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ABSTRACT 

Perfluorononanoic acid (PFNA) is one of the perfluoroalkyl acids present in human tissues. In this 

study, effects on early embryo development after PFNA exposure were investigated using the bovine 

in vitro production system. Oocytes were exposed to PFNA during maturation in vitro (10 µg mL-1 

and 0.1 µg mL-1), and then fertilized and cultured in parallel with control groups. Developmental 

parameters (cleavage, blastocyst formation) were followed and embryo quality evaluated (stage, 

grade). Embryos developed after exposure to 0.1 µg mL-1 were stained to distinguish nuclei, active 

mitochondria and neutral lipids. 10 µg mL-1 of PFNA had a severe negative effect on blastocyst 

formation (OR: 0.27 p<0.05), an effect not observed at 0.1 µg mL -1. However, lipid droplet 

distribution was significantly altered in embryos exposed to 0.1 µg mL-1, suggesting a disturbance of 

lipid metabolism after exposure to sublethal levels of PFNA during oocyte maturation in vitro. 
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Perfluorononanoic acid (PFNA) alters lipid accumulation in bovine 

blastocysts after oocyte exposure during in vitro maturation 

1. INTRODUCTION 

Per- and polyfluoroalkyl substances are highly fluorinated aliphatic chemicals characterized by their 

extremely strong and stable C-F bond [1]. The subgroup perfluoroalkyl acids (PFAAs) contains 

compounds that, because of their durability and hydrophobicity, have been used widely since the 

1950s in water and stain repellent materials, cookware, food packaging, insulating agents, and 

flame-retardants [1-3]. As a consequence of this widespread use and their stability, PFAAs can be 

found in both nature and wildlife, accumulating at the top of the food chain [1, 4, 5]. Because these 

chemicals are known to be toxic, there is legislation restricting their use (for examples, see Buck et 

al. [1]). Environmental decrease in PFAA levels is expected to be slow because of their persistence. 

In humans, PFAAs can be detected in human tissue and have been found to pass through the 

placenta, exposing the growing embryo [6, 7]. The PFAAs usually studied are the sulphonic acid 

perfluorooctane sulfonic acid (PFOS, detected in the highest concentrations in human tissue) and the 

carboxylic acid perfluorooctanoic acid (PFOA, the second most concentrated in human tissue). 

Perfluorononanoic acid (PFNA) has also been frequently observed [3, 8-11] and, in contrast to PFOS 

and PFOA, PFNA levels have been increasing in humans in the first decade of this century [9, 10, 12]. 

PFNA is detected in human serum at mean concentrations of 0.8-1.49 ng mL-1, with demographic, 

geographic and temporal differences [3, 6-8, 11]. For instance, remarkably higher levels are 

displayed in certain regions of Japan (mean 3.54-6.7 ng mL-1) [13, 14]. PFNA has also been detected 

in human placenta, foetal organs [7] and follicular fluid (0.2-2.1 ng mL-1 [6]) indicating exposure to 

the maturing oocyte.  



The developmental toxicity of PFAAs has been demonstrated in animal studies (reviewed by Lau et 

al. [15]), with severity varying between species and compounds. Generally, the perfluorinated 

sulphonic acids and the chemicals with longer carbon chains have higher toxicity compared to the 

carboxylic acids [16-18].  

 PFAAs have been studied in relation to subfecundity or infertility, although with contradictory 

results [19-24]. In some studies, PFNA (but not PFOS and PFOA) were associated with pregnancy loss 

and increased time to pregnancy [25, 26].   

Safety assessment and toxicity testing of chemicals, and investigations of reproductive toxicity, 

include in vivo tests, most commonly using small rodents as model organisms. With the European 

REACH Legislation [27], the use of experimental animals has increased [28]. Even though the in vitro 

models of today can not completely replace the in vivo models used, the further improvement of in 

vitro techniques is essential for minimizing the need for experimental animals [28, 29] in line with 

the 3Rs and the scientific concept.  

For female reproductive disorders, no validated laboratory in vitro tests are available [30]; however, 

early embryo development in cows resembles human early embryo development more than the 

commonly used rodent models (reviewed by Santos et al. [28]), suggesting that bovine in vitro 

embryo production might be a useful complement for assessment of reproductive toxicity (with the 

added advantage of not relying on experimental animals). Further, the technique enables the study 

of certain windows of exposure including the late stages of oogenesis, a specialized process where 

many critical events occur [28]. The half-lives of PFAS in human serum takes years [31] compared to 

rodents that process the compounds faster, resulting in an elimination half-life of PFNA in mice 

serum of 26-69 days [32]. The pharmacokinetics is less understood in other species such as monkeys 

and bovines but is slower compared to rodents [33, 34].  

The aim of this study was to investigate the effect of PFNA exposure during oocyte maturation on 

the development of early-stage bovine embryos in vitro. Bovine oocytes were exposed during 



maturation in vitro, and the bovine in vitro produced (IVP) embryos were used as a model for 

assessing reproductive toxicity.   

2. MATERIALS AND METHODS 

2.1 Experimental design  

Production of bovine embryos through maturation, fertilization, and culture in vitro were conducted 

using cumulus-oocyte-complexes (COCs) from bovine ovaries. Two experiments were run exposing 

COCs (n=846) to PFNA during maturation in vitro in two different concentrations. Following COC 

selection, experimental and control groups were kept separate during all subsequent in vitro 

procedures. In the first experiment, COCs were exposed to 10 µg mL-1 PFNA (PFNA 10, n=200) 

cultured in parallel with a control with no addition of PFNA (C 10, n=201), and in the second 

experiment, the COCs were exposed to 0.1 µg mL-1 PFNA (PFNA 0.1, n=223) and cultured in parallel 

with a control (C 0.1, n=222). The experiment was run in n=6 replicates for PFNA 10 and n=8 

replicates for PFNA 0.1.  

