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Abstract 
 

1. Plant communities are attracting increased interest in connection with forest and landscape 
inventories due to society’s interest in ecosystem services. However, the acquisition of accurate 
information about plant communities poses several methodological challenges. Here we 
investigate the use of presence-absence sampling with the aim to monitor state and change of 
plant density. We study what plot sizes are informative, i.e. the estimators should have as high 
precision as possible.  

2. Plant occurrences were modeled through different Poisson processes and tests were developed 
for assessing the plausibility of the model assumptions. Optimum plot sizes were determined by 
minimizing the variance of the estimators. While state estimators of similar kind as ours have 
been proposed in previous studies, our tests and change estimation procedures are new.  

3. We found that the most informative plot size for state estimation is 1.6 divided by the plant 
density, i.e. if the true density is 1 plant per square meter the optimum plot size is 1.6 square 
meters. This is in accordance with previous findings. More importantly, the most informative plot 
size for change estimation was smaller and depended on the change patterns. We provide 
theoretical results as well as some empirical results based on data from the Swedish National 
Forest Inventory.  

4. Use of too small or too large plots resulted in poor precision of the density (and density change) 
estimators. As a consequence, a range of different plot sizes would be required for jointly 
monitoring both common and rare plants using presence-absence sampling in monitoring 
programmes.     

Keywords: vegetation survey, sample plots, optimum plot size, plant monitoring, vegetation change, 
Poisson model, point pattern, density, intensity 

 

 

Introduction 

The demand for accurate information about ecosystem state and change is increasing, not least due to 
the reporting requirements from international agreements. For example, the United Nations Framework 
Convention on Climate Change (UNFCCC) and its Kyoto Protocol require regular reporting of greenhouse 
gas emissions and removals from different land use categories (IPCC 2003). Further, the Convention on 
Biological Diversity (Secretariat of the CBD, 2005) has the ambition to mainstream the concept of 
ecosystem services into the management of biological natural resources and programs for mapping and 
monitoring ecosystem services have been launched.    

In perspective of the increasing and changing reporting requirements, existing monitoring programmes 
may need to be adapted or reoriented in order to deliver the information required (e.g., Cienciala et al. 
2008; Fridman et al. 2014). One important issue concerns the state and change of plant species and 
communities. For example, national forest inventories (Tomppo et al. 2010) have traditionally focused on 
properties of tree populations. However, non-tree vegetation such as shrubs and forest floor species is 
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obviously important for several ecosystem services, like forage for ungulates, biodiversity, soil protection, 
and commodities such as berries (e.g., Gamfeldt et al. 2013). 

The inventory of plant communities poses several challenges (e.g. Greig-Smith 1983; Bonham 2013). 
Often, the individual plants cannot easily be counted or measured, since it may be difficult to determine 
the extent of an individual plant. Instead, inventories focus on vegetation cover, biomass, or proportion 
presences in sample plots (Greig-Smith 1983; Bråkenhielm and Liu 1995; Elzinga et al. 1998; Ringvall et al. 
2005; Godinez-Alvarez et al. 2009; Bonham 2013). Assessment of vegetation cover is a normal practice 
since this measure is intuitively straightforward to interpret. Normally the survey protocols prescribe that 
cover should be assessed through visual inspection (e.g., Bråkenhielm and Liu 1995; Bonham 2013). One 
or more surveyors assess the plots and assign cover percentages for the target species or species groups. 
Such procedures are quick and thus cheap, and they work fairly well for a wide range of plot sizes and 
shapes. A disadvantage is that data from this type of assessment typically contain both systematic and 
random measurement errors, due to the subjective judgments (Milberg et al. 2008; Bergstedt et al. 2009; 
Morrison 2016). Thus, in large-scale monitoring programmes the surveyors are often trained in order to 
harmonize the assessments and mitigate assessment errors (e.g., Gallegos-Torell and Glimskär 2009). 
Despite the potential problems, cover assessment through visual inspection is an important method in 
large-scale vegetation surveys (e.g., Milberg et al. 2008; Ståhl et al. 2011). 

Point-frequency methods (e.g., Greig-Smith 1983; Bråkenhielm and Liu 1995; Bonham 2013) can be used 
in order to avoid some of the subjectivity linked to visual cover assessments. With such methods, a needle 
device (or similar) is located at random locations (often in grid patterns), and is vertically lowered into the 
vegetation until it either hits one or more layers of vegetation or a non-vegetated area. However, it is 
difficult to determine exactly where a sampling point is located, especially in multi-layered vegetation, as 
thus this approach remains partly subjective and systematic errors are sometimes observed. Further, 
statistically sound cover assessment through the point-frequency method requires large sample sizes and 
thus the method is expensive to apply. 

Presence-absence sampling means that registrations are made only in terms of whether or not a target 
species or group of species is present in a plot (e.g., Greig-Smith 1983; Elzinga et al. 1998; He and Reed 
2006; Bonham 2013). The method is simple to conduct, but the interpretation of results is difficult as it 
depends on plot size and species occurrence patterns. Further, subjective elements remain; some studies 
indicate that surveyors do not find all target species on a plot during operational surveys (e.g., Ringvall et 
al. 2005). However, especially when fairly small plots are used the method appears to be less prone to 
surveyor assessment errors compared to the cover assessment method (ibid.). Also, it is relatively cheap 
to conduct as it requires only the registration of presence or absence of the target species, or species 
group, on a plot. 

It can be anticipated that surveys of plant communities will become even more important in the future in 
connection with forest and landscape inventories, as a wider range of ecosystem services will be 
acknowledged and addressed by society. It is likely that presence-absence sampling will often be applied 
due to its simplicity and low cost. However, interest in changes typically is linked to changes in population 
density (number of plants per area unit), biomass, or cover, rather than presence proportions (e.g., He 
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and Reed 2006). Thus, inventory estimates based on presence-absence sampling need to be recalculated 
in order to be meaningfully interpreted. This can be achieved through modeling based on assumptions 
about the underlying random process that has generated the population and its change.  

