overall changes in cel5 and cel48 

genes in the reactor samples, and not the microbial community structures 
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containing these genes. Thus, the same primer sets were used in studies by Sun 

et al. (2013) and in work performed in this thesis (I, II, III), where the analysis 

was combined with T-RFLP and Sanger sequencing of clone libraries. These 

studies successfully revealed the population and structure of the potential 

lignocellulolytic degraders in anaerobic digestion processes set up with 

different inoculum sources and operated with agricultural substrates. The 

method of combining T-RFLP and sequencing of clone libraries has been 

widely used to study the microbial community structure in different 

ecosystems (Theuerl et al., 2018; Ramos et al., 2010; Dickie & FitzJohn, 2007; 

Wang et al., 2004). However, there are some limitations to this method. For 

example: 1) the principle behind T-RFLP is that the length of terminal 

restriction fragments (T-RFs) should vary with various microorganisms and 

restriction enzyme(s) used (Liu et al., 1997). However, one T-RF can represent 

several operational taxonomic units (OTUs) if they have the same number of 

bases at the first cutting site from the restriction enzyme; and 2) the community 

diversity is limited by the sequenced number of clones. These disadvantages 

can be somewhat mitigated by increasing the number of sequenced clones and 

using different enzymes in combination for the cutting. However, the method 

fails to provide as high resolution of the microbial community as next-

generation sequencing. 

Next-generation sequencing has been wildly applied for microbial 

community studies due to the advantages of including a high number of 

sequences per reaction, high max parallelisation and high throughput compared 

with Sanger sequencing (Ansorge, 2009; Morozova & Marra, 2008). Several 

recent studies, included Papers I-III in this thesis, have used different next-

generation sequencing technologies (e.g. Roche454, illumina (Solexa), Ion 

Torrent and SOLiD) to scan the potential lignocellulolytic communities in e.g. 

dung beetles, termites, manure, anaerobic digestion processes fed with 

lignocellulosic materials etc. The aim of these studies has been either to 

identify previously undiscovered lignocellulolytic degraders or to investigate 

the correlation between the lignocellulolytic communities and the performance 

of an anaerobic digestion process (Ahlberg‐Eliasson et al., 2018; Chew et al., 

2018; Vanwonterghem et al., 2016; Azman et al., 2015; Estes et al., 2013; Xia 

et al., 2013) (I, II, III) .  

In addition, next-generation sequencing has been applied in functional 

genomics studies relating to lignocellulolytic degraders. For example, Wei et 

al. (2015) and Wang et al. (2015) first sequenced DNA samples extracted from 

a mesophilic and thermophilic biogas digester, respectively, using the GSFLX 

sequencing system (Roche 454). They recovered several novel glycoside 

hydrolase genes from these metagenome datasets and heterologously expressed 
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these genes in Escherichia coli to study their biochemical characteristics 

(Wang et al., 2015; Wei et al., 2015). Vanwonterghem et al. (2016) used the 

Illumina HiSeq platform and a gene-centric metagenomic approach to compare 

the glycoside hydrolase profiles over time in different anaerobic digestion 

environments (Vanwonterghem et al., 2016). These studies greatly expanded 

existing knowledge of possible application of the glycoside hydrolases and 

novel lignocellulolytic degraders, especially rare and uncultured species.  

Moreover, when pure isolates are obtained, metagenome assembly and 

binning studies can be complemented by single-cell genomics with the help of 

next-generation sequencing (Yilmaz & Singh, 2012). Single-cell genomics can 

be used to assemble the genome of a bacterial species that is present at 

relatively low abundance in a metagenomics sample, or the genomes of 

completely unknown microorganisms (Gawad et al., 2016). For example, 

complete genome sequencing of the cellulolytic anaerobic bacteria Herbivorax 

saccincola Type Strain GGR1 and Herbinix luporum SD1D is reported by 

Alexander et al. (2018) and Daniela et al. (2016), respectively. Their results 

revealed the presence of abundant carbohydrate-active enzymes (CAZymes) in 

these two bacteria (Pechtl et al., 2018; Koeck et al., 2016). 

In recent studies, there has been an increasing trend for employing 

combined meta-omics methods, including metagenomics, metatranscriptomics 

and metaproteomics, to analyse lignocellulolytic communities (Kleinsteuber, 

2018). For example, Güllert et al. (2016) compared microbial community 

structure by: i) 16S rRNA gene tag sequencing (using the Roche 454 platform) 

and ii) taxonomic origin of the cellulolytic glycoside hydrolase genes retrieved 

by the metagenomic data (using the Illumina HiSeq 2500 platform). The results 

indicate differences in cellulose degradation efficiency between biogas 

fermenter contents, elephant faeces and cow rumen fluid, possibly caused by 

differences in amount of transcribed cellulase (Güllert et al., 2016).  

Jia et al. (2018) reconstructed 107 population genomes from enrichment 

cultures and found only one sub-group to be highly transcribed in the 

metatranscriptomes. For the cellulose degraders, different genes were seen to 

be activated under different culture conditions. These findings deepen 

understanding of the relationship between a microbial population and the 

functional roles of active players in cellulosic biomass degradation (Jia et al., 

2018).  

Furthermore, metaproteomics have been applied to study the metabolic 

activity of the lignocellulolytic communities by extracting total proteins, which 

are then digested with e.g. trypsin, followed by liquid chromatography-mass 

spectrometry (LC-MS) analysis (Heyer et al., 2013). In a study combining 

metagenomics and metaproteomics, Hanreich et al. (2013) found that the 
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phylum Firmicutes seemed to play a major role for cellulose degradation, even 

though a fewer glycoside hydrolase genes were detected than in the phylum 

Bacteroidetes (Hanreich et al., 2013). Moreover, a comparison of the 

taxonomic community structure recovered from a metaproteomic dataset and 

16S rRNA gene tag pyrosequencing, together with fluorescent in situ 

hybridisation analyses, has revealed detailed lignocellulolytic functions in 

Caldicellulosiruptor spp. and the key role of Clostridium thermocellum for 

cellulose degradation (Lü et al., 2014).  

However, the use of metaproteomics to study lignocellulosic degradation 

groups in anaerobic digestion samples is still challenging in many ways (Heyer 

et al., 2013). For example, the identification of proteins largely relies on the 

metagenomic database (Speda et al., 2017b). The most used protein database, 

Swiss-Prot from the Universal Protein Resource (UniProt), contains around 

only 558 898 reviewed and annotated entries (last visited December 12, 2018), 

and most of these entries are not for bacteria and archaea. To overcome this 

problem, metaproteomic analysis can be performed based on a metagenome 

dataset recovered from the same samples (Hanreich et al., 2013; Rademacher 

et al., 2012). Another limitation is the sample complexity. To get high 

resolution in protein identification (i.e. identify as many proteins as possible), 

the extraction process needs to remove impurities such as humic organic 

matter, lipids, granules etc. (Keller & Hettich, 2009; Maron et al., 2007; 

Hofman-Bang et al., 2003). In addition, lignocellulosic bacteria are usually 

tightly attached to the fibres of biomass. Thus, the protein extraction method 

needs to be optimised in this regard to mitigate the loss of lignocellulosic 

bacteria. Several extraction methods have been tested in order to improve the 

protein yield from anaerobic digestate (Speda et al., 2017a). The biases that 

can be introduced by using different databases and purification methods have 

been evaluated in an ongoing work (not included in this thesis). Preliminary 

results showed a significant improvement on the quality of identified proteins 

by using customised metagenomic database and purification method. However, 

obtaining specific microbial proteins from highly redundant and abundant 

environmental protein pools remains a great challenge (Heyer et al., 2015). 
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Lignocellulosic materials, especially lignocellulosic residues, represent an 

important class of biomass that has not yet been fully utilised. Anaerobic 

digestion is believed to be one of the most feasible and economical tools for 

extracting the ‘hidden’ energy in lignocellulosic materials. Globally, several 

billion cubic metres of methane are produced yearly and demand is growing. 

The potential of using lignocellulosic materials to expand future production to 

meet this demand is impossible to ignore. However, the degradation efficiency 

of lignocellulosic materials in the anaerobic digestion process is still far from 

optimal. To increase use of lignocellulosic materials for methane production, a 

deeper understanding of the key agents in the degradation process, 

lignocellulosic microbes, is essential.  

This thesis revealed the importance of the original inoculum for methane 

production using cellulose and wheat straw in a batch digestion system and 

also for the performance during start-up of semi-continuous stirred tank reactor 

(CSTR) processes. The microbial and chemical composition of the original 

inoculum sources was also revealed to influence the degradation of 

lignocellulose during long-term operation of CSTRs. Moreover, a positive 

correlation between the cellulose degradation rate of wheat straw and the level 

of Clostridium cellulolyticum was observed, indicating the possibility for 

steering the biogas production process to become more efficient by using a 

microbial approach. However, ammonia level appears to be one of the most 

important factors regulating the methane production performance of processes 

using lignocellulosic materials, possibly because it is a strong parameter 

shaping the microbial community structure and also the potential cellulose-

degrading bacterial community. Lignocellulose-rich materials are often co-

digested with energy-rich materials such as proteins in order to improve the 

C/N ratio. The data presented in this thesis suggest that degradation of proteins, 

giving high ammonia levels and high volatile fatty acid levels, results in 

6 Conclusions and future perspectives 
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decreased lignocellulose efficiency. However, this decreased efficiency can be 

masked by increased volumetric yield due to increased load and higher energy 

content of the co-substrate. A low substrate degradation rate can potentially 

increase the risk of residual methane emissions during storage of the reactor 

digestate before use as a fertiliser. 