Embryo development was evaluated (see below, section 2.4) after the primary cleavage divisions at 

44h post fertilization (pf), and at days 7 and 8 pf. At day 8 pf, embryo morphology and stage of 

development (grade, stage) were evaluated using a stereomicroscope. For the lower PFNA 

concentration, day 8 pf blastocysts were fixed and stained for nuclei, neutral lipids, and active 

mitochondria and further analyzed morphologically using confocal microscopy (Fig. 1). 

2.2 Media and reagents 

Chemicals and reagents were obtained from Sigma Chemical Company (Sigma Aldrich, Stockholm, 

Sweden) if not stated otherwise. Media were produced at the IVF laboratory at the Department of 

Clinical Sciences (Swedish University of Agricultural Sciences, Uppsala, Sweden) as described by 



Gordon, 1994 [35]. Completed media were adjusted for pH and osmolality, filtered through a 0.2 µm 

filter unit, stored at 4°C and used within one week according to protocols. Before use, media were 

pre-heated or equilibrated in a humidified atmosphere of 5% CO2 at 38.5°C for at least one hour. 

Incubations were conducted in 500 µL wells of medium in a humidified atmosphere of 5% CO2 at 

38.5°C if not stated otherwise.  

Search-medium for selection of COCs consisted of pre-heated HEPES-buffered tissue culture medium 

199 (TCM199, M7528) supplemented with 0.2 % w/v bovine serum albumin (BSA), Fraction V 

(A3311) and 50 µg mL-1 gentamicin sulphate (G1264). For maturation in vitro, maturation-medium 

consisting of bicarbonate-buffered TCM 199 (M2154) supplemented with 0.68 mM L-glutamine 

(G8540), 50 µg mL-1 gentamicin sulphate (G1264), 0.4 % w/v BSA, Fraction V (A3311), 0.1 µg mL-1 FSH 

and 0.03 µg mL-1 LH (Stimufol, PARTNAR Animal Health, Stoumont, Belgium) were used. PFNA 

(perfluorononanoic acid 97%, 394459-5G) was dissolved in TCM 199 without HEPES (TCM199, 

M2154) and added in the maturation-medium of the treatment groups until final concentrations of 

10 µg mL-1 and 0.1 µg mL-1 respectively were reached. 

Maturation of COCs were recorded and matured oocytes were prepared for fertilization in modified 

HEPES-buffered Tyrode’s medium without glucose [35], with addition of 0.3 % w/v BSA, Fraction V 

(A3311) and 50μg mL-1 gentamicin sulphate (G1264) (wash-medium) and sperm prepared in 

modified Ca2+-free Tyrode’s medium [35] with 6.9 mM glucose (G6152), 16 mM Sodium DL-lactate 

(L7900) and an addition of 50 µg mL-1 gentamicin sulphate (G1264) (capacitation medium). 

Fertilizations were conducted in modified HEPES-buffered glucose-free Tyrode’s medium [35] with 

16 mM Sodium DL-lactate (L7900) complemented with 50μg mL-1 gentamicin sulphate (G1264), 3 µg 

mL-1 heparin (H3184), 3 μg mL-1 penicillamine, 3 μg mL-1 epinephrine and 1.1 μg mL-1 hypotaurine 

(pencillamine-hypotaurine-epinephrine (PHE)-solution [35]) (fertilization-medium). Final cultures 

were conducted in modified synthetic oviductal fluid (mSOF [35]) with addition of 0.4 % w/v fatty 

acid free BSA (A7030), 50 μg mL-1 gentamicin sulphate (G1264), 20 µl mL-1 BME amino acids solution 



(50x) (B6766) and 10 µl mL-1 MEM non-essential amino acids solution (100x) (M7145), wells covered 

in OVOILTM (Vitrolife, Göteborg, Sweden). 

2.3 Oocyte collection and in vitro maturation (IVM) 

Abattoir-derived ovaries from non-stimulated heifers and cows were collected after the animals had 

been killed. As the animals were not sacrificed for the sake of these experiments, no ethical 

permission was needed according to Swedish legislation. Ovaries were transported approximately 3h 

to the IVF laboratory at the Department of Clinical Sciences (Swedish University of Agricultural 

Sciences, Uppsala, Sweden) in insulated containers with sterile 0.9% saline-solution, with an arrival 

temperature of about 30°C (range 28-33°C). COCs were aspirated using a 5 mL syringe and a 1.8-

gauge needle from 3-8 mm diameter follicles. In search-medium, the COCs were selected according 

to Gordon’s [29] morphological criteria. COCs with compact multilayer cumulus investment and 

homogeneous ooplasm were selected for the experiments and divided randomly and evenly into 

two groups (group size range; 20-40), treated experimentally, and cultured in parallel along with 

control groups. For in vitro maturation, COCs were incubated in maturation-medium for 22h with 

the addition of PFNA for the treated groups. 

2.4 In vitro fertilization and culture  

After maturation in vitro the COCs were transferred to pre-heated wash-medium. Oocytes were 

prepared for fertilization through manual removal of excessive cumulus cells until 3-5 layers 

remained surrounding the oocyte. Semen from a single bull of Swedish red dairy breed with proven 

field and in vitro fertility was used (3-1716 Sörby). Motile sperm were selected after 45 min swim-up 

in capacitation medium and added to the oocytes at a concentration of 1 x 106 spermatozoa mL-1, 

and sperm and oocytes were incubated in fertilization media for 22h to facilitate fertilization. After 

fertilization, the remaining cumulus cells and sperm were removed through manual pipetting and 



the presumed zygotes were cultured until day 8 pf in mSOF, covered in OVOILTM to prevent extensive 

evaporation and oxidation.  

Evaluation of embryos 

Developing embryos were first evaluated 44h pf using a stereomicroscope (SteREO Discovery.V8, 

Carl Zeiss Microscopy GmbH, Jena, Germany) for primary cleavage division, and the cleavage level 

(i.e. the proportion of oocytes cleaved at the 2-cell stage or higher) was determined. At days 7 and 8 

pf, the proportions of oocytes that had developed into embryos were recorded, and embryo 

morphologies and developmental stages were further assessed. Developmental stages were scored 

according to IETS classification with modification into 3 stages (Fig. 2): early blastocysts or 

blastocysts (stage 1), expanding or expanded blastocysts where the zona pellucida are intact but 

thinner due to expansion of the embryo (stage 2), and hatching or hatched embryos (stage 3) [36]. 

