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Automated Quantification of Plasma Metabolites by NMR to
Study Prostate Cancer Risk Biomarkers

Abstract

Targeted quantitative NMR-based metabolomics can be used to identify disease risk
biomarkers. However, NMR-based metabolomics yields complex spectra with signals
from many different metabolites. These signals are often located within close proximity
and, therefore, signal interferences are observed. Such interferences must be accounted
for to yield accurate metabolite concentrations. Quantifications can become very time-
consuming, especially in large-scale studies.

In response to this, an Automated Quantification Algorithm (AQuA) was designed
as the final step of the NMR-based metabolomics workflow. Implementation and
evaluation was done for quantification of human plasma metabolites in samples
collected using heparin as anticoagulant. AQuA enabled the quantification of 67
metabolites in 1342 samples within one second on a standard personal computer.
AQuA performed with equal accuracy as a manual procedure for targeted profiling
performed using a software package dedicated to metabolite quantification by NMR. In
contrast to using heparin as anticoagulant, the use of EDTA introduced additional
interferences. With some modifications, AQuA also quantified human plasma
metabolites despite the presence of the high intensity signals from EDTA, some of
which displayed inter-spectral deviations in signal positions and line widths.

To further demonstrate its usefulness, AQuA was utilised for risk biomarker
discovery in a case-control study nested within the Northern Sweden Health and
Disease Cohort. Plasma metabolites were quantified in samples from 1554 men, 777
whom were diagnosed with prostate cancer more than 5 years after sample collection
(baseline), and 777 whom were matched controls. MS-based metabolomics was also
employed to yield complementary information. Conditional logistic regression and
correction for multiple testing were performed. Risk biomarkers for prostate cancer
varied with baseline age and disease aggressiveness. For example, glycine and pyruvic
acid were identified in younger subjects, while lipid species (e.g.,
lysophosphatidylcholines) associated with overall disease risk in older subjects and
with risk of aggressive disease. A reverse cross-association could also be identified
between risk of prostate cancer and type 2 diabetes at the metabolite level.
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1 Introduction

1.1 General introduction to metabolomics

1.1.1 Metabolomics

A traditional approach in molecular biology has been to select one or a few
molecules for examination based on an existing hypothesis. However, recent
advances in technology have resulted in evolvement towards global
approaches, such as genomics, transcriptomics, proteomics and metabolomics.
Global approaches take advantage of available analytical methods to facilitate
more comprehensive and holistic examinations of the molecular content in
biological samples (Elliott et al., 2016; Reinhold, 2015; German et al., 2005).
Metabolomics specifically aim to examine molecules of low weight (<1500
Da). These molecules are called metabolites and together they build up the
metabolome (Wishart et al., 2007; Hollywood et al., 2006). Metabolites
operate on a level close to function, downstream of genes, transcripts and
proteins. Hence, the metabolome can be viewed as a functional read-out of
gene-environmental interactions (Figure 1) (Hollywood ef al., 2006; German et
al., 2005; Goodacre, 2005).

The Human Metabolome Database (HMDB) is an open source database that
compiles information on human metabolites, including their quantities and
disease-related properties. Thousands of endogenous metabolites have been
identified and quantified in different biological samples such as blood (serum
or plasma), urine, cerebrospinal fluid (CSF) and saliva (Wishart et al., 2018;
Wishart et al., 2007).
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Figure 1. The different omics sciences and their relation to function.

1.1.2 Analytical methods

Metabolomics analysis can be employed using different analytical methods.
Two commonly used methods in metabolomics are nuclear magnetic resonance
(NMR) spectroscopy and mass spectrometry (MS) (Dunn & Ellis, 2015).

NMR spectroscopy utilises the quantum mechanical properties (spin) of
certain atomic nuclei to study their behaviour in a magnetic field. In a static
magnetic field, the spins of such nuclei will distribute to minimise the energy.
This energy equilibrium can be disturbed by applying a radio frequency pulse.
However, equilibrium is restored with time. The return to equilibrium can be
recorded and mathematically transformed into an NMR spectrum. The
spectrum generated via NMR analysis of a liquid solution with different
molecules holds information related to their identity and quantity (Nagana
Gowda et al., 2017; Bharti & Roy, 2012; Claridge, 1999).

In MS, molecules are first converted into ions in an ion source. These ions,
or fragments thereof, are then analysed with regard to their mass-to-charge
ratio (m/z) in a mass analyser. Tandem MS can be used for controlled
fragmentation of ions. The triple quadrupole (QQQ) is a mass analyser that is
particularly useful in this context, since it can operate in different modes e.g.,
to detect (with high sensitivity) a set of target molecules. The aforementioned
mode is called multiple reaction monitoring (MRM). Although a solution that
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contains different molecules can be directly injected to the ion source,
hyphenation with chromatographic systems, such as liquid chromatography
(LC) can be used to separate the molecules prior to MS-analysis (Pitt, 2009).

NMR and MS suffer from different limitations, but they also display
different advantages. For example, NMR is highly reproducible and
quantitative in nature. However, NMR suffers from sensitivity issues.
Therefore, a relatively large sample volume is typically required for the
analysis. In contrast, MS display better sensitivity, but relatively poor
reproducibility (Wishart, 2016).

The combined use of more than one analytical method increases the number
of metabolites that can be analysed. This is since different analytical methods
yield complementary information. Both NMR and MS have been used to study
the metabolite content in human CSF, serum and urine. The use of isotopically
labelled standards followed by direct flow injection tandem MS with MRM
allowed for quantification of different lipid species (e.g., acylcarnitines,
sphingomyelins and glycerophospholipids) in both wurine and serum.
Hyphenation with LC also allowed for detection of amino acids and biogenic
amines. The use of LCMS was limited in detecting metabolites in CSF. The
use of a single internal standard facilitated quantification by NMR of different
amino acids, organic acids and sugars in CSF, serum and urine (Bouatra et al.,
2013; Psychogios et al., 2011; Wishart et al., 2008).

Although different biological fluids may be analysed with a given method,
many metabolomics studies focus on one type of biofluid (Shi et al., 2018;
Ruiz-Canela et al., 2018; Schmidt et al., 2017; Huang et al., 2016; Qui et al.,
2016; Kiihn et al., 2016; Drogan et al., 2015; Mondul et al., 2015; Mondul et
al., 2014; Wang et al., 2011). The analysis of human blood metabolites is very
common, which is reflected in statistics from the HMDB that reveal a superior
number of detected and quantified metabolites in blood samples (serum and
plasma) compared to e.g., CSF, urine and saliva
(http://www.hmdb.ca/statistics).

1.1.3 Targeted and untargeted metabolomics

Metabolomics analysis can be performed in a targeted or untargeted fashion
(Figure 2). Untargeted analysis aims to examine as many metabolites as
possible, including previously unknown metabolites, while targeted analysis
aim to quantify a set of pre-selected metabolites (Gorrochateugui ef al., 2016).

The workflow of targeted analysis typically includes sample preparation, data
collection, processing of data, metabolite identification and quantification.
Hence, the data generated includes a list of metabolite concentrations in
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different samples, which is used in the statistical analysis. The untargeted
workflow typically includes sample preparation, data collection and data
processing. Processing generates data other than absolute concentrations (e.g.,
signal areas or intensities) for different metabolite features in different samples.
The workflow is often followed by metabolite identification steps. However,
identification can be a key bottleneck in the untargeted workflow and may
therefore be limited to specific features that displayed a promising statistical
outcome. The untargeted workflow is explorative but not fully quantitative,
while the targeted workflow is less explorative but quantitative (Matsuda,
2016; Schrimpe-Rutledge ef al., 2016; Alonso et al., 2015).
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Figure 2. General workflows for targeted and untargeted metabolomics.

Although metabolomics yields much information, the generation of data is
challenging. This often owes to the extensive and sometimes time-consuming
processing steps required to convert raw data into data suitable for further
statistical analysis (Bingol, 2018; Matsuda, 2016; Schrimpe-Rutledge et al.,
2016). NMR-based metabolomics of human plasma and serum can serve as a
clarifying example. Close to seventy human blood metabolites have been
identified by NMR. Unfortunately, NMR signals from different metabolites are
sometimes difficult to distinguish from each other. This results in signal
interferences, which hamper accurate quantification (Nagana Gowda et al.,
2015; Weljie et al., 2006). Data for statistical analysis can be generated in a
highly rapid manner when interferences are ignored. Each NMR spectrum can
be divided into smaller units (buckets) and the intensities in different buckets
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can be extracted and used in the statistical analysis. This untargeted workflow
is called metabolic fingerprinting (Worley & Powers, 2014). In contrast, the
processing time increases when interferences are accounted for to yield
absolute concentrations (Weljie et al., 2006). In order to combine the concept
of high-throughput with accurate quantification, substantial effort has been
done to increased level of automation of previously manual procedures that
account for interferences. Still, further development is warranted to increase
the throughput of metabolite quantification by NMR (Bingol, 2018).

1.1.4 Statistics in metabolomics

Statistical analysis, an essential step in metabolomics studies, can be done via
univariate or multivariate methods (Alonso et al., 2015). A key aspect in
univariate statistics is hypothesis testing, where test statistics is performed and
a pre-decided cut-off value for significance determines whether or not the null
hypothesis can be rejected. Univariate statistics is easy to employ and the
results are highly interpretable. The use of univariate statistic in metabolomics
has some important implications. For example, several metabolites will be
subjected to the same statistical test and this multiple testing will increase the
rate of false positive results (Vinaixa et al., 2012; Morshed et al., 2009). This is
problematic since the commonly used cut-off for statistical significance (p
<0.05) has been criticised for being prone to yield false positive outcomes to
begin with (Benjamin et al., 2018). Yet, multiple testing can be controlled for
using different correction procedures (Alonso et al., 2015).

Correction from multiple testing

It is complicated to assess the overall error rate in multiple testing scenarios
since there is a risk for both false negatives and false positives in each
individual test (Broadhurst & Kell, 2006; Storey, 2002). Bonferroni correction
is the standard approach, which accounts for the family-wise error rate
(FWER) — i.e., the probability to yield one or several false positive in a series
of multiple hypotheses tested. In this approach, the a-level (0.05) is simply
divided by the number of variables tested. This approach assumes all
metabolites as independent variables (although many metabolites or features
are inter-correlated). Bonferroni correction has been criticised for being too
conservative and thereby increasing the rate of false negative results
(Broadhurst & Kell, 2006; Storey, 2002). Rather than using the FWER to
control for multiple testing, less stringent approaches may be applied. One
example is the false discovery rate (FDR) approach (Storey & Tibshirani,
2003; Benjamini & Hochberg, 1995). The FDR is a quantity of the expected
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proportion of false positives among rejected hypotheses. The FDR approach is
a powerful yet more liberal approach compared to Bonferroni correction
(Storey, 2002).

Multivariate statistics

Different metabolites (or metabolite features) can display high inter-
correlations. In contrast to univariate statistics, where all variables are treated
as independent variables, multivariate methods offer an alternative approach
that considers inter-correlation between different variables (Alonso et al.,
2015). Multivariate statistical analysis can retain the global nature of
metabolomics experiments to distinguish between different outcomes/groups
on a metabolome level (Worley & Powers, 2013). Although there are many
multivariate methods, they can broadly be divided into two categories, namely
unsupervised or supervised methods.

Principle component analysis (PCA) is an unsupervised method. In PCA,
the data from metabolomics analyses, X, is not related to any response
variable(s), Y. The full dimensionality of X is simply reduced to a fewer
number of principal components that capture important variation in the dataset
(Greene et al., 2014).

Partial least squares projection to latent structures (PLS) is a supervised
method for multivariate regression analysis, where X is related to Y (Wold et
al., 2001). PLS can also be extended in various directions. Discriminant
analysis takes into account a categorical response variable, while a multilevel
direction takes into account paired data (Westerhuis et al., 2010). Orthogonal
projections to latent structures (OPLS) aims to separate the variation in X that
is explained by Y, from the variation in X that cannot be explained by Y
(Trygg & Wold, 2002). OPLS can also be extended in various directions
(Jonsson et al., 2015; Westerhuis et al., 2010).

1.1.5 Application areas

Metabolomics has a wide range of application areas in molecular biology (Putri
et al., 2013). One example is the field of biomarker discovery where the use of
metabolomics heavily relies upon its integration with observational study
designs. This field of research has been termed molecular epidemiology and
typically aim to establish association between exposure (metabolites) and
outcome (disease) on a population-based level (Garcia-Closas et al., 2011;
Hendriks et al., 2011). Although the definition of a biomarker varies in existing
literature, it has been broadly defined as a measurement of a normal or
pathophysiological process, or a response to an intervention or exposure.
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Biomarkers can be classified into different subtypes. Diagnostic biomarkers
detect the presence of a disease, while risk biomarkers reflect an increased risk
of disease development before its clinical manifestation (Califf, 2018; FDA-
NIH Biomarker Working Group, 2016).

