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Bioinformatics methodology is used to understand complex biological processes in 
molecular biology, genetics and epigenetics. This thesis performed analysis of the 
complex biological processes controlling reproduction in mammals including dairy 
cattle. Successful fertility in dairy cattle is required for farm sustainability as it supports 
milk productivity and longevity. Disorder in metabolism due to higher levels of insulin 
during pregnancy and disturbance of immune response due to bacterial infections after 
calving are detrimental in reproduction. Determinants controlling these molecular 
mechanisms are poorly understood. To investigate these mechanisms, we performed 
bioinformatics analyses on data obtained from two experimental studies: 

Insulin is a regulator of metabolism and conditions such as hyperinsulinemia is known 
to impair fertility especially during embryonic development. This study investigates the 
potential effect of insulin treatment on gene expression and DNA methylation patterns 
of bovine embryos during in vitro oocyte maturation by using the EmbryoGENE DNA 
Methylation Array. The results of Paper I revealed that the identified differentially 
methylated regions (DMRs) were correlated with differentially expressed  genes 
involved in metabolic regulation.  

Uterine diseases impair fertility in dairy cattle and Lipopolysaccharide (LPS) from 
gram-negative Escherichia coli, is a major source of uterine diseases by activating pro-
inflammatory pathways. This study investigates in vitro the effects of infection by LPS 
on bovine endometrial epithelial cells (bEEC) mimicking in vivo processes. In Paper II, 
RNA Sequencing analysis revealed that LPS has significantly affected the transcriptome 
of bEEC, identifying more than 2000 differentially expressed genes, involved in immune 
response, proliferation, cell adhesion, and implantation. In Paper III, Bisulfite 
sequencing revealed that LPS has profoundly affected the DNA methylation pattern of 
bEEC. 1291 DMRs were found and their associated genes were involved in molecular 
processes related to proliferation, apoptosis and embryo development. In Paper IV, the 
enrichment of motifs within these DMRs revealed transcription factor binding sites for 
immunologically important transcription factors. Thus, the transcriptomics, epigenomics 
and bioinformatics results obtained from these analyses revealed the complexity of the 
regulatory transcriptional network activated during inflammation.  
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I. Partly contributed in bioinformatics analysis and compiling results.

II. Partly contributed in bioinformatics analysis, compiling results and
drafting manuscript.

III. Developed bioinformatics work flow, performed analysis, annotation,
compiled the results and wrote manuscript.

IV. Performed bioinformatics analysis, compiled the results and wrote
manuscript.

The contribution of Naveed Jhamat to the papers included in this thesis was as 
follows: 
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Bioinformatics is an interdisciplinary field that applies the knowledge of 
computer science, applied mathematics and statistics to decode, analyse and 
organise the information associated with molecular genetics and genomics. 
Broadly, the three major aims of bioinformatics are to; i) organise biological data 
for efficient retrieval and to store new results ii) develop tools and resources that 
facilitate data analysis and iii) use tools for data analysis and interpretation of 
the results for the biologists (Luscombe et al., 2001).  
 
Although it is difficult to pinpoint about the inception of bioinformatics, 
however this term was reported in 1977 by Paulien Hogeweg when she 
pronounced bioinformatics as her main field of research and established 
bioinformatics group at University of Utrecht (Hogeweg, 1978; Hogeweg and 
Hesper, 1978). Dr. Margret Oakley Dayhoff is also considered as one of the 
pioneers in bioinformatics who dedicated herself in applying the evolving 
computer technologies for research in medicine and biology. In ‘60s, she 
developed protein and nucleic acid databases and computer methods for 
comparison of protein sequences to derive evolutionary history of biological 
kingdom. Her database was considered as the first Atlas of Protein Sequence and 
Structure (Hunt, 1983).   
 
The emergence of DNA sequencing technologies was a revolution in producing 
biological data at a phenomenal rate which made the use of computers inevitable 
for biological research. Many publicly open databases were developed to feed 



12 

the need and Attwood and colleagues narrated in their paper (Attwood et al., 
2011) the emergence and history of theses biological databases such as Protein 
Data Bank (PDB) was established in 1971 and a computer-based archival file 
for three-dimensional structural data of macromolecules (Bernstein et al., 1977); 
The EMBL Nucleotide Database was founded in 1980 followed by the EMBL 
Biocomputing programme in 1984. In 1987, four years before the worldwide 
web was created, EMBL began serving biological data over the internet, 
following up in 1988 with a fileserver for bioinformatics software. EMBL 
Nucleic archive founded was the first internationally supported central resource 
for nucleic acid sequence data (Hamm and Cameron, 1986); GenBank was 
founded in 1982 at NCBI and it works in close collaboration with the EMBL and 
DNA Data Bank of Japan (Burks et al., 1985). In this era of data explosion, new 
set of tools started to emerge for biological data mining and annotation. 
Currently bioinformatics has become a necessary and integral part of biological 
research, as it includes the analysis of genomic sequence data, genome assembly 
and annotation, comparative genomics, epigenomics, protein structure 
prediction, development of programs and databases (Stein, 2001; Visel et al., 
2009).  

The era of genetic sequencing was started by Walter Gilbert through chemical 
sequencing method (Maxam and Gilbert, 1977) and Frederick Sanger through 
chain termination method (Sanger et al., 1977), both shared the Nobel Prize in 
1980 for their contributions regarding the determination of base sequences in 
nucleic acids. The molecular biology community rapidly adopted the new DNA 
sequencing technologies in the late 70’s and early 80’s and Larhammar and 
colleagues were among the very first to use these techniques to completely 
sequence a human MHC class II gene (Larhammar et al., 1983). The Sanger 
sequencing was known as first generation sequencing technology that allowed 
only a few hundred base pairs of DNA fragments to be sequenced per reaction. 
This technique turned out to be parallelised and automated with Human Genome 
Project in 1990´s whose first draft was completed in 2001 (Lander et al., 2001; 
Venter et al., 2001). 