The quality of each embryos (grade 1-4) was assessed according to IETS classification, where grade 1 

(excellent/good) refers to a spherical and symmetrical embryo mass consistent with the stage of 

development with blastomeres uniform in size, shape and color and only minor irregularities; grade 

2 (fair) refers to embryos with at least 50% of the embryo showing an intact, viable embryonic mass 

with moderate irregularities in shape, mass or size; grade 3 (poor) refers to embryos with at least 

25% of the embryo showing an intact, viable embryonic mass but with severe irregularities in shape, 

mass or size of the embryo; and grade 4 (dead or degenerating) in the classification for non-viable 

embryos or oocytes [36, 37].  

Staining and image analysis 

Staining and confocal microscopy for further analysis of the embryos were applied to pf day 8 

blastocysts after treatment with 0.1 µg mL-1 PFNA during maturation in vitro, a method previously 

used to detect deviations during early embryo development [38, 39]. Fluorescent labeling for 

visualization of active mitochondria was conducted through incubation with 200nM MTO 

(Mitotracker® Orange CMTMRos, ThermoFisher Scientific, Waltham, USA). Fixation followed 



incubating the embryos in 2% paraformaldehyde (PFA) in phosphate-buffered saline with 0.1% 

polyvinyl alcohol (PBS-PVA) overnight at 4°C or at room temperature (RT) for one hour, followed by 

rinsing in PBS-PVA. For visualization of nuclei, embryos were incubated with 5 µM DRAQ5® (Deep 

red Anthraquinone 5, 4084S, BioNordika, Stockholm, Sweden) for 20 minutes at RT. After rinsing in 

PBS-PVA, embryos were stained for neutral lipids using LipidTOXTM (HCS LipidTOXTM Green Neutral 

Lipid Stain H34475, ThermoFisher Scientific, Waltham, USA) for 30 min at RT according to the 

manufacturer’s instructions.  

Stained blastocysts were mounted in approximately 2µl of fluid on a well of a microscope slide (ER-

201B-CE24, Thermo Fisher Scientific, Portsmouth, NH) in Vectashield (Vector Laboratories, 

Burlingame, CA, USA). Images were captured using an LSM 510 laser scanning microscope (Zeiss LSM 

510, Carl Zeiss Microscopy GmbH, Jena, Germany) equipped with He/Ne 543, He/Ne 633 and Ar 450-

530 nm lasers. Each embryo was scanned using standard magnification (20x) in single scans and 

seven levels of sectioned scans (z-stack).   

Images taken as single channel images were converted to overlay images and saved in TIFF format. 

Only z-stack levels 2, 4 and 6 were used for image analysis to prevent nuclei and lipid droplets being 

counted twice. Image analysis was performed using CellProfiler (Cell Profiler 2.2.0 (rev ac0529e), 

http://cellprofiler.org/, accessed at 2017-02-06, [40]) and manually.  

The blastocysts were identified by segmentation using a pixelwise classifier trained in Ilastik [41] and 

confirmed manually, and non-blastocysts were excluded. Nuclei and lipid droplets were identified 

using the IdentifyPrimaryObjects module in CellProfiler where an initial Maximum Correlation 

Threshold [42] was applied followed by Watershed separation [43]. Cell outlines were estimated by 

expanding the nuclei by a maximum of 50 pixels. For image analysis, 88 embryos were included in 

264 images. Embryos for which one or more image showing poor quality regarding fluorescent 

labeling for nuclei (n=31) and lipids (n=8) were excluded from the analysis. Lipid droplet (n=32975) 

sizes were measured at maximum diameter (Fig. 3). Two researchers independently assessed 



mitochondria distribution based on 3D images of the z-stack by using scores of 1 through 3 (1: even 

distribution without distinct aggregations of mitochondria, 2: mild asymmetry in distribution with 

some aggregations, 3: uneven distribution with pronounced aggregations, see [38]) (Fig. 4). 

Blastocysts were excluded from the analysis (n=9) if the assessments deviated or if image quality was 

inadequate for making a determination. 

Statistics 

Mixed-effect logistic regression was performed to calculate the odds ratio (OR) for the effect of 

treatment on developmental competence at three time points (cleaved, cleaved higher than the 

2-cell stage level 44h pf, and pf day 8 blastocysts). OR results are presented in terms of the 

treatment effect compared to the relevant control, where OR < 1 indicates a negative effect of 

treatment on developmental competence. Replicates were added as a random factor and 

weighted depending on group-size. Data on embryo development on blastocysts day 7 and 8 pf 

were treated as repeated measurements (glmer model of the lme4 package, R i386, 3.3.1, 

http://www.r-project.org). Categorical variables (stage, grade, and mitochondrial distribution) 

were analyzed using cumulative link mixed-effect models with multinomial distribution (clmm 

model of the ordinal package, R i386, 3.3.1) with replicate as a random effect. Dose group (PFNA 

0.1 or 10) was initially added as a random effect to the models due to significant differences in 

developmental parameters between the two experiments (lm model, R i386), but was removed 

based on AIC and likelihood-ratio tests between models (p>0.05) indicating that the variation 

was accounted for through the variable replicates and individual controls. No differences were 

found regarding parameters associated with laboratory work between the different 

concentrations (time for aspiration, maturation and amount of ovaries, p>0.05). 

Linear mixed effect models was performed to calculate the effect of PFNA 0.1 on nuclei and lipid 

droplet size (lmer model of the lme4 package, R i386, 3.3.1) with replicate as a random factor. 

For lipid droplet size, log-transformed values were used to assume normal distribution of the 



response variable. The difference in lipid droplet size between groups was significant but did not 

show a monotone distribution (Fig. 5). Thus, assuming the normal distribution was insufficient 

to explain changes between the treatments, bin values were added and mixed effect logistic 

regression with lipid droplet size as a response variable was used according to cut-off value (<3 

µm, 3-6 µm, 6-9 µm, 9-12 µm >12 µm in diameter). 