One example of molecular epidemiology applied for biomarker discovery
are metabolome-wide association studies (MWAS), which collectively aim to
investigate the association between the metabolic phenotype (metabotype) and
disease risk (Nicholson et al., 2008). These studies adopt the same concept as
the earlier genome-wide association studies (GWAS) that aim to investigate
association of genotype with disease risk. Weak association between genetic
variation and disease risk were typically reported in early studies (Visscher et
al., 2012). Scientists have argued that the concept of MWAS is inherently more
fruitful, since the development of many diseases depends on complex gene-
environmental interactions, something that cannot be captured by GWAS
(Nicholson et al., 2011; Nicholson et al., 2008).

Many clinical and epidemiological studies collect human blood samples and
store them (as aliquots of plasma or serum) for future research purposes
(Vaught et al, 2009). Such sample repositories are highly suitable for
biomarker discovery, especially since the level of different human blood
metabolites are regulated by variation of environmental and genetic factors
(Liu, 2014; Nicholson et al., 2011).

The concept of MWAS has already been implemented to identify risk
biomarkers for different diseases such as prostate cancer and type 2 diabetes
(T2D) (Table 1).

1.1.6 Scope of thesis work

The scope of this thesis work can be divided into two parts. The first part
regards methodological development to improve the throughput of metabolite
quantification by NMR in human plasma samples. The second part regards
integration of high-throughput workflows for targeted metabolomics into large-
scale molecular epidemiology to identify disease risk biomarkers. Below
follows a more detailed introduction to each respective part.

21



Table 1. Example of studies employing the concept of MWAS “*

Reference Disease Cohort Samples  Method Approach
Shi et al., 2018 T2D NSHDC Plasma MS Untargeted
Ruiz-Canela et al., 2018  T2D PREDIMED Plasma MS Untargeted
Schmidt et al., 2017 Prostate cancer ~ EPIC Plasma MS Targeted
Huang et al., 2016 Prostate cancer ~ PLCO Serum MS Untargeted
Quieral, 2016 T2D DFTJ & JSNCD  Plasma MS Targeted
Kiihn et al., 2016 Prostate cancer ~ EPIC Heidelberg ~ Plasma MS Targeted
Drogan et al., 2015 T2D EPIC Potsdam Serum MS Untargeted
Mondul et al., 2015 Prostate cancer ABTC Serum MS Untargeted
Mondul et al., 2014 Prostate cancer ~ ABTC Serum MS Untargeted
Wang et al., 2011 T2D FHS & MDCS Plasma MS Targeted

¢ Cohorts: Alpha-Tocopherol, Beta-Carotene (ATBC) cancer prevention study; DongFeng-Tongli
(DFTJ) cohort; European Prospective Investigation (EPIC) into cancer and nutrition study; Framingham
Heart Study (FHS); JiangSu Non-Communicable Disease (JSNCD) cohort; Malmé Diet and Cancer
Study (MDCS); Northern Sweden Health and Disease Cohort (NSHDC); PREvencion con Dleta
MEDiterranea (PREDIMED) trial; Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening
trial.

b All studies employed the same epidemiological study design.

1.2 Targeted NMR-based metabolomics of human
plasma

1.2.1 Basic theory of one dimensional proton NMR spectroscopy

The proton possesses a nuclear spin — i.e., its nuclei rotates around its own axis
and it displays a magnetic moment. When applying a static magnetic field on a
magnetic moment, it circulates about the applied field with a Larmor
precession. The Larmor frequency is the rate of this precession and it describes
the resonance frequency for each given nuclear species. Since two spin states
exist for the proton nuclei, its magnetic moments may align parallel or anti-
parallel to the applied magnetic field. A population of spins in a static magnetic
field (By) will distribute over the two spin states so there is an excess in the
spin state of lowest energy (). This results in a net magnetisation (M) aligned
in parallel to the magnetic field (Figure 3A). NMR occurs when the magnetic
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moments alter spin states. This is achieved during NMR experiment by
applying a radiofrequency pulse (B;) (Figure 3B). To induce a change in spin
states, the frequency of the applied pulse must match with the Larmor
frequency of the spins. Then, the net magnetisation is perturbed (M) so the
population difference is equalised and the spins possess phase coherence
(Figure 3C). The effect of applying a radio frequency pulse disappears over
time as the net magnetisation returns to equilibrium (Figure 3D). The
disappearance of phase coherence over time can be measured as an
exponentially decreasing signal, a free induction decay (FID) (Claridge, 1999).
The FID is typically recorded by repeatedly applying the radiofrequency pulse
after the net magnetisation has returned to equilibrium (i.e., multiple scans are
recorded).
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Figure 3. lllustration of events occurring during a one dimensional proton NMR experiment. (A)
Distribution of spinning nuclei in a static magnetic field (Bg). Left: The microscopic view shows
an excess (green arrows) in the spin state with lowest energy and a recess (orange arrows) in the
spin state with highest energy. Right: The macroscopic view showing the bulk magnetisation
vector (My). (B) Applying a radio frequency pulse (90,°) that match the Larmor frequency of the
spins (By). (C) The effect of applying the radio frequency pulse (90°). Left: The microscopic
view shows an even distribution of spins that also display phase coherence. Right: The
macroscopic view shows tilted bulk magnetisation vector M. (D) Net magnetisation returns to
equilibrium.
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In the most simple case, there is only one nuclear species — e.g., the protons
in a solution of chloroform (CHCI;). Then, all spins will have the same
resonance frequency. However, a given molecule can also have several nuclear
species, which results in several resonance frequencies. Each nuclear species
has a unique chemical environment that affects the local magnetic field, which
in turn affects the Larmor frequency. All nuclei of a species (e.g., different
protons in a molecule) are excited simultaneously by the applied radio
frequency pulse. As a result, several FIDs will be superimposed in an
interferogram, where interferences between the different FIDs, are observed.

Fourier transformation is a mathematical operation that is applied in order
to interpret the frequency domain of the interferogram (Friebolin, 1991a). The
Fourier transform of an exponentially decreasing signal, such as a FID, has a
Lorentzian line shape. The resonances (or signals) are located on a chemical
shift scale, which is a relative frequency scale in parts per million (ppm)
(Freeman, 1988a).

Figure 4 illustrates the one dimensional (1D) proton ("H) NMR spectrum of
ethanol and isopropanol (hydroxyl protons are not shown). The number of
signals observed in the spectrum for a given molecule corresponds to the
number of chemically equivalent protons. There are some general trends
regarding the signal positions. For example, signals from methine protons
generally display higher chemical shift values than protons in a methylene
group and signals from methylene protons generally display a higher chemical
shift value than signals from methyl protons. The relative integral area of
signals corresponds to the number of protons that gives rise to each respective
signal (Friebolin, 1991a; Friebolin, 1991b). Furthermore, signals display
different spin-coupling patterns. This owes to connectivity (through covalent
bonds) between different groups of chemically non-equivalent protons. For
example, a signal with one neighbouring proton will split into a signal with two
apices and the distance between the apices is called the scalar coupling
constant (J) and it is measured in Hz. The signal from the methyl protons in
isopropanol (doublet) only has one neighbouring (methine) proton. The signal
from the methine proton in isopropanol is split into a seven apices (septet) due
to the six neighbouring (methyl) protons. For ethanol, the two signals from the
methylene and methyl protons are split into a quartet and a triplet, respectively
(Figure 4). Signals display more complex splitting patterns as the number of
protons located within close proximity increases (Carbajo & Neira, 2003).
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Figure 4. Interpretation of '"H NMR signals from isopropanol and ethanol in relation to molecular
structures. Signals from the hydroxyl protons are not shown.

1.2.2 Sample preparation

NMR is quantitative in nature (Ranjan & Sinha, 2018). However,
macromolecules such as human plasma proteins generate broad and weak 'H
NMR signals that interfere with many metabolite signals. Therefore,
macromolecules can hamper the quantitative analysis of metabolites
(Wallmeier et al., 2017; Tiziani et al., 2008). Macromolecules can be removed
from the sample prior to NMR analysis e.g., using ultrafiltration or
precipitation with different solvents (Nagana Gowda & Raftery, 2014; Sheedy
et al.,2010).

Quantification by NMR requires calibration. Internal calibration is done by
adding a standard in a known concentration to each sample. The internal
standard can be used for chemical shift referencing and for quantification. The
optimal internal standard should generate signal(s) in an otherwise signal free
chemical shift region and it should preferably not interact with other analytes
in the sample (Pauli ef al., 2012; Burton et al., 2010; Ala-Korpela, 1995).
Importantly, the use of one internal standard enables quantification of several
metabolites and the standard does not need to be structurally related with the
metabolites targeted for quantification (Pauli et al., 2012). Different internal
standards can be used in NMR-based metabolomics of human plasma such as
4,4-dimethyl-4-silapentane-1-ammonium trifluoroacetate (DSA), sodium 4,4-
dimethyl-4-silapentane-1-sulfonate  (DSS) or sodium 3-trimethylsilyl
propionate (TSP). Substituting the hydrogens in the carbon chain with
deuterium greatly reduce the intensity of the corresponding signals in the 'H
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NMR spectrum, while leaving one internal standard signal (singlet) with higher
signal-to-noise (S/N) ratio at 0.0 ppm (Emwas et al., 2018; Alum et al., 2008;
Nowick et al., 2003). The internal standard is typically added after the removal
of macromolecules. The commonly used internal standards can interact with
macromolecules. This can cause non-concentration dependent variation in the
area of the internal standard signal (Kriat et al., 1992). Alternatives to using an
internal standard exist (Bharti & Roy, 2012). For example, the reference signal
can be synthesised electronically and calibrated against absolute quantities
(Akoka, et al., 1999).

The positions (and line widths) of some metabolite signals may vary
between experimental spectra. This typically owes to differences in pH or ionic
strength between samples. The inter-spectral deviation in signal positions
makes quantification more difficult (Hao et al., 2014). By adding a buffer
solution to each sample, the variation in pH between samples may be reduced.
Sample dilution may also reduce the ionic strength differences between
samples (Bharti & Roy, 2012).

1.2.3 Acquisition of NMR data

Signal-to-noise ratio

A sufficient S/N ratio is required to yield precise quantification result. The S/N
ratio can be improved by increasing the magnetic field strength (Bg) or by
increasing the number of scans (Bharti & Roy, 2012). The frequency for
observation of '"H NMR was only 40 MHz in the 1950s (Becker, 1993).
Nowadays, spectrometers operating at more than tenfold higher observation
frequency are used in metabolomics studies (Louis et al., 2017).

Suppression of unwanted resonances

The water content in plasma is about 90%, which corresponds to a water
proton concentration of about 100 M. The water signal dominates the chemical
shift region around 4.7 ppm. The signal area of water will be many orders of
magnitude larger than the area of metabolite signals. The large variation in
dynamic range between the water signal area and the metabolite signal areas
can introduce errors in metabolite quantification (Zheng et al., 2011; Ala-
Korpela, 1995). Therefore, the resonance from water is typically supressed
during the experiment. Suppression of the water resonance can be done with
different methods (e.g., excitation with pulsed field gradients and 1D NOESY
pre-saturation) (Zheng & Price, 2010).
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Although sample preparation of human plasma typically includes the
physical removal of macromolecules, it should be noted that quantification of
metabolites can be done even in the presence of proteins. Resonances from
proteins can be suppressed using the Carr-Purcell-Meiboom-Gill (CPMG) echo
train acquisition. However, difficulties are encountered due to the interaction
between internal standard and proteins (Wallmeier et al., 2017).

Processing

Processing is typically required to enhance the spectral quality. Firstly, the
interferogram can be multiplied with a window function prior to Fourier
transformation. To facilitate quantification, the interferogram is multiplied with
an exponential window function, where the line broadening parameter is set to
determine the rate of the function decay. This improves S/N ratio. Typically a
value between 0.3 to 1.0 Hz is recommended for metabolomics studies.

Zero filling can be done to improve the resolution (Bharti & Roy, 2012).
Briefly, since the algorithm for Fourier transformation requires 2" data points,
the number of measured data points in the interferogram is increased to the
closest 2" value by adding zeros at the end of the interferogram. This results in
a narrower distance between the data points in the spectrum (Freeman, 1988b).

Furthermore, phase correction is required to obtain the desired (Lorentzian)
appearance of signals. Phase errors or flawed attempts to correct for such can
introduce error in quantification. Although more time consuming, manual
phase correction often yield better results than auto correction.

A proper baseline that is completely flat and horizontal facilitates accurate
integration of signals. Correction can be done to remove baseline distortions.
Several computer-assisted programs for baseline correction exist. They are
typically semi-automated. However, fully automated baseline correction has
also been implemented for use in metabolomics studies; but the successful use
of such depends on the spectral complexity (Emwas ez al., 2018; Cobas et al.,
2006; Chen et al., 2002).

Post-processing steps, such as spectral alignment, data reduction, scaling
and normalisation, can also be integral parts in metabolomics studies (Emwas
etal.,2018).
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1.2.4 Metabolite identification

Metabolite identification and robust signal assignment are required to achieve
accurate metabolite quantification (Tredwell et al., 2011). Plenty of research
has been conducted to assign experimental signals observed by '"H NMR and
metabolite libraries are available in open access and commercially available
databases (Ranjan & Sinha, 2018). Utilising the vast amount of information
available in such databases aid the signal assignment and identification
processes (Nagana Gowda & Raftery, 2017). Importantly, visualisation of
metabolite identification and signal assignment can be done. Rather than
comparing database values with experimental values, it is possible to do the
comparison visually via signal pattern recognition (Weljie et al., 2006). The
concept of visual signal pattern recognition is illustrated in Figure 5.