A straightforward and commonly adopted assumption is a Poisson model (e.g., Bonham 2013), which 
stipulates a given plant density (typically called intensity in connection with the Poisson process) and 
entirely random locations of individuals. However, many species occur in more clustered patterns and 
thus other spatial processes have been explored. Use of the Bionomial distribution for the number of 
occurrences of species on plots is closely related to the Poisson model assumption. Using this assumption, 
Royle and Nichols (2003), He and Reed (2006), and Heywood and DeBacker (2007), have shown how 
occurrence frequencies can be recalculated to plant densities. He and Gaston (2000) used the negative 
binomial distribution for this recalculation. This distribution has advantages over the standard binomial 
distribution, since it can account for clustered occurrences of plants. However, some simplifying 
assumptions had to be applied in order to infer plant density from this distribution. As a further 
improvement, the Gamma-Poisson model was applied by Hwang and He (2011). 

Studies on optimal plot sizes for presence-absence surveys have been conducted by, e.g., Critchley and 
Poulton (1998) and Heywood and DeBacker (2007). However, as pointed out by Heywood and DeBacker 
(2007), in many cases informal reasoning rather than statistical analysis has been applied in the search for 
the best plot sizes (but see Bartlett (1935) for an exception).   

The objective of this study was to evaluate what sample plot sizes in presence-absence sampling are most 
informative when monitoring plant species (or groups of species) in case interest is linked to state and/or 
change in plant density.  By informative plot sizes we mean plot sizes from which state and change in 
frequency can be recalculated and expressed in terms of precise estimates of state and change in plant 
density. The focus of our study was change estimation, expanding on previous findings for the case of 
state estimation (Bartlett 1935). Although a simplification of reality (cf. Hwang and He 2011) the Poisson 
model was used as a basis for the modeling of plant distributions, since it remains as an important 
reference for spatial modeling of plant populations (Bonham 2013). 

 

Materials and Methods 

Theoretical background 

Data in the form of a set of points, irregularly distributed within a region, arise in many different contexts, 
e.g. the location of plants in a landscape. Such datasets are referred to as spatial point patterns; a (spatial) 
point process is a stochastic mechanism that generates a countable set of locations of points in the plane. 

A homogeneous Poisson point process Λ is characterized by the following two properties: 

1. Poisson distribution. The number of points of Λ in any finite region of area A follows a Poisson 
distribution with mean Aλ for some constant λ. 
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2. Independence. The numbers of points of Λ in n disjoint planar regions form n independent 
random variables, for arbitrary n. 

The number λ is known as the intensity of Λ, and equals the expected number of points to be found in a 
region of unit area. Although the term intensity typically is used in connection with studies using the 
Poisson process, in this article we will instead use the synonym term density since it is commonly used in 
vegetation ecology.  

Estimating population density 

The basis for our study was to link presence-absence registrations with plant density through 
homogeneous Poisson point process models of plant occurrence. We use n disjoint sample plots of size a 
within a large study area of size A. Under our Poisson model, the probability, p, that at least one plant will 
occur on a given plot is: 

𝑝𝑝 = 1 − 𝑒𝑒−𝑎𝑎𝑎𝑎.   (1) 

For a sample survey using n plots, p can be estimated as �̂�𝑝 = 𝑛𝑛−1 ∑ 𝐼𝐼𝑖𝑖𝑛𝑛
𝑖𝑖=1 , where Ii is an indicator variable 

that takes the value 1 if the species is present on plot i and 0 otherwise. Note that 𝐼𝐼1, … , 𝐼𝐼𝑛𝑛  may be 
regarded as n independent Bernoulli random variables with success probability p, and that �̂�𝑝  is the 
maximum likelihood estimator of p. We assume that a reference point, such as the plants’ attachment to 
the ground, is available for determining whether or not a plant individual (ramet) is located within a plot.  

Rearranging (1), we can estimate the plant density from the proportion plots with plant occurrences, i.e. 

�̂�𝜆 = − ln(1−𝑝𝑝�)
𝑎𝑎

,              (2) 

which may be regarded as the maximum likelihood estimator of λ. Since �̂�𝑝 and �̂�𝜆 are not linearly related, 
the estimator can be improved upon by noting that it will be slightly positively biased and thus the 
expectation of a second order Taylor linearization (plugging in the estimated proportion) may be used as 

an alternative estimator, i.e. �̂�𝜆alt = − ln(1−𝑝𝑝�)
𝑎𝑎

− 𝑉𝑉�(𝑝𝑝�)
2𝑎𝑎(1−𝑝𝑝�)2

, with 𝑉𝑉�(�̂�𝑝) = �̂�𝑝(1 − �̂�𝑝) 𝑛𝑛⁄ . Another option to 

reduce bias would be to utilize the corrected logarithmic transformation presented by Walter (1975, 1976) 
and Pettigrew et al. (1986). For simplicity, we use the non-corrected estimator (2) in the subsequent work. 

In order to evaluate what plot size is most informative, i.e. what plot size leads to the smallest variance of 
the estimator of λ, given the model assumptions, we minimize the variance of �̂�𝜆, for a given density 𝜆𝜆. The 
variance of the estimator (2) is obtained through Taylor linearization as: 

𝑉𝑉��̂�𝜆� = 1
𝑎𝑎2

1
(1−𝑝𝑝)2

𝑝𝑝(1−𝑝𝑝)
𝑛𝑛

= 1
𝑛𝑛𝑎𝑎2

𝑝𝑝
(1−𝑝𝑝) = 1

𝑛𝑛𝑎𝑎2
1−𝑒𝑒−𝑎𝑎𝑎𝑎

𝑒𝑒−𝑎𝑎𝑎𝑎
.   (3) 

If needed, a variance estimator can be obtained by plugging in the estimated proportions in the second 
last expression for the variance in (3). The optimum plot size can be found by evaluating a range of 
alternative plot sizes using (3) and identifying what plot size leads to minimum variance. Alternatively, we 
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differentiate 𝑉𝑉��̂�𝜆�, or ln𝑉𝑉��̂�𝜆�, with respect to a, set the derivative to zero, and solve the resulting 
equation. The derivative of ln𝑉𝑉��̂�𝜆� with respect to a is, after some simplifications,  