P-values <0.05 were considered to be significant. Data are presented as mean ± standard 

deviation (SD) if not otherwise stated. 

3. Results 

3.1 Effect of PFNA on developmental competence of immature oocytes in vitro 

Table 1. Result of PFNA exposure during maturation in vitro on developmental competence of the immature 

oocytes. 

 

  

PFNA 0.1^  

n=223 

C 0.1^  

n=217 

PFNA 10^  

n=199 

C 10^  

n=200 

Cleaveda 0.81 ± 0.09 0.80 ± 0.07 0.75 ± 0.10* 0.85 ± 0.03 

Cleaved above 2a 0.59 ± 0.10 0.60 ± 0.05 0.60 ± 0.14 0.71 ± 0.07 

Day 7 blastocystsb 0.12 ± 0.10 0.11 ± 0.05 0.05 ± 0.03* 0.15 ± 0.06 

Day 8 blastocystsb 0.20 ± 0.09 0.19 ± 0.05 0.08 ± 0.05* 0.26 ± 0.08 

^Results presented as mean of batch results ± SD after exposure with 0.1 µg mL-1 in PFNA 0.1 and 10 µg mL-1 in 

PFNA 10 and relevant control groups (C0.1 and C10), aCleaved oocytes and cleaved above the 2-cell stage of 

cultured immature oocytes 44h post fertilization (pf), bproportion of blastocysts days 7 and 8 pf, *Indicates a 

significant difference between treatment and control. 

 

 



Treatment with 10 µg mL-1 PFNA (PFNA10) during oocyte maturation had a negative effect on 

developmental competence. The effect could be seen after maturation in vitro where the cumulus 

cloud of the treated group did not expand as it did in the control (Fig. 6). The risk of impaired 

development was increased with PFNA exposure, both regarding the proportion of cleaved oocytes 

44h pf (OR 0.59, p=0.01) and the proportion of blastocysts developed from cultured immature 

oocytes (OR 0.27, p<0.001). No significant effect was seen on cleaved oocytes more advanced than 

the 2-cell stage at 44h pf (p=0.09) (Table 1). This developmental toxicity at 10 µg mL-1 PFNA was not 

observed at 0.1 µg mL-1 PFNA exposure during oocyte maturation in vitro. Results of logistic 

regression analyses are presented in Table 2 and developmental parameters are presented in Table 

1. 

Table 2. Logistic regression of the effect of PFNA treatment during maturation in vitro on 

developmental parameters presented as odds ratio (confidence intervals) compared to controls. 

 

PFNA 0.1 PFNA 10 

Variable Odds ratio (CI) P-value Odds Ratio (CI) P-value 

Cleaved 44h pfa 0.87 (0.57-1.37) 0.54 0.59 (0.39-0.90) 0.01 

Cleaved above 2 cells 44h pfa 0.73 (0.51-1.05) 0.09 0.72 (0.49-1.04) 0.09 

Blastocyst rateb 0.85 (0.53-1.37) 0.51 0.27 (0.14-0.53) 0.0009 

 a Cleaved embryos and Cleaved above 2 cell stage of cultured immature oocytes 44h pf, b blastocyst rate 

after 8 days pf.  

3.2 Effect of PFNA exposure during maturation in vitro on blastocyst morphology day 8 pf  

Developed blastocysts after treatment with PFNA during in vitro maturation in the 0.1 µg mL-1 group 

(PFNA 0.1: n=35, C 0.1: n=34) and 10 µg mL-1 (PFNA 10: n=16, C 10: n=50) were morphologically 

assessed for stage score (1-3) and grade classification (1-4). In these experiments, no risks of changes 

in stage score in developed blastocysts 8 days pf were observed after PFNA exposure during oocyte 



maturation in vitro either at 0.1 µg mL-1 PFNA (1.26 (-0.19-2.71), p=0.54) or 10 µg mL-1 PFNA (1.43 (-

0.28-3.14), p=0.51). No changes in grade classifications of formed blastocysts 8 days pf were 

observed (PFNA 0.1: 2.04 (0.47-3.61), p=0.11, PFNA 10: 2.19 (0.44-3.94), p=0.16). 

3.3 Effect of 0.1 µg mL-1 PFNA exposure on nuclei count, mitochondria, and lipid distribution 

There was no observed difference in number of nuclei in formed blastocysts 8 days pf in PFNA0.1 

during maturation in vitro compared to the control group (PFNA 0.1: 91.7±33, C 0.1: 99.2±40, 

p=0.40). In addition, PFNA 0.1 did not affect the distribution of mitochondria within the blastocysts 

(OR (CI): 1.15 (0.52-2.59), p=0.73, median grade (range): PFNA 0.1: 2 (1-3), control: 2 (1-3)).  

However, there was a significant difference in lipid droplet distribution in PFNA 0.1 during oocyte 

maturation, with a higher proportion of larger lipid droplets in this treatment compared to the 

control (Fig. 5, p=0.04). Blastocysts in this group also had a higher proportion of very large lipid 

droplets (diameter >12 µm, p<0.0001) but a lower proportion of small lipid droplets (diameter ≤9 

µm) compared to control (Table 3). In contrast, no statistical difference was found in lipid droplets 

with a diameter of 9-12 µm (p=0.09, Table 3).  