Sanger sequencing was quite expensive with cost of $0.05 per kilo-base 
(Shendure and Ji, 2008). Other limitations of Sanger sequencing, such as 
scalability, throughput and speed, stimulated the emergence of a new technology 
based on combination of Sanger sequencing and advanced fluorescent detection 
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methods, which was known as next-generation sequencing (NGS) and 
considered as second-generation sequencing or high-throughput sequencing 
(HTS). NGS brought a revolution in genomics, transcriptomics, and 
epigenomics and made comparative genomics possible by sequencing related 
organisms and resequencing many individuals from the same and between 
different population and subsequently comparing their sequences to comprehend 
how genetic variations affect phenotypic features. 

The first NGS platform was the 454 technology which was introduced in 2005, 
and this was shortly followed by the Solexa/Illumina genome sequencing 
platform and SOLiD by Applied Biosystems (van Dijk et al., 2014). The NGS 
platforms have distinct features such as variable read lengths, type of 
sequencing, run times and throughput capacity (Goodwin et al., 2016). At the 
first release, these technologies generated short reads of 35bp (SOLiD/Illumina) 
to 110bp (454 Roche) but later on these produced around 20M reads (454 
Roche), and 30M reads (SOLiD) at comparatively very low cost and in lesser 
time than Sanger sequencing (Mardis, 2008; van Dijk et al., 2014). This 
development opened a new era of research projects using DNA sequencing that 
enhanced the need and importance of Bioinformatics. The Illumina has multiple 
platforms such as HiSeq, MiSeq, and NextSeq, with variable read lengths and 
run times.  

Since then, many new technologies have been developed which increased their 
output, read length, and quality along with decreasing its cost. Ion-torrent (from 
Life technologies) was the first semiconductor-based platform that can generate 
up to 1Gb of data, with a longer read lengths up to 400 bases. The newer 
versions, Ion proton and Ion S5, can even produce up to 15Gb of data. The latest 
NGS platforms from Pacific Bio (Rhoads and Au, 2015) and Oxford Nanopore 
have been introduced to produce longer sequences of more than 200 kb (Jain et 
al., 2016; Tyson et al., 2018). Illumina HiSeq 2000 was able to produce around 
600Gb data per run which was sufficient data for 6 human genomes in 11 days 
(Mardis, 2013). The era of third generation sequencing has been started with 
single molecule sequencing which allows to sequence the samples without 
amplifying the included DNA (Chaisson et al., 2015). This reduces the 
preparation time and cost and allows to sequence the unknown microbes but 
error rates are high (Mardis, 2013; Shapiro et al., 2013). 
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Genetics is the field of biology which, study genes, genetic variations and 
heredity in living organisms and has strong link with information systems to 
decode the genetic information into biological information. All living organisms 
are made up of cells that contain genetic information on DNA in the form of 
nucleotide bases (the different bases are Adenine, Thymine, Cytosine and 
Guanine that are abbreviated A, T, C, and G, respectively). These nucleotide 
bases are arranged in a certain DNA sequence throughout a genome. A particular 
pattern, combination or permutation of the subset of DNA sequence provides a 
template for genes that carry a piece of genetic instructions. These instructions 
are used for making proteins and regulating the chemical reactions for 
development and survival of the organism. These genes can be transferred from 
parents to offspring through inheritance. With some exception, all the cells of an 
individual organism have the same DNA sequence but particular genes are 
expressed in different cell types, tissues and organs at different levels. Some 
genes are turned on and off in context of environmental changes (diet, exercise, 
medications, metabolism, and infection) that leads to phenotype differences or 
disease. During transcription, template strand of DNA is copied to produce many 
different types of RNAs (see below) including messenger RNAs (mRNAs) 
which are translated into proteins (Alberts et al., 2014; Lodish et al., 2007). 

 
The transcriptome is the set of all RNA molecules in one cell or a population 
of cells whereas transcriptomics technologies are used to study an 
organism’s transcriptome. DNA stores the genetic information, which is 
expressed through transcription. The definition of transcription is DNA-
dependent, RNA polymerase-mediated synthesis of RNA. As mentioned above, 
mRNA acts as a transient intermediary molecule before protein synthesis while 
noncoding RNAs perform additional functions. A non-coding RNA (ncRNA) is 
transcribed from DNA but not translated into protein and performs different 
functions within the cell by taking part in transcription and translation. The DNA 
sequence used for transcription of ncRNA is referred as RNA gene. There are 
different forms of ncRNAs:  

• The two larger subtypes of ribosomal RNAs (18S and 28S rRNAs) are 
transcribed by RNA polymerase I. These subunits along with 5S rRNA 
and associated proteins form ribosomes which is a cellular machinery 
to translate mRNAs into proteins by reading mRNAs and linking amino 
acids accordingly to produce polypeptide chain (Simsek et al., 2017). 

• Transfer RNAs (tRNAs) are transcribed by RNA polymerase III. It is 
an adaptor molecule that links codons of mRNA to corresponding 
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amino acids by carrying the amino acids to the ribosomes  (Sharp et al., 
1985). 

• Small nuclear RNAs (snRNAs) are transcribed by either RNA
polymerase II or III and forms spliceosome in the nucleus with the help
of associated proteins called snRNPs. Spliceosome is a molecular
machinery that removes introns from the pre-mRNA to generate
mature-mRNA and the process is referred as splicing. snRNAs also
support in the regulation of transcription factors or RNA polymerase II
as well as maintaining telomeres which are regions of repetitive
nucleotide sequences at the end of chromatid which protect the ends of
chromosome from deterioration during replication (Matera et al., 2007).

• Small nucleolar RNAs (snoRNAs) are mostly located on introns of the
genes which transcribed by RNA polymerase II and  guide chemical
modifications of rRNAs, tRNAs and snRNAs primarily through
methylation or pseudouridylation (Mannoor et al., 2012).