The picture of the anaerobic lignocellulolytic microbial community is still 

far from complete. One important component of that community not covered in 

this thesis is the anaerobic fungi. Studies have shown that anaerobic fungi play 

an active role in lignocellulose degradation, even though their relative 

abundance in the overall microbial community is often low.  

Furthermore, in this thesis only genomics-based analyses were performed 

and these are not sufficient to describe the anaerobic lignocellulolytic 

microbial community. Additional analyses relating to functions (e.g. 

proteomics and transcriptomics) are needed to fully identify the lignocellulose-

degrading community and how to optimise it. Fortunately, with the rapid 

development in analytical methods and techniques and the corresponding 

growing databases, the cost of using transcriptomics- and proteomics-based 

approaches is becoming cheaper. When the complete guild is identified and a 

comprehensive and elaborate map of the lignocellulolytic microbial 

community becomes available, a customised inoculum adapted for each 

specific digestion task can be designed. This will help maximise methane 

production from the highly abundant lignocellulosic materials available world-

wide. 

  



53 

 

Achinas, S., Achinas, V. & Euverink, G.J.W. (2017). A technological overview of biogas production 
from biowaste. (Engineering, 3). 

Adekunle, K.F. & Okolie, J.A. (2015). A review of biochemical process of anaerobic digestion. 

Advances in Bioscience and Biotechnology, 6(03), p. 205. 
Agency, I.E. (2015). World energy outlook special report 2015: Energy and climate change. (Final 

report. OECD/IEA, Paris: International Energy Agency. 

Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K. & Narasimhan, G. (2016). 
Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome 

Analysis: Supplementary Issue: Bioinformatics Methods and Applications for Big 

Metagenomics Data. Evolutionary Bioinformatics, 12, p. EBO. S36436. 
Ahlberg-Eliasson, K., Nadeau, E., Levén, L. & Schnürer, A. (2017). Production efficiency of Swedish 

farm-scale biogas plants. Biomass and Bioenergy, 97, pp. 27-37. 

Ahlberg‐Eliasson, K., Liu, T., Nadeau, E. & Schnürer, A. (2018). Forage types and origin of manure in 

codigestion affect methane yield and microbial community structure. Grass and Forage 

Science, 0(0). 

Akin, D. (1988). Biological structure of lignocellulose and its degradation in the rumen. Animal Feed 
Science and Technology, 21(2), pp. 295-310. 

Akobi, C., Yeo, H., Hafez, H. & Nakhla, G. (2016). Single-stage and two-stage anaerobic digestion of 

extruded lignocellulosic biomass. Applied Energy, 184, pp. 548-559. 
Ando, S., Ishida, H., Kosugi, Y. & Ishikawa, K. (2002). Hyperthermostable endoglucanase from 

pyrococcus horikoshii. Appl Environ Microbiol, 68(1), p. 430. 

Angelidaki, I., Karakashev, D., Batstone, D.J., Plugge, C.M. & Stams, A.J. (2011). Biomethanation and 
its potential. Methods Enzymol, 494(16), pp. 327-351. 

Ansorge, W.J. (2009). Next-generation DNA sequencing techniques. N Biotechnol, 25(4), pp. 195-203. 

Appels, L., Lauwers, J., Degrève, J., Helsen, L., Lievens, B., Willems, K., Van Impe, J. & Dewil, R. 
(2011). Anaerobic digestion in global bio-energy production: potential and research 

challenges. Renewable and Sustainable Energy Reviews, 15(9), pp. 4295-4301. 

Aslanzadeh, S., Rajendran, K., Jeihanipour, A. & Taherzadeh, M.J. (2013). The effect of effluent 

recirculation in a semi-continuous two-stage anaerobic digestion system. Energies, 6(6), pp. 

2966-2981. 

Awasthi, S.K., Joshi, R., Dhar, H., Verma, S., Awasthi, M.K., Varjani, S., Sarsaiya, S., Zhang, Z. & 
Kumar, S. (2018). Improving methane yield and quality via co-digestion of cow dung mixed 

with food waste. Bioresource Technology, 251, pp. 259-263. 

Azbar, N. & Speece, R.E. (2001). Two-phase, two-stage, and single-stage anaerobic process 
comparison. Journal of Environmental Engineering, 127(3), pp. 240-248. 

Azman, S., Khadem, A.F., Lier, J.B., Zeeman, G. & Plugge, C.M. (2015). Presence and role of 

anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas 
production. Crit Rev Environ Sci Technol, 45. 

Barbier, G., Godfroy, A., Meunier, J.-R., Quérellou, J., Cambon, M.-A., Lesongeur, F., Grimont, P.A. & 
Raguénès, G. (1999). Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon 

isolated from the East Pacific Rise. International Journal of Systematic and Evolutionary 

Microbiology, 49(4), pp. 1829-1837. 

References 



54 

 

Bayané, A. & Guiot, S.R. (2010). Animal digestive strategies versus anaerobic digestion bioprocesses 

for biogas production from lignocellulosic biomass. Reviews in Environmental Science and 
Bio/Technology, 10(1), pp. 43-62. 

Bayer, E.A., Belaich, J.P., Shoham, Y. & Lamed, R. (2004). The cellulosomes: multienzyme machines 

for degradation of plant cell wall polysaccharides. Annual Review of Microbiology, 58, pp. 
521-54. 

Bayer, E.A., Chanzy, H., Lamed, R. & Shoham, Y. (1998). Cellulose, cellulases and cellulosomes. 

Current Opinion in Structural Biology, 8(5), pp. 548-557. 
Bayer, E.A., Lamed, R., White, B.A. & Flint, H.J. (2008). From Cellulosomes to Cellulosomics. Chem 

Rec, 8(6), pp. 364-377. 

Bissaro, B., Rohr, A.K., Skaugen, M., Forsberg, Z., Horn, S.J., Vaaje-Kolstad, G. & Eijsink, V. (2016). 
Fenton-type chemistry by a copper enzyme: molecular mechanism of polysaccharide 

oxidative cleavage. bioRxiv. 

Boisset, C., Chanzy, H.D., Henrissat, B., Schulein, M. & Bayer, E.A. (1999). Hydroysis of model 
cellulose systems by cellulosomes and fungal cellulases. Abstracts of Papers of the 

American Chemical Society, 217, pp. U252-U252. 

Borjesson, P. & Mattiasson, B. (2008). Biogas as a resource-efficient vehicle fuel. Trends Biotechnol, 
26(1), pp. 7-13. 

Bozan, M., Akyol, C., Ince, O., Aydin, S. & Ince, B. (2017). Application of next-generation sequencing 

methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass. Appl 
Microbiol Biotechnol, 101(18), pp. 6849-6864. 

Braune, R. (1913). Untersuchungen uber die im Wiederkauermagen vorkommenden Protozoen: 

Friedrich-Wilhelms-Universitat zu Berlin. 
Breure, A., Mooijman, K. & Van Andel, J. (1986). Protein degradation in anaerobic digestion: influence 

of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of 

gelatin. Appl Microbiol Biotechnol, 24(5), pp. 426-431. 
Burrell, P.C., O'Sullivan, C., Song, H., Clarke, W.P. & Blackall, L.L. (2004). Identification, detection, 

and spatial resolution of Clostridium populations responsible for cellulose degradation in a 

methanogenic landfill leachate bioreactor. Appl Environ Microbiol, 70(4), pp. 2414-9. 
Cabezas, A., de Araujo, J., Callejas, C., Galès, A., Hamelin, J., Marone, A., Sousa, D., Trably, E. & 

Etchebehere, C. (2015). How to use molecular biology tools for the study of the anaerobic 

digestion process? Reviews in Environmental Science and Bio/Technology, pp. 1-39. 
Carballa, M., Regueiro, L. & Lema, J.M. (2015). Microbial management of anaerobic digestion: 

exploiting the microbiome-functionality nexus. Curr Opin Biotechnol, 33, pp. 103-111. 

Cardinali-Rezende, J., Colturato, L.F., Colturato, T.D., Chartone-Souza, E., Nascimento, A.M. & Sanz, 
J.L. (2012). Prokaryotic diversity and dynamics in a full-scale municipal solid waste 

anaerobic reactor from start-up to steady-state conditions. Bioresource Technology, 119, pp. 

373-383. 
Carrere, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G. & Ferrer, I. (2016). 

Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-
scale research to full-scale application. Bioresour Technol, 199, pp. 386-97. 

Cavaleiro, A.J., Salvador, A.F., Alves, J.I. & Alves, M. (2009). Continuous high rate anaerobic 

treatment of oleic acid based wastewater is possible after a step feeding start-up. Environ Sci 
Technol, 43(8), pp. 2931-6. 

Chandra, R., Takeuchi, H. & Hasegawa, T. (2012). Methane production from lignocellulosic 

agricultural crop wastes: A review in context to second generation of biofuel production. 
Renewable and Sustainable Energy Reviews, 16(3), pp. 1462-1476. 