Some metabolites are easily identified by 1D 'H NMR, while other
metabolites present a larger challenge (e.g., multiple hits may be found in
database searches). Additional experiments — e.g., two-dimensional (2D) NMR
and spike-in experiments — are typically used to confirm the identity of
metabolites (Nagana Gowda & Raftery, 2017). A relatively recent study
identified 67 human blood metabolites using a combination of 1D and 2D
NMR experiments (Nagana Gowda et al., 2015).
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Figure 5. lllustration of visual signal pattern recognition for metabolite identification by "H NMR.
Top: Identification and assignment of putative metabolite (green) is supported. Bottom:
Identification and assignment of putative metabolite (red) is not supported.

1.2.5 Metabolite quantification

Many human blood metabolites display signals with similar chemical shift
values (Nagana Gowda et al., 2015). The overlap in positions results in signal
interferences. Unless accounted for properly, metabolite quantification will be
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hampered (Weljie et al., 2006). The observed signal pattern in an experimental
'H NMR spectrum may be viewed as the total sum of intensity contributions
from the individual metabolite signals, or, the signal pattern in the
experimental spectra can be viewed as a linear combination of individual
metabolite spectra (Ravanbakhsh ez al., 2015; Zheng et al., 2011).

Deconvolution of the signal pattern into the contribution from individual
metabolite signals may be done utilising spectral information from a metabolite
library. Quantification can be done manually in the ChenomX NMR Suite
software package (ChenomX Inc., Edmonton, Canada). In this approach for
targeted profiling, a signal pattern that matches the experimental 'H-NMR
spectrum is built by a step-wise addition and of spectra from a metabolite
library. For each added library spectrum, its positions and intensities may be
adjusted to yield the optimal match (Figure 6). The line widths of the library
signals are matched to the experimental spectra using the internal standard for
calibration (Weljie et al., 2006). Manual targeted profiling, done with this
software, is frequently employed in metabolomics studies and has even been
referred to as a near golden standard approach (Hao et al., 2014). Manual
targeted profiling is very time-consuming, especially when employed on many
experimental spectra. Hence, manual targeted profiling can be a major
bottleneck in the workflow in large-scale metabolomics studies.

.
k]

Figure 6. 1llustration of targeted profiling in "H NMR by manual adjustment of library signals.
Top: Non adjusted library signal (red). Bottom: Adjusted library signal (green).

Attempts to automate the deconvolution process in order to increase the

efficiency have been done (Bingol, 2018). BATMAN, BAYESIL and BQuant
are examples of automated algorithms that are based on Bayesian modelling.
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Briefly, Bayesian modelling utilise a ‘best-guess’ approach with regards to
signal characteristics in the library and iterations are performed until
convergence with the experimental signal pattern (Ravanbakhsh et al., 2015;
Hao et al., 2014; Zheng et al., 2011). Still, processing of larger datasets is a
main obstacle for such algorithms, especially if the dataset includes spectra
with highly complex signal pattern. This is since the increased complexity
results in increased computational burden. Varying signal positions between
experimental spectra (e.g., caused by pH and ionic strength differences
between samples) specifically increase the computational burden (Hao et al.,
2014). Both manual and automated deconvolution procedures are more suitable
to apply on spectra of less complexity. In this context, experimental spectra
from urine samples can be more problematic than spectra from plasma and
serum (Emwas et al., 2018). Firstly, more metabolites can be identified in urine
by NMR (Bouatra et al., 2013; Psychogios et al., 2011). Secondly, signal
positions of urine metabolites vary more between spectra due to larger pH and
ionic strength differences between samples (Rist ez al., 2013).

1.2.6 Impact of different anticoagulants

Blood serum is obtained when the coagulation process has occurred, while
blood plasma is obtained when it has been prevented by the addition of an
anticoagulant — e.g., ethylenediamine-tetra-acetic acid (EDTA) or heparin
(Tuck et al., 2009). Allowing or hindering the coagulation process has an
impact on the results from metabolomics analysis. For example, a previous
study revealed that serum and plasma metabolite levels are highly correlated.
Higher reproducibility was observed in plasma in repeated measurements,
while better sensitivity was observed in serum when comparing groups of
individuals with different phenotypes (Yu et al., 2011). Furthermore, the use of
different anticoagulants also has an impact on the result from metabolomics
analysis (Gonzalez-Covarrubias et al., 2013; Yin et al., 2013; Barton et al.,
2010). The use of heparin as anticoagulant is often favoured in NMR-based
metabolomics. The appearance of (the broad and weak) NMR signals from a
macromolecule such as heparin may be avoided e.g., using ultrafiltration (Casu
et al., 2015; Daykin et al., 2002). The physical removal of the anticoagulant
prior to NMR analysis avoids additional interferences between heparin and
metabolite signals. EDTA generates several characteristic signals due to its
binding with different cations (e.g., H", Ca’" and Mg”"). These signals are
located within close proximity to signals from many human plasma
metabolites. Hence, interferences between EDTA signals and metabolite
signals will be observed (Barton e al., 2010). Metabolite quantification by

30



NMR in plasma that contains EDTA may still be desired, especially since such
samples are frequently collected and stored for future research purposes (Tuck
et al., 2009; Vaught et al., 2009).

1.3 Molecular epidemiology

1.3.1 Observational study designs

Observational study designs typically assess associations between exposure
and outcome. In the context of molecular epidemiology, the exposure of
interest is of biological origin (e.g., metabolites) and the outcome of interest is
often a disease (Garcia-Closas et al., 2011; Hendricks et al., 2011). There are
three main types of observational study designs, namely the cross-sectional
design, the case-control design and the cohort design (Belbasis & Bellou,
2018). In the cross-sectional study design, exposure and outcome are measured
at the same point in time (Setia, 2016). In the case-control study design, the
participants are selected based on an outcome. Exposure status is then assessed
in both groups (either at the present or at a previous point in time) (Schulz &
Grimes, 2002). In a cohort study design, individuals are selected based on
exposure status and followed in time with regards to outcome. Using this
prospective design, the temporal relation of cause and outcome can often be
established (Grimes & Schulz, 2002). There is a large potential for prospective
cohort studies in molecular epidemiology due to worldwide efforts in
collecting and storing biological specimens (Vaught et al., 2009).

The nested case-control study design offers a cost and time efficient
alternative to full cohort studies. Cases are identified within a cohort and a
limited number of controls from the same cohort are matched to each case.
Exposure status is assessed at study baseline considering both groups. This
design results in reductions with respect to data collection and analyses efforts,
with only minor compromise on the statistical efficiency (Califf, 2018; Ernster,
1994). The nested case-control study design is particularly useful in identifying
biological precursors of disease (Califf, 2018; Ernster, 1994).

1.3.2 Bias in observational studies

Observational studies typically include a randomly selected sample from a
larger target population. Based on the outcome from this sample, general
conclusions are drawn for the target population (Morshed et al., 2009).
However, observational studies can both be affected by bias that reveals
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associations that are incorrect (internal validity) and bias that affects the
generalisability of results (external validity). Although there are many different
sources of bias in observational studies they can broadly be categorised into
three subgroups, namely selection bias, information bias and confounding
(Delgado-Rodriguez & Llorca, 2004).

Selection bias can occur if the sample does not represent the target
population (Delgado-Rodriguez & Llorca, 2004). This is especially a problem
in case-control studies, where recruitment can be problematic, resulting in the
inclusion of controls that does not represent the population from which the
cases origin. Such selection bias is a smaller problem in nested case-control
studies, since controls are selected from the same cohort as the cases (Ernster,
1994). However, exposure and/or outcome related selection into the cohort
might still cause some bias (Munaf6 et al., 2018). Cohort studies are often
prone to selection bias due to loss to follow-up (Delgado-Rodriguez & Llorca,
2004; Grimes & Schulz, 2002). Loss to follow-up is, however, a minor issue in
Nordic countries due to record linkages by unique personal numbers (Maret-
Ouda et al., 2017).

Information bias refers to errors that occur during data collection. For
example, if there are difficulties in distinguishing individuals based on
outcome and/or exposure level, then systematic misclassification may occur
(e.g., non-exposed are wrongfully classified as exposed and vice versa).
(Delgado-Rodriguez & Llorca, 2004)

Confounding may occur if a variable affects both exposure and outcome,
without being related to the causal relation between exposure and outcome
(Delgado-Rodriguez & Llorca, 2004). Efforts to reduce or account for bias can
be built into the design. For example, confounding can be adjusted for in
statistical analysis or in the sample selection step by matching. However, an
unmeasured confounder cannot be accounted for (Jepsen et al., 2004;
Geenland, 1996).

1.3.3 Statistics in observational studies

Univariate statistical analysis of observational data generally consists of two
parts, namely estimation and hypothesis testing. The first part involves the
calculation of a point estimate for the association of interest and its precision
(i.e., a confidence interval; CI). Hypothesis testing is done to determine the
probability to observe an association of interest even if it does not exist (null
hypothesis). As mentioned in the general introduction to metabolomics, test
statistics is performed and the decision of a cut-off for significance determines
if the null hypothesis can be rejected or not (Morshed et al., 2009).
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The odds ratio (OR) is one example of a point estimate of the association
between exposure and outcome, which is commonly used in case-control
studies. There are four possible groupings of individuals, namely exposed
cases (true positive: TP), unexposed cases (false positive: FP), exposed
controls (false negative: FN) and unexposed controls (true negative: TN). The
OR is the ratio between (TP x TN) and (FP x FN). Hence, an OR >1 indicates
a positive association, while an OR <0 indicates an inverse association
(Broadhurst & Kell, 2006; Breslow & Day, 1980). Logistic regression can be
used to calculate the OR for a binary outcome to investigate its association
with metabolite level (Morshed et al., 2009; Bewick et al., 2005). If such an
association exist, then the probability of a given outcome should vary with
metabolite level. For example, the probability of a given outcome (p) may
increase with an elevation in metabolite level (x) or vice versa. However, this
relationship typically follows an S-shaped curve. The logit function, logit(p)
can transform such an S-shaped curve to approximate a linear form, k x x + m,
where the OR is Eulers number to the power of k. The parameters (k and m)
cannot be assessed using linear regression since the underlying distribution for
a binary outcome assumedly follows a binomial distribution. The parameters,
are usually derived by maximum likelihood estimation. Iterative techniques
performed using computer-assisted packages can be required (Bewick et al.,
2005).

1.3.4 Risk biomarkers for type 2 diabetes

In 2017, about 425 million people suffered from diabetes worldwide and
incidences are expected to increase even more in the future (IDF, 2017a). T2D
is characterised by insulin resistance, a metabolic condition where the
production of insulin first increases in order to the lower blood glucose level;
but, in time the production becomes insufficient, which results in an elevated
blood glucose level. Elevated blood glucose levels are currently used to
diagnose T2D and pre-diabetic states such as impaired fasting glucose (IFG)
and impaired glucose tolerance (IGT) (IDF, 2017b). This is done using an oral
glucose tolerance test (OGTT) where glucose is administered orally and the
blood levels measured pre- and post-ingestion. The World Health Organization
(WHO) provides with recommended cut-off values to differentiate between
normal glucose tolerance (NGT), glucose intolerance (IFG, IGT) and T2D
(WHO, 2017; WHO, 1999).

Several nested case-control studies have been conducted to identify plasma
or serum metabolites associated with risk of T2D (Shi et al., 2018; Ruiz-
Canela et al., 2018; Qui et al., 2016; Drogan et al., 2015; Wang et al., 2011).
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For example, higher levels of some branched chain amino acids and aromatic
amino acids associated with elevated risk of T2D, while lower level of some
lysophosphatidylcholines associated with elevated risk of T2D.

1.3.5 Risk biomarkers for prostate cancer

Prostate cancer is the second most common cancer among men worldwide. In
2018, Sweden was among the ten countries in the world with the highest rate of
prostate cancer (Bray et al., 2018). Prostate cancer typically develops over a
long period of time and is most frequently diagnosed in men older than 60
years of age. The disease severity varies, ranging from indolent tumours, which
may be of small clinical significance, to more aggressive stage tumours. Risk
factors for prostate cancer have been frequently studied within epidemiology.
One of the associations, with strongest evidence in the scientific literature, is
between obesity and risk of advanced stage prostate cancer. An association
between high consumption of dairy products and elevated risk of prostate
cancer has been suggested; but, with limited evidence (WCRF/AICR, 2018).
Meta-analysis of observational studies suggests that there is an association
between T2D and reduced risk of prostate cancer (Bansal et al., 2013).
Furthermore, insulin-like growth factor-I (IGF-I) is considered a modifiable
risk factor for prostate cancer (WCRF/AICR, 2018) (Travis et al., 2016).
Interestingly, the association between higher circulatory levels of IGF-1 and
elevated risk of prostate cancer vary with age, the association being stronger in
relatively young subjects (<59 years) (Stattin et al., 2004).