• Micro RNAs (miRNAs) are part of RNA interference (RNAi) which are
usually transcribed by RNA polymerase II; and are post transcriptional
regulators of gene expression through base pairing with target
complementary messenger RNAs (mRNAs) that results in gene
silencing through translation repression or target degradation  (Ambros,
2004; Zhang et al., 2018)

• Small interfering RNA or short interfering RNA (siRNA) is also part of
RNAi and the Dicer enzyme catalyzes its production from double-
stranded RNA or pre-microRNA. It functions in the same way like
miRNA to perform post transcriptional gene silencing (PTGS) as a
result of mRNA degradation and preventing translation (Carthew and
Sontheimer, 2009).

• Long non-coding RNAs (lnc RNAs) are larger than 200 nucleotides and
often transcribed by RNA polymerase II; and play a role in chromatin
remodeling, transcriptional and post transcriptional regulation such as
X-inactive specific transcript (Xist) has role in X-chromosome
inactivation process in female mammals (Ransohoff et al., 2018).

A transcriptome represents the total sets of transcripts present in a cell at a 
particular time point. Measuring the quantity and quality of mRNA expression 
in different tissues, conditions or time points contributes to an increased 
knowledge of how gene expression is regulated. Furthermore, defining the 
transcriptome is valuable to improve the genome annotation of a particular 
species. The possibility to study the whole transcriptome started in the early 
1990s and technological advances have made transcriptomics a widespread 
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discipline (Lowe et al., 2017). There are two key techniques / approaches of 
transcriptomics to define differential gene expression:  

 
DNA microarray or (DNA Chip) or (Bio Chip) is a collection of microscopic 
DNA spots attached to a solid surface. Synthesized oligonucleotide probes 
complementary to the corresponding mRNAs are placed on an array. Then a 
sample of mRNAs are allowed to hybridize to the probes. Scientists use DNA 
microarrays to measure the expression levels of large numbers of genes 
(Bumgarner, 2013).  

 
With the advent of NGS and advances in technology, RNA-Seq has become 
technology of choice for gene expression profiling. RNA-Seq provides the 
sequence and frequency of RNA molecules that are present at any particular time 
point in a specific cell type. Counting the number of mRNAs that are encoded 
by individual genes provides an indicator of protein coding potential, a main 
contributor to phenotype development. 
 
RNA-Seq refers to the blend of different high-throughput sequencing 
methodologies with computational methods to capture and quantify transcripts 
present in an RNA extract. The nucleotide sequences generated are typically 
around 100 bp in length, but their read length can vary from 30 bp to over 10,000 
bp, depending on the sequencing method used. RNA-Seq may be used to identify 
the expressed genes within a genome or identify which genes are active at a 
particular point in time, and read counts can be used to accurately model the 
relative gene expression level. The transcriptomics field has been emerged 
swiftly with the initiation of next-generation sequencing technologies. RNA-seq 
has now largely displaced microarrays and taken the place as preferred method 
for gene expression profiling (Lowe et al., 2017; McGettigan, 2013). However, 
the cost-efficiency and efficacy of using microarrays are still used as a valuable 
resource to define differential gene expression (Paper I). 
 
Direct sequencing using Oxford Nanopore MinIon and similar technologies will 
give the complete RNA sequence from nucleotide 1 to the last nucleotide of all 
the mRNAs and all the splice variants. This combined with Illumina-based 
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RNA-seq, which will allow quantification is the future in RNA studies. Then 
when all the mRNAs have been identified there will be microarrays with probes 
for all the different RNAs that are known to be expressed. 

Conrad Waddington coined the term epigenetics in the early 1940s 
(Waddington, 1942, 2012) and defined epigenetics as ‘‘the branch of biology 
which studies the causal interactions between genes and their products which 
bring the phenotype into being’’(Waddington, 1968). Waddington introduced 
the concept of epigenetic landscape to illustrate embryonic development that a 
cell can adopt various developmental pathways towards differentiation. The 
cellular differentiation occurs multiple times during the development of a 
multicellular organism and these changes are governed by epigenetic 
modifications rather than alteration in DNA sequence. Critical epigenetic 
reprogramming arises throughout germ cell development and early 
embryogenesis in mammals (Dupont et al., 2009). Except B lymphocytes and T 
lymphocytes that rearrange their specific Ig and TCR genes, respectively, all the 
cells in the body contain the same DNA sequence but the different genes are 
expressed in different cell types with different expression levels that causes 
phenotype differences (Pontén et al., 2008; Thul et al., 2017). These phenotype 
differences are due to epigenetic phenomena that control changes in phenotype 
without a change in genotype. Epigenetic change is a regular and natural 
phenomenon but can also be influenced by many factors such as age, 
environment, lifestyle and disease state (Goldberg et al., 2007). Epigenetic 
changes due to external / environmental factors, lead to changes in chromatin 
structure and thus affect /modulate / regulate /control the gene expression.  

The word epigenome is derived from epigenetics and refers to the complete 
description of chemical changes to the DNA and histone proteins of an organism 
that ultimately modulate chromatin structure and genome function; and these 
changes can, if they influence the germline, be transferred to the next generation 
(Bernstein et al., 2007). The epigenome may be dynamically changed by 
environmental factors and plays a vital role in regulation of gene expression, 
development, cell / tissue differentiation, and inhibition of transposable elements 
(Conley and Jordan, 2012). Epigenomics is the study of epigenome i.e. the 
complete set of epigenetic modifications (Russell, 2009). These modifications 
are reversible and epigenome maintenance is a continuous dynamic process, 
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ensuring the stability of eukaryotic genomes e.g. DNA repair (Alabert and 
Groth, 2012).  

The development of high-throughput technologies has made it possible to 
perform whole genome sequence studies of epigenetic modifications of different 
cell types from different organisms. Broadly, two epigenetic modifications are 
considered as being the most important; i) histone modification and ii) DNA 
methylation.   