           𝜕𝜕 ln𝑉𝑉�𝑎𝑎
��

𝜕𝜕𝑎𝑎
= − 2

𝑎𝑎
+ 𝑎𝑎

1−𝑒𝑒−𝑎𝑎𝑎𝑎
.    (4) 

Setting the above derivative to zero leads to the recursion formula (𝑎𝑎𝜆𝜆)𝑖𝑖+1 = 2�1 − 𝑒𝑒−(𝑎𝑎𝑎𝑎)𝑖𝑖�, for which 
lim
𝑖𝑖→∞

(𝑎𝑎𝜆𝜆)𝑖𝑖 ≈ 1.5936. Here, i denotes the iteration step of the recursion.  Thus, for a given plant density, 

𝜆𝜆, the optimum plot size is given by  

𝑎𝑎 ≈ 1.5936
𝑎𝑎

,                                                         (5) 

and by (1) this corresponds to a probability of presence of about 0.8. Although derived in a slightly 
different manner, this result is identical to the result presented by Bartlett (1935). 

However, this result assumes that the Poisson model assumption is realistic. For this reason it is of interest 
to assess whether or not the Poisson assumption holds true, and thus a statistical test was developed and 
applied to our empirical data. The details of the development and application of this test are provided in 
Appendix 1. 

Change estimation 

In vegetation surveys, state estimation – as according to formula (2) – would often be of interest since it 
provides information about the density of different plant species. However, the interest in change 
estimation, i.e. whether or not the population is increasing or decreasing, typically is even larger. The 
choice of plot size is very important in this context as substantial changes in population density may not 
be detected if too large or too small plots are used. In the following sections we develop novel methods 
for determining informative plot sizes for change estimation.   

We address change estimation between two arbitrary time points, t2 and t1; the indices 2 and 1 are 
attached to the different parameters in order to distinguish between the two time points. Our objective 
is to estimate ∆ = 𝜆𝜆2 − 𝜆𝜆1, given a Poisson model assumption, using the estimator 
 

∆�= − ln(1−𝑝𝑝�2)
𝑎𝑎

+ ln(1−𝑝𝑝�1)
𝑎𝑎

.                                           (6) 

 
Like the state estimator, the change estimator can be slightly improved upon by applying any of the 
methods previously described; however, this is not pursued here, not least since any bias of the individual 
state estimates would tend to cancel in the change estimator. Similar to the state estimation case we wish 
to find the plot size that minimizes the variance of the change estimator. 
 
In case the homogeneous Poisson point processes at time point 2 and time point 1 are independent, 
utilizing the same number of plots and the same plot size (for simplicity), the variance of (6) follows 
straightforwardly from (3) as 
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𝑉𝑉�∆�� = 1
𝑛𝑛𝑎𝑎2

� 𝑝𝑝2
1−𝑝𝑝2

+ 𝑝𝑝1
1−𝑝𝑝1

� = 1
𝑛𝑛𝑎𝑎2

�𝑒𝑒
−𝑎𝑎𝑎𝑎1+𝑒𝑒−𝑎𝑎𝑎𝑎2−2𝑒𝑒−𝑎𝑎(𝑎𝑎1+𝑎𝑎2)

𝑒𝑒−𝑎𝑎(𝑎𝑎1+𝑎𝑎2) � .         (7) 

 
If ∆ = 𝜆𝜆2 − 𝜆𝜆1 = 0, then the optimum plot size, minimizing 𝑉𝑉�∆�� for a given value of 𝜆𝜆 = 𝜆𝜆1 = 𝜆𝜆2, is 
identical to the plot size (5) that minimizes the variance given in (3). 
 
However, typically the assumption of independence of the two Poisson point processes is not reasonable, 
especially when the time between the surveys is short in relation to the life length of individual plants, 
and we can elaborate on the theory as follows. Many biological processes involve mortality, and so-called 
thinned point processes provide a way of modeling the mortality of plants. The simplest form of thinning 
is π-thinning where each point (plant) in the point process is deleted with probability 1 − 𝜋𝜋  and the 
deletion is independent of the location of the point as well as the deletion or non-deletion of other points. 
If Λ is a homogeneous Poisson point process with density λ, then the 𝜋𝜋-thinned Λ is a homogeneous 
Poisson point process with density 𝜋𝜋λ.  

Poisson processes have a nice “superposition” property: The superposition (union) of independent 
Poisson processes is again a Poisson process, whose density is the sum of the densities of the individual 
processes (Cressie 1991). Thus, rather than assuming independent homogeneous Poisson point processes 
at time point 2 and time point 1, we make the following assumptions: At time point 1, the locations of 
plants follow a homogeneous Poisson point process Λ1 with density λ1. At time point 2, the locations of 
plants follow the superposition Λ2 of the independent processes 𝛬𝛬1∗  and 𝛬𝛬2∗ , where the former is a 𝜋𝜋-
thinning of Λ1 and the latter is a homogeneous Poisson point process of newly regenerated plants with 
density 𝜆𝜆2∗ . Thus, the density of Λ2 is 𝜆𝜆2 = 𝜋𝜋𝜆𝜆1 + 𝜆𝜆2∗ . If 𝜆𝜆2∗ = (1 − 𝜋𝜋)𝜆𝜆1 , then 𝜆𝜆1 = 𝜆𝜆2, i.e., the density is 
unchanged from time point 1 to 2. For notational convenience, we define 𝜆𝜆3 = (1 − 𝜋𝜋)𝜆𝜆1, which is the 
density of plants that have disappeared between the two time points. 
 