Studies have revealed that several serum and plasma levels of some amino
acids, carnitines and glycerophospholipids may differ between prostate cancer
patients and healthy individuals (Kelly et al., 2016). This includes different
lysophosphatidylcholines with a saturated fatty acid chain. Yet, contradictory
findings have been reported for lysophosphatidylcholines (i.e., prostate cancer
has been linked to both higher and lower levels) (Zhou et al., 2012; Lokhov et
al., 2010; Osl et al., 2008).

The studies mentioned above should be clearly distinguished from MWAS.
Rather than comparing individuals diagnosed with prostate cancer and healthy
individuals, MWAS aims to identify metabolites associated with risk of
developing the disease in the future. Several nested case-control studies have
been conducted to identify plasma or serum metabolites associated with risk of
prostate cancer (Schmidt et al., 2017; Huang et al., 2016; Kiihn et al., 2016;
Mondul et al., 2015; Mondul et al., 2014). Lower levels of 1-stearoylglycerol
(an intermediate in lipid metabolism) associated with elevated risk of prostate
cancer in a study nested within the ATBC (Mondul et al., 2014). However, this
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finding was not replicated in a later study within the same cohort (Mondul et
al., 2015). Furthermore, lower levels of several glycerophospholipids
associated with elevated risk of advanced stage prostate cancer in a study
nested within EPIC (multicenter) (Schmidt ez al., 2017).

Sample size, fasting status and follow-up time — i.e., the time between
sample collection (baseline) and diagnosis with prostate cancer — are some
important factors to consider in MWAS. Firstly, the sample size should be
large enough so the statistical power (i.e., the probability that the statistical test
yields significant results) is adequate (Houle et al., 2005). Secondly, it has
been shown that non-fasting samples display lesser temporal stability than
fasting samples. Stability over time is essential when using a single
measurement to assess association between metabolites and disease risk.
Hence, the use of fasting samples is favored in MWAS (Caraloy et al., 2015).
Thirdly, the nested case-control study design can be used to ensure that the
exposure (here, metabolite data) is collected prior to the outcome of disease
rather than at the presence of disease. Therefore, it is a useful study design in
MWAS (Nicholson et al., 2008; Ernster, 1994). The association between
metabolites and risk of prostate cancer may differ depending on the follow-up
time. For example, a previous study reported different statistical outcome when
stratifying the statistical analyses based on follow-up time (<5 years, >5 years)
(Schmidt et al., 2017).

Further MWAS on prostate cancer (employing a nested case-control study
design) are warranted since none of the previous studies have included both (1)
large sample size, (2) entirely fasting samples and (3) a long follow-up (>5
years). Furthermore, none of the previous studies have reported whether
association between metabolites and prostate cancer risk vary with baseline age
(Schmidt et al., 2017; Huang et al., 2016; Kiithn et al., 2016; Mondul et al.,
2015; Mondul et al, 2014). Still, this may be highly relevant since the
association between IGF-I (a modifiable risk factor for prostate cancer) and
risk of prostate cancer vary with baseline age (Stattin et al., 2004).
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2 Objectives

Methods for quantifying plasma metabolites by NMR should (1) be based on
simplistic and easy to understand principles on how to account for signal
interferences, (2) only require minor computational efforts and (3) account for
inter-spectral deviations in signal positions and line widths when such exist. In
response to this, an Automated Quantification Algorithm (AQuA) was
developed for quantification of human plasma metabolites in samples collected
using heparin and EDTA as anticoagulant, respectively (papers I and II).
Targeted metabolomics was also employed in case-control study nested within
the NSHDC with the aim of identifying risk biomarkers of prostate cancer

(paper III).

» Paper I: Design of an AQuA focused on (1) to (2) and its application on
NMR spectra from plasma samples collected using heparin as
anticoagulant.

» Paper II: Modification of the AQuA with focus on (3) and its
application on NMR spectra from plasma samples collected using
EDTA as anticoagulant.

» Paper III: Identification of risk biomarkers for prostate cancer in the
NSHDC via the use of targeted MS and NMR-based metabolomics
employed on plasma samples collected using heparin as anticoagulant.
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3 AQuA

In paper I, an Automated Quantification Algorithm (AQuA) was designed,
implemented and evaluated as the final step in the targeted NMR-based
workflow. A principle for targeted profiling was introduced for manual
quantification of selected compounds by 'H NMR. The general principle of
AQuA was designed using the (manual) principle for targeted profiling as a
starting point. AQuA was implemented for quantification of human plasma
samples collected using heparin as anticoagulant. AQuA was evaluated by
comparison with targeted profiling and by computation of different quality
indicators.

3.1 Methods

3.1.1 Design of targeted profiling

The principle for targeted profiling, designed for manual quantification of
target compounds by 'H NMR, accounts for signal interferences in
experimental spectra via deconvolution using a compound library. The
principle is illustrated below for five putative compounds.

One signal in the library (i.e., reporter signal) is selected for the
quantification of each compound. In this example, the signal at target position
0y is selected as reporter for compound /, d, for compound 2, d; for compound
3, 0, for compound 4 and d5 for compound 5 (Figure 7A). An integration order
is also determined. In the current example, the integration order 5-4-3-2-1 is set
(Figure 7A). Targeted profiling is then applied on each experimental spectrum
by adjusting the height of each reporter signals in the pre-determined
integration order so the sum of library signals (i.e., the reporter signals and
signals from interfering compounds) match with the corresponding
experimental signals (i.e., target signals) (Figure 7B). Importantly, the
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integration order is set so that interferences that affect each given reporter are
accounted for. For example, the reporter signal for compound 5 is integrated
prior to the reporter signal for compound 3. This is since a (non-reporter)
signal from compound 5 interferes with the reporter signal for compound 3.
Adjustment of library signal positions can be done if necessary.

This manual principle for targeted profiling can be applied on different
experimental spectra to yield concentrations of the target compounds in
different samples.

Reporter signals

Integration order

Figure 7. lllustration of the principle for manual targeted profiling. (A) Selection of reporter
signals and setting the integration order. (B) The outcome of manual targeted profiling when
applied on one experimental spectrum.
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3.1.2 Design of AQUA

The general principle of AQuA is illustrated below, again for five putative
compounds. The first step in the design of AQuA is to select one reporter
signal per compound, which is to be used for its quantification. This step is
identical to the first step in the principle for targeted profiling (Figure 7A). The
library spectrum for each compound 7 is normalised by dividing all intensities
with the height found at target position J;. Data reduction is done by extracting
the intensities at all target positions J;, d,, d; Jd, and J5 (Figure 8A). The
extracted values for each compound are arranged as columns in a (5 x 5)
m matrix (Figure 8B).

Figure 8. Illustration of generating the m matrix. (A) Normalisation and data reduction of the
compound library. (B) Extracted values (normalised intensities at all target positions) for each
compound arranged as columns in the matrix.
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Data reduction is employed on the experimental spectrum (Figure 9A). In this
step, the height at the corresponding target positions J;, d,, J; J4 and J;s (i.e.,
the height of all target signals) are extracted from the experimental spectrum
and organised into a (5 x 1) ¥ vector. The m matrix and the ¥ vector are used
as input in the AQuA computation (Eq. 1A) to generate a (5 x 1) X vector. This
vector corresponds to the same reporter signals as those obtained via the
manual targeted profiling (Figure 7B).
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Figure 9. Illustration of the AQuA computation. (A) Data reduction of the experimental spectrum.
(B) The outcome from the AQuA computation.
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The AQuA computation (Eq. 1A) can also be expressed as in Eq. 1B. The
height of each target signal (y; at J;) is modelled as the sum of contributions
from: (1) the reporter signal (x; at §;) and (2) interfering compounds (>0). Each
individual contribution is expressed as a product of a matrix element and a
reporter signal (m x x) (Eq. 1). Although only the reporter signals are generated
in computation, the individual contribution from each interfering compound
(>0) may also be derived. For example, the individual contribution from
compound 5 to the target signal height used for quantification of compound 4
is (mys x xs). Note that m,s refers to the normalised interference from
compound 5 at position J, (see Figure 8).

Y1 =My Xp+ Myp-Xp+My3 X3 +Myg Xy + M5 X
Y2 =My X1+ Myp Xy + M3 X3+ My Xy +Mys5Xp
Y3 =Mgq1 X3+ Mgy Xy +M33°X3+M3,Xy +M35-x3 Eq. 1B
Vo =Myq X+ My Xp +My3 X3+ Myq X4 +Mys Xy
Ys =Ms51 X1+ Mo Xy + Mgz X3+ M54 Xy + M55 X5

The total contribution from interfering compounds to the target signal for a
given compound i is the difference between its target and reporter signal height
(yi - x;). The interference (A;) for a given compound 7 is defined as the relative
sum of contribution from other compounds (Eq. 2).

i =X

y

Ai = T Eq 2

AQUuA can be designed for quantification of any number of compounds. The
addition of one compound results in a one unit increase in the dimension of the
linear equation system (Eq. 1). The computation may also be applied for
different y vectors, to generate corresponding X vectors — i.e., quantifying
compounds in different samples. For each experimental spectrum n (with
vector yy,), the AQuA computation yields the corresponding set of reporter
signals (vector X,,), which represents the quantitative mixture of compounds in
sample n (Eq. 3).

Vo =mxX, (Eq.3)

Note that the AQuA (as well as manual targeted profiling) is a targeted
approach — i.e., pre-selected compounds are targeted for quantification.
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Figure 10. Workflow for targeted NMR-based metabolomics applied on human plasma samples.
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3.1.3 Implementation of AQUA

Targeted NMR-based metabolomics was employed on 1342 human plasma
samples collected using heparin as anticoagulant. The samples were analysed
according to the workflow presented in Figure 10.

Macromolecules (such as plasma proteins and heparin) were removed using
ultrafiltration (Tiziani et al., 2008). A solution with deuterated TSP (internal
standard), phosphate buffer and H,O/D,O was mixed with each plasma filtrate
in the ratio of 4.25:1. The internal standard was added to each sample to allow
for quantification, while the buffer was added to reduce pH differences
between samples (Bharti & Roy, 2012). An experimental spectrum was
obtained for each NMR sample on a spectrometer operating at 600 MHz using
a 1D '"H NMR experiment (512 scans) that suppressed the water resonance
(Hwang & Shaka, 1995). Processing — e.g., phase correction and application of
an exponential window function — was done manually to allow quantification
by signal heights (Hays & Thompson, 2009). This workflow generated a
dataset consisting of 1342 experimental spectra. This dataset is hereafter
referred to as Dataset Heparin.

Metabolite identification and assignment of experimental NMR signals in
Dataset Heparin was done using signal pattern recognition. This resulted in a
set of compounds — i.e., human plasma metabolites — targeted for
quantification with manual targeted profiling and with AQuA. The procedure
for manual targeted profiling was implemented in ChenomX NMR Suite
(version 7.5, ChenomX Inc.). AQuA (Eq. 3) was implemented in MATLAB
(version R2012b, MathWorks Inc.). Table 2 compiles an explanation of the
values, which were used and generated in AQuA computations. A majority of
these values have already been introduced in the method section above, but the
table provides with an overview. After employing both procedures, two
concentration estimates (uWM) were generated for each metabolite i in each
sample n. Final plasma concentrations were derived by accounting for the
dilution during sample preparation.
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a b, c

Table 2. Explanation of important values in AQuA

Name Explanation

Vector elements determined in each experimental spectrum n

The signal used for quantifying compound 7; sum of intensity contributions

Target signal (y; . :
arget signal (y;) from reporter i and interfering compounds # i

Target position (J;) The corresponding position of target signal i

Vector elements generated in each AQuA computation n

Reporter signal (x;) The interference-free signal height of compound 7 at target position i

The relative contribution from all interfering compounds (# i) at target

Interf 4; s
nterference (4;) position i (Eq. 2; >0). (x;/ 1) + 4 =1 (100%).

Concentration (C;) The concentration of compound 7 in the NMR sample

Matrix (im) used in AQuA computations as derived from a compound library

Row (m;) Normalised intensities of all compounds at target position i
Column (m ;) Normalised intensities of compound ; at all target positions
Element (m;, ) Normalised intensity of compound ; at target position i

Normalised intensity of the reporter at its target position

Diagonal o
(i=j,m=l)
. Normalised intensity of an interfering compound j at target position i
Non-diagonal oo
(i #j, m=>0)

“ In paper I, the compound library consisted of one calibration spectrum per human plasma metabolite targeted
for quantification with AQuA (with characteristic '"H NMR signals positions and line widths adjusted in silico
to match with the experimental spectra).

® Experimental signals were modelled via the library signals. Each experimental signal was therefore predicted
to have the same position and line width as the corresponding library signal.