Table 3. Logistic regression of the effect of exposure to 0.1 µg mL-1 PFNA (PFNA0.1) during maturation in 

vitro on the distribution of lipid droplet size in day eight blastocysts after fertilization 

Lipid droplet sizec C 0.1 PFNA 0.1 Odds ratio (CI) p-value 

Sumk 395.51 (154.23) 431,57 (223.82) 1.13 (1.00-1.27) 0.04 

<3 µmd 83.93 (44.46) 90.16 (88.24) 0.95 (0.89-1.00) 0.04 

3-6 µmd 95.56 (43.78) 89.43 (58.67) 0.82 (0.78-0.87) 2.28e-12 

6-9 µmd 68.09 (32.07) 64.62 (26.92) 0.87 (0.82-0.93) 9.55 e -06 

9-12 µmd 51.86 (25.28) 58.19 (23.23) 0.94 (0.99-1.13) 0.09 

>12 µmd  96.07 (85.19) 129.16 (80.19) 1.32 (1.25-1.39) <2.0e-16 
cLipid droplet (n=32975) size measured as maximum diameter in day eight embryos (n=88) in PFNA exposed group (PFNA0.1) 
and control-group (C0.1), kSum (SD) and overall effect of PFNA0.1 on distribution of lipid droplet size, dEffect of PFNA0.1 on the 
proportion of lipid-droplets of size <3, 3-6, 6-9, 9-12 and >12 µm in maximum diameter 



4. DISCUSSION 

4.1 Effect of PFNA on developmental competence of maturing bovine oocytes in vitro 

Previous studies have investigated the developmental toxicity of PFNA using laboratory animals like 

rodents and zebrafish [16-18, 44-47]. In this study, we have examined endpoints of developmental 

toxicity using the bovine IVP as a model, exposing oocytes during 22h maturation in vitro to either 10 

µg mL-1 PFNA (PFNA 10) or 0.1 µg mL-1 PFNA (PFNA 0.1).  

PFNA 10 exposure was based on previous in vitro studies on zebrafish [16, 18, 47] and levels 

measured in mouse serum after oral exposure while PFNA 0.1 was based on levels measured in 

human follicular fluid [6] multiplied 50-500x to compensate for the short exposure time. No 

comparable studies using the IVP model are available. Exposure in PFNA 0.1 is consistent with low-

dose in vitro exposure [17] and significantly lower than the dose measured in mouse serum after 

oral administration [44, 46, 48].  

Signs of severe developmental toxicity, including a decreased proportion of cleaved embryos at 44h 

pf and impaired blastocyst development at 7 and 8 days pf, could be seen after exposure to 10 µg 

mL-1 PFNA during in vitro maturation, exceeding the effects observed in zebrafish [16, 18, 47]. In 

mice, similar maternal serum concentrations did not affect litter size, pup weight or live pups/litter 

[46, 48]. This toxicity difference could be due to different species responses to PFAAs [15] 

(specifically, the lower chemo-permeability of the zebrafish chorion might have reduced uptake [49] 

and different metabolism of PFAAs in mice [32]). A similar level of toxicity was not observed in 

embryos exposed to 0.1 µg mL-1 PFNA where no difference could be seen in the proportion of 

embryos cleaved or developed into day 7 or 8 pf blastocysts.   

Embryos were assessed morphologically after 7 and 8 days pf by evaluating endpoints of 

developmental toxicity, such as impaired development, malformations, or degradation of the early 

embryo (stage, grade). No differences were observed between controls and PFNA exposed groups. 



However, the extensive toxic effects of PFNA 10 resulted in a very small number of embryos 

available for evaluation (day 8 pf blastocysts, n=16).  

4.2 Effects of 0.1 µg mL-1 PFNA on nuclei count, mitochondria, and lipid distribution 

Bovine oocytes exposed to PFNA 0.1 µg mL-1 (PFNA 0.1) did not show any signs of developmental 

toxicity when assessed using non-invasive morphological criteria (stage, grade). These findings were 

confirmed through staining procedures for visualizing nuclei and mitochondria, which is not 

surprising because nuclei count is a measure of the number of cell-divisions, and changes in 

mitochondria distribution can be a sign of embryo degradation or cell death [50, 51].  

Lipid accumulation has previously been evaluated in bovine embryos produced by IVP and is known 

to affect the viability or the susceptibility of cryopreservation in bovines [52, 53]. Different lipid 

storage in the early embryo is associated with changes in lipid metabolism in bovines, seen as 

differences in lipid content between breeds [54]. In this study, lipid droplet sizes were studied as an 

endpoint for lipid metabolism [54-56]. A change in the size distribution of lipid droplets in PFNA 0.1 

was observed, suggesting a disturbance of lipid metabolism during the early embryo development. 

This result is supported by the mode of action of PFNA, which disrupts endocrine activation of a 

peroxisome proliferator-activated receptor (PPAR). PPARs are nuclear ligand-activated transcription-

factors associated with lipid metabolism and involved in catabolism and oxidation of fatty acids [57, 

58]. Specifically, PFNA has been shown to disrupt activation of PPAR-alpha (PPARα), demonstrated 

by both by direct effects on the receptor [46] and the lack of effect in knock-out mice [48]; other 

PFAAs have shown similar activation of PPARα [59]. Lipid metabolization through fatty acid oxidation 

is important for the oocyte meiotic maturation and early embryonic development [57, 60], and 

changes in lipid metabolism during this period might be especially problematic for a developing 

blastocyst [60]. 



Lipid metabolism has also been investigated in human cohorts, and epidemiological studies suggest 

that exposure to PFAAs during embryo development may cause adverse outcomes later in life [61, 

62]. However, the results are contradictory. An increase in BMI of female offspring has been 

associated with in utero PFNA exposure [61], and in utero exposure to PFOS, PFOA, and PFNA has 

been positively associated with higher levels of total and non-high density cholesterol [62]. Other 

results associate obesity in children with PFNA exposure [63]. Finding possible negative effects of 

PFAAs on human health is difficult, because the effects might be present only in the context of 

certain metabolic conditions [64]. 

4.3 The usefulness of bovine IVP as a model for developmental toxicity  

The IVP setup enables developmental-specific windows of exposures including the final stages of the 

oocyte maturation. The oogenesis is an especially sensitive period where many critical events take 

place and mimicking this period with exposure during the in vitro maturation might result in changes 

visible first later during the embryo development [28] without confounders of exposure of the male 

gamete. Further, the system might be a useful tool investigating concerns raised from results 

connecting exposure of the female and impaired results after IVF-treatment [65], especially within 

the group of couples with unknown infertility reasons. 