The parameters 𝜆𝜆1, 𝜆𝜆2 = 𝜋𝜋𝜆𝜆1 + 𝜆𝜆2∗ , and 𝜆𝜆3 = (1 − 𝜋𝜋)𝜆𝜆1 are unknown and need to be estimated from 
data. Assume that we have presence-absence data from n permanent field plots of size a, i.e., each of the 
n sample plots from time point 1 are revisited at time point 2. Following the assumptions provided above 
we obtain the following probabilities for individual permanent plots, 
 

𝜋𝜋00 = 𝑃𝑃(absence of plants at both time points) = 𝑒𝑒−𝑎𝑎(𝑎𝑎2+𝑎𝑎3),                            (8a) 
𝜋𝜋11 = 𝑃𝑃(presence of plants at both time points) = 1 − 𝑒𝑒−𝑎𝑎𝑎𝑎1 − 𝑒𝑒−𝑎𝑎𝑎𝑎2 + 𝑒𝑒−𝑎𝑎(𝑎𝑎2+𝑎𝑎3).            (8b) 
𝜋𝜋01 = 𝑃𝑃(absence at time point 1 and presence at time point 2) = 𝑒𝑒−𝑎𝑎𝑎𝑎1 − 𝑒𝑒−𝑎𝑎(𝑎𝑎2+𝑎𝑎3),         (8c) 
𝜋𝜋10 = 𝑃𝑃(presence at time point 1 and absence at time point 2) = 𝑒𝑒−𝑎𝑎𝑎𝑎2 − 𝑒𝑒−𝑎𝑎(𝑎𝑎2+𝑎𝑎3).         (8d) 

 
The details of the derivations are provided in Appendix 2.  
 
Let 𝝀𝝀 = (𝜆𝜆1,𝜆𝜆2,𝜆𝜆3)′ . Note that 𝜋𝜋𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 = 0, 1, which depend on the vector 𝝀𝝀 = (𝜆𝜆1,𝜆𝜆2,𝜆𝜆3)′ , may be 
regarded as the probabilities in the 𝑘𝑘 = 4 cells of a multinomial distribution. Assume that 𝑛𝑛𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑗𝑗 = 0, 1, 
are the observed frequencies in the 𝑘𝑘  cells of the multinomial distribution, e.g., 𝑛𝑛00  is the observed 
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frequency of sample plots with absence of plants at both time points. The likelihood equations, see e.g. 
Rao (1973, Section 5e.2), for this multinomial distribution can be written as 
 

∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖

𝜕𝜕𝜋𝜋𝑖𝑖𝑖𝑖
𝜕𝜕𝑎𝑎𝑟𝑟

1
𝑖𝑖=0 = 0,            𝑟𝑟 = 1, 2, 3.1

𝑖𝑖=0      (9) 

 
If 𝜆𝜆2 + 𝜆𝜆3 > 𝜆𝜆1 > 𝜆𝜆3 > 0, then by Rao (1973)1 there exists a consistent root 𝝀𝝀�  of the likelihood equations 
such that √𝑛𝑛�𝝀𝝀� − 𝝀𝝀� is asymptotically normal with (vector) mean zero and covariance matrix 𝐼𝐼(𝝀𝝀)−1 , 

where 𝐼𝐼(𝝀𝝀) =  �𝐼𝐼𝑖𝑖𝑖𝑖(𝝀𝝀)� is the 3 × 3 Fisher information matrix with elements 

 

𝐼𝐼𝑟𝑟𝑟𝑟(𝝀𝝀) = ∑ ∑ 1
𝜋𝜋𝑖𝑖𝑖𝑖

𝜕𝜕𝜋𝜋𝑖𝑖𝑖𝑖
𝜕𝜕𝑎𝑎𝑟𝑟

𝜕𝜕𝜋𝜋𝑖𝑖𝑖𝑖
𝜕𝜕𝑎𝑎𝑠𝑠

1
𝑖𝑖=0

1
𝑖𝑖=0       (10) 

 

Thus, the estimated difference, �̂�𝜆2 − �̂�𝜆1, is approximately normally distributed with mean 𝜆𝜆2 − 𝜆𝜆1and 
variance 
 

   1
𝑛𝑛

([𝐼𝐼(𝝀𝝀)−1]11 + [𝐼𝐼(𝝀𝝀)−1]22 − 2[𝐼𝐼(𝝀𝝀)−1]12),    (11) 

 
where [𝐼𝐼(𝝀𝝀)−1]𝑖𝑖𝑖𝑖  is the 𝑖𝑖𝑗𝑗th element of the inverse of 𝐼𝐼(𝝀𝝀), and the variance (11) can be consistently 
estimated by replacing the true unknown 𝝀𝝀 with 𝝀𝝀�. This result may be used for testing the hypothesis 
𝐻𝐻0: 𝜆𝜆1 = 𝜆𝜆2  vs. 𝐻𝐻1: 𝜆𝜆1 ≠ 𝜆𝜆2 , i.e., the null hypothesis that there is no density change against the 
alternative, i.e. a change. Alternatively, one may use a chi-square test or a likelihood ratio test. Under the 
null hypothesis, the chi-square test statistic and (minus) twice the logarithm of the likelihood ratio are 
approximately chi-square distributed (e.g., Rao 1973, Lehmann and Romano 2005). The usual rule of 
thumb is that the smallest estimated 𝑛𝑛𝑖𝑖𝑖𝑖𝜋𝜋𝑖𝑖𝑖𝑖 under the null hypothesis should be five or more for the tests 
to be valid (e.g., Sokal and Rohlf 1995). All three tests were evaluated on the empirical data and they were 
found to provide almost identical results. However, numerical results are provided only for the likelihood 
ratio test. 
 
For a given 𝝀𝝀, the optimum plot size a that minimizes the variance in (11) can be obtained using standard 
numerical optimization routines. For example, if there is no change in density and λ = λ1 = λ2, then the 
optimum plot size 𝑎𝑎 is 1.4771/𝜆𝜆, 1.2876/𝜆𝜆, and 1.1066/𝜆𝜆 for 𝜋𝜋 equal to 0.2, 0.5, and 0.8, respectively, 
and if 𝜋𝜋 is nearly 0, then the optimum plot size is nearly equal to the one given in (5). If instead 𝜋𝜋 is close 

                                                           
1 We have proved the aforementioned result by verifying that Rao’s (1973, Section 5e.2, Result iv) three conditions 
for asymptotic normality hold under our multinomial model. It is easy to see that Rao’s weak identifiability condition 
is fulfilled, and that the parametrizations (8a)-(8d) are smooth enough to have continuous first-order partial 
derivatives. Finally, by tedious calculations not presented here, we have shown that the Fisher information matrix is 
non-singular. 
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to 1, then the optimum plot size is approximately 1/𝜆𝜆. Thus, given that 𝜆𝜆 = 𝜆𝜆1 = 𝜆𝜆2 and that plants 
survive from time point 1 to time point 2 with a positive probability, the optimum plot size is smaller than 
the one given in (5). 