“ Reporter signals generated in AQuA computation (Eq. 3) were converted to metabolite concentrations using a
set calibration factors (for each metabolite, the ratio between its library concentration and its reporter height in
the library before normalisation).
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3.1.4 Evaluation of AQUA

Mean relative deviation and goodness-of-fit

The accuracy of AQuA was evaluated against manual targeted profiling in a
subset of 30 randomly selected spectra from Dataset Heparin. After employing
both procedures, two concentration estimates (uWM) were generated for each
metabolite 7 in each sample n (C;, where the superscript indicates the
quantitative procedure used, namely auto for AQuA and manual for targeted
profiling). The mean relative deviation (MRD) was calculated for each
respective metabolite using the concentrations generated by both procedures
(Eq. 4; N =30).

auto manual
Ci n _Ci,n )

1
MRD; =+ x ¥l (W (Eq. 4)
Furthermore, the values used for computing the MRD for each metabolite were
also used in linear regression analysis to compute the goodness-of-fit () for
each metabolite.

Quality indicators

The evaluation also included the computation of three quality indicators for
each respective metabolite — i.e., occurrence, positional deviation and F,
values (related to degree of interference). Each quality indicator was computed
based on values inherently generated by AQuA (Table 3).

The occurrence was defined as the percentage (%) of reporter signals found
to be above the limit of detection (LOD) in a given dataset. The positional
deviation was defined as the distance (+ bins, where 1 bin =0.0002 ppm) from
the median target position that accounted for 95% of target signals in a given
dataset. The F, value for a given metabolite was defined as the fraction of
spectra where the interference (Eq. 2) exceeded the pre-determined value g. F,
was computed for ¢ =0.05 (5%) and g =0.50 (50%).
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Table 3. Explanation of quality indicators *

Quality indicator Explanation
Occurrence
Unit Percent (%)
Based on Reporter signal of metabolite 7 (x;)
Distribution x:> (3 x LOD)
Cut-off % of values found to be above the detection limit
Results Metabolite i has 70% occurrence
Interpretation The reporter signals of metabolite i are above the detection limit in
70% of the experimental spectra
Positional deviation
Unit + bins (1 bin =0.0002 ppm)
Based on The target position for metabolite i (ppm)
Distribution Median-centered
Cut-off 95% of experimental spectra
Results The positional deviation for metabolite i is (£) 100 bins
Interpretation For metabolite 7, the deviation from the median target position is
within 100 bins in 95% of experimental spectra
F, values
Unit Fraction
Based on The interference (4; Eq. 2)
Distribution A> g (for ¢ =0.05 and ¢ =0.50)
Cut-off Fraction of spectra where 4 exceeds a pre-determined value ¢
Results Metabolite A4 displays Fy 5o =1
Interpretation For metabolite 4, the contribution from interfering metabolites

signals exceeds 50% in all experimental spectra

“ The LOD was determined in each experimental spectrum from the baseline noise in a signal free region.



3.2 Results and discussion

3.2.1 Accuracy

Comparison with targeted profiling

AQuA and a manual procedure for targeted profiling was employed on a subset
of experimental spectra in Dataset Heparin (30 out of 1342). The MRD and »*
derived for each respective metabolite was used as a measure of the
quantitative accuracy of AQuA relative to manual targeted profiling (Figure
11). A majority of metabolites displayed an 72 >0.99 and MRD within +0.05.
Hence, the two quantitative procedures typically generated results that were in
excellent agreement. The accuracy of AQuA was thus tested and confirmed in
comparison with manual targeted profiling. The latter procedure was
performed using a software package dedicated to metabolite identification and
quantification, which has been generally approved by the metabolomics
community (Hao et al., 2014; Weljie et al., 2006).

Quality indicators

Although the results from AQuA showed excellent agreement with results
from a manual procedure for targeted profiling, evaluation by such a
comparison was somewhat limited since the manual procedure was too time-
consuming to employ on the entire dataset. Manual targeted profiling was
therefore only employed on a subset of experimental spectra in Dataset
Heparin. Instead, an alternative approach for evaluating AQuA was presented.
This evaluation included the computation of three quality indicators — i.e.,
occurrence, positional deviation and F, values (Figure 11).

Most metabolites displayed an occurrence >90% in the subset. The few
metabolites with low occurrence typically displayed poor #° and MRD, while
metabolites with high occurrence typically displayed 7* >0.99 and MRD within
+0.05. Hence, evaluation of AQuA by comparison with a manual procedure for
targeted profiling yielded similar information as investigating the distribution
of occurrences in the subset. Furthermore, the distribution of occurrences in
the subset was representative of the occurrence distribution in the entire
dataset. This shows that metabolites with low occurrence may be difficult to
quantify accurately with AQuA. However, this issue is not specific to AQuA
since signals of low intensity are difficult to quantify accurately regardless of
the procedure used.
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Most metabolites displayed limited positional deviation (within £2 bins or
+0.0004 ppm) in the subset. Note that metabolites with low occurrence
displayed some positional deviation (i.e., noise detection resulted in positional
deviation). Few metabolites with high occurrence displayed positional
deviation (e.g., histidine and phenylalanine). Inter-spectral positional
deviations of 'H NMR signals often owes to variation in pH and/or ionic
strength between samples. But, such variations are limited in spectra from
plasma compared to more complex spectra (e.g., from urine) (Emwas et al.,
2018; Bouatra et al., 2013; Rist et al., 2013).

Many metabolites displayed a low (Fj g5 =0) or intermediate (Fy g5 >0 and
Fys0 <0.5) degree of interference in the subset. Only a limited number of
metabolites (e.g. betaine, glutamic acid, succinic acid and trimethylamine-N-
oxide) displayed a high degree of interference (Fjsy >0.5). Most of these
metabolites displayed relatively low 7 values considering the entire
distribution. Hence, metabolites with high degree of interference may be
somewhat more difficult to quantify with AQuA compared to metabolites with
low or intermediate degree of interference. The sources of interference are
listed in Table 4 for metabolites with F s >0 and >5% occurrence.

AQuA (Eq. 3) utilised one matrix for all computations. Due to this, the
experimental signal positions (and line widths) were assumed to have, and
modelled as if they displayed, limited inter-spectral deviations. This
assumption may lead to quantitative errors e.g., if target signals are located in
regions where both interference and inter-spectral deviations in signal positions
are observed. In contrast, the manual procedure for targeted profiling allowed
for adjustment of library positions. Metabolites with diminished quantitative
accuracy, due to the assumption in AQuA regarding experimental signal
positions, should thus be distinguished in the evaluation via: (1) a higher MRD
and/or a lower #* as well as (2) intermediate (or high) degree of interference
and (3) positional deviation. Yet, such metabolites were rarely identified. It
was possible to identify metabolites with 7° >0.99 and MRD within +0.05 that
displayed (1) positional deviation, but low degree of interference, (2)
intermediate degree of interference, but limited positional deviation and (3)
limited positional deviation and low degree of interference. This demonstrates
that AQuA could accurately quantify metabolites that belong to one of the
groups (1) to (3). The distributions of the quality indicators in the subset were
highly similar to the distributions in the entire dataset (Dataset Heparin)
(Figure 11). This implies that the level of accuracy is highly similar between
the entire dataset and the subset (i.e., comparable with manual targeted
profiling). Hence, via a suitable selection of target/reporter signals, error in
AQuA computations may be avoided. The evaluation in paper I show that this
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is possible in experimental spectra from plasma collected using heparin as
anticoagulant.

Table 4. Interfering 'H NMR signals from different human plasma metabolites

Target signal (6 ppm): other metabolite signals located within close proximity

Acetylglycine (8 2.05): 2-hydroxyisovaleric acid, glutamic acid, isovaleric acid, proline, pyroglutamic acid
Isocaproic acid (& 0.88): 2-hydroxybutyric acid, 3-methyl-2-oxovaleric acid

1-Methylguanidine (6 2.83): aspartic acid, asparagine

Succinic acid (6 2.41): 3-hydroxybutyric acid, glutamine, pyroglutamic acid

Propionic acid (8 1.06): isobutyric acid, valine

3-Hydroxyisovalerate (& 1.27): isoleucine, threonine

Serine (6 3.97): 1-methylhistidine, 3-methylhistidine, hippuric acid

O-phosphocholine (8 3.22): 3-methylhistidine, arginine, carnitine, choline, glucose, tyrosine
Trimethylamine-N-oxide (8 3.27): arginine, betaine, glucose, histidine, myo-inositol, phenylalanine
Glycine (8 3.57): 1, 2-propanediol, glucose, glycerol, myo-inositol, threonine

2-Ketoglutaric acid (6 3.01): lysine

Betaine (6 3.27): arginine, glucose, histidine, myo-inositol, phenylalanine, trimethylamine-N-oxide
Choline (8 3.21): 1-methylhistidine, 3-methylhistidine, acetylcarnitine, arginine, o-phosphocholine, tyrosine
Dimethylsulfone (8 3.16): 1-methylhistidine, histidine, phenylalanine

2-Oxoisocaproic acid (8 0.95): isoleucine, leucine

Acetylcarnitine (8 3.20): 1-methylhistidine, arginine, choline, o-phosphocholine, tyrosine

Lactic acid (& 1.33): threonine

Myo-inositol (6 4.07): choline, creatinine

2-Aminobutyric acid (8 0.98): 2-hydroxyisovaleric acid, leucine, valine

2-Propanol (8 1.18): 3-hydroxybutyric acid, ethanol

3-Methyl-2-oxovaleric acid (8 0.90): 2-hydroxybutyric acid, isocaproic acid, isovaleric acid
Acetic acid (8 1.92): 2-aminobutyric acid, arginine, lysine, ornithine

Arginine (8 1.67): 2-hydroxybutyric acid, leucine

Carnitine (6 3.23): 3-methylhistidine, arginine, glucose, histidine, o-phosphocholine, tyrosine
Creatine (6 3.04): creatinine, lysine, ornithine, tyrosine

Ethanol (6 1.19): 2-propanol, 3-hydroxybutyric acid

Leucine (6 0.98): 2-aminobutyric acid, 2-hydroxyisovaleric acid, valine

Methanol (5 3.37): proline

Methionine (8 2.65): aspartic acid, citric acid

Proline (8 4.15): 3-hydroxybutyric acid

Acetoacetic acid (6 2.29): valine

Glutamic acid (8 2.36): proline

Ornithine (8 3.06): 1-methylhistidine, creatinine, lysine, tyrosine
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3.2.2 Efficiency

Quantification with AQuA was completed in <1 second on a standard personal
computer. This included the quantification of 67 human plasma metabolites in
1342 samples. Hence, AQuA computations were extremely rapid. The high
efficiency of AQuA was thus demonstrated.

Although many metabolites display several characteristic '"H NMR signals,
it is sufficient to use one signal for its quantification (Bharti & Roy, 2012).
AQUuA is based on this principle. This principle does not only ensure rapid
computations via data reduction, but also avoids processing of spectral regions
e.g., where both interference and positional deviation occurs. This is utilised by
AQuA to focus the quantitative process towards target regions where the
selected signals used for quantification display favourable characteristics (e.g.,
high S/N ratios and small inter-spectral deviation in positions). In contrast,
available alternatives for manual or automated quantification often consider all
experimental signals (Ravanbakhsh et al., 2015; Hao et al., 2014; Weljie et al.,
2006). This dramatically increases the demands on computational efforts in
automated procedures and makes manual procedures time-consuming. For
example, quantification of 50 serum metabolites required about 5 minutes with
BAYESIL, while BATMAN required about 13 minutes to quantify 24
metabolites (Ravanbakhsh et al., 2015; Hao et al., 2014). About 2 minutes was
required to quantify 14 metabolites using the ChenomX software (Weljie et al.,
2006). However, a manual procedure becomes very time-consuming,
especially when employed on large datasets (Schleif ez al., 2011). The superior
efficiency of AQuA and the low computational burden required for the
computations facilitates large-scale studies.
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3.3 Conclusions

An Automated Quantification Algorithm (AQuA) was designed, implemented
and evaluated for quantification of human plasma metabolites by NMR in
samples collected using heparin as anticoagulant. The accuracy of AQuA was
tested and confirmed by comparison with a manual procedure for targeted
profiling. The results were in excellent agreement, but AQuA performed the
quantifications at a superior rate. Due to its high efficiency, AQuA can
facilitate large-scale studies.

Beyond the rapid generation of quantitative data on human plasma
metabolites, AQuA generated information on NMR signal characteristics (e.g.,
detection limits, intensities, positions and interferences). This information was
utilised to generate different quality indicators (occurrence, positional
deviation and F, values). The evaluation of the quality indicators yielded
similar information as the comparison of AQuA with a manual procedure for
targeted profiling. Hence, the quality indicators provide a way to evaluate the
results from AQuA without the need for comparison to an independent
quantification procedure. Accurate quantification with AQuA can be expected
for all metabolites, except those that display low occurrence, high degree of
interference (Fys9 >0.5) or a combination of positional deviation and
interference (£, 95 >0).
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4 Improved AQuUA

In paper 1I, the automated quantification algorithm (AQuA) was modified to
also handle inter-spectral deviations in signal positions and line widths. The
modified AQuA was implemented for quantification of metabolites in human
plasma samples collected using EDTA as anticoagulant. The results from the
modified AQuA were evaluated using quality indicators (Table 3).