Chromosomes are compressed in the form of chromatin and chromatin consists 
of DNA and proteins, primarily four different types of histone. DNA is wrapped 
around the core eight histones (two of each H2A, H2B, H3, and H4) forming the 
nucleosome which is a repeating unit and smallest functional unit of chromatin. 
Histones are responsible for maintaining the shape and structure of chromatin. 
Any change in chromatin is considered as the key regulator of genomic functions 
(Fischle et al., 2003; Downs et al., 2000). Epigenetic modifications are covalent 
post-translational modifications that occur at the amino terminal tails of the 
histones which alter chromatin organisation and ultimately availability of genes 
in DNA to be activated (Lennartsson and Ekwall, 2009), such as histone 
acetylation and histone methylation. Acetylation of histone plays vital role in 
gene regulation and is controlled by the balance in activity of two enzymes, i) 
Histone Acetyltransferase (HAT) and ii) Histone Deacetylase (HDAC). 
Acetylation of histones by HAT triggering the uncoiling of DNA and opening 
the chromatin structure which causes the genes to be accessible for transcription 
factors and allow the transcription. When transcription is no longer required, 
then deacetylation of histone by HDAC results in wrapping the DNA and closes 
the chromatin structure. Histone methyltransferase (HMT) is responsible for 
histone methylation by transferring methyl group on the target residues of 
histones, which causes to increase or decrease gene expression depending on 
which residue of histone is methylated with how many methyl groups, e.g. it is 
reported in mouse study, if methylation occurs on lysine residue 3 (L3) of histone 
3, it unwraps the DNA but if it occurs on L9 of histone 3, it condenses the DNA, 
such as in X-inactivation. Although, histone modifications are very significant 
in epigenetic studies but we have not explored this aspect as yet in our current 
research.  
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DNA methylation is considered as the first and major epigenetic modification 
(Wyatt, 1951) which is essential for normal development and plays a decisive 
role in many biological processes, such as cell differentiation, gene expression, 
genomic imprinting and embryogenesis (Yuan et al., 2016). DNA methylation 
preferably occurs at 5′-CpG-3′ dinucleotides (Gardiner-Garden and Frommer, 
1987) and if it occurs in the promoter region or first exon of a gene then normally 
it leads to suppression of gene expression (Su et al., 2014a). DNA methylation 
is performed by two classes of DNA methyltransferases (DNMTs), called de 
novo DNMTs and maintenance DNMTs, which ensure that the daughter cells 
after cell division are properly methylated on both strands (Okano et al., 1999). 
 
 
 
 

 
Figure 1. Methylation and Demethylation cycle. Adapted from Nature Reviews Cancer (Issa, 
2004). 

Passive DNA demethylation may occur during cell division when DNMT1 
levels are suboptimal or when this enzyme is inactive. For example this may 
occur with increasing age. However, active DNA demethylation is dependent on 
DNA demethylase enzymes in stem cells and early embryos. TET family 
member proteins, are reported to convert 5-methylcytosine to 5-
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hydroxymethylcytosine in human and mouse studies (Carey et al., 2011; Feng et 
al., 2010; Ito et al., 2010).      

Aberrant DNA methylation patterns of promoter regions are associated with 
heritable losses of gene function and formation of transcriptionally repressive 
chromatin that might be major cause of cancer (Baylin et al., 2001; Baylin and 
Herman, 2000; Jones and Laird, 1999). The alteration of LPS-induced immune 
responses in bovine dermal fibroblasts cells is epigenetically regulated (Green 
and Kerr, 2014; Walker et al., 2015). During early pregnancy in cattle, DNA 
methylation is correlated with gene expression in the endometrium (Walker et 
al., 2013) and may regulate the uterine response during implantation and 
aberrant DNA methylation may result in pregnancy loss (Walker and Mitchell, 
2013). CpG islands are regions in the genome of DNA with high frequency of 
CpG sites having i) length of sequence at least 200 bp ii) GC content > 50% iii) 
ratio of observed to expected CpGs > 0.6. The global DNA methylation profile 
of embryos with different kinetics of development revealed that more 
hypermethylated regions were distributed on introns, exons and promoters in 
fast growing embryos as compared to slow growing embryos in which more 
hypermethylated regions were found in CpG islands (Ispada et al., 2018). 
Genome-wide DNA methylation analysis of bovine embryos derived in vivo, 
subjected to in vitro culture before or during or after the time of embryonic 
genome activation (EGA), has reported increased number of hypomethylated 
genomic loci in blastocysts during (EGA) (Salilew-Wondim et al., 2018). The 
analysis of WGBS from mammalian placentas revealed lower global 
methylation levels as compared to their somatic tissues and higher gene body 
methylation pattern was the conserved feature among all mammalian placentas 
(Schroeder et al., 2015). In our current study Paper I, DNA methylation profiling 
of bovine blastocysts with high concentrations of insulin in vitro identified 
differentially methylated regions which were correlated with genes expression 
related to metabolic regulation. In mammals, DNA methylation occurs mostly 
in CpG context but in rare cases non-CpG context (CHG, CHH) is also reported 
in embryonic stem cells and brain cells, however non-CpG context methylation 
is reported most abundant in plants (Law and Jacobsen, 2010; Stroud et al., 
2014).  