 
Evaluations 

We evaluated what plot sizes are most informative, i.e. lead to minimum variance of the estimators of 
density and density change, based on (i) hypothetical assumptions about the density of a plant species 
and its change between two time periods and (ii) data from the Swedish National Forest Inventory (NFI; 
Fridman et al. 2014), in order to provide empirical results.  

The NFI is a sparse sample plot inventory that every year covers the entire country with sample plots. It 
comprises both temporary and permanent plots; the permanent plots are revisited with a five year 
interval whereas the temporary plots are visited only once. Forest floor vegetation is assessed every 10 
years on permanent plots. At each permanent plot two circular 0.25 m2 subplots are laid out with a 4 m 
distance. On these plots the presence or absence of a predetermined set of species is registered. An 
overview of the species studied and the data is provided in Table 1. For purposes of comparison and for 
making the Poisson model assumption more plausible, we studied two separate regions (Figure 1) and 
used only plots from an intermediate forest age class (20-60 years at t1). (The NFI also registers plants on 
100 m2 plots (Fridman et al. 2014) but these data were not utilised in this study.)  

Empirical data were acquired for the years 2003-2004 (t1) and 2013-2014 (t2). The dataset is available at 
the Dryad digital repository (Ståhl et al. 2017). We estimated the density of the selected species at time 
point t1 and the change in density between t2 and t1. In addition, we estimated the variance of the 
estimators as well as what plot size would have minimized the variance of the estimators, assuming that 
the estimated densities corresponded to the true densities.  

The theory assumes that plant occurrences on a plot are registered whenever a predetermined refe-
rence point of a plant (such as its rooting) is located on the plot. Since NFI registrations of presences are 
made if any part of a plant is located on a plot we made a correction by adding an assumed average 
plant radius to the plot radius in the calculations. The assumed radius of a plant was set to 10 cm, except 
for the species Trientalis europaea where it was set to 3 cm. Statistical tests of the Poisson model 
assumption, following the theory presented in Appendix 1, were applied and reported (Table 2) as well 
as tests of significant changes in plant density between the two time points (Table 3). 
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Figure 1. A map of Sweden and the locations of the NFI regions 2 and 4, which were selected for the study 

 

Table 1. An overview of the species studied and the number of plots with recorded presence (P) and 
absence (A) in regions 2 and 4 and forest age class 21-60 years for the two time periods, t1 (2003-2004) 
and t2 (2013-2014). 

  Occurrence combination,t1 and  t2 

Species Region P/P P/A A/P A/A 

Vaccinium myrtillus (dwarf shrub) 2 166 6 22 26 
 4 104 7 28 66 

Deschampsia flexuosa (grass) 2 117 24 19 60 

 4 105 18 12 70 

Luzula pilosa (rush) 2 25 28 24 143 
 4 16 7 30 152 

Trientalis europaea (forb) 2 22 19 33 146 
 4 3 18 11 173 

Linnaea borealis (dwarf shrub) 2 25 12 39 144 
 4 2 1 5 197 
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Results 

In Figure 2, the most informative plot size for estimating population density, at different actual plant 
densities, are shown. The calculations were performed according to Eq 5. It can be observed that the 
optimum plot sizes vary considerably between different densities, according to a ≈ 1.5936/λ.  

 

Figure 2. The most informative plot size for different plant densities, 𝜆𝜆. (The area unit is arbitrary as long 
as the same unit is used for plot area and plant density.) 

In Figure 3, the most informative plot sizes for estimating population change are presented. The results 
are similar to the results in Figure 2, although it can be noted that the optimum plot sizes for estimating 
change are smaller than the optimum plot sizes for estimating state.  
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Figure 3. The most informative plot size for estimating change in population density, for a given density  
𝜆𝜆1 and three different values of 𝜋𝜋, where 𝜆𝜆2∗ = (1 − 𝜋𝜋)𝜆𝜆1, implying that 𝜆𝜆1 = 𝜆𝜆2. (The area unit is 
arbitrary as long as the same unit is used for plot area and plant density.) 

 

In Tables 2 and 3 the empirical results based on NFI data are presented. In Table 2 the estimated 
population density of the species, the most informative plot size for the species (assuming that the 
estimated density corresponds to the true density), and the p-value for the test of the Poisson model 
assumption are presented for different species and regions.  

It can be observed that only few species-region combinations passed the Poisson test. Further, for 
estimating current density the most informative plot sizes appear to be slightly larger than the plot size 
actually applied in the NFI. 

In Table 3 the changes between the two time points are presented. Note that in this table the p-value 
reports the probability of the null hypothesis, i.e. that there is no change in population density between 
the two time points.  
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Table 2. Estimated density �̂�𝜆 (plants per m2), estimated optimum plot size 𝑎𝑎� (𝑚𝑚2), and 𝑝𝑝-value of the 
Poisson test for five vascular plants in two regions. 

 
 

Species 

 

Region 

     

�̂�𝜆  

     

𝑎𝑎�  

  

𝑝𝑝-value 

Vaccinium myrtillus (dwarf shrub) 

 

  2 3.16  0.5 0.00 
  4 1.50  1.1 0.00 

Deschampsia flexuosa (grass) 
 

  2 1.61  1.0 0.00 
  4 1.40  1.1 0.00 

Luzula pilosa (rush) 
 

  2 0.31  5.1 0.16 
  4 0.34  4.7 0.02 

Trientalis europaea (forb) 
 

  2 0.62  2.6 0.00 
  4 0.13 12.1 0.41 

Linnaea borealis (dwarf shrub) 
 

  2 0.46  3.5 0.02 
  4 0.05 29.2 0.12 

 

 
Table 3. Estimated densities �̂�𝜆1, �̂�𝜆2 (plants per m2 at time points 1 and 2), estimated optimum plot size 𝑎𝑎� 
(𝑚𝑚2), and 𝑝𝑝-value of the likelihood ratio test for five vascular plants on two regions. The p-value is 
reported only if the rule of thumb was satisfied, see methods.  
 