Species differences in toxicological sensitivity suggest that models used for risk-assessment of 

developmental toxicity should resemble the target species as closely as possible. Bovine early 

embryo development is more similar to human embryo development than are small rodents or 

zebrafish, so mechanistic studies of developmental toxicity using bovine IVP may provide valuable 

information for human risk assessment [28]. Without resorting to the use of experimental animals, 

we have demonstrated developmental toxicity of PFNA to bovine embryos, and also demonstrated 

differences in lipid metabolism that appear to have been caused by disturbances to the same 

endocrine pathway demonstrated in other studies [46, 48].   



Although it is unlikely that in vitro tests will soon be able to completely replace in vivo models, 

clearly further in vitro models are needed to assess potential adverse effects to human fertility [30]. 

The bovine IVP system seems to be a potentially very useful in vitro model for studying the adverse 

effects of PFNA and possibly other per- and polyfluoroalkyl substances as well. Although, 

consideration is needed regarding the period of exposure during oocyte maturation in vitro as the 

first meiotic divisions of the gametes in vivo are conducted during fetal development and thus this in 

vitro method cannot handle effects of life-long exposure.  

4.4 Conclusion 

In this study, we investigated the effect of PFNA during oocyte maturation in vitro using bovine IVP 

as a model for reproductive toxicity. We observed acute toxicity after exposure to 10 µg mL-1 PFNA 

as well as changes in lipid droplet distribution in embryos exposed to 0.1 µg mL-1 PFNA during 

maturation in vitro. More studies exploring long-term effects and lower-dose exposures are needed 

for further health risk assessment.   

Conflict of interest 

The authors declare no conflict of interest. 

Acknowledgements 

The authors would like to acknowledge the Cells for Life Platform at SLU for providing the facilities 

for this project. Infrastructure for the Cells for Life Platform was partly funded by the Infrastructure 

Committee, SLU, Sweden. The authors also acknowledge Petter Ranefall (BioImage Informatics 

Facility, Uppsala) for providing expertise regarding image analysis and Mikael Andersson Franko 

(Centre for Statistics, SLU, Uppsala) for help with the statistical analyses. The authors thank 

Margareta Wallgren for help in the lab and Thommy Moberg for transporting the ovaries to the lab. 



The authors also acknowledge Viking Genetics for providing bovine sperm and SCAN (Linköping, 

Sweden) for providing ovaries for the work. This work was funded by FORMAS (Swedish Research 

Council for Environment, Agricultural Sciences and Spatial Planning, Grant No. 942-2015-476), Carl 

Tryggers Stiftelse (CTS 17:413) and Stiftelsen Nils Lagerlöfs fond (KSLA, GFS2017-0032). 

References 
1. Buck, R.C., et al., Perfluoroalkyl and polyfluoroalkyl substances in the environment: 

terminology, classification, and origins. Integr Environ Assess Manag, 2011. 7(4): p. 513-41. 
2. EPA, Provisional Health Advisories for  Perfluorooctanoic Acid (PFOA) and 

Perfluorooctane Sulfonate (PFOS), U.S.E.P. Agency, Editor. 2009. 
3. Calafat, A.M., et al., Polyfluoroalkyl Chemicals in the U.S. Population: Data from the 

National Health and Nutrition Examination Survey (NHANES) 2003–2004 and Comparisons 
with NHANES 1999–2000. Environmental Health Perspectives, 2007. 115(11): p. 1596-1602. 

4. Persson, S., et al., Perfluoroalkyl acids in subarctic wild male mink (Neovison vison) in 
relation to age, season and geographical area. Environment International, 2013. 59: p. 425-
430. 

5. Giesy, J.P. and K. Kannan, Global Distribution of Perfluorooctane Sulfonate in Wildlife. 
Environ Sci Technol, 2001. 35: p. 1339-1342. 

6. Petro, M.L.E., et al., Perfluoroalkyl acid contamination of folliculat fluid and its consequence 
for in vitro oocyte developmental competence. Science of the total environment, 2014. 496: p. 
282-288. 

7. Mamsen, L.S., et al., Concentration of perfluorinated compounds and cotinine in human 
foetal organs, placenta, and maternal plasma. Science of The Total Environment, 2017. 596-
597: p. 97-105. 

8. Karrman, A., et al., Exposure of perfluorinated chemicals through lactation: levels of 
matched human milk and serum and a temporal trend, 1996-2004, in Sweden. Environ Health 
Perspect, 2007. 115(2): p. 226-30. 

9. Kato, K., et al., Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999-
2008. Environ Sci Technol, 2011. 45(19): p. 8037-45. 

10. Okada, E., et al., Temporal trends of perfluoroalkyl acids in plasma samples of pregnant 
women in Hokkaido, Japan, 2003-2011. Environ Int, 2013. 60: p. 89-96. 

11. Bach, C.C., et al., Serum perfluoroalkyl acids and time to pregnancy in nulliparous women. 
Environ Res, 2015. 142: p. 535-41. 

12. Glynn, A., et al., Perfluorinated alkyl acids in blood serum from primiparous women in 
Sweden: serial sampling during pregnancy and nursing, and temporal trends 1996-2010. 
Environ Sci Technol, 2012. 46(16): p. 9071-9. 

13. Karrman, A., et al., Relationship between dietary exposure and serum perfluorochemical 
(PFC) levels--a case study. Environ Int, 2009. 35(4): p. 712-7. 

14. Harada, K.H., et al., Odd-numbered perfluorocarboxylates predominate over 
perfluorooctanoic acid in serum samples from Japan, Korea and Vietnam. Environ Int, 2011. 
37(7): p. 1183-9. 

15. Lau, C., J.L. Butenhoff, and J.M. Rogers, The developmental toxicity of perfluoroalkyl acids 
and their derivatives. Toxicol Appl Pharmacol, 2004. 198(2): p. 231-41. 

16. Ulhaq, M., et al., Comparison of developmental toxicity of seven perfluoroalkyl acids to 
zebrafish embryos. Environ Toxicol Pharmacol, 2013. 36(2): p. 423-6. 

17. Jantzen, C.E., et al., PFOS, PFNA, and PFOA sub-lethal exposure to embryonic zebrafish 
have different toxicity profiles in terms of morphometrics, behavior and gene expression. 
Aquat Toxicol, 2016. 175: p. 160-70. 