However, DNA methylation is complicated to analyse experimentally as it does 
not change DNA sequence and is not preserved during cycles of polymerase 
chain reaction (PCR) because DNA polymerase is unable to discriminate 
between the methylated and unmethylated cytosines (Kristensen and Hansen, 
2009). The advent of next-generation DNA sequencing technology has 



21 

empowered to investigate the DNA methylation dynamics of key biological 
functions (Guo et al., 2014; Smith et al., 2014). The major sequencing 
technologies to investigate genome-wide DNA methylation are: i) methylated 
DNA binding domain sequencing (Aberg et al., 2012), ii) methylated DNA 
immunoprecipitation sequencing (Taiwo et al., 2012a), iii) whole genome 
bisulfite sequencing (WGBS) (Lister et al., 2009) and iv) reduced representation 
bisulfite sequencing (RRBS) (Nagarajan et al., 2014). The first two technologies 
employ the enrichment of methylated DNA to obtain utmost resolution up to 
150 bp (Harris et al., 2010) whereas the last two attain single-base resolution 
using bisulfite conversion, and bisulfite conversion methods are more precise 
than enrichment methods, furthermore RRBS is cost effective and reduces the 
amount of sequencing required as compared to WGBS (Bock et al., 2010; Harris 
et al., 2010). Some other sequencing technologies are also being used to detect 
DNA methylation; such as PacBio sequencing, which directly detect DNA 
methylation without bisulfite conversion, through single-molecule, real-time 
(SMRT) sequencing (Flusberg et al., 2010), Nanopore sequencing detect 
imprinted DNA methylation through long-read sequencing (Gigante et al., 2018) 
and whole-genome methylation profiling of single cells through single-cell 
combinatorial indexing for methylation analysis (sci-MET) (Mulqueen et al., 
2018). 

Although a few studies of genome-wide DNA methylation pattern were reported 
in pigs, sheep, horses and cattle with low resolution and limited tissue types. 
Furthermore, the reported studies in cattle on muscle and placental tissues using 
methylated DNA immunoprecipitation sequencing (MeDIP-seq) had less 
resolution. (Cao et al., 2015; Couldrey et al., 2014; Gao et al., 2014; Huang et 
al., 2014; Lee et al., 2014; Su et al., 2014b), but still our understanding of DNA 
methylation profiles in cattle is limited as compared to humans and rodents 
(Zhou et al., 2016a).  

In livestock, the use of the RRBS technique has been reported for the detection 
and quantification of DNA methylation at single base resolution (Doherty and 
Couldrey, 2014). RRBS approach enriches for CpG regions by digesting 
genomic DNA with single restriction enzyme MspI targeting at 5´ -CCGG- 3´ to 
ensure that each fragment covers minimum one CpG site (Gu et al., 2011, 2010). 
During bisulfite conversion, methylated cytosines remain unaffected while 
unmethylated cytosines are converted into uracil (Frommer et al., 1992). 
Although, RRBS has been widely applied for DNA methylome research in 
human (Pei et al., 2012) and other model organisms (Chatterjee et al., 2013; 
Hartung et al., 2012; Meissner et al., 2008), but seldom in cattle and specifically 
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the understanding of methylation profiles in bovine endometrial epithelial cells 
(bEEC) remains unknown.  

In our current research, we used RRBS because it is an effective and 
representative method to describe the DNA methylation profiling on a genome-
wide level due to targeting specifically CpG rich regions. Other reasons are the 
relative low cost and high coverage as compared to WGBS and that the method 
can provide high resolution along with the information of all three methylation 
contexts (CG, CHG and CHH) as compared to MeDIP-seq and methyl-binding 
domain sequencing (MBD-seq) (Choi et al., 2015; Meissner et al., 2005; Zhou 
et al., 2016). Our current study is the first to investigate DNA methylation 
profiles in bEEC challenged with lipopolysaccharide (LPS).  

Transcription factors (TFs) are modular regulatory proteins that bind to a 
specific DNA sequence to control the rate of gene expression. TFs activate, 
repress or suppress gene transcription by supporting or blocking RNA 
polymerase binding to DNA (Latchman, 1993; Roeder, 1996). TFs occur in 
families and the members of these families share similar types of binding 
domains. During evolution, these families expanded and diverged by a 
combination of gene duplication and mutation and ultimately fully redundant, 
partially redundant and completely nonredundant TFs were emerged. This 
expansion usually correlates with organismal complexity (Grove et al., 2009) 
e.g. basic helix loop helix (bHLH) family contains 42 members in the nematode
Caenorhabditis elegans (Reece-Hoyes et al., 2005) and more than 100 members
in humans (Simionato et al., 2007). This increased complexity in mammals is
reflected by more than 2000 genes encoding TFs (Venter et al., 2001;
International Human Genome Sequencing Consortium, 2001) .

TFs are modular proteins consisting of at least one DNA-binding domain 
(DBD), containing specific motif that can recognize short specific DNA 
sequences, i.e. referred to as Transcription Factor Binding Sites (TFBSs) 
(Mitchell and Tjian, 1989). Furthermore, they have activation/repression 
domains and dimerization domains. The binding of TFs to their specific TFBS 
regulatory cis-acting DNA sequences is the critical feature in controlling 
transcription. TFBSs are short and often well-conserved sequences, called motifs 
that are located in regulatory regions such as promoters, enhancers and silencer 
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elements in non-coding DNA sequences (Wei and Yu, 2007). Transcription 
factors act as molecular switches in turning genes on and off and the 
identification of TFBSs and the TFs that bind to them provides basic and 
critical understanding of gene regulatory networks (Selvaraj and Natarajan, 
2011).  

TFs establish protein-protein interactions with activators or repressors and the 
assembly of pre-initiation complex (PIC) is required for regulated gene 
transcription. This process involves the binding of at least six general TFs 
(GTFs), TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH, to the core promoter, 
which helps RNA polymerase II to establish a stable PIC and effectively initiate 
transcription. The elements present in most mammalian core promoters are the 
TATA-box located at position -26 to -31 relative to the start site of transcription 
(TSS), Initiator sequences (INR) overlapping the TSS, TFIIB recognition 
element (BRE) immediately 5’ of the TATA-box at position -37 to -32 relative 
the TSS and finally the downstream promoter element (DPE) located at position 
+28 to +32 relative the TSS.  The binding of TATA binding protein (TBP),
which is a subunit of TFIID to the TATA-box of core promoter leads to the
assembly of other GTFs and RNA polymerase II. It should be noted that some
genes lack bona fide TATA-boxes and are called TATA-less promoters. In such
promoters, transcription start sites are not as strictly localized. Furthermore,
other regulatory TFs bind to proximal promoter, silencers and enhancers to
regulate transcription (Levine and Tjian, 2003).
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Figure 2. Complex metazoan transcriptional control modules showing the assembly of pre-
initiation complex at the core promoter in combination with GTFs and RNA polymerase II along 
with proximal and distal regions. The figure is adapted from (Levine and Tjian, 2003). 