Species Region    �̂�𝜆1    �̂�𝜆2      𝑎𝑎�  𝑝𝑝-value 

Vaccinium myrtillus (dwarf shrub)   2 2.56 3.16  0.4 0.00 
  4 1.18 1.50  0.8 0.00 

Deschampsia flexuosa (grass) 
 

  2 1.76 1.61  0.7 0.16 
  4 1.56 1.40  0.8 0.07 

Luzula pilosa (rush) 
 

  2 0.37 0.31  4.0 0.23 
  4 0.16 0.34  4.5 0.00 

Trientalis europaea (forb) 
 

  2 0.43 0.62  2.6 0.02 
  4 0.23 0.13  7.6 - 

Linnaea borealis (dwarf shrub) 
 

  2 0.28 0.46  3.4 0.00 
  4 0.02 0.05 28.2 - 
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Under the Poisson model assumption, significant changes in population density were observed for 
several species-region combinations. For example, the density of Vaccinium myrtillus (bilberry) 
increased significantly in both regions studied.  The optimum plot sizes for estimating change were 
found to be slightly smaller than the optimum plot sizes for estimating state.  

 

Discussion 

In this study we expand on previous theory, notably by Bartlett (1935), regarding what plot sizes should 
ideally be used in presence-absence sampling of plants in order to estimate state and change in plant 
population density. We denote these plot sizes the informative plot sizes, meaning that they are the plot 
sizes that maximize the precision of the estimators. Further, we apply the theory to empirical data from 
the Swedish National Forest Inventory.  

Although we used a slightly different approach than Bartlett (1935) we obtained exactly the same result 
regarding what plot sizes are informative for state estimation; the informative plot size is 1.6 divided by 
the plant density of the target species, provided that the occurrence of the species follows a Poisson 
spatial model.  For example, for the plant densities 0.1, 1 and 10 plants per square metre the infor-
mative plot sizes are 16, 1.6, and 0.16 square metres, respectively. We also observed that large devia-
tions from the informative plot size lead to considerable decreases of the precision of the estimators. 
Consequently, a single plot size will never fit all species in presence-absence sampling. Instead, a range 
of different plot sizes would be needed in monitoring programmes addressing several species (with 
different densities). This can be achieved in different ways, i.e. through the common practice of regis-
tering plants in several small co-located quadrats (e.g. Bonham 2013) or by registering species in con-
centric circular plots of increasing size (e.g., Fridman et al. 2014). In both cases only additional species to 
those already found need to be registered when assessing a new quadrat or a larger plot size at a given 
sample location.     

The main focus of our study was to develop and apply novel estimators for estimating change in plant 
density, based on presence-absence data, and evaluate what plot sizes are informative in the case of 
change estimation. Interestingly, in the case of change estimation the informative plot sizes normally 
are smaller than the informative plot sizes for state estimation. They were also found to be dependent 
on the patterns of change, especially to what degree plant occurrences at a given site are stable over 
time. The reason for the smaller informative plot size in this case is the increased chance of actually 
registering a change on a plot and thus being able to observe a density change. The theoretical results 
thus are intuitive. However, in case the plant locations between the two time points change entirely at 
random, the informative plot size for change estimation was found to be identical to the informative 
plot size for state estimation.  

Our results are valid for plant spatial patterns following the Poisson model. While this is an important 
reference model for modeling plant occurrences (e.g., Bonham 2013) several studies on presence-
absence sampling apply different models in order to capture clustered patterns of plant occurrences 
(e.g., Hwang and He 2011). To make a crude assessment of the impact of deviations from the Poisson 
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model on the results a simulation study was performed using different clustered populations; it is 
presented in Appendix 3. The conclusion was that small to moderate population model deviations had 
minor impact on the results in terms of estimated density, whereas substantial population model 
deviation led to severely biased results.  Thus, an important topic for further studies is to explore 
different cluster processes for linking plant frequencies and densities, and assessing to what extent the 
informative plot sizes in those cases differ from the ones obtained with the Poisson model assumption. 
Inventory costs and impacts of measurement errors might also be of interest to study in future analyses, 
as well as our assumption that a reference point of plant individuals should be possible to distinguish on 
plants for judging whether or not they should be counted.   

The empirical study revealed several interesting results. Firstly, only few species-region combinations 
passed our test of the Poisson model assumption (Luzula pilosa in region 2, Trientalis europaea in region 
4, and Linnaea borealis in region 4), which provides further evidence that the Poisson model is not 
realistic in many cases. However, ignoring that the Poisson assumption was not adequate in several 
cases, the informative plot sizes mostly were slightly larger than the plot size actually applied in the 
Swedish National Forest Inventory (0.25 m2). However, for Vaccinium myrtillus and Deschampsia 
flexuosa the difference between the actual and the most informative plot sizes were fairly small.  

Given the model assumptions, significant changes in plant density were observed for almost all five 
studied species. The changes corresponded well to what might be expected for plants in Swedish forests 
in the age class 20-60 years at the first time point (i.e. the age interval studied), where the regeneration 
phase characterized by small trees and fairly open areas gradually is substituted by larger trees and 
denser forests where shade-tolerant plant species substitute light-demanding species (e.g. Hedwall and 
Brunet 2016, Tonteri et al. 2016). For example, we found the density of Vaccinium myrtillus to increase 
while Deschampsia flexuosa decreased. Note that the changes (Table 3) are valid only for the specific 
regions and forest age class studied, and thus they should not be taken as general trends for these 
species in Swedish forests. A similar but more comprehensive empirical study based on presence-
absence data from Swedish forests was conducted by Odell and Ståhl (1998). In this study the 
occurrence frequencies of several common forest species were found to increase from the 1980s to the 
1990s, but no recalculation to density change estimates was conducted. Recent studies show that many 
forest floor species have changed their frequencies and cover in boreal and temperate forests in 
Fennoscandia (Hedwall and Brunet 2016; Tonteri et al. 2016).  