Chen, J.L., Ortiz, R., Steele, T.W.J. & Stuckey, D.C. (2014). Toxicants inhibiting anaerobic digestion: 

A review. Biotechnol Adv, 32(8), pp. 1523-1534. 
Cheng, Y., Shi, Q., Sun, R., Liang, D., Li, Y., Li, Y., Jin, W. & Zhu, W. (2018). The biotechnological 

potential of anaerobic fungi on fiber degradation and methane production. World J Microbiol 

Biotechnol, 34(10), p. 155. 
Chew, Y.M., Lye, S., Md. Salleh, M. & Yahya, A. (2018). 16S rRNA metagenomic analysis of the 

symbiotic community structures of bacteria in foregut, midgut, and hindgut of the wood-

feeding termite Bulbitermes sp. Symbiosis, 76(2), pp. 187-197. 
Chiu, E., Hijnen, M., Bunker, R.D., Boudes, M., Rajendran, C., Aizel, K., Oliéric, V., Schulze-Briese, 

C., Mitsuhashi, W., Young, V., Ward, V.K., Bergoin, M., Metcalf, P. & Coulibaly, F. 

(2015). Structural basis for the enhancement of virulence by viral spindles and their in vivo 
crystallization. Proceedings of the National Academy of Sciences, 112(13), p. 3973. 



55 

 

Choong, Y.Y., Norli, I., Abdullah, A.Z. & Yhaya, M.F. (2016). Impacts of trace element 

supplementation on the performance of anaerobic digestion process: A critical review. 
Bioresource Technology, 209, pp. 369-379. 

Chynoweth, D.P., Turick, C.E., Owens, J.M., Jerger, D.E. & Peck, M.W. (1993). Biochemical methane 

potential of biomass and waste feedstocks. Biomass and Bioenergy, 5(1), pp. 95-111. 
Collet, C., Gaudard, O., Péringer, P. & Schwitzguébel, J.-P. (2005). Acetate production from lactose by 

Clostridium thermolacticum and hydrogen-scavenging microorganisms in continuous 

culture—Effect of hydrogen partial pressure. Journal of Biotechnology, 118(3), pp. 328-338. 
Colussi, I., Cortesi, A., Gallo, V., Rubesa Fernandez, A. & Vitanza, R. (2013). Improvement of methane 

yield from maize silage by a two-stage anaerobic process. Chemical engineering 

transactions, 32(1). 
Comino, E., Riggio, V.A. & Rosso, M. (2012). Biogas production by anaerobic co-digestion of cattle 

slurry and cheese whey. Bioresource Technology, 114, pp. 46-53. 

Cragg, S.M., Beckham, G.T., Bruce, N.C., Bugg, T.D.H., Distel, D.L., Dupree, P., Etxabe, A.G., 
Goodell, B.S., Jellison, J., McGeehan, J.E., McQueen-Mason, S.J., Schnorr, K., Walton, 

P.H., Watts, J.E.M. & Zimmer, M. (2015). Lignocellulose degradation mechanisms across 

the Tree of Life. Current Opinion in Chemical Biology, 29, pp. 108-119. 
Dandikas, V., Marín Pérez, C., Koch, K., Lebuhn, M. & Gronauer, A. (2018). Influence of digestate 

recirculation on a two-phase anaerobic digestion of maize silage. 

Dashtban, M., Schraft, H. & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; 
opportunities & perspectives. Int J Biol Sci, 5(6), pp. 578-595. 

De Francisci, D., Kougias, P.G., Treu, L., Campanaro, S. & Angelidaki, I. (2015). Microbial diversity 

and dynamicity of biogas reactors due to radical changes of feedstock composition. 
Bioresource Technology, 176, pp. 56-64. 

De Vrieze, J., Gildemyn, S., Vilchez-Vargas, R., Jáuregui, R., Pieper, D.H., Verstraete, W. & Boon, N. 

(2015a). Inoculum selection is crucial to ensure operational stability in anaerobic digestion. 
Appl Microbiol Biotechnol, 99(1), pp. 189-199. 

De Vrieze, J., Raport, L., Willems, B., Verbrugge, S., Volcke, E., Meers, E., Angenent, L.T. & Boon, 

N. (2015b). Inoculum selection influences the biochemical methane potential of agro-
industrial substrates. Microb Biotechnol, 8(5), pp. 776-86. 

De Vrieze, J., Saunders, A.M., He, Y., Fang, J., Nielsen, P.H., Verstraete, W. & Boon, N. (2015c). 

Ammonia and temperature determine potential clustering in the anaerobic digestion 
microbiome. Water Res, 75, pp. 312-323. 

De Vrieze, J., Verstraete, W. & Boon, N. (2013). Repeated pulse feeding induces functional stability in 

anaerobic digestion. Microbial Biotechnology, 6(4), pp. 414-424. 
Dickie, I. & FitzJohn, R. (2007). Using terminal restriction fragment length polymorphism (T-RFLP) to 

identify mycorrhizal fungi: a methods review. Mycorrhiza, 17(4), pp. 259-270. 

Do, T.H., Le, N.G., Dao, T.K., Nguyen, T.M.P., Le, T.L., Luu, H.L., Nguyen, K.H.V., Nguyen, V.L., 
Le, L.A., Phung, T.N., van Straalen, N.M., Roelofs, D. & Truong, N.H. (2018). 

Metagenomic insights into lignocellulose-degrading genes through Illumina-based de novo 
sequencing of the microbiome in Vietnamese native goats' rumen. J Gen Appl Microbiol, 

64(3), pp. 108-116. 

Dollhofer, V., Podmirseg, S.M., Callaghan, T.M., Griffith, G.W. & Fliegerová, K. (2015). Anaerobic 
fungi and their potential for biogas production. In: Biogas Science and Technology Springer, 

pp. 41-61. 

Drosg, B. Process monitoring in biogas plants. In: Proceedings of IEA Bioenergy Task2013. 
Ebner, J.H., Labatut, R.A., Lodge, J.S., Williamson, A.A. & Trabold, T.A. (2016). Anaerobic co-

digestion of commercial food waste and dairy manure: Characterizing biochemical 

parameters and synergistic effects. Waste Management (New York, N.y.), 52, pp. 286-294. 
El-Mashad, H.M., Zeeman, G., van Loon, W.K.P., Bot, G.P.A. & Lettinga, G. (2004). Effect of 

temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle 

manure. Bioresource Technology, 95(2), pp. 191-201. 
Elbeshbishy, E., Nakhla, G. & Hafez, H. (2012). Biochemical methane potential (BMP) of food waste 

and primary sludge: influence of inoculum pre-incubation and inoculum source. Bioresource 

Technology, 110, pp. 18-25. 
Estes, A.M., Hearn, D.J., Snell-Rood, E.C., Feindler, M., Feeser, K., Abebe, T., Dunning Hotopp, J.C. 

& Moczek, A.P. (2013). Brood Ball-Mediated Transmission of Microbiome Members in the 

Dung Beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS One, 8(11), p. e79061. 



56 

 

Estevez, M.M., Sapci, Z., Linjordet, R., Schnürer, A. & Morken, J. (2014). Semi-continuous anaerobic 

co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate. 
Journal of Environmental Management, 136, pp. 9-15. 

Ferguson, R.M.W., Coulon, F. & Villa, R. (2016). Organic loading rate: A promising microbial 

management tool in anaerobic digestion. Water Res, 100, pp. 348-356. 
final, C. (2014). Communication from the Commission to the European Parliament, the Council, the 

European Economic and Social Committee and the Committee of the Regions: Brussels. 

Fitamo, T., Treu, L., Boldrin, A., Sartori, C., Angelidaki, I. & Scheutz, C. (2017). Microbial population 
dynamics in urban organic waste anaerobic co-digestion with mixed sludge during a change 

in feedstock composition and different hydraulic retention times. Water Res, 118, pp. 261-

271. 
Franke-Whittle, I.H., Walter, A., Ebner, C. & Insam, H. (2014). Investigation into the effect of high 

concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. 

Waste Management, 34(11), pp. 2080-2089. 
Fry, J.C. (2004). Culture-dependent microbiology. In: Microbial Diversity and Bioprospecting 

American Society of Microbiology, pp. 80-87. 

Fu, X. & Hu, Y. (2016). Comparison of Reactor Configurations for Biogas Production from Rapeseed 
Straw. Bioresources, 11(4), pp. 9970-9985. 

Gani, A. & Naruse, I. (2007). Effect of cellulose and lignin content on pyrolysis and combustion 

characteristics for several types of biomass. Renewable Energy, 32(4), pp. 649-661. 
Gawad, C., Koh, W. & Quake, S.R. (2016). Single-cell genome sequencing: current state of the science. 

Nature reviews genetics, 17, p. 175. 

Goswami, R., Mukherjee, S., Chakraborty, A.K., Balachandran, S., Sinha Babu, S.P. & Chaudhury, S. 
(2016). Optimization of growth determinants of a potent cellulolytic bacterium isolated from 

lignocellulosic biomass for enhancing biogas production. Clean Technologies and 

Environmental Policy, 18(5), pp. 1565-1583. 
Grim, J., Malmros, P., Schnürer, A. & Nordberg, Å. (2015). Comparison of pasteurization and 

integrated thermophilic sanitation at a full-scale biogas plant–Heat demand and biogas 

production. Energy, 79, pp. 419-427. 
Grohmann, A., Fehrmann, S., Vainshtein, Y., Haag, N., Wiese, F., Stevens, P., Naegele, H.-J., 

Oechsner, H., Hartsch, T., Sohn, K. & Grumaz, C. (2017). Microbiome dynamics and 

adaptation of expression signatures during methane production failure and process 
recovery247). 