In the 1960s, Jacob and Monod presented a model for gene regulation in 
response to cellular environmental conditions; depicted an operon as model 
to control the transcription of a set of structural genes that code proteins used 
for metabolic functions. Mark Ptashne considered this model as advent of new 
era in molecular biology and highlighted its historical perspective. Lac operon 
is an inducible set of genes that breakdown the lactose into sugar which is 
used for cellular metabolism. A repressor inhibits gene expression by binding 
upstream of the controlling region (operator) of lac operon. Lactose is the 
inducer molecule for the lac operon and when lactose enters into cell 
environment, it binds to the repressor that releases the operator and allowing 
the RNA polymerase to start transcription of operon in E. coli. Mainly two 
proteins are produced after translation of polycistronic mRNA by ribosomes; 
i) Beta-Galactosidase, which breakdown the cellular lactose into sugar,
glucose and galactose ii) Permease, which binds to the cell membrane that
enhances the rate of importing lactose from outside the cell. This process
continues until the concentration of lactose becomes low and the lactose
bound to repressor are released. This allows the repressor to bind again the
operator of lac operon and stop the gene expression. This genetic regulatory
mechanism continues for synthesis of required proteins responsible for
lactose metabolism when the lactose concentration is high in the cell and
glucose level is low (Jacob and Monod, 1961; Lewis, 2011).
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The prediction of TFBSs or regulatory regions on a whole genome level is the 
challenge for genomics and epigenomics studies. It is evident that these 
TFBSs are highly conserved in related species and their conservation is 
required to predict a non-coding DNA sequence as TFBS (Pritsker et al., 
2004). As described above, high throughput technology of NGS has enabled 
researchers to perform whole genome DNA sequencing of multiple species at 
low cost and in short time. Now, whole genome DNA sequence datasets of 
different species in the form of databases are available for mapping to predict 
potential regulatory regions (McGuire et al., 2000). Resources such as 
TRANSFAC, JASPAR, ENCODE Project, modENCODE and Mouse ENCODE 
are available and allow to determine all these functional elements in the genomes 
of human and model organisms. 

We used oPOSSUM application programming interface (API) to access 
oPOSSUM database for the prediction of potential TFBS located in 
differentially methylated regions in response to LPS-treatment of bEEC (Paper 
III). To obtain optimal results from oPOSSUM, it should be ensured that i) 
Average length of the sequences in target dataset must match to the average 
lengths of sequences in background ii) GC composition of the target must closely 
match to the GC composition of the background dataset (otherwise a bias will 
be introduced) iii) Number of background sequences must be >= number of 
target sequences. In addition, oPOSSUM-3 database provides cluster analysis of 
TFBSs as TFs are classified into families / classes on the basis of DNA binding 
domains. Consensus similarity of domain varies in classes, some have almost 
identical and some have variation in their domains.  oPOSSUM-3 provides the 
result having subsets of profiles that are almost identical by dividing the 
structural classes into clusters based on profile similarity whereas TRANSFAC 
uses MATCH algorithm to construct position weight matrix (PWM) for 
prediction of potential TFBSs (Kwon et al., 2012; Wingender et al., 1996). 

Reproductive performance in dairy cows is a complex phenotype and the 
underlying molecular mechanisms in dairy cows are only poorly understood. 
Major efforts are made to increase our understanding of the factors influencing 
successful fertility and this is required for the farm sustainability as it supports 
milk productivity and longevity. Massive genetic selection has increased their 
milk yield but there is steady decline in reproductive performance (Garnsworthy 
et al., 2008; Miglior et al., 2005). Disorder of metabolism by hyperinsulinemia 
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and disturbance of immune response by microbial infections are considered very 
crucial in reproduction (Pasquali et al., 2007; Park et al., 2016). To investigate 
the underlying factors influencing these molecular mechanisms, we performed 
bioinformatics analysis on data obtained from two experimental studies: 

Study 1: Insulin is a critical regulator of metabolism and conditions such 
as hyperinsulinemia is known to impair fertility especially during embryonic 
development. For normal conditions during pregnancy correct levels of insulin 
play a crucial role to obtain appropriate regulation of metabolism. The molecular 
mechanisms underlying hyperinsulinemia are only partly understood. The study 
was designed to investigate the dose dependent effect of insulin treatment during 
bovine in vitro oocyte maturation at the epigenetic and transcriptomics level. 
Differential DNA methylation and changes in gene expression patterns, was 
examined using two different insulin concentrations, 0.1 μg/ml (INS0.1) or 10 
μg/ml (INS10) on oocytes. Samples were drawn at week 8 from blastocysts 
originated from control and insulin treated oocytes. The experiments in Paper I 
were performed to find the potential effect of insulin treatment on gene 
expression and DNA methylation patterns of embryos during in vitro oocyte 
maturation by using the EmbryoGENE DNA Methylation Array (EDMA). 