  

Conclusion 

Use of presence-absence sampling in monitoring plant communities has a potential to overcome some 
of the problems associated with cover assessments. The present study describes methods for 
determining optimum plot sizes for estimating plant density state and change based on presence-
absence data and Poisson model assumptions. The optimum plot sizes for state estimation were known 
from previous studies (Bartlett 1935), but our methods for change estimation are novel. For change 
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estimation, the optimum plot sizes were found to be smaller than the optimum plot sizes for state 
estimation.  

The results points to a need for incorporating a system of nested plot sizes in monitoring programmes, 
since no single plot size will be suitable when several species or species groups are addressed. Based on 
the current set of species (ranging from dominant to moderately common) it seems likely that 
informative plot sizes in Fennoscandian forests range from some tenth of a square metre (for dominant 
species) up to potentially 100 m2 (for low frequent species). However, further theoretical and empirical 
studies are needed, taking the spatial distribution and degree of rarity into account, before sampling 
schemes for different forest ecosystems can be established. 

In applications, statistical considerations regarding plot sizes must also be coupled with practical 
considerations regarding time consumption and measurement errors (e.g. Ringvall et al 2005; Bonham 
2013). Our study did not take these issues into account, but assumed that any measurement errors and 
time consumptions are independent of plot size. Finally, presence-absence sampling in nested plot 
systems may optionally be combined with cover estimates for all or a set of species to provide 
information on local plant abundance. 
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Appendix 1: Testing the hypothesis of a Poisson distribution 

The asymptotic normality of the maximum likelihood estimator �̂�𝑝 together with the delta method (e.g., 
Lehmann 1999) imply that the estimator �̂�𝜆 in (2) is asymptotically normally distributed, i.e.  

√𝑛𝑛��̂�𝜆 − 𝜆𝜆� → 𝑁𝑁�0,𝜎𝜎𝑎𝑎2�, 

where 𝜎𝜎𝑎𝑎2 = 𝑛𝑛𝑉𝑉��̂�𝜆� = 1
𝑎𝑎2

1−𝑒𝑒−𝑎𝑎𝑎𝑎

𝑒𝑒−𝑎𝑎𝑎𝑎
.  

Suppose that each plot of size a is split into two subplots of equal size. The probability, psub, that at least 

one plant will occur on a given subplot is 𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠 = 1 − 𝑒𝑒−
𝑎𝑎
2𝑎𝑎 = 1 − (1 − 𝑝𝑝)1/2, and psub can be estimated 

as �̂�𝑝𝑟𝑟𝑠𝑠𝑠𝑠 = 𝑛𝑛−1 ∑ �𝐼𝐼𝑖𝑖
(1) + 𝐼𝐼𝑖𝑖

(2)� 2⁄𝑛𝑛
𝑖𝑖=1 , where 𝐼𝐼𝑖𝑖

(𝑖𝑖) is an indicator variable that takes the value 1 if the species 

is present on subplot j of plot i and 0 otherwise. Let 𝒑𝒑 = (𝑝𝑝,𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠)′ and 𝒑𝒑� = (�̂�𝑝, �̂�𝑝𝑟𝑟𝑠𝑠𝑠𝑠)′. By the multivariate 
central limit theorem, 

√𝑛𝑛(𝒑𝒑� − 𝒑𝒑) → 𝑁𝑁(𝟎𝟎,𝛴𝛴), 

where 

Σ = � 𝑝𝑝(1 − 𝑝𝑝) 𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠(1 − 𝑝𝑝)
𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠(1− 𝑝𝑝) 𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠(1− 𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠) 2⁄ �. 

Similarly as in (2), we may estimate λ by �̂�𝜆𝑟𝑟𝑠𝑠𝑠𝑠 = −(2 𝑎𝑎⁄ ) ln(1 − �̂�𝑝𝑟𝑟𝑠𝑠𝑠𝑠). By the asymptotic normality of 𝒑𝒑� 
and the delta method we find that 

√𝑛𝑛��̂�𝜆 − �̂�𝜆𝑟𝑟𝑠𝑠𝑠𝑠� → 𝑁𝑁�0,
�1 − 𝑒𝑒−

𝑎𝑎
2𝑎𝑎�

2

𝑎𝑎2𝑒𝑒−𝑎𝑎𝑎𝑎
�, 

which implies that 

    √𝑛𝑛𝑎𝑎𝑒𝑒−
𝑎𝑎
2𝑎𝑎�𝑎𝑎�−𝑎𝑎�𝑠𝑠𝑠𝑠𝑠𝑠�

1−𝑒𝑒−
𝑎𝑎
2𝑎𝑎

→ 𝑁𝑁(0, 1) 

and, by Slutsky’s theorem (e.g., Lehmann 1999), that  

    √𝑛𝑛𝑎𝑎𝑒𝑒−
𝑎𝑎
2𝑎𝑎
�𝑠𝑠𝑠𝑠𝑠𝑠�𝑎𝑎�−𝑎𝑎�𝑠𝑠𝑠𝑠𝑠𝑠�

1−𝑒𝑒−
𝑎𝑎
2𝑎𝑎
�𝑠𝑠𝑠𝑠𝑠𝑠

→ 𝑁𝑁(0, 1). 

This result can be used as a basis for tests of whether or not the plants in a given area are distributed 
according to a homogeneous Poisson process.  
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Appendix 2: Derivation of the multinomial cell probabilities in Eqs. 8a-8d 

At time point 1, the locations of points follow a homogeneous Poisson point process Λ1 with density λ1.  
The points of Λ1 are deleted with probability 1 − 𝜋𝜋 (and retained with probability 𝜋𝜋), where the deletion 
is independent of the location of the point as well as the deletion or non-deletion of other points. Let 𝛬𝛬1∗  
and 𝛬𝛬1∗∗ denote the resulting processes of retained and deleted points, respectively. The point processes 
𝛬𝛬1∗  and 𝛬𝛬1∗∗ are independent, and Λ1 is, by definition, the superposition of 𝛬𝛬1∗  and 𝛬𝛬1∗∗. At time point 2, the 
locations of points follow the superposition Λ2 of the independent processes 𝛬𝛬1∗  and 𝛬𝛬2∗ , where the latter 
is a homogeneous Poisson point process of newly regenerated plants with density 𝜆𝜆2∗ . Thus, the density 
of Λ2 is 𝜆𝜆2 = 𝜋𝜋𝜆𝜆1 + 𝜆𝜆2∗ . For a point process 𝛬𝛬, let 𝛬𝛬(𝐴𝐴) denote the number of points in plot 𝐴𝐴 of size 𝑎𝑎.  