Gruninger, R.J., Puniya, A.K., Callaghan, T.M., Edwards, J.E., Youssef, N., Dagar, S.S., Fliegerova, K., 

Griffith, G.W., Forster, R., Tsang, A., McAllister, T. & Elshahed, M.S. (2014). Anaerobic 
fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life 

cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol, 90(1), pp. 1-17. 

Gu, Y., Chen, X., Liu, Z., Zhou, X. & Zhang, Y. (2014). Effect of inoculum sources on the anaerobic 
digestion of rice straw. Bioresour Technol, 158, pp. 149-55. 

Güllert, S., Fischer, M.A., Turaev, D., Noebauer, B., Ilmberger, N., Wemheuer, B., Alawi, M., Rattei, 
T., Daniel, R., Schmitz, R.A., Grundhoff, A. & Streit, W.R. (2016). Deep metagenome and 

metatranscriptome analyses of microbial communities affiliated with an industrial biogas 

fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate 
hydrolysis strategies. Biotechnol Biofuels, 9(1), pp. 1-20. 

Haitjema, C.H., Solomon, K.V., Henske, J.K., Theodorou, M.K. & O'Malley, M.A. (2014). Anaerobic 

gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel 
production. Biotechnol Bioeng, 111(8), pp. 1471-82. 

Hanreich, A., Schimpf, U., Zakrzewski, M., Schlüter, A., Benndorf, D., Heyer, R., Rapp, E., Pühler, A., 

Reichl, U. & Klocke, M. (2013). Metagenome and metaproteome analyses of microbial 
communities in mesophilic biogas-producing anaerobic batch fermentations indicate 

concerted plant carbohydrate degradation. Syst Appl Microbiol, 36(5), pp. 330-338. 

Hassa, J., Maus, I., Off, S., Pühler, A., Scherer, P., Klocke, M. & Schlüter, A. (2018). Metagenome, 
metatranscriptome, and metaproteome approaches unraveled compositions and functional 

relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol, 

pp. 1-19. 
Hemsworth, G.R., Johnston, E.M., Davies, G.J. & Walton, P.H. (2015). Lytic Polysaccharide 

Monooxygenases in Biomass Conversion. Trends Biotechnol, 33(12), pp. 747-761. 

Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. 
Biochemical Journal, 280(2), pp. 309-316. 



57 

 

Heyer, R., Kohrs, F., Benndorf, D., Rapp, E., Kausmann, R., Heiermann, M., Klocke, M. & Reichl, U. 

(2013). Metaproteome analysis of the microbial communities in agricultural biogas plants. N 
Biotechnol, 30(6), pp. 614-622. 

Heyer, R., Kohrs, F., Reichl, U. & Benndorf, D. (2015). Metaproteomics of complex microbial 

communities in biogas plants. Microbial Biotechnology, 8(5), pp. 749-763. 
Hodrová, B., Kopečný, J. & Káš, J. (1998). Cellulolytic enzymes of rumen anaerobic fungi 

Orpinomyces joyonii and Caecomyces communis. Res Microbiol, 149(6), pp. 417-427. 

Hofman-Bang, J., Zheng, D., Westermann, P., Ahring, B.K. & Raskin, L. (2003). Molecular ecology of 
anaerobic reactor systems. In: Biomethanation I Springer, pp. 151-203. 

Holm-Nielsen, J.B., Al Seadi, T. & Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and 

biogas utilization. Bioresour Technol, 100. 
Horn, S.J., Vaaje-Kolstad, G., Westereng, B. & Eijsink, V. (2012). Novel enzymes for the degradation 

of cellulose. Biotechnol Biofuels, 5(1), p. 45. 

Hu, J., Shao, J., Yang, H., Lin, G., Chen, Y., Wang, X., Zhang, W. & Chen, H. (2017). Co-gasification 
of coal and biomass: Synergy, characterization and reactivity of the residual char. 

Bioresource Technology, 244, pp. 1-7. 

Jia, Y., Ng, S.-K., Lu, H., Cai, M. & Lee, P.K.H. (2018). Genome-centric metatranscriptomes and 
ecological roles of the active microbial populations during cellulosic biomass anaerobic 

digestion. Biotechnol Biofuels, 11(1), p. 117. 

Joblin, K.N. & Naylor, G.E. (1989). Fermentation of woods by rumen anaerobic fungi. FEMS 
Microbiol Lett, 65(1‐2), pp. 119-122. 

Johan, H. & Linus, K. (2018). Produktion och användning av biogas och rötrester år 2017: Eskilstuna: 

Statens Energimyndighet. 
Johansen, K.S. (2016). Lytic Polysaccharide Monooxygenases: The Microbial Power Tool for 

Lignocellulose Degradation. Trends Plant Sci, 21(11), pp. 926-936. 

Kameshwar, A.K.S. & Qin, W. (2018). Isolation and Screening of Cellulose-Degrading 
Microorganisms from Different Ecological Niches. In: Lübeck, M. (ed. Cellulases: Methods 

and Protocols. New York, NY: Springer New York, pp. 47-56. 

Kampmann, K., Ratering, S., Kramer, I., Schmidt, M., Zerr, W. & Schnell, S. (2012). Unexpected 
stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with 

different defined substrates. Appl Environ Microbiol, 78(7), pp. 2106-2119. 

Kaparaju, P., Buendia, I., Ellegaard, L. & Angelidakia, I. (2008). Effects of mixing on methane 
production during thermophilic anaerobic digestion of manure: Lab-scale and pilot-scale 

studies. Bioresource Technology, 99(11), pp. 4919-4928. 

Kaparaju, P., Ellegaard, L. & Angelidaki, I. (2009). Optimisation of biogas production from manure 
through serial digestion: Lab-scale and pilot-scale studies. Bioresource Technology, 100(2), 

pp. 701-709. 

Karmellos, M., Kopidou, D. & Diakoulaki, D. (2016). A decomposition analysis of the driving factors 
of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries. 

Energy, 94, pp. 680-692. 
Kazda, M., Langer, S. & Bengelsdorf, F.R. (2014). Fungi open new possibilities for anaerobic 

fermentation of organic residues. Energy, Sustainability and Society, 4(1), pp. 1-9. 

Keller, M. & Hettich, R. (2009). Environmental proteomics: a paradigm shift in characterizing 
microbial activities at the molecular level. Microbiology and molecular biology reviews, 

73(1), pp. 62-70. 

Kishishita, S., Fujii, T. & Ishikawa, K. (2015). Heterologous expression of hyperthermophilic cellulases 
of archaea Pyrococcus sp. by fungus Talaromyces cellulolyticus. J Ind Microbiol Biotechnol, 

42(1), pp. 137-141. 

Kleinsteuber, S. (2018). Metagenomics of Methanogenic Communities in Anaerobic Digesters. In: 
Stams, A.J.M. & Sousa, D. (eds) Biogenesis of Hydrocarbons. Cham: Springer International 

Publishing, pp. 1-23. 

Koeck, D.E., Maus, I., Wibberg, D., Winkler, A., Zverlov, V.V., Liebl, W., Pühler, A., Schwarz, W.H. 
& Schlüter, A. (2016). Complete genome sequence of Herbinix luporum SD1D, a new 

cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Genome 

Announcements, 4(4). 
Kohler, A., Kuo, A., Nagy, L.G., Morin, E., Barry, K.W., Buscot, F., Canbäck, B., Choi, C., Cichocki, 

N., Clum, A., Colpaert, J., Copeland, A., Costa, M.D., Doré, J., Floudas, D., Gay, G., 

Girlanda, M., Henrissat, B., Herrmann, S., Hess, J., Högberg, N., Johansson, T., Khouja, H.-
R., LaButti, K., Lahrmann, U., Levasseur, A., Lindquist, E.A., Lipzen, A., Marmeisse, R., 



58 

 

Martino, E., Murat, C., Ngan, C.Y., Nehls, U., Plett, J.M., Pringle, A., Ohm, R.A., Perotto, 

S., Peter, M., Riley, R., Rineau, F., Ruytinx, J., Salamov, A., Shah, F., Sun, H., Tarkka, M., 
Tritt, A., Veneault-Fourrey, C., Zuccaro, A., Mycorrhizal Genomics Initiative, C., Tunlid, 

A., Grigoriev, I.V., Hibbett, D.S. & Martin, F. (2015). Convergent losses of decay 

mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet, 47, 
p. 410. 

König, H., Fröhlich, J. & Hertel, H. (2006). Diversity and Lignocellulolytic Activities of Cultured 

Microorganisms. In: König, H. & Varma, A. (eds) Intestinal Microorganisms of Termites 
and Other Invertebrates. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 271-301. 

Kothari, R., Pandey, A., Kumar, S., Tyagi, V. & Tyagi, S. (2014). Different aspects of dry anaerobic 

digestion for bio-energy: An overview. Renewable and Sustainable Energy Reviews, 39, pp. 
174-195. 

Labatut, R.A., Angenent, L.T. & Scott, N.R. (2011). Biochemical methane potential and 

biodegradability of complex organic substrates. Bioresour Technol, 102(3), pp. 2255-64. 
Labatut, R.A., Angenent, L.T. & Scott, N.R. (2014). Conventional mesophilic vs. thermophilic 

anaerobic digestion: A trade-off between performance and stability? Water Res, 53, pp. 249-

258. 
Lebuhn, M., Weiß, S., Munk, B. & Guebitz, G.M. (2015). Microbiology and molecular biology tools for 

biogas process analysis, diagnosis and control. In: Biogas Science and Technology Springer, 

pp. 1-40. 
Lehtomäki, A., Huttunen, S. & Rintala, J. (2007). Laboratory investigations on co-digestion of energy 

crops and crop residues with cow manure for methane production: effect of crop to manure 

ratio. Resources, Conservation and Recycling, 51(3), pp. 591-609. 
Leschine, S.B. (1995). Cellulose degradation in anaerobic environments. Annual Review of 

Microbiology, 49, pp. 399-426. 