4.1 Methods

4.1.1 Design

The modification of AQuA can be employed to specific compounds that
display inter-spectral deviations in signal positions and/or line widths.
Compounds targeted for quantification may therefore be divided into two
subgroups: (1) compounds that do not display inter-spectral deviations in
signal positions or line widths and (2) compounds that display the
aforementioned deviations.

For each compound in the second subgroup, its corresponding spectrum in
the compound library is recreated as, and replaced by, a set of Lorentzian
functions that match with the original library spectrum. The condition for each
compound (i.e., its actual signal positions and line widths) is monitored in each
experimental spectrum n. The values generated for each experimental spectrum
n are used as input in the corresponding Lorentzian function to generate a new
library spectrum n. The constant part of the library (originating from
compounds in the first subgroup), alongside each generated library spectrum n
(originating from compounds in the second subgroup), is then subjected to
normalisation and data reduction as described in paper I. This generates a new
matrix m, for each spectrum n. The extraction of target signals to each ¥y,
vector is done in an identical manner as presented in paper L.
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Figure 12. lllustration of the principle used to modify AQuA to account for inter-spectral
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spectrum 7 is monitored and used to create a corresponding library spectrum n. Normalisation and
data reduction of the compound library (including library spectrum 7) generates a matrix m,, that
is used in the AQuA computation (Eq. 5).
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The AQuA computation is done by solving Eq. 5. This principle for modifying
AQuA will account for inter-spectral deviations in signal positions and/or line
widths for selected compounds.

Yo = rﬁnx Xp (Eq.5)

The principle to modify AQuA is illustrated in Figure 12, using the same five
putative compounds as in paper I. Here, the principle is illustrated for
compound 3, which only has one characteristic NMR signal. Its position (and
linewidth) is determined in experimental spectrum #. This empirically derived
position (and line width) is used as input in a Lorentzian function to generate a
new library spectrum n. Upon data reduction and normalisation, this generates
an optimised matrix m,, that accurately models the (normalised) interferences
in experimental spectrum z.

4.1.2 Implementation

In paper II, AQuA was implemented for quantification of human plasma
metabolites in samples collected using EDTA as anticoagulant. Targeted
NMR-based metabolomics was employed on 772 samples. Each sample was
analysed with the workflow presented in Figure 10 (i.e., a similar workflow as
employed to generate the experimental spectra in Dataset Heparin). This
generated a dataset with 772 experimental spectra, which hereafter is referred
to as Dataset EDTA. The original design of AQuA (Eq. 3) was implemented
and all compounds included were human plasma metabolites. This AQuA was
extended to also include non-metabolites, namely free EDTA (H-EDTA®) and
two EDTA-complexes (Ca-EDTA” and Mg-EDTA™) (Barton ez al., 2010).
The strategy to account for inter-spectral deviations in signal positions and line
widths was employed on the (two) signals from free EDTA (Eq. 5). This
modification was necessary since free EDTA signals displayed inter-spectral
deviations in signal positions and line widths (see the Results and Discussion
section further below).

4 1.3 Evaluation

Quality indicators (Table 3) were computed for each respective metabolite
based on values inherently generated by the modified AQuA. The evaluation of
quality indicators was not done for metabolites with <5% occurrence in
Dataset EDTA. For the remaining metabolites, values below LOD were
excluded (except when computing occurrences). Importantly, F, values were
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computed after separation into: (1) interference from other metabolite signals
and (2) interference from EDTA signals, respectively.

4.2 Results and discussion

Metabolite quantification by NMR may be desired in plasma that contains
EDTA since such samples are frequently collected and stored in clinical and
epidemiological studies (Tuck et al., 2009; Vaught et al., 2009). However,
EDTA generates several characteristic NMR signals due to its binding with
different cations (e.g., H", Ca®” and Mg®"). These signals interfere with many
different metabolite signals (e.g., acetylcarnitine, arginine, carnitine, choline,
creatine, creatinine, glucose, glycerol, histidine, ornithine, phenylalanine,
tyrosine and valine) (Barton et al., 2010).

In paper II, targeted NMR-based metabolomics was employed on 772
plasma samples collected using EDTA as anticoagulant. This generated an
experimental dataset (Dataset EDTA) used for quantification with AQuA.
AQuA can facilitate quantification of metabolites in the presence of EDTA
signals by inclusion of free EDTA (H-EDTA¥) and EDTA metal ion
complexes (Ca-EDTA* and Mg-EDTA”) in the AQuA computations in a
similar manner as the other set of compounds selected for quantification (here,
human plasma metabolites). For each added compound, there will be a one unit
increase in the dimension of the linear equation system used in AQuA
computations (Eq. 3). If such implementation is done, then additional
interferences between EDTA and metabolite signals will also be considered in
each AQuA computation (beyond consideration of signal interferences
between metabolites).

As discussed in paper I, the use of a constant matrix (Eq. 3) can be
suboptimal for compounds that display interference and inter-spectral deviation
in positions and/or line widths (however, only if these signals are located in a
target region that is utilised in the AQuA computations). The EDTA signals
were automatically monitored in Dataset EDTA to identify whether such issues
were observed (Figure 13). It was found that the two high intensity signals
from free EDTA displayed inter-spectral deviations in both signal positions
and line widths. These deviations can be pH-dependent (Ménico et al., 2017,
Bharti & Roy, 2012; Barton et al., 2010). Thus, despite the use of a buffer
solution to reduce the variation in pH between samples, some deviations were
still observed. Therefore, Dataset EDTA was an excellent test system to
demonstrate the strategy for modifying AQuA to handle inter-spectral
deviations in signal positions and line widths.
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4.2.1 Accuracy

Quality indicators

Evaluation of the modified AQuA was done using the quality indicators:
occurrence, positional deviation and F, values (Figure 14). In paper II, F,
values were computed separately based on (1) interferences from other
metabolites and (2) interferences from EDTA. Furthermore, interpretation of
quality indicators in relation to quantitative accuracy was guided by the
conclusions in paper 1. In paper L, it was concluded that metabolites with low
occurrence, a high degree interference (Fjs9 >0.50) or a combination of
positional deviation and interference (Fyys >0 and F 59 <0.5), may be prone to
quantitative errors when using AQuA.

It should be noted that the respective distributions of occurrence, positional
deviation and the degree of interference (based on £, values from metabolites)
were highly similar in Dataset Heparin and Dataset EDTA (see Figure 11 and
Figure 14). For example, most metabolites displayed high occurrence and
positional deviation was limited. This indicates that the level of quantitative
accuracy is comparable between the two datasets when only considering these
three quality indicators. However, additional interferences caused by EDTA
were identified via larger /7, values (from EDTA). This may lead to difficulties
in quantifying those metabolites, but only if the degree of interference is high.

It was possible to identify a few metabolites with a high degree of
interference (e.g., carnitine and dimethylsulfone), which may be difficult to
quantify with the modified AQuA in plasma that contains EDTA. However,
most metabolites, which were affected by additional interference from EDTA,
still displayed an intermediate degree of interference. This implies that the
modified AQuA can accurately quantify most metabolites affected by
interference from EDTA signals.

4.2.2 Comparison between different AQuA implementations

In paper 1, two AQuAs were implemented. A non-modified AQuA was
implemented as described in paper I — i.e., only inter-metabolite signal
interferences were accounted for. This AQuA was extended to account for the
additional interferences caused by EDTA. This implementation also included
handling the inter-spectral deviations in signal positions and line widths of free
EDTA signals (modified AQuA). Both these implementations were employed
on Dataset EDTA for comparative purposes.
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Figure 14. Quality indicators (occurrences, positional deviations and F, values) generated via the
modified AQuA when employed on Dataset EDTA. F, values computed separately based on the
interferences from other metabolites and from EDTA, respectively.
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Figure 15. Time required for AQuA computations in dataset EDTA before and after its
modification.

Efficiency

The efficiencies of the two implementations were compared (Figure 15).
Quantification of human plasma metabolites with the modified AQuA (Eq. 5)
required less than 50 ms per experimental spectrum. Decreased efficiency was
observed compared to the non-modified AQuA. This can be explained by the
generation of a new m,, matrix for each experimental spectrum n, compared to
the use of one m matrix for all experimental spectra — i.e., it is a direct
consequence of accounting for inter-spectral deviations in positions and line
widths (here, for signals from free EDTA). Still, the modified AQuA
performed extremely rapid, since all computations were done in <25 seconds
on a standard personal computer. As mentioned in paper I, automated
alternatives require at least five minutes to process one experimental spectrum
(Ravanbakhsh et al., 2015; Hao et al., 2014).
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Figure 16. Comparison of mean sample concentrations (z) generated for each respective
metabolite via different AQuA implementations. (A) Calculated values of (Lhon-mod = Lhmod) timods
where f40q4 1s the results from the non-modified AQuA and f4,,q is the results from the modified
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when employed on Dataset Heparin.

63



Mean sample concentrations

For each metabolite, the mean sample concentration (z) derived from each
respective implementation was used to calculate (Lon-mod = tinod) Hmoas Where
Hyon-moa 18 the results from the non-modified AQuA and g4, is the results from
the modified AQuA when employed on Dataset EDTA. This comparison
showed that the non-modified AQuA overestimated the concentrations of
metabolites that were affected by interference from EDTA (Figure 16A).

The results from the modified AQuA when employed on Dataset EDTA
(t4moa In Figure 16A or pgpry in Figure 16B) were also compared with the
results from paper I (4eparin), Where the non-modified AQuA was employed on
Dataset Heparin. This comparison was done by calculating (ugpry -
Hieparin)! Hieparin (Figure 16B). As can be seen in Figure 16, the size of the
overestimations, due to EDTA signals being ignored, often exceeded the
difference between the datasets — i.e., differences between two target
populations. Hence, using the modified AQuA is clearly required to yield more
accurate concentration estimates. Alcohols are not shown in Figure 16 due to
sample preservation issues, which can results in unreliable alcohol
concentrations (Psychogios et al., 2011).

4.3 Conclusions

Paper 1II introduced a strategy for modifying AQuA to handle inter-spectral
deviations in NMR signal positions and line widths. The modified AQuA was
implemented for quantification of human plasma metabolites in samples
collected using EDTA as anticoagulant. EDTA-containing plasma was a good
test system for this modification since NMR signals from EDTA displayed
inter-spectral deviations in both position and line widths. Evaluation of quality
indicators showed that the modified AQuA generated accurate concentrations
of most human plasma metabolites. The principle for modification of AQuA
may be implemented on other datasets where inter-spectral deviation in signal
positions and line widths are observed. Due to its rapid performance, the
modified AQuA is suitable for large-scale studies.
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5 Identification of disease risk biomarkers

In paper 111, a nested case-control study was employed within the NSHDC to
identify risk biomarkers for prostate cancer among plasma metabolites
measured with targeted NMR and MS-based metabolomics. Importantly,
AQuA (paper I) facilitated the quantitative process of human plasma
metabolites measured with NMR.

5.1 Methods

5.1.1 Study design

Details on the NSHDC have been presented elsewhere (Norberg et al., 2010;
Johansson et al., 2002). Participants were enrolled to the NSHDC at 40, 50 or
60 years of age. Enrolled subjects underwent a baseline examination that
included: (1) performing of an OGTT, (2) answering validated food-frequency
questionnaire (FFQ) and (3) donating a blood sample after overnight fasting.
The samples were stored at -80°C in plasma aliquots.

A total number of 777 case-controls were selected for the nested case-
control study in paper III. Inclusion criteria for cases were: (1) no T2D at
baseline, (2) at least 5 years between baseline and the diagnosis with prostate
cancer, (3) no previous incidence of cancer. Each case was matched with one
healthy control based on age, BMI (body mass index) and sample storage time.
Heparin was used as anticoagulant in the plasma samples. This study, including
metabolomics analysis of the plasma samples, was approved by the Regional
Ethical Review Board (2013/124) (Uppsala, Sweden).
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5.1.2 Targeted metabolomics

The plasma samples were analysed with targeted metabolomics. Quality
control (QC) samples were included in the metabolomics workflow to assess
the analytical coefficient of variation (CV). For targeted NMR-based
metabolomics, the method presented in paper 1 was employed. 1342 plasma
samples were included in both paper I and paper III. For targeted MS-based
metabolomics, the AbsoluteIDQ pl80 assay (BIOCRATES, Innsbruck,
Austria) was used. A total number of 188 human plasma metabolites were
quantified. This included 40 acylcarnitines (Cx:y), 21 amino acids, 20 biogenic
amines, 38 diacyl phosphatidylcholines (PC aa Cx:y), 39 acyl-alkyl
phosphatidylcholines (PC ae Cx:y), 14 lysophosphatidylcholines (LPC Cx:y), 5
hydroxysphingomyelins (SM-OH Cx:y), 10 sphingomyelins (SM Cx:y) and
one hexose (sum of several isomers including glucose). In Cx:y, x corresponds
to the number of carbons, and y the number of double bonds in the fatty acid
chain(s). The methodology has been presented in detail elsewhere and it has
been used for similar study designs (Schmidt et al., 2017; Kiihn et al., 2016;
Bogmuil et al., 2008).