We get 

𝜋𝜋01 = 𝑃𝑃{(𝛬𝛬1(𝐴𝐴) = 0) ∩ (𝛬𝛬2(𝐴𝐴) ≥ 1)} 
= 𝑃𝑃{𝛬𝛬1(𝐴𝐴) = 0}𝑃𝑃{𝛬𝛬2(𝐴𝐴) ≥ 1 | 𝛬𝛬1(𝐴𝐴) = 0} 
= 𝑃𝑃{𝛬𝛬1(𝐴𝐴) = 0}𝑃𝑃{𝛬𝛬2∗(𝐴𝐴) ≥ 1 } 
= 𝑒𝑒−𝑎𝑎𝑎𝑎1�1 − 𝑒𝑒−𝑎𝑎𝑎𝑎2∗ �, 

     
𝜋𝜋00 = 𝑃𝑃{(𝛬𝛬1(𝐴𝐴) = 0) ∩ (𝛬𝛬2(𝐴𝐴) = 0)} 

= 𝑃𝑃{𝛬𝛬1(𝐴𝐴) = 0}𝑃𝑃{𝛬𝛬2∗(𝐴𝐴) = 0} 
=  𝑒𝑒−𝑎𝑎𝑎𝑎1𝑒𝑒−𝑎𝑎𝑎𝑎2∗ , 

   
𝜋𝜋10 = 𝑃𝑃{(𝛬𝛬1(𝐴𝐴) ≥ 1) ∩ (𝛬𝛬2(𝐴𝐴) = 0)} 

= 𝑃𝑃{(𝛬𝛬1∗∗(𝐴𝐴) ≥ 1) ∩ (𝛬𝛬1∗(𝐴𝐴) = 0) ∩ (𝛬𝛬2∗(𝐴𝐴) = 0)} 
= �1 − 𝑒𝑒−𝑎𝑎(1−𝜋𝜋)𝑎𝑎1�𝑒𝑒−𝑎𝑎𝜋𝜋𝑎𝑎1𝑒𝑒−𝑎𝑎𝑎𝑎2

∗ , 
 

and 
 
𝜋𝜋11 = 1 − 𝜋𝜋01 − 𝜋𝜋00 − 𝜋𝜋10 = 1 − 𝑒𝑒−𝑎𝑎𝑎𝑎1 − 𝑒𝑒−𝑎𝑎(𝜋𝜋𝑎𝑎1+𝑎𝑎2∗ ) + 𝑒𝑒−𝑎𝑎(𝑎𝑎1+𝑎𝑎2∗ ).  

 

Finally, the result in (8a-d) follows from the reparameterization 𝜆𝜆1, 𝜆𝜆2 = 𝜋𝜋𝜆𝜆1 + 𝜆𝜆2∗ , and 𝜆𝜆3 = (1 − 𝜋𝜋)𝜆𝜆1. 
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Appendix 3: clustered populations - a simulation study 

The results in the paper are obtained under a Poisson model. In this appendix, we study the performance 
of the estimator of density �̂�𝜆, defined in (2), and the corresponding approximate variance 𝑉𝑉��̂�𝜆�, given in 
(3), for clustered plant populations. i.e. we wish to assess how sensitive our results are to the Poisson 
model assumption.  

Assume that a clustered point process is formed by first taking a pattern of “parent” points, generated 
according to a homogeneous Poisson point process with density 𝜏𝜏. Then, for each parent point, a random 
number of “daughter” points are generated, where the number of daughters of each parent is a Poisson 
random variable with mean 𝜇𝜇, and the locations of the daughter points of one parent are independent 

and bivariate normally distributed around the parent point with covariance matrix 𝛴𝛴 = �𝜎𝜎
2 0

0 𝜎𝜎2
�. A 

clustered point process of this kind, consisting of the daughter points, is known as a (modified) Thomas 
process (Thomas, 1949; Illian et al., 2008). The density of the Thomas process is 𝜆𝜆 = 𝜏𝜏𝜇𝜇. 

Design of the simulation experiment: 

i) Generate a point pattern according to a given point process (a homogeneous Poisson point 
process or a Thomas process). 

ii) Conduct presence-absence sampling using n = 200 disjoint circular field plots of size a, where 
the plots are so far apart that it is not unreasonable to assume that the point patterns in plots 
i and j are independent for each i ≠ j.  

iii) Estimate the density of the process using �̂�𝜆, according to (2). That is, the estimate of 𝜆𝜆 is 
obtained assuming that the underlying process is a homogeneous Poisson point process.  

iv) Repeat the above steps 1000 times. Calculate the mean and the variance, over the 1000 
replications, of the obtained estimates of 𝜆𝜆.  

The results are presented in Table A3.1. For each process, the true density is 𝜆𝜆 = 1. We used two different 
sample plot sizes in the simulations, 𝑎𝑎 = 1 and 𝑎𝑎 = 2, and according to Figure 2 the former plot size is 
too small and the latter too large for being optimal in the case of a homogeneous Poisson point process. 
For 𝑎𝑎 = 1, formula (3) yields 𝑉𝑉��̂�𝜆� ≈ 0.0086 and for 𝑎𝑎 = 2, 𝑉𝑉��̂�𝜆� ≈ 0.0080. From Table A3.1, we see 
that a Poisson approximation to the Thomas process works reasonably well when either i) the mean 
number of daughter points per parent is small, or ii) the daughter points are not tightly scattered around 
the parent. 
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Table A3.1. Means and variances of �̂�𝜆. 
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