Li, C., Nges, I.A., Lu, W. & Wang, H. (2017). Assessment of the degradation efficiency of full-scale 
biogas plants: A comparative study of degradation indicators. Bioresource Technology, 244, 

pp. 304-312. 

Li, S.Y., Srivastava, R., Suib, S.L., Li, Y. & Parnas, R.S. (2011). Performance of batch, fed-batch, and 
continuous A-B-E fermentation with pH-control. Bioresour Technol, 102(5), pp. 4241-50. 

Li, T.L., Mazeas, L., Sghir, A., Leblon, G. & Bouchez, T. (2009). Insights into networks of functional 

microbes catalysing methanization of cellulose under mesophilic conditions. Environmental 
Microbiology, 11(4), pp. 889-904. 

Li, Y., Zhang, R., He, Y., Zhang, C., Liu, X., Chen, C. & Liu, G. (2014). Anaerobic co-digestion of 

chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR). 
Bioresource Technology, 156, pp. 342-347. 

Li, Y., Zhang, R., Liu, G., Chen, C., He, Y. & Liu, X. (2013). Comparison of methane production 

potential, biodegradability, and kinetics of different organic substrates. Bioresource 
Technology, 149, pp. 565-569. 

Liebetrau, J., Reinelt, T., Clemens, J., Hafermann, C., Friehe, J. & Weiland, P. (2013). Analysis of 
greenhouse gas emissions from 10 biogas plants within the agricultural sector. Water Science 

and Technology, 67(6), pp. 1370-9. 

Lim, H.C. & Shin, H.S. (2013). Fed-batch Cultures: Principles and Applications of Semi-batch 
Bioreactors: Cambridge University Press. 

Lissens, G., Verstraete, W., Albrecht, T., Brunner, G., Creuly, C., Seon, J., Dussap, G. & Lasseur, C. 

(2004). Advanced anaerobic bioconversion of lignocellulosic waste for bioregenerative life 
support following thermal water treatment and biodegradation by Fibrobacter succinogenes. 

Biodegradation, 15(3), pp. 173-183. 

Liu, W.-T., Marsh, T.L., Cheng, H. & Forney, L.J. (1997). Characterization of microbial diversity by 
determining terminal restriction fragment length polymorphisms of genes encoding 16S 

rRNA. Appl Environ Microbiol, 63(11), pp. 4516-4522. 

Lu, F., Bize, A., Guillot, A., Monnet, V., Madigou, C., Chapleur, O., Mazeas, L., He, P. & Bouchez, T. 
(2014). Metaproteomics of cellulose methanisation under thermophilic conditions reveals a 

surprisingly high proteolytic activity. ISME J, 8(1), pp. 88-102. 

Lü, F., Bize, A., Guillot, A., Monnet, V., Madigou, C., Chapleur, O., Mazéas, L., He, P. & Bouchez, T. 
(2014). Metaproteomics of cellulose methanisation under thermophilic conditions reveals a 

surprisingly high proteolytic activity. ISME J, 8(1), pp. 88-102. 



59 

 

Luo, G., Fotidis, I.A. & Angelidaki, I. (2016). Comparative analysis of taxonomic, functional, and 

metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic 
sequencing and radioisotopic analysis. Biotechnol Biofuels, 9, p. 51. 

Lynd, L.R., Weimer, P.J., Van Zyl, W.H. & Pretorius, I.S. (2002a). Microbial cellulose utilization: 

fundamentals and biotechnology. Microbiology and molecular biology reviews, 66(3), pp. 
506-577. 

Lynd, L.R., Weimer, P.J., van Zyl, W.H. & Pretorius, I.S. (2002b). Microbial cellulose utilization: 

fundamentals and biotechnology. Microbiol Mol Biol Rev, 66(3), pp. 506-77, table of 
contents. 

Ma, J., Zhao, Q.-B., Laurens, L.L., Jarvis, E.E., Nagle, N.J., Chen, S. & Frear, C.S. (2015). Mechanism, 

kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic 
digestion of algal biomass. Biotechnol Biofuels, 8(1), p. 141. 

Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H. & Longworth, J. (2008). 

Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-
digestion with dairy cow manure. Bioresource Technology, 99(17), pp. 8288-8293. 

Malherbe, S. & Cloete, T.E. (2002). Lignocellulose biodegradation: Fundamentals and applications. 

Reviews in Environmental Science and Biotechnology, 1(2), pp. 105-114. 
Mao, C., Feng, Y., Wang, X. & Ren, G. (2015). Review on research achievements of biogas from 

anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, pp. 540-555. 

Marchaim, U. & Krause, C. (1993). Propionic to acetic acid ratios in overloaded anaerobic digestion. 
Bioresource Technology, 43(3), pp. 195-203. 

Maron, P.-A., Ranjard, L., Mougel, C. & Lemanceau, P. (2007). Metaproteomics: a new approach for 

studying functional microbial ecology. Microbial Ecology, 53(3), pp. 486-493. 
Martínez-Gutiérrez, E. (2018). Biogas production from different lignocellulosic biomass sources: 

advances and perspectives. 3 Biotech, 8(5). 

Mata-Alvarez, J., Dosta, J., Romero-Güiza, M., Fonoll, X., Peces, M. & Astals, S. (2014). A critical 
review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and 

Sustainable Energy Reviews, 36, pp. 412-427. 

Mauky, E., Jacobi, H.F., Liebetrau, J. & Nelles, M. (2015). Flexible biogas production for demand-
driven energy supply - Feeding strategies and types of substrates. Bioresour Technol, 178, 

pp. 262-9. 

Meyer-Aurich, A., Lochmann, Y., Klauss, H. & Prochnow, A. (2016). Comparative Advantage of 
Maize-and Grass-Silage Based Feedstock for Biogas Production with Respect to Greenhouse 

Gas Mitigation. Sustainability, 8(7), p. 617. 

Meyer, A.K.P., Ehimen, E.A. & Holm-Nielsen, J.B. (2017). Future European biogas: Animal manure, 
straw and grass potentials for a sustainable European biogas production. Biomass and 

Bioenergy. 

Miron, J., Ben-Ghedalia, D. & Morrison, M. (2001). Invited review: adhesion mechanisms of rumen 
cellulolytic bacteria. J Dairy Sci, 84(6), pp. 1294-1309. 

Moestedt, J., Muller, B., Westerholm, M. & Schnurer, A. (2016). Ammonia threshold for inhibition of 
anaerobic digestion of thin stillage and the importance of organic loading rate. Microb 

Biotechnol, 9(2), pp. 180-94. 

Moestedt, J., Nordell, E. & Schnürer, A. (2014). Comparison of operating strategies for increased 
biogas production from thin stillage. Journal of Biotechnology, 175, pp. 22-30. 

Moestedt, J., Paledal, S.N., Schnurer, A. & Nordell, E. (2013). Biogas Production from Thin Stillage on 

an Industrial Scale-Experience and Optimisation. Energies, 6(11), pp. 5642-5655. 
Möller, K. & Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and 

crop growth: a review. Engineering in Life Sciences, 12(3), pp. 242-257. 

Monlau, F., Barakat, A., Trably, E., Dumas, C., Steyer, J.-P. & Carrère, H. (2013). Lignocellulosic 
Materials Into Biohydrogen and Biomethane: Impact of Structural Features and 

Pretreatment. Critical Reviews in Environmental Science and Technology, 43(3), pp. 260-

322. 
Morozova, O. & Marra, M.A. (2008). Applications of next-generation sequencing technologies in 

functional genomics. Genomics, 92(5), pp. 255-64. 

Morrison, M., Pope, P.B., Denman, S.E. & McSweeney, C.S. (2009a). Plant biomass degradation by gut 
microbiomes: more of the same or something new? Curr Opin Biotechnol, 20(3), pp. 358-63. 

Morrison, M., Pope, P.B., Denman, S.E. & McSweeney, C.S. (2009b). Plant biomass degradation by 

gut microbiomes: more of the same or something new? Curr Opin Biotechnol, 20(3), pp. 
358-363. 



60 

 

Moset, V., Poulsen, M., Wahid, R., Højberg, O. & Møller, H.B. (2015). Mesophilic versus thermophilic 

anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microbial 
Biotechnology, 8(5), pp. 787-800. 

Mulat, D.G. & Horn, S.J. (2018). Biogas Production from Lignin via Anaerobic Digestion. In: Lignin 

Valorization, pp. 391-412. 
Mulat, D.G., Jacobi, H.F., Feilberg, A., Adamsen, A.P.S., Richnow, H.-H. & Nikolausz, M. (2016). 

Changing feeding regimes to demonstrate flexible biogas production: effects on process 

performance, microbial community structure, and methanogenesis pathways. Appl Environ 
Microbiol, 82(2), pp. 438-449. 

Müller, B., Sun, L., Westerholm, M. & Schnürer, A. (2016). Bacterial community composition and fhs 

profiles of low-and high-ammonia biogas digesters reveal novel syntrophic acetate-oxidising 
bacteria. Biotechnol Biofuels, 9(1), p. 1. 