5.1.3 Statistical analyses

Quality control was employed on all metabolites measured to identify plasma
metabolites that displayed relatively low occurrence (<50%) and/or relatively
large coefficient of variation in the QC samples (CVqgc >15%). These
metabolites were excluded from statistical analyses. The association between
the baseline plasma level of each individual metabolite and risk of prostate
cancer was investigated using conditional logistic regression (log2 transformed
metabolite data) conditioned on matching factors. Statistical analysis generated
the OR (95% CI) and the corresponding p-value for each association.
Correction for multiple testing was done at two levels of stringency. The highly
conservative Bonferroni correction was used as well as a less stringent FDR
approach. In the FDR approach, the level of significance was set at 20% based
on g-values generated from the p-values (Storey & Tibshirani, 2003).
Statistical analyses were repeated after stratification by baseline age (40-50
years, 60 years) and disease aggressiveness (non-aggressive, aggressive).
Aggressive prostate cancer was defined as: (1) poorly differentiated tumour
(WHO grade 3 or Gleason score 8-10), (2) non-localised tumour T3-4, (3)
lymph node metastasis (N1), (4) bone metastasis (M1) or (5) serum prostate
specific antigen (PSA) concentration >50 ng/mL. Cases with fatal prostate
cancer (until March 2007) were also included in the group of aggressive cases.
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Cases that did not qualify as having an aggressive disease were included in the
non-aggressive group.

5.2 Results

5.2.1 Metabolites measured by NMR

Table 5 lists potential risk biomarkers for prostate cancer among metabolites
measured with NMR. Although several metabolites were significantly
associated with risk of prostate cancer with a nominal p-value below 0.05 (p
<0.05), only two associations remained significant after correction for multiple
testing (FDR, 20%). Higher concentrations of glycine associated with elevated
risk of overall prostate cancer in younger subjects, while lower concentrations
of pyruvic acid associated with elevated risk of overall prostate cancer in
younger subjects. The evaluation of quality indicators in paper I showed that
these metabolites could be accurately quantified with AQuA in samples
collected using heparin as anticoagulant (Figure 11).

Table 5. Potential risk biomarkers for prostate cancer measured by NMR “”

Disease group Age group Potential risk biomarkers

40 — 60 years Pyruvic acid (¥)
Overall 40 — 50 years Glycine* (1), pyruvic acid* ()
60 years Glutamine (4), histidine ({)

40 — 60 years Pyruvic acid (¥)
Non-aggressive 40 — 50 years Glycine (1), pyruvic acid ()

60 years Choline (1)

40 - 60 years  Glutamine (¥), histidine (¥), ornithine (1)
Aggressive 40 — 50 years -

60 years Carnitine (¥), glutamine ({), histidine ({)

“ Metabolites significant after correction for multiple testing (FRD, 20%) are indicated in bold and with (*).
® The direction of each association is indicated with an arrow. OR >1: T, OR <I: {.

5.2.2 Metabolites measured by MS

Table 6 lists potential risk biomarkers for prostate cancer among the
metabolites measured with targeted MS-based metabolomics. Higher plasma
concentrations of LPC C17:0 and LPC C18:0 associated with elevated risk of
overall prostate cancer. These findings were observed in the subgroup that
included all subjects as well as the subgroup with older subjects. Furthermore,
higher plasma concentrations of PC ae C38:3, PC ae C38:4, PC ae 40:2, LPC
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C17:0, LPC C20:3 and LPC C20:4 associated with elevated risk of aggressive
prostate cancer. Similar findings were identified for LPC C17:0 in older cases
with aggressive disease and their matched controls. These aforementioned
findings were significant after correction for multiple testing (FDR, 20%).
Importantly, the association between LPC C17:0 and elevated risk of overall
prostate cancer was also significant after Bonferroni correction in the subgroup
of older subjects.

a b, c

Table 6. Potential risk biomarkers for prostate cancer measured by MS

Disease

A Identified risk bi. fe
group ge group entified risk biomarkers

C3, LPC C(16:0, 17:0%, 18:0%, 18:1, 20:4), PC aa C38:5,
40 — 60 years
PC ac C(36:5, 38:4, 40:1, 40:5) (1)

Overall 40— 50 years  PC ae C40:5 (1) & arginine ({)

C3, LPC C(16:0, 17:0%*, 18:0%, 18:1, 20:4),

60 years . o
PC ae C(36:2, 40:1), taurine (1) & ornithine ({)

40 — 60 years  LPC C(17:0, 18:0), PC ae C(40:1, 40:3) (T) & arginine (1)

Non-

aggressive 40 — 50 years  Arginine ({)

60 years C3, LPC C17:0, LPC C18:0, PC aec C40:0, PC aec C40:1 (T)

LPC C(16:0, 17:0%, 18:0, 20:3*, 20:4*, PC aa C40:4,
40 — 60 years
PC ae C(36:1, 36:2, 38:3*, 38:4%, 40:2%) (1) & C18:2 ({)

Aggressive 40 —50 years C3, C4, C5, PC ae (40:6, 42:2) (T)

LPC C(17:0%, 20:3, 20:4), PC ae C(36:1, 38:3, 38:4, 40:2)

60years 1y & Cl8:2 ()

“ Metabolites significant after correction for multiple testing (FRD, 20%) are indicated in bold and with (*).
b Metabolites si gnificant after correction for multiple testing (Bonferroni) are indicated in bold and with (*¥).
¢ The direction of each association is indicated with an arrow. OR >1: T, OR <1: {.

68



5.2.3 Additional findings for lysophosphatidylcholines

A majority of potential risk biomarkers identified in paper III were LPCs
(Table 6). In paper III, it was shown that the LPCs could be divided into two
clusters, where LPCs that belonged to the same cluster displayed high inter-
sample correlations and where LPCs from different clusters displayed low
inter-sample correlation. The first cluster includes LPCs with <20 carbons in
the fatty acid chain and the second cluster included LPCs with >20 carbons in
the fatty acid chain. Note that LPC C17:0, LPC C18:0, LPC C20:3 and LPC
C20:4 associated with risk of prostate cancer and these metabolites belonged to
the first cluster. It was also shown in Paper III that adjusting for the total sum
plasma level of LPCs with <20 carbons weakened the associations between
individual LPCs and the risk of prostate cancer. However, associations
between LPC C17:0 and risk of prostate cancer were still observed after this
adjustment. These results distinguished LPC C17:0 from the other risk
biomarker LPCs identified in paper IIl. Potential determinants for LPC C17:0
were sought. A low to moderate correlation was observed in paper III between
plasma LPC C17:0 and corresponding dietary fatty acid (r =0.19, p <0.0001).
This suggests that plasma concentration of LPC 17:0 can, to some extent, be
influenced by consumption of food items that are high in fatty acid C17:0.

Paper III also showed that LPCs with <20 carbons displayed negative
correlations with glucose values measured at baseline during an OGTT. The
negative correlations observed between LPCs and glucose values from the
OGTT were stronger for post-load glucose values (2h) compared to fasting
glucose values (0Oh). LPC C17:0 displayed the strongest correlation with post-
load glucose values (r =-0.20, p <0.0005).

The results in paper 111 also revealed that IGT associated with lower risk of
prostate cancer. In paper III, the statistical analysis was repeated for the
identified risk biomarkers for prostate cancer after limiting to case-controls
pairs with NGT at baseline. The results showed that the associations often
appeared stronger after this stratification (for lipid species and with overall
prostate cancer risk). This may imply that baseline IGT obscures the
metabotype associated with risk of prostate cancer.
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5.3 Discussion

5.3.1 Strengths and limitations

The study in paper III has several advantages such as the large sample size, the
entirely fasting samples and the long follow-up between baseline and diagnosis
with prostate cancer (>5 years; this only applies to the cases). The advantage of
fulfilling these criteria was mentioned in the introduction (see section 1.3.5
Risk biomarkers for prostate cancer).

Furthermore, paper III assessed whether association between metabolites
and prostate cancer risk varied with baseline age, which was not done in
previous studies (Schmidt et al., 2017; Huang et al., 2016; Kiihn et al., 2016;
Mondul et al., 2015; Mondul et al., 2014).

Additionally, two analytical methods (NMR and MS) were employed in
paper III to yield complementary information on metabolites. Previous studies
have only used MS (Schmidt et al., 2017; Huang et al., 2016; Kiihn et al.,
2016; Mondul et al., 2015; Mondul et al., 2014). Importantly, the use of AQuA
facilitated accurate and rapid quantification of plasma metabolites measured by
NMR in paper III. Existing alternative, such as manual targeted profiling,
would have been extremely time-consuming to employ on such a large set of
samples (Weljie et al., 2006).

Participant enrolled to the NSHDC also underwent an OGTT and answered
an FFQ at baseline, which enabled the unique possibility for further
investigations — e.g., correlation analyses between metabolites and OGTT and
FFQ-results (Norberg et al., 2010).

The study in paper III also has some limitations. For example, due to
several stratifications, the sample size was somewhat limited in specific
subgroups (e.g., older cases with aggressive disease and their matched
controls), which results in uncertain risk estimates. Furthermore, the results
may be difficult to generalise since the study population only included
individuals from one geographical region (northern Sweden).

5.3.2 Comparison with previous studies

Previous studies of similar design did not report pyruvic acid and glycine as
potential risk biomarkers for prostate cancer (Schmidt et al., 2017; Huang et
al., 2016; Kiihn et al., 2016; Mondul et al., 2015; Mondul et al., 2014).
However, these previous studies did not employ targeted NMR-based
metabolomics, which was used to identify these risk biomarker candidates in
paper II1.
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The finding for acylcarnitine C18:2 was in agreement with a previous
study, where lower concentrations of acylcarnitine C18:2 associated with
elevated risk of advanced stage prostate cancer. Similar design and MS
methodology were used in this previous study; however, the study population
included individuals from several European countries (Schmidt et al., 2017).
This previous study also reported that lower concentrations of some PCs
associated with elevated risk of advanced stage disease. This may seem
contradictory to some of the findings for PCs in paper III. However, the
associations in the previous study were typically observed for different diacyl
PCs, which were not identified in paper III (Schmidt et al., 2017).

The findings for LPC C17:0 have not been reported in previous studies
(Schmidt et al., 2017; Huang et al., 2016; Kiithn et al., 2016; Mondul et al.,
2015; Mondul et al., 2014). However, lower concentrations of LPC C18:0
associated with elevated risk of overall and advanced stage prostate cancer in
previous studies (Schmidt et al., 2017; Kiihn et al., 2016). This is somewhat
contradictory to the findings in paper III. In contrast to paper III, these studies
included some cases with relatively short follow-up until prostate cancer
diagnosis (<5 years). Short follow-up may result in inclusion of cases with
subclinical disease at baseline. It can be speculated that the metabotype for
diagnosed prostate cancer may obscure the metabotype for prostate cancer risk.
This may hamper the statistical outcome for specific metabolites that are
known to differ between prostate cancer patients compared to healthy controls
(such as LPC C18:0) (Zhou et al., 2012; Lokhov et al., 2010; Osl et al., 2008).
Stratified analysis was done with regards to follow-up time in one of these
previous studies, and LPC C18:0 was not significantly associated with risk of
overall prostate cancer in the subgroup of cases with >5 years until diagnosis
and their matched controls (Schmidt et al., 2017).

5.3.3 Dairy consumption and risk biomarkers for prostate cancer

The main findings in paper III regarded LPC C17:0. The key sources of odd-
chain fatty acids are endogenous production, gut microbiota and consumption
of specific food items (e.g., dairy products) (Crown et al., 2015; Jenkins et al.,
2015). LPC C17:0 has been suggested as a biomarker for dairy consumption in
humans (Nestel et al., 2014). The results in paper III can support LPC C17:0 as
a potential dietary marker. In line with this observation, high consumption of
dairy products has been suggested as a risk factor for prostate cancer (with
limited evidence) (WCRF/AICR, 2018).

Interestingly, there is a relationship between higher consumption of dairy
products and elevated circulatory levels of IGF-I, a modifiable risk factor for
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prostate cancer (Travis et al., 2016; Qin et al., 2009). Notably, a previous study
in the NSHDC identified an association between higher circulatory levels of
IGF-I and elevated risk of prostate cancer (Stattin ef al., 2004). Furthermore, a
previous study has shown that plasma lipids, which contain saturated odd-chain
FAs, display positive correlation with IGF-I levels in men (Knacke et al.,
2016). Hence, risk biomarkers for prostate cancer identified in the same cohort
(i.e., IGF-I and LPC C17:0) may be linked via consumption of dairy.

Previous nested case-control studies on prostate cancer have not reported
LPC C17:0 as a potential risk biomarker for prostate cancer (Schmidt ez al.,
2017; Huang et al., 2016; Kiihn et al., 2016; Mondul et al., 2015; Mondul et
al., 2014). Under the assumption that dairy consumption influence the
metabotype associated with elevated risk of prostate cancer, such risk
biomarkers are likely to be revealed in a population where the consumption of
dairy is high. In agreement with this assumption, a previous study reported that
individuals from northern Sweden consume more dairy products compared to
individuals from many other European countries (Hjartaker et al., 2002).
However, more research is required to draw conclusions.