Study 2: Uterus is an important organ that has pivotal role from 
conception to successful delivery. It provides pathway for the sperm to reach the 
ovum, implant the zygote and develop, protect and nourish the fetus until 
birth (Soffar, 2015). Uterine diseases significantly impair reproductive 
performance and are considered as the main sources of delayed breeding and 
infertility (Grimard et al., 2006), which lead to milk production losses and 
enhance frequency of slaughtering infected animals (Royal et al., 2000). 
Pathogens such as specific strains of gram-negative Escherichia coli (E. coli) 
and Bovine Herpes Virus 4 (BoHV-4) are among the major sources of uterine 
immune-mediated diseases. They dysregulate transcription of the host cells by 
influencing the epigenetic factors such as DNA methylation and histone 
modifications (Bierne et al., 2012; Haller et al., 2003; Lieberman, 2006; 
Takahashi et al., 2011), which leads to disease development and reduces 
conception rates and enhances pregnancy loss  (Galvão et al., 2009; Opsomer et 
al., 2000). Lipopolysaccharide (LPS) expressed on the surface of Gram-negative 
bacteria (E. coli) is considered as strong inducer of immune responses, activates 
pro-inflammatory pathways, dys-regulates the function of endometrial cells and 
is a key player in the mechanisms involved in endometritis (Herath et al., 2009; 
Williams et al., 2007). How the epigenome is vulnerable to DNA methylation in 
bovine endometrial epithelial cells (bEEC) during inflammation; and epigenetic 
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factors that modulate gene regulation and molecular mechanisms that are 
involved in disease development and impair fertility are unclear. To investigate 
the effects of LPS on bEEC on i) transcriptome (gene expression), ii) epigenetic 
factors (DNA methylation patterns) that modulate gene regulation, and iii) 
transcription factors (TFs) that bind to a specific DNA sequence to control the 
rate of gene expression regarding reproduction, we have established an in vitro 
model for bovine endometrial inflammation caused by gram-negative bacteria, 
using primary bEEC.  

Figure 3. The cell culture protocol of bEEC. For control sample at time 0 hours, DNA was extracted 
from bottle A after passage 5. At this time bottles B, C, and D were treated with 0, 2, and 8 µg/mL 
of LPS, respectively. After 24 hours, DNA was extracted separately from bottles B, C, and D for 
treated samples. 

Cells were obtained from three cows after slaughter and after isolation grown in 
tissue culture and treated with 0, 2, and 8 µg/mL LPS from E. coli (O111:B4) 
for 24 hours. These concentrations of LPS were chosen because in vivo these 
concentrations were reported in uterine fluid of cows during clinical 
endometritis and related to earlier experiments exposing the effect of LPS on 
cell survival and proliferation profiles (Herath et al., 2009; Williams et al., 
2007). The time at LPS challenging was set as 0 hours. The samples of total 
RNAs were extracted at time 0 hours and after 24 hours of LPS treatment; 
considering control samples and treated samples, respectively. Paper II was 
performed using this experimental design to identify differentially expressed 
genes (DEGs) in bEEC after challenge with LPS and their implications for 
embryo maternal interactions by using RNA sequencing (RNA-seq). For Paper 
III, genomic DNA was extracted from same cells (bEECs) with same 
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concentration of LPS treatments at the same time points. To investigate whether 
LPS treatment had an effect on DNA methylation levels in the bEECs, we used 
reduced representation bisulfite sequencing (RRBS) for identification of 
differentially methylated regions (DMRs) and their association with gene 
expression in the previous study (Paper II). For Paper IV, the identification and 
classification of the genome-wide transcription factor binding sites (TFBSs) 
located within the identified DMRs in Paper III was performed by using 
oPOSSUM databases. Results obtained from studies of endometritis in cattle 
may also be used as a model for endometritis in women and thereby having a 
substantial comparative value. 

Insulin is a hormone produced by beta cells in the islets of Langerhans of the 
pancreas that controls blood sugar levels within a normal range as part of 
metabolism and allows the cells to take up glucose. Disturbance of normal 
insulin levels leads to severe health problems such as: i) Type 1 diabetes; in 
which pancreas does not produce enough insulin and consequently the blood 
sugar level rises up, ii) Type 2 diabetes; in which the body does not use insulin 
properly and pancreas tries to make more insulin to control the blood sugar 
levels, thus becomes insulin resistance, and iii) Gestational diabetes; if high 
blood sugar levels and insulin resistance occur during pregnancy (Sonksen and 
Sonksen, 2000). Exact causes of these types of diabetes are not known, however 
researchers believe in some risk factors that may more likely to involve such as 
genetic, environmental, overweight or inactive, diabetes history in family, high 
blood pressure etc. (Antosik and Borowiec, 2016; Cryer et al., 2016; Dendup et 
al., 2018; Lin et al., 2018). 

Hyperinsulinemia refers to conditions associated with excessive levels 
of insulin circulating in the blood whereas hyperglycemia (high blood sugar) 
refers to excessive amount of glucose in the blood plasma. Insulin being the 
critical regulator of metabolism play crucial role during successful pregnancy. 
Obesity and overfeeding elevate the risk of diabetes type 2 which lead to insulin 
resistance and hyperinsulinemia (Kahn et al., 2006) and prolonged 
hyperinsulinemia may also lead to dyslipidemia. Metabolic imbalance, caused 
by changes in the blood profile such as hyperinsulinemia, hyperglycemia and 
dyslipidemia, leads to female infertility (Pasquali et al., 2007). The adverse 
consequences of insulin on reproductive performance has been reported in 
bovine as well as in humans (Adamiak et al., 2005; Sakumoto et al., 2010). 



29 

Insulin can influence female fertility both positively and negatively depending 
upon the reproductive stage and nutritional condition of the female (Gong et al., 
2002; Grazul-Bilska et al., 2012) and it is useful for continuation of cyclicity in 
lean cows but detrimental for already over-conditioned animals in damaging the 
oocyte quality (Freret et al., 2006).  

Although, negative effects of obesity and hyperinsulinemia, on oocyte quality 
and development of embryos in both human and ruminant, have been reported 
(Ashworth et al., 2009; Grazul-Bilska et al., 2012; Robker, 2008) but there is 
need to further investigate the potential pathological mechanisms at the 
molecular level underlying hyperinsulinemia.  

In our current study, we have investigated the potential effects of 
hyperinsulinemia on DNA methylation patterns of bovine embryos 
development.  