18. Kim, M., et al., In vivo evaluation and comparison of developmental toxicity and 
teratogenicity of perfluoroalkyl compounds using Xenopus embryos. Chemosphere, 2013. 
93(6): p. 1153-60. 

19. Bach, C.C., et al., Perfluoroalkyl acids and time to pregnancy revisited: An update from the 
Danish National Birth Cohort. Environ Health, 2015. 14: p. 59. 

20. Fei, C., et al., Maternal levels of perfluorinated chemicals and subfecundity. Hum Reprod, 
2009. 24(5): p. 1200-5. 

21. Whitworth, K.W., et al., Perfluorinated compounds and subfecundity in pregnant women. 
Epidemiology, 2012. 23(2): p. 257-63. 

22. Louis, G.M., et al., Preconception perfluoroalkyl and polyfluoroalkyl substances and incident 
pregnancy loss, LIFE Study. Reprod Toxicol, 2016. 65: p. 11-17. 

23. Vestergaard, S., et al., Association between perfluorinated compounds and time to pregnancy 
in a prospective cohort of Danish couples attempting to conceive. Hum Reprod, 2012. 27(3): 
p. 873-80. 

24. Crawford, N.M., et al., Effects of perfluorinated chemicals on thyroid function, markers of 
ovarian reserve, and natural fertility. Reprod Toxicol, 2017. 69: p. 53-59. 

25. Jørgensen, K.e.a., Perfluoroalkyl substances and time to pregnancy in couples from 
Greenland, Poland and Ukraine. 2014. 

26. Jensen, T.K., et al., Association between perfluorinated compound exposure and miscarriage 
in Danish pregnant women. PLoS One, 2015. 10(4): p. e0123496. 

27. 2006, E.P., Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 
18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of 
Chemicals (REACH). in No 1907/2006, O.J.o.t. EU, Editor. 30 December 2006. 

28. Santos, R.R., E.J. Schoevers, and B.A. Roelen, Usefulness of bovine and porcine IVM/IVF 
models for reproductive toxicology. Reproductive Biology and Endocrinology, 2014. 12(117). 

29. Spielmann, H., The way forward in reproductive/developmental toxicity testing. Alternative to 
laboratory animals: ATLA, 2009. 37(6): p. 641-56. 

30. WHO, State of Science of Endocrine Disrupting Chemicals - 2012. 2012, United Nations 
Environment Programme and the World Health Organization: Geneva, Switzerland. 

31. Li, Y., et al., Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated 
drinking water. Occup Environ Med, 2018. 75(1): p. 46-51. 

32. Tatum-Gibbs, K., et al., Comparative pharmacokinetics of perfluorononanoic acid in rat and 
mouse. Toxicology, 2011. 281(1-3): p. 48-55. 

33. Chang, S.C., et al., Comparative pharmacokinetics of perfluorooctanesulfonate (PFOS) in 
rats, mice, and monkeys. Reprod Toxicol, 2012. 33(4): p. 428-40. 

34. Lupton, S.J., et al., Perfluorooctane Sulfonate Plasma Half-Life Determination and Long-
Term Tissue Distribution in Beef Cattle (Bos taurus). J Agric Food Chem, 2015. 63(51): p. 
10988-94. 

35. Gordon, I., Laboratory production of cattle embryos. 1994, Wallingford: Wallingford : CAB 
International. 

36. IETS, MANUAL OF THE INTERNATIONAL EMBRYO TRANSFER SOCIETY, in A 
procedural guide and general information for the use of embryotransfer technology 
emphasizing sanitary procedures, D.A. Stringfellow and D.M. Givens, Editors. 2010: 
International Embryo Transfer Society, 2441 Village Green Place, Champaign, Illinois 61822 
USA. 

37. Gordon, I., Laboratory Production of Cattle Embryos. 2nd ed. Biotechnology in Agriculture 
Series, No. 27. 2003, UK: CABI Publishing. 

38. Laskowski, D., et al., Insulin during in vitro oocyte maturation has an impact on 
development, mitochondria, and cytoskeleton in bovine day 8 blastocysts. Theriogenology, 
2017. 101: p. 15-25. 

39. Al Darwich, A., et al., Effect of different culture systems on adipocyte differentiation-related 
protein (ADRP) in bovine embryos. Anim Reprod Sci, 2014. 145(3-4): p. 105-13. 

40. Carpenter, A.E., et al., CellProfiler: image analysis software for identifying and quantifying 
cell phenotypes. Genome Biol, 2006. 7(10): p. R100. 



41. C. Sommer, et al. Ilastik: Interactive Learning and Segmentation Toolkit. in Eighth IEEE 
International Symposium on Biomedical Imaging (ISBI). 2011. Hyatt Regency McCormick 
Place, Chicago, IL, USA: IEEE. 

42. Padmanabhan, K., W.F. Eddy, and J.C. Crowley, A novel algorithm for optimal image 
thresholding of biological data. J Neurosci Methods, 2010. 193(2): p. 380-4. 

43. Vincent, L. and S. Pierre, Watersheds in Digital Spaces: An Efficient Algorithm Based on 
Immersion Simulations. IEEE transaction on pattern analyziz and machine intelligence, 1991. 
13(6). 

44. Rogers, J.M., et al., Elevated blood pressure in offspring of rats exposed to diverse chemicals 
during pregnancy. Toxicol Sci, 2014. 137(2): p. 436-46. 

45. Rockwell, C.E., et al., Acute Immunotoxic Effects of Perfluorononanoic Acid (PFNA) in 
C57BL/6 Mice. Clin Exp Pharmacol, 2013. Suppl 4. 

46. Das, K.P., et al., Developmental toxicity of perfluorononanoic acid in mice. Reprod Toxicol, 
2015. 51: p. 133-44. 

47. Liu, H., et al., Toxic effects of perfluorononanoic acid on the development of Zebrafish 
(Danio rerio) embryos. J Environ Sci (China), 2015. 32: p. 26-34. 