Mullings, R. & Parish, J. (1984). Mesophilic aerobic Gram negative cellulose degrading bacteria from 

aquatic habitats and soils. Journal of Applied Bacteriology, 57(3), pp. 455-468. 
Neshat, S.A., Mohammadi, M., Najafpour, G.D. & Lahijani, P. (2017). Anaerobic co-digestion of 

animal manures and lignocellulosic residues as a potent approach for sustainable biogas 

production. Renewable and Sustainable Energy Reviews, 79, pp. 308-322. 
Nges, I.A., Escobar, F., Fu, X. & Bjornsson, L. (2012). Benefits of supplementing an industrial waste 

anaerobic digester with energy crops for increased biogas production. Waste Manag, 32(1), 

pp. 53-9. 
Nizami, A.-S. & Murphy, J.D. (2010). What type of digester configurations should be employed to 

produce biomethane from grass silage? Renewable and Sustainable Energy Reviews, 14(6), 

pp. 1558-1568. 
Noike, T., Endo, G., Chang, J.E., Yaguchi, J.I. & Matsumoto, J.I. (1985). Characteristics of 

carbohydrate degradation and the rate‐limiting step in anaerobic digestion. Biotechnol 

Bioeng, 27(10), pp. 1482-1489. 
Orpin, C.G. (1975). Studies on the Rumen Flagellate Neocallimastix frontalis. Microbiology, 91(2), pp. 

249-262. 

Pap, B. & Maróti, G. (2016). Diversity of Microbial Communities in Biogas Reactors. Current 
Biochemical Engineering, 3(3), pp. 177-187. 

Parawira, W., Read, J.S., Mattiasson, B. & Björnsson, L. (2008). Energy production from agricultural 

residues: High methane yields in pilot-scale two-stage anaerobic digestion. Biomass and 
Bioenergy, 32(1), pp. 44-50. 

Pechtl, A., Rückert, C., Maus, I., Koeck, D.E., Trushina, N., Kornberger, P., Schwarz, W.H., Schlüter, 

A., Liebl, W. & Zverlov, V.V. (2018). Complete Genome Sequence of the Novel 
Cellulolytic, Anaerobic, Thermophilic Bacterium <em>Herbivorax saccincola</em> Type 

Strain GGR1, Isolated from a Lab Scale Biogas Reactor as Established by Illumina and 

Nanopore MinION Sequencing. Genome Announcements, 6(6). 
Pereyra, L.P., Hiibel, S.R., Prieto Riquelme, M.V., Reardon, K.F. & Pruden, A. (2010). Detection and 

quantification of functional genes of cellulose- degrading, fermentative, and sulfate-reducing 
bacteria and methanogenic archaea. Appl Environ Microbiol, 76(7), pp. 2192-202. 

Perrotta, A.R., Kumaraswamy, R., Bastidas-Oyanedel, J.R., Alm, E.J. & Rodríguez, J. (2017). Inoculum 

composition determines microbial community and function in an anaerobic sequential batch 
reactor. PLoS One, 12(2), p. e0171369. 

Piao, Z.H., Lee, J. & Kim, J.Y. (2018). Effect of substrate feeding frequencies on the methane 

production and microbial communities of laboratory-scale anaerobic digestion reactors. 
Journal of Material Cycles and Waste Management, 20(1), pp. 147-154. 

Pore, S.D., Shetty, D., Arora, P., Maheshwari, S. & Dhakephalkar, P.K. (2016). Metagenome changes 

in the biogas producing community during anaerobic digestion of rice straw. Bioresource 
Technology, 213, pp. 50-53. 

Poszytek, K., Ciezkowska, M., Sklodowska, A. & Drewniak, L. (2016). Microbial Consortium with 

High Cellulolytic Activity (MCHCA) for enhanced biogas production. Frontiers in 
Microbiology, 7. 

Prince, A.L., Antony, K.M., Ma, J. & Aagaard, K.M. (2014). The microbiome and development: a 

mother's perspective. Semin Reprod Med, 32(1), pp. 14-22. 
Prochazka, J., Mrazek, J., Strosova, L., Fliegerova, K., Zabranska, J. & Dohanyos, M. (2012). Enhanced 

biogas yield from energy crops with rumen anaerobic fungi. Engineering in Life Sciences, 

12(3), pp. 343-351. 



61 

 

Qiao, J.-T., Qiu, Y.-L., Yuan, X.-Z., Shi, X.-S., Xu, X.-H. & Guo, R.-B. (2013). Molecular 

characterization of bacterial and archaeal communities in a full-scale anaerobic reactor 
treating corn straw. Bioresource Technology, 143, pp. 512-518. 

Rademacher, A., Zakrzewski, M., Schlüter, A., Schönberg, M., Szczepanowski, R., Goesmann, A., 

Pühler, A. & Klocke, M. (2012). Characterization of microbial biofilms in a thermophilic 
biogas system by high-throughput metagenome sequencing. FEMS Microbiol Ecol, 79. 

Rajendran, K., Aslanzadeh, S. & Taherzadeh, M.J. (2012). Household biogas digesters—A review. 

Energies, 5(8), pp. 2911-2942. 
Ramos, C.G., Grilo, A.M., Sousa, S.A., Barbosa, M.L., Nadais, H. & Leitao, J.H. (2010). A new 

methodology combining PCR, cloning, and sequencing of clones discriminated by RFLP for 

the study of microbial populations: application to an UASB reactor sample. Appl Microbiol 
Biotechnol, 85(3), pp. 801-6. 

Ransom-Jones, E., Jones, D.L., McCarthy, A.J. & McDonald, J.E. (2012). The Fibrobacteres: an 

Important Phylum of Cellulose-Degrading Bacteria. Microbial Ecology, 63(2), pp. 267-281. 
Raposo, F., De la Rubia, M.A., Fernández-Cegrí, V. & Borja, R. (2012). Anaerobic digestion of solid 

organic substrates in batch mode: An overview relating to methane yields and experimental 

procedures. Renewable and Sustainable Energy Reviews, 16(1), pp. 861-877. 
Rico, C., Muñoz, N. & Rico, J.L. (2015). Anaerobic co-digestion of cheese whey and the screened 

liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits 

in co-substrate ratios and organic loading rate. Bioresource Technology, 189, pp. 327-333. 
Risberg, K., Sun, L., Leven, L., Horn, S.J. & Schnurer, A. (2013). Biogas production from wheat straw 

and manure - Impact of pretreatment and process operating parameters. Bioresource 

Technology, 149, pp. 232-237. 
Rui, J., Li, J., Zhang, S., Yan, X., Wang, Y. & Li, X. (2015). The core populations and co-occurrence 

patterns of prokaryotic communities in household biogas digesters. Biotechnol Biofuels, 

8(1), p. 158. 
Ruile, S., Schmitz, S., Mönch-Tegeder, M. & Oechsner, H. (2015). Degradation efficiency of 

agricultural biogas plants – A full-scale study. Bioresource Technology, 178, pp. 341-349. 

Saini, A., Aggarwal, N.K. & Yadav, A. (2017). Isolation and Screening of Cellulose Hydrolyzing 
Bacteria from Different Ecological Niches. 

Satpathy, P., Steinigeweg, S., Cypionka, H. & Engelen, B. (2016). Different substrates and starter 

inocula govern microbial community structures in biogas reactors. Environ Technol, 37(11), 
pp. 1441-50. 

Sawatdeenarunat, C., Surendra, K.C., Takara, D., Oechsner, H. & Khanal, S.K. (2015). Anaerobic 

digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology, 
178, pp. 178-186. 

Scarlat, N., Dallemand, J.-F. & Fahl, F. (2018). Biogas: Developments and perspectives in Europe. 

Renewable Energy, 129, pp. 457-472. 
Schnürer, A. (2016). Biogas Production: Microbiology and Technology. In: Hatti-Kaul, R., Mamo, G. 

& Mattiasson, B. (eds) Anaerobes in Biotechnology. Cham: Springer International 
Publishing, pp. 195-234. 

Schnürer, A., Bohn, I. & Moestedt, J. (2017). Protocol for Start-Up and Operation of CSTR Biogas 

Processes. In: McGenity, T.J., Timmis, K.N. & Nogales, B. (eds) Hydrocarbon and Lipid 
Microbiology Protocols: Bioproducts, Biofuels, Biocatalysts and Facilitating Tools. Berlin, 

Heidelberg: Springer Berlin Heidelberg, pp. 171-200. 

Schnürer, A. & Jarvis, Å. (2018). Microbiology of the biogas process. 
Schnürer, A., Zellner, G. & Svensson, B.H. (1999). Mesophilic syntrophic acetate oxidation during 

methane formation in biogas reactors. FEMS Microbiol Ecol, 29. 

Schwarz, W. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol 
Biotechnol, 56(5), pp. 634-649. 

Shi, X.-S., Dong, J.-J., Yu, J.-H., Yin, H., Hu, S.-M., Huang, S.-X. & Yuan, X.-Z. (2017). Effect of 

Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous 
Continuous Stirred-Tank Reactors. Biomed Res Int, 2017. 

Shoseyov, O., Shani, Z. & Levy, I. (2006). Carbohydrate binding modules: biochemical properties and 

novel applications. Microbiol Mol Biol Rev, 70(2), pp. 283-295. 
Sosnowski, P., Wieczorek, A. & Ledakowicz, S. (2003). Anaerobic co-digestion of sewage sludge and 

organic fraction of municipal solid wastes. Advances in Environmental Research, 7(3), pp. 