5.3.4 Glucose intolerance and risk biomarkers for prostate cancer

The use of saturated fatty acid chain with seventeen carbons as a marker for
dairy consumption has been questioned. Instead, it has been shown that
biosynthesis may be the key source of fatty acid C17:0, while other odd-chain
fatty acids (e.g., C15:0) may reflect dairy consumption more accurately. Fatty
acid C17:0 has been distinguished from C15:0 via its link to glucose
intolerance (Jenkins et al., 2017). Also, lower level of LPC C17:0 associated
with elevated risk of impaired glucose tolerance in a previous study as well as
elevated risk of T2D in the NSHDC (Shi et al., 2018; Wang-Sattler et al.,
2012). Interestingly, lower circulatory levels of IGF-I also associate with
elevated risk of IGT (Sandhu et al., 2002). Furthermore, T2D (as well as
insulin resistance in the NSHDC) associated with lower risk of prostate cancer
(Bansal et al., 2013; Stocks et al., 2007). Hence, risk biomarkers for prostate
cancer identified in the same cohort (i.e., IGF-I and LPC C17:0) seems to be
linked, even without the consideration of the aforementioned link to dairy
consumption, via impaired glucose metabolism.
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5.3.5 PI3K/AKT signalling

The downstream signalling pathway for IGF-I (PI3K/AKT) has implications in
both prostate cancer and T2D pathophysiology. For example, enhanced
PI3K/AKT signalling promotes prostate cancer, while inactivation can promote
T2D (Huang et al., 2018; Yue et al., 2014). Activation of the downstream
signalling of the PI3K/AKT pathway can affect the level of plasma lipids via
enhanced cellular uptake of lipoproteins (Yue et al., 2014). It can be speculated
that enhanced PI3K/AKT signalling may result in increased plasma levels of
LPCs.

Several metabolites that were identified as potential risk biomarkers for
prostate cancer in paper III (e.g., LPC C17:0, LPC C18:0 and glycine) have
also been linked with IGT and T2D risk, but with associations of opposite
directions (Wang-Sattler et al., 2012). The results in paper III appear to reveal
the reverse cross-association between the risk of these two diseases (prostate
cancer and T2D) at the metabolite level.

5.4 Conclusions and future studies

Several risk biomarker candidates for prostate cancer could be identified in a
case-control study nested within the NSHDC. A reverse cross-association
between risk of prostate cancer and T2D was revealed on the metabolite level.
The findings should be validated in an independent cohort. Although a
potential role for dairy consumption was distinguished, further research is
needed to draw final conclusions. One step can be to target specific lipids that
contain different odd-chain fatty acids (e.g., C15:0 and C17:0) for additional
metabolomics analysis.
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6 Concluding remarks and future
perspectives

Targeted NMR-based metabolomics is most useful when being both rapid and
accurate. A key bottleneck in the workflow is the quantification step. An
automated Quantification Algorithm (AQuA) was introduced in response to
this. The successful use of AQuA for rapid and accurate metabolite
quantification was demonstrated in NMR spectra from human plasma samples
collected using different anticoagulants (paper I and II). The use of AQuA was
further demonstrated in the context of biomarker discovery (paper I1I).

AQuA has a great potential for use beyond the application to plasma
presented in the current thesis work. A natural step would be to implement
AQuA for other biofluid samples (e.g., urine), which generate more complex
NMR spectra where inter-spectral deviations in signal positions and line widths
occur more frequently.

Further development of AQuA is required, such as a more universal
application of its principles in order to move away from conscious decision-
making and move towards automation. The use of AQuA principles is not
restricted to NMR signals, but can also be applied on quantitative signals
generated by other analytical methods.

Furthermore, a broader use of AQuA would be facilitated by increased
user-friendliness. I envision the development of an AQuA software package
with a graphical user interface, which is dedicated to automated quantification
of compounds.
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Popular science summary

A traditional line of action in research within molecular biology has been to
select a few molecules for analysis based on an existing hypothesis. After
analysis and statistics, attempts are done to draw conclusions in relation to the
hypothesis. But, advances in technology have allowed for more global
approaches where many molecules are analysed simultaneously. Such
approaches are used more frequently nowadays, which partly owes to their
potential to return large amounts of information.

Metabolomics is a global approach used to measure small biomolecules
such as amino acids, sugars and different lipids. These small biomolecules are
called metabolites and they have important implications for human health. For
example, abnormal elevation of blood glucose, measured after oral intake of a
sugar-containing solution, can be used to diagnose type 2 diabetes. Smaller, but
still abnormal, elevations in blood glucose can also be observed in undiagnosed
individuals, which are at larger risk of being diagnosed in the future.
Metabolites other than glucose have also been linked to increased risk of
disease. Such metabolites are so called disease risk biomarkers. Metabolomics
has been used frequently to identify risk biomarkers for different diseases.

Nuclear magnetic resonance (NMR) is a spectroscopic method often used in
metabolomics. Each biofluid sample analysed by NMR generates a spectrum
with hundreds of signals, which originate from different metabolites in the
sample. Signals from a specific metabolite can be converted to its actual level
in the sample. However, the quantitative process is problematic since signals
from different metabolite are sometimes positioned closely. The resulting
overlap can be ignored, at the expense of overestimating metabolite levels.
Overlap can be accounted for to generate accurate metabolite levels. Although
automated procedures have been developed, they require large computational
power, especially when many samples have been analysed or if the position
and/or line widths of signals vary between spectra. Hence, more efficient
procedures are required.
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The work in this thesis can be divided into two parts. The first part regards
methodological development to enable rapid and accurate quantification of
metabolites by NMR. The second part regards the use of metabolomics —
including the developed method for quantification — to identify risk biomarkers
for prostate cancer amongst older men.

In the methodological part, an automated algorithm was designed for
quantification of metabolites by NMR. The algorithm was based on a principle
where one specific signal was selected for the quantification of each metabolite
and where the overlap was accounted for by a simple computation. The
approach was tested on human blood samples. Evaluation was done to
demonstrate its high speed and accuracy. Additionally, a strategy was
presented to allow the algorithm to handle more complex NMR spectra where
overlap between signals also was affected by changes in signal positions and/or
line widths between spectra.

Next, metabolomics was used to identify risk biomarkers for prostate cancer
amongst older men in a Swedish cohort. The age at the time of blood collection
was an important factor to consider, since different risk biomarkers could be
identified in younger men (40 — 50 years) compared to older men (60 years).
For example, glycine was identified as a potential marker for prostate cancer in
younger men, while several lipids where identified amongst older men. Higher
levels of these lipids related to elevated risk of prostate cancer. Similar studies
rarely compare different subgroups divided with regards to age. This is since
population-based cohorts typically collect samples from individuals of various
ages. In this study, samples have instead been collected from individuals at a
specific age (40, 50 or 60 years). Beyond this, it was also found that aggressive
disease was linked to more risk biomarkers, while risk biomarkers for non-
aggressive disease were difficult to identify. Similar studies have often
identified different risk biomarkers depending on disease aggressiveness.

Previous studies have shown that individuals with type 2 diabetes are at
lower risk of developing prostate cancer. Similar metabolites to those identified
in the present study (e.g., lipids) have been identified as potential risk
biomarkers for type 2 diabetes. However, lower rather than higher levels
related with type 2 diabetes risk in previous studies. In this study, negative
correlations were found between some of the potential risk biomarkers for
prostate cancer and blood glucose after oral intake of a sugar-containing
solution. Additionally, impaired glucose tolerance related to a lower risk of
prostate cancer. Together, these findings imply that a reverse relationship
between the two diseases (type 2 diabetes prostate cancer) may be reflected at
the metabolite level.
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Popularvetenskaplig sammanfattning

Det traditionella tillvigagéngssittet inom molekyldrbiologisk forskning bygger
pa ett hypotes-baserat val av ett fital molekyler for analys. Dérefter foljer
genomfOrandet av analysen, statistik och forsok att dra slutsatser utifran den
ursprungliga hypotesen. Teknologiska framsteg har mojliggjort for mer globala
tillvigagdngssitt dir massvis av molekyler analyseras samtidigt. Globala
tillvigagangssitt anvinds mer och mer inom forskningen, vilket till stor del
beror pa deras potential till att ge mycket information.

Metabolomik é&r ett globalt tillvigagangssétt for att mita smi biomolekyler,
sasom aminosyror, socker och olika lipider. Dessa molekyler kallas for
metaboliter och dessa har viktig betydelse for hédlsan. Exempelvis kan
en onormal forhdjning av glukoshalten 1 blodet, efter intag av en
sockerlosning, anvindas for diagnos av typ 2 diabetes. Det gér att dven att
uppméta mindre, men dnda onormalt forhdjda, halter av glukos hos individer
utan diabetes som loper storre risk att drabbas av sjukdomen senare i
livet. Aven andra metaboliter har kopplats samman med &kad risk for
sjukdom. Metaboliter som sammankopplas med dkad risk for sjukdom brukar
kallas for risk-biomarkorer. Metabolomik har ofta anvénds for att identifiera
dessa.

Kéarnmagnetisk resonans (NMR) dr en spektroskopisk metod som
ofta anvinds for metabolomik. Varje prov som analyseras med NMR
generarar ett spektrum som bestar av hundratals signaler fran de olika
metaboliterna som finns 1 provet. Signalerna kan omvandlas till
metaboliternas halter 1 provet, men en sadan process dr problematisk eftersom
signaler fran olika metaboliter dr svara att skilja at d& de Overlappar.
Overlappet kan ignoreras, men det leder till falskt forhojda halter. Det gar
ocksd att ta hansyn till signalernas Overlapp for att fa fram riktiga
provhalter, men detta tar lang tid att géra manuellt. Automatiska metoder
har wutvecklats for att o6ka pd snabbheten och dirmed mojliggors
haltbestdmning av metaboliter i fler  prover. Automatisk
haltbestimning krdaver mycket datorkraft, speciellt nidr ménga prover
ska haltbestimmas och speciellt om signalernas position och/eller
linjebredd



varierar mellan olika spektra. Darfor finns behov av mer effektiva metoder.
Detta avhandlingsarbete kan delas in i tva delar. Den forsta delen avser
metodutveckling for att mojliggdra snabb och riktig haltbestdmning av olika
metaboliter via NMR. Den andra delen i avhandlingsarbetet avser att anvinda
metabolomik — inklusive den utvecklade metoden for haltbestimning — for att
identifiera risk-biomarkorer for prostata cancer bland dldre mén.

I metodutvecklingen designades en automatisk algoritm (AQuA) for
haltbestdmning av metaboliter via NMR som baserades pa en princip dir en
signal specifikt valts ut for haltbestimning av varje metabolit och dar &verlapp
hanteras genom en enkel berdkning. Algoritmen testades pa olika blodprover
och evaluerades for att visa pd dess snabbhet och riktighet. Dessutom
presenterades ett tillvigagangssitt som mojliggjorde att algoritmen ocksa
kunde hantera mer komplexa spektra dér overlappet mellan signaler ocksa
paverkas av att deras position och/eller linjebredd varierade mellan spektra.

Diérefter anvdndes metabolomik for att identifiera potentiella risk-
biomarkérer for prostata cancer bland #ldre mén i en svensk kohort. Alder vid
provtagning var en viktig faktor, eftersom olika risk-biomarkdrer identifierades
for yngre min (40 — 50 &r) jamfort med &ldre mén (60 ar). Exempelvis
identifierades glycin som en potentiell risk-biomarkor for prostata cancer bland
yngre min, medan vissa lipider identifierades bland dldre man. Hogre nivéer av
dessa lipider relaterade till 6kad risk for sjukdom. Liknande studier brukar inte
jamfora olika subgrupper uppdelade med avseende pa alder. Detta beror pa att
provsamlingar i manga kohorter kommer frén en population med brett
aldersintervall. Just i denna kohort har man ddremot valt att samla in prover
frén individer vid specifika aldrar (40, 50 samt 60 &r). Utdver detta upptécktes
det dven att en mer aggressiv sjukdom var kopplat till flertalet risk-biomarkorer
(lipider) medan risk-biomarkorer for icke-aggressiv sjukdom var svéra att
identifiera. Liknande studier brukar ockséd identifiera olika risk-biomarkorer
beroende pa sjukdomens aggressivitet.

Tidigare studier har konstaterat ett omvént forhdllande mellan typ 2
diabetes och risk for prostata cancer. Dessutom har tidigare studier pavisat att
liknande metaboliter (lipider) &r potentiella risk-biomarkorer for typ 2 diabetes.
I fallet typ 2 diabetes dr dock lipidernas nivaer ldgre hos individer som 16per
storre risk for att utveckla sjukdomen. I denna studie hittades negativa
korrelationer mellan vissa av risk-biomarkoérerna for prostata cancer (lipider)
och glukosnivaer i blodet efter intag av sockerlosning. Dessutom hittades en
minskad risk for prostata cancer hos individer med nedsatt tolerans for glukos
vid intag av sockerlosning. Dessa resultat indikerar att det omvinda
forhdllandet mellan de tva sjukdomarna (T2D och prostata cancer) kan
synliggoras via metabolomik.
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