48. Wolf, C.J., et al., Developmental effects of perfluorononanoic Acid in the mouse are 
dependent on peroxisome proliferator-activated receptor-alpha. PPAR Res, 2010. 2010. 

49. Garcia, G.R., P.D. Noyes, and R.L. Tanguay, Advancements in zebrafish applications for 21st 
century toxicology. Pharmacol Ther, 2016. 161: p. 11-21. 

50. Bavister, B.D. and J.M. Squirrell, Mitochondrial distribution and function in oocytes and 
early embryos. Human reproduction, 2000. 15(2): p. 189-198. 

51. Stojkovic, M., et al., Mitochondrial Distribution and Adenosine Triphosphate Content of 
Bovine Oocytes Before and After In Vitro Maturation: Correlation with Morphological 
Criteria and Developmental Capacity After In Vitro Fertilization and Culture1. Biology of 
Reproduction, 2001. 64: p. 904-909. 

52. Abe, H., et al., Accumulation of cytoplasmic lipid droplets in bovine embryos and 
cryotolerance of embryos developed in different culture-system using serum-free or serum-
containing media. Molecular Reproduction and Development, 2002. 61: p. 57-66. 

53. Reis, A., G.J. McCallum, and T.G. McEvoy, Accumulation and distribution of neutral lipid 
droplets is non-uniform in ovine blastocysts produced in vitro in either the presence or 
absence of serum. Reproduction Fertility and Development, 2005. 17: p. 815-823. 

54. Baldoceda, L., et al., Breed-specific factors influence embryonic lipid composition: 
comparison between Jersey and Holstein. Reprod Fertil Dev, 2015. 

55. Pereira, R.M., et al., Biopsied and vitrified bovine embryos viability is improved by trans10, 
cis12 conjugated linoleic acid supplementation during in vitro embryo culture. Anim Reprod 
Sci, 2008. 106(3-4): p. 322-32. 

56. Sudano, M.J., et al., Lipid content and apoptosis of in vitro-produced bovine embryos as 
determinants of susceptibility to vitrification. Theriogenology, 2011. 75(7): p. 1211-20. 

57. Dunning, K.R., et al., Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes 
during maturation and modulation by PPAR agonists. PLoS One, 2014. 9(2): p. e87327. 

58. Schoonjans, K., B. Staels, and J. Auwerx, Role of the peroxisome proliferator-activated 
receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. 
Journal of Lipid Research, 1996. 37: p. 907-925. 

59. Watkins, A.M., et al., The effects of perfluorinated chemicals on adipocyte differentiation in 
vitro. Mol Cell Endocrinol, 2015. 400: p. 90-101. 

60. Huang, J.C., The role of peroxisome proliferator-activated receptors in the development and 
physiology of gametes and preimplantation embryos. PPAR Res, 2008. 2008: p. 732303. 

61. Halldorsson, T.I., et al., Prenatal exposure to perfluorooctanoate and risk of overweight at 20 
years of age: a prospective cohort study. Environ Health Perspect, 2012. 120(5): p. 668-73. 

62. Nelson, J.W., E.E. Hatch, and T.F. Webster, Exposure to polyfluoroalkyl chemicals and 
cholesterol, body weight, and insulin resistance in the general U.S. population. Environ 
Health Perspect, 2010. 118(2): p. 197-202. 

63. Karlsen, M., et al., Early-life exposures to persistent organic pollutants in relation to 
overweight in preschool children. Reprod Toxicol, 2017. 68: p. 145-153. 



64. Wan, H.T., et al., Perinatal exposure to perfluorooctane sulfonate affects glucose metabolism 
in adult offspring. PLoS One, 2014. 9(1): p. e87137. 

65. Kadhel, P., et al., Organochlorine pollutants and female fertility: a systematic review focusing 
on in vitro fertilization studies. Reprod Sci, 2012. 19(12): p. 1246-59. 

 

 

 



 

FIGURES 
Figure 1:  

 

Figure 1. Experimental design.  

Bovine cumulus oocyte complexes (COCs) were selected for the experiment and exposed to PFNA in 

two concentrations during maturation in vitro. Embryo development was evaluated after the primary 

cleavage divisions at 44h pf and at days 7 and 8 pf. For the lower concentration (PFNA 0.1), day 8 

blastocysts were stained for nuclei, neutral lipids and active mitochondria. 

 

 

 

 

 

 

 

 



Figure 2:  

Figure 2. Classification of blastocysts 8 days pf for stage and grade.  

Left: blastocyst of excellent/good quality (stage 1, grade 1); Middle: expanding blastocyst with intact 

but thinner zona pellucida than stage 1, excellent/good quality (stage 2, grade 1); Right: hatched 

blastocyst of excellent/good quality (stage 3, grade 1). 

  



Figure 3:  

 

Figure 3: Lipid droplet identification in confocal images of day 8 pf blastocysts.  

Fluorescent labeling for visualization of neutral lipids were applied and images captured in sectioned 

scans in seven levels (z-stack) using a confocal microscopy. Images taken as single channel-images 

(left) from z-stack levels 2, 4 and 6 were used for lipid-identification. Lipid droplets were identified 

using CellProfiler using Maximum Correlation Threshold followed by Watershed separation (middle, 

right). Lipid droplet (n=32975) sizes were measured at maximum diameter. 

Figure 4.  

 

Figure 4. Grading of distribution of active mitochondria. 

A: Grade 1, even distribution without distinct aggregations of mitochondria; B: grade 2, mild 

asymmetry in mitochondria distribution with some aggregations; C: grade 3, uneven mitochondria 

distribution with pronounced aggregations. 



Figure 5. 

 

Figure 5. Densities of lipid droplets in day 8 pf blastocysts.  

Lipid droplets of different size (diameter) in treatment (PFNA0.1) and control (C 0.1) showing a non-

monotonic distribution. ** indicates a significant difference (p=0.04).  

 
 
 
 
  



Figure 6. 
 

 
 
Figure 6. Cumulus oocyte-complexes after maturation in vitro treated with 10 µg/mL PFNA and 

Control. Note the change in expansion of the cumulus cloud between treated group (PFNA 10) and 

control.  
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