609-616. 



62 

 

Speda, J., Johansson, M.A., Carlsson, U. & Karlsson, M. (2017a). Assessment of sample preparation 

methods for metaproteomics of extracellular proteins. Anal Biochem, 516, pp. 23-36. 
Speda, J., Jonsson, B.-H., Carlsson, U. & Karlsson, M. (2017b). Metaproteomics-guided selection of 

targeted enzymes for bioprospecting of mixed microbial communities. Biotechnol Biofuels, 

10(1), p. 128. 
Stambasky, J., Pflüger, S., Deremince, B., Scheidl, S., de la Vega, N. & Conton, M. (2016). Annual 

Statistical Report of the European Biogas Association. Brussels: European Biogas 

Association. 
Sun, L. (2015). Biogas production from lignocellulosic materials. 

Sun, L., Liu, T., Müller, B. & Schnürer, A. (2016). The microbial community structure in industrial 

biogas plants influences the degradation rate of straw and cellulose in batch tests. Biotechnol 
Biofuels, 9(1), pp. 1-20. 

Sun, L., Müller, B. & Schnürer, A. (2013). Biogas production from wheat straw: community structure 

of cellulose-degrading bacteria. Energy, Sustainability and Society, 3(1), pp. 1-11. 
Sun, L., Pope, P.B., Eijsink, V.G.H. & Schnürer, A. (2015). Characterization of microbial community 

structure during continuous anaerobic digestion of straw and cow manure. Microbial 

Biotechnology, 8(5), pp. 815-827. 
Sundberg, C., Al-Soud, W.A., Larsson, M., Alm, E., Yekta, S.S., Svensson, B.H., Sørensen, S.J. & 

Karlsson, A. (2013). 454 pyrosequencing analyses of bacterial and archaeal richness in 21 

full-scale biogas digesters. FEMS Microbiol Ecol, 85(3), pp. 612-626. 
Taherzadeh, M.J. & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and 

biogas production: a review. International journal of molecular sciences, 9(9), pp. 1621-

1651. 
Theuerl, S., Klang, J., Heiermann, M. & De Vrieze, J. (2018). Marker microbiome clusters are 

determined by operational parameters and specific key taxa combinations in anaerobic 

digestion. Bioresource Technology, 263, pp. 128-135. 
Tomme, P., Warren, R.A.J. & Gilkes, N.R. (1995). Cellulose Hydrolysis by Bacteria and Fungi. In: 

Poole, R.K. (ed. Advances in Microbial Physiology37) Academic Press, pp. 1-81. 

Tsapekos, P., Kougias, P.G., Vasileiou, S.A., Treu, L., Campanaro, S., Lyberatos, G. & Angelidaki, I. 
(2017). Bioaugmentation with hydrolytic microbes to improve the anaerobic 

biodegradability of lignocellulosic agricultural residues. Bioresource Technology, 234, pp. 

350-359. 
Tsavkelova, E.A. & Netrusov, A.I. (2012). Biogas production from cellulose-containing substrates: A 

review. Applied Biochemistry and Microbiology, 48(5), pp. 421-433. 

Usack, J.G., Spirito, C.M. & Angenent, L.T. (2012). Continuously-stirred anaerobic digester to convert 
organic wastes into biogas: system setup and basic operation. J Vis Exp(65), p. e3978. 

Vaaje-Kolstad, G., Westereng, B., Horn, S.J., Liu, Z., Zhai, H., Sørlie, M. & Eijsink, V.G.H. (2010). An 

Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides. 
Science, 330(6001), p. 219. 

Vanwonterghem, I., Jensen, P.D., Dennis, P.G., Hugenholtz, P., Rabaey, K. & Tyson, G.W. (2014a). 
Deterministic processes guide long-term synchronised population dynamics in replicate 

anaerobic digesters. ISME J, 8, p. 2015. 

Vanwonterghem, I., Jensen, P.D., Ho, D.P., Batstone, D.J. & Tyson, G.W. (2014b). Linking microbial 
community structure, interactions and function in anaerobic digesters using new molecular 

techniques. Curr Opin Biotechnol, 27, pp. 55-64. 

Vanwonterghem, I., Jensen, P.D., Rabaey, K. & Tyson, G.W. (2016). Genome‐centric resolution of 
microbial diversity, metabolism and interactions in anaerobic digestion. Environmental 

Microbiology, 18(9), pp. 3144-3158. 

Vasco-Correa, J., Khanal, S., Manandhar, A. & Shah, A. (2018). Anaerobic digestion for bioenergy 
production: Global status, environmental and techno-economic implications, and 

government policies. Bioresource Technology, 247, pp. 1015-1026. 

Veeken, A. & Hamelers, B. (1999). Effect of temperature on hydrolysis rates of selected biowaste 
components. Bioresource Technology, 69(3), pp. 249-254. 

Viikari, L., Suurnäkki, A., Grönqvist, S., Raaska, L. & Ragauskas, A. (2009). Forest Products: 

Biotechnology in Pulp and Paper Processing. In: Schaechter, M. (ed. Encyclopedia of 
Microbiology (Third Edition). Oxford: Academic Press, pp. 80-94. 

Wang, M., Ahrne, S., Antonsson, M. & Molin, G. (2004). T-RFLP combined with principal component 

analysis and 16S rRNA gene sequencing: an effective strategy for comparison of fecal 
microbiota in infants of different ages. J Microbiol Methods, 59(1), pp. 53-69. 



63 

 

Wang, M., Lai, G.-L., Nie, Y., Geng, S., Liu, L., Zhu, B., Shi, Z. & Wu, X.-L. (2015). Synergistic 

function of four novel thermostable glycoside hydrolases from a long-term enriched 
thermophilic methanogenic digester. Frontiers in Microbiology, 6, p. 509. 

Ward, A.J., Hobbs, P.J., Holliman, P.J. & Jones, D.L. (2008). Optimisation of the anaerobic digestion of 

agricultural resources. Bioresource Technology, 99(17), pp. 7928-7940. 
Watanabe, R., Nie, Y., Takahashi, S., Wakahara, S. & Li, Y.-Y. (2016). Efficient performance and the 

microbial community changes of submerged anaerobic membrane bioreactor in treatment of 

sewage containing cellulose suspended solid at 25° C. Bioresource Technology, 216, pp. 
128-134. 

Wei, Y., Zhou, H., Zhang, J., Zhang, L., Geng, A., Liu, F., Zhao, G., Wang, S., Zhou, Z. & Yan, X. 

(2015). Insight into dominant cellulolytic bacteria from two biogas digesters and their 
glycoside hydrolase genes. PLoS One, 10(6), p. e0129921. 

Weiland, P. (2010). Biogas production: current state and perspectives. Appl Microbiol Biotechnol, 

85(4), pp. 849-860. 
Westerholm, M., Hansson, M. & Schnurer, A. (2012). Improved biogas production from whole stillage 

by co-digestion with cattle manure. Bioresour Technol, 114, pp. 314-9. 

Westerholm, M., Isaksson, S., Karlsson Lindsjö, O. & Schnürer, A. (2018). Microbial community 
adaptability to altered temperature conditions determines the potential for process 

optimisation in biogas production. Applied Energy, 226, pp. 838-848. 

Westerholm, M., Isaksson, S., Sun, L. & Schnürer, A. (2017). Microbial Community Ability to Adapt to 
Altered Temperature Conditions Influences Operating Stability in Anaerobic Digestion. 

Energy Procedia, 105, pp. 895-900. 

Westerholm, M., Moestedt, J. & Schnürer, A. (2016). Biogas production through syntrophic acetate 
oxidation and deliberate operating strategies for improved digester performance. Applied 

Energy, 179, pp. 124-135. 

Westerholm, M., Müller, B., Isaksson, S. & Schnürer, A. (2015). Trace element and temperature effects 
on microbial communities and links to biogas digester performance at high ammonia levels. 

Biotechnol Biofuels, 8(1), p. 154. 

Westerholm, M., Roos, S. & Schnürer, A. (2010). Syntrophaceticus schinkii gen. nov., sp. nov., an 
anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic 

filter. FEMS Microbiol Lett, 309(1), pp. 100-104. 

Xia, Y., Ju, F., Fang, H.H. & Zhang, T. (2013). Mining of novel thermo-stable cellulolytic genes from a 
thermophilic cellulose-degrading consortium by metagenomics. PLoS One, 8(1), p. e53779. 

Yan, L., Gao, Y., Wang, Y., Liu, Q., Sun, Z., Fu, B., Wen, X., Cui, Z. & Wang, W. (2012). Diversity of 

a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of 
biogas production. Bioresource Technology, 111, pp. 49-54. 

Ye, R., Jin, Q., Bohannan, B., Keller, J.K. & Bridgham, S.D. (2014). Homoacetogenesis: A potentially 

underappreciated carbon pathway in peatlands. Soil Biology and Biochemistry, 68, pp. 385-
391. 

Yilmaz, S. & Singh, A.K. (2012). Single cell genome sequencing. Curr Opin Biotechnol, 23(3), pp. 
437-443. 

Young, D., Dollhofer, V., Callaghan, T.M., Reitberger, S., Lebuhn, M. & Benz, J.P. (2018). Isolation, 

identification and characterization of lignocellulolytic aerobic and anaerobic fungi in one- 
and two-phase biogas plants. Bioresource Technology, 268, pp. 470-479. 

Yu, Q., Tian, Z., Liu, J., Zhou, J., Yan, Z., Yong, X., Jia, H., Wu, X. & Wei, P. (2018). Biogas 

Production and Microbial Community Dynamics during the Anaerobic Digestion of Rice 
Straw at 39–50 °C: A Pilot Study. Energy & Fuels, 32(4), pp. 5157-5163. 

Zamorska-Wojdyła, D., Gaj, K., Hołtra, A. & Sitarska, M. (2012). Quality Evaluation of Biogas and 

Selected Methods of its Analysis. Ecological Chemistry and Engineering S, 19(1), pp. 77-87. 
Zhang, T., Liu, L., Song, Z., Ren, G., Feng, Y., Han, X. & Yang, G. (2013). Biogas production by co-

digestion of goat manure with three crop residues. PLoS One, 8(6), p. e66845. 

Zheng, Z., Liu, J., Yuan, X., Wang, X., Zhu, W., Yang, F. & Cui, Z. (2015). Effect of dairy manure to 
switchgrass co-digestion ratio on methane production and the bacterial community in batch 

anaerobic digestion. Applied Energy, 151, pp. 249-257. 

Zhou, J., Yang, J., Yu, Q., Yong, X., Xie, X., Zhang, L., Wei, P. & Jia, H. (2017). Different organic 
loading rates on the biogas production during the anaerobic digestion of rice straw: A pilot 

study. Bioresource Technology, 244, pp. 865-871. 



64 

 

Ziels, R.M., Beck, D.A.C. & Stensel, H.D. (2017). Long-chain fatty acid feeding frequency in anaerobic 

codigestion impacts syntrophic community structure and biokinetics. Water Res, 117, pp. 
218-229. 

Ziels, R.M., Sousa, D.Z., Stensel, H.D. & Beck, D.A.C. (2018). DNA-SIP based genome-centric 

metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic 
digesters with different feeding frequencies. ISME J, 12(1), pp. 112-123. 

Zinder, S.H. & Koch, M. (1984). Non-Aceticlastic Methanogenesis from Acetate - Acetate Oxidation 

by a Thermophilic Syntrophic Coculture. Archives of Microbiology, 138(3), pp. 263-272. 

 

  



65 

 

 

The development of the oil industry has led to a rapid rise in the global 

economy in the last century. However, fossil fuel is a limited and non-

sustainable energy resource. It is believed that, if no alternatives are developed 

in the future, energy constraints on the international community will become 

the main bottleneck in economic development. In addition, emissions of 

greenhouse gases (e.g. fossil fuel-derived carbon dioxide) have become a 

global concern, with about 88% of global energy consumption originating from 

fossil fuels. To overcome the environmental challenges and the dependence on 

fossil fuel, governments world-wide have formulated various policies to 

encourage the use of renewable energy.  

Against this background, anaerobic digestion technology is highly 

interesting. In this process, various types of organic materials can be degraded 

under anaerobic conditions (without oxygen) into the end-product biogas, a 

renewable energy source. Anaerobic digestion is a multi-functional technology 

and it can be used simultaneously for waste management, production of 

renewable energy and production of an organic fertiliser. In addition, the 

biogas process can be implemented at small or large scale, which is important 

when designing flexible and sustainable energy solutions in both industrialised 

and developing countries. Materials that can be used for biogas production 

include various types of waste products, such as manure, straw, municipal 

wastewater, food waste etc., and dedicated energy crops. By controlled use of 

wastes in a biogas process, rather than dumping household waste in landfill or 

storing manure in open tanks, it is possible to reduce the volume of unwanted 

wastes and also decrease emissions of carbon dioxide, methane and other 

greenhouse gases. The biogas produced, containing the energy carrier methane, 

can be used for production of heat, electricity or vehicle fuel after upgrading 

(removal of carbon dioxide and trace gases). The residues left after biogas 

production are rich in plant nutrients and can be used as a fertiliser in crop 
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production, replacing fossil energy-requiring mineral fertilisers and enabling 

recycling of nutrients between urban and rural areas. 

Microorganisms are essential for degrading organic materials to biogas, in a 

process that proceeds through various anaerobic digestion pathways and 

requires the combined activity of several groups of microorganisms. To obtain 

a stable biogas process, all these microorganisms must work in a synchronised 

manner.  

Among the organic materials that can be used for biogas production, 

lignocellulosic materials, especially agriculture residues such as animal 

manure, straw, rice husks, corn stalks etc. are of great interest due to their high 

abundance world-wide. However, when lignocellulosic materials (including 

agriculture residues) are used for biogas production, the process efficiency is 

limited, due to the low nutrient content of these materials and the highly 

recalcitrant structure of their plant cell walls hindering microbial degradation. 

Thus, to achieve higher degradation efficiency of lignocellulosic materials for 

biogas production, a better understanding of the lignocellulose degraders (i.e. 

lignocellulolytic microorganisms) is needed. 

This thesis examined possible lignocellulose degraders and studied the 

composition of their community. It also investigated possible links between 

changes in microbe community structure and environmental factors within the 

anaerobic reactor (e.g. process parameters, feedstock composition and feeding 

strategy). Different molecular methods (analysing DNA and proteins) for 

exploring the microbial communities were discussed, with the aim of building 

an appropriate pipeline for in-depth study of the lignocellulose degraders in 

biogas processes. 
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Utvecklingen av oljeindustrin har lett till en snabb ökning av världsekonomin 

under det senaste århundradet. Men fossilt bränsle är en begränsad och icke-

hållbar energiresurs och användningen leder dessutom till utsläpp av 

växthusgaser. Fossila bränslen står för ca 88% av den globala 

energiförbrukningen. För att övervinna miljöutmaningarna och beroendet av 

fossila bränslen har regeringar över hela världen formulerat olika strategier för 

att uppmuntra användningen av förnybar energi. 

Mot denna bakgrund är anaerob (syrefri) rötning en mycket intressant 

teknik. I denna process kan olika typer av organiska material brytas ned av 

olika mikroorganismer till slutprodukten biogas, en förnybar energikälla. 

Anaerob nedbrytning är en multifunktionell teknik som kan användas för både 

behandling av avfall och produktion av förnybar energi och av organiskt 

gödselmedel. Dessutom kan systemet sättas upp både i liten eller stor skala, 

vilket är viktigt vid utformningen av flexibla och hållbara energilösningar i 

både industri- och utvecklingsländer. Material som kan användas för 

biogasproduktion inkluderar olika typer av avfall, såsom gödsel, halm, 

kommunalt avloppsvatten, matavfall m.m. och dedikerade energigrödor. 

Genom kontrollerad användning av avfall i en biogasprocess, snarare än 

deponering på soptipp eller lagring av gödsel i öppna tankar, är det möjligt att 

minska volymen av oönskat avfall och samtidigt minska även utsläppen av 

koldioxid, metan och andra växthusgaser. Den biogas som produceras kan 

sedan användas för produktion av värme, el eller fordonsbränsle efter 

uppgradering (avlägsnande av koldioxid och spårgas). Resterna som blir kvar 

efter biogasproduktionen är rik på växtnäringsämnen och kan användas som 

gödningsmedel i jordbruket och då ersätta fossila energikrävande 

mineralgödselmedel. Genom att använda rötresten som gödningsmedel 

möjliggörs också kretslopp av näringsämnen mellan städer och 

landsbygdsområden. 

Populärvetenskaplig sammanfattning 
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Olika mikroorganismer är avgörande för att anaerob nedbrytning av 

organiskt material till biogas ska fungera. Den mikrobiella processen 

fortskrider genom flera olika nedbrytningsvägar och kräver också aktivitet av 

flera olika grupper av mikroorganismer. För att erhålla en stabil biogasprocess 

måste alla dessa mikroorganismer också fungera på ett synkroniserat sätt. 

Bland de organiska material som kan användas för biogasproduktion är olika 

jordbruksrester, som djurgödsel, halm, blast etc. av stort intresse på grund av 

att dessa finns i stor mängd. Karaktäristiskt för detta material är att det ofta 

innehåller mycket lignocellulosa, vilket har ett lågt näringsinnehåll och en 

komplicerad struktur, något som hindrar mikrobiell nedbrytning. För att uppnå 

högre nedbrytningseffektivitet och biogasproduktion av denna typ av material 

behövs en bättre förståelse av de bakterier som bryter ner lignocellulosa i 

biogasprocesser. 

Denna avhandling undersökte vilka bakterier som är närvarande i olika 

biogasprocesser och som potentiellt kan vara inblandade i nedbrytningen av 

lignocellulosa. Den utredde också möjliga kopplingar mellan 

sammansättningen på mikroorganismssamhället och driften av 

biogasprocessen. Frågor som belystes var till exempel; kommer 

sammansättningen av det cellulosanedbrytande bakteriesamhället påverkas av 

vilket material som bryts ner i biogasreaktorn? Är vissa bakterier viktigare än 

andra för att få en bra nedbrytning? För att studera mikroorganismerna i olika 

biogasprocesser användes olika s.k. molekylära metoder (analys av DNA). Det 

övergripande syftet med studierna var dels att hitta metoder att studera 

specifikt de bakterier som bryter ner lignocellulosa i biogasprocesser och dels 

att förstå vilka som är mest kritiska för att få en effektiv process samt vilka 

parametrar som påverkar dem. 
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