Uterine microbial diseases are common cause of decreased fertility among half 
of all dairy cattle after calving that negatively influence the ovarian functions, 
uterine and animal health (Lincke et al., 2007; Sheldon et al., 2009). 
Lipopolysaccharide (LPS), being the component of outer membrane of gram-
negative bacteria E. coli, is detected by Toll Like Receptor 4 (TLR4) and this 
interaction leads to activation of signal transduction that subsequently causes the 
production of cytokines, chemokines and antimicrobial peptides to communicate 
with the immune system for combating pathogenic microbes (Sheldon IM et al., 
2009).  
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Figure 4. The major components of LPS; a) o antigen b) core c) lipid and the figure is adapted from 
Journal of Endotoxin Research, Vol. 7, No.3, 2001. 

Specific strains of endometrial pathogenic E. coli (EnPEC) generate 
prostaglandin E2 and interleukin-8 (IL-8) in the endometrial epithelial cells and 
stromal cells of cattle and mice that accumulates neutrophils and macrophages 
in the endometrium causing endometritis (Sheldon et al., 2010).  Infections of 
the endometrium by gram-negative bacteria induces the activation of pro-
inflammatory pathways that have the potential to negatively affect fertility and 
more specifically the implantation process (Gilbert, 2011; Park et al., 2016). 
Gram negative bacteria are directly or indirectly involved in development of 
endometritis by inducing inflammation of the endometrium and uncontrolled 
inflammation is likely to be a major cause for implantation failure in cattle (Piras 
et al., 2017a) and human (Agrawal et al., 2013); and persistent inflammation 
may develop endometrial cancer (Modugno et al., 2005). 
 
In our current study, we have investigated the effects of LPS on bEEC in vitro 
from whole transcriptomic information with focus on genes and pathways 
involved in the regulation of implantation by using high-throughput RNA 
sequencing (RNA-seq) and the potential effect of DNA methylation on gene 
expression by using Reduced Representation Bisulfite Sequencing (RRBS).   
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The overall aim of the studies described in this thesis was to investigate in vitro, 
the effect of DNA methylation on gene regulation of bovine embryo in response 
to high doses of insulin during oocyte maturation; the effect of mimic infection 
due to E. coli LPS treatment in bEEC on i) gene expression, ii) DNA methylation 
by identifying the regulatory regions correlated with DEGs, and iii) the 
classification of transcription factor binding sites (TFBSs).    

The specific objectives were: 

• To investigate the potential effect of hyperinsulinemia on gene
expression and DNA methylation of bovine embryo during oocyte
maturation (Paper I).

• To identify differentially expressed genes (DEGs) in bovine
endometrial epithelial cells (bEEC) in response to LPS, specifically
their implications in embryo maternal interactions (Paper II).

• To identify differentially methylated regions (DMRs) in the genome
of bovine endometrial epithelial cells (bEEC) in response to LPS and
to investigate regulatory regions (DMRs) that are correlated with
DEGs (Paper III).

• To identify and classify the transcription factor binding sites
(TFBSs) in the genome of bovine endometrial epithelial cells
(bEEC) in response to LPS (Paper IV).
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DNA methylation pattern of bovine blastocysts associated to hyperinsulinemia 
in vitro  

• Experimental design

The study was designed to investigate the dose-dependent effect of insulin 
treatment during bovine in vitro oocyte maturation at the epigenetic and 
transcriptomics level. Differential DNA methylation and changes in gene 
expression patterns, was examined using two different insulin concentrations, 
0.1 μg/ml (INS0.1) or 10 μg/ml (INS10) on oocytes. Samples were drawn at Day 
8 blastocysts originated from control and insulin treated oocytes using four 
replicates per treatment group. The gene expression data of the insulin-treated 
groups were compared to a control without insulin supplementation (INS0).  

• Transcriptome and DNA methylation patterns Analysis

Gene expression studies were performed using the EmbryoGENE platform 
according to standardized methods previously described in general (Robert et 
al., 2011) and specifically for this study (Laskowski et al., 2017b) . The potential 
effect of insulin treatment on DNA methylation patterns of embryos during in 
vitro oocyte maturation was analysed using the bovine EmbryoGENE DNA 
Methylation Array (EDMA) (Salilew-Wondim et al., 2015; Shojaei Saadi et al., 
2014). After Loess and quantile inter-array scale normalization, a linear model 
for microarray data (LIMMA) was fitted to identify differentially methylated 
probes between the control and the insulin treated groups considering significant 
with p-value  <0.05 and the log2 fold-change ≥ 0.5 or absolute fold change ≥1.5. 
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The comparison of insulin-treated samples INS0.1 and INS10 with controls 
INS0 revealed that 13,658 and 12,418 probes, respectively, were differentially 
methylated regions (DMRs) with p-value < 0.05 and the log2 fold-change ≥ 0.5 
or absolute fold change ≥1.5.  Out of these total DMRs, an overlap of 3,233 
probes (DMRs) was found for both insulin groups and among these overlaps, 
1,381 probes were hypomethylated and 1,852 probes were hypermethylated.  

Overall, a relative hyper-methylated patterns of probes was commonly observed 
in both groups. The deviation of methylation patterns was also observed between 
both insulin groups regarding introns and non-CpG islands. For the comparison 
of 0.1 μg/ml (INS0.1) insulin treatment, more hypermethylation was seen on 
exonic regions and CpG islands and for treated samples with 10 μg/ml (INS10) 
insulin, more hypermethylation was seen in all gene regions including 
promoters.  

For the comparison of epigenetic and transcriptomic analyses, the data were 
selected for genes related to metabolism, oxidative stress response, proliferation 
and mitochondrial functions. In addition, the genes related to epigenetic 
regulation such as DNA-methyl-transferases (DNMT) and Chromodomain 
Helicase DNA Binding Protein 4 (CDH4), were also scrutinized and significant 
differences were observed in the methylation patterns and/or mRNA-expression 
or both. 

The differential CpG hypo-methylation pattern was complex at the IGF2R locus 
which upholds its imprinted status and these probes cannot distinguish between 
the two alleles and thus the real effect on differential DNA methylation may be 
undervalued. At the IGF2R locus, six probes were significantly hypo-methylated 
and four probes were significantly hyper-methylated. Furthermore, probes 
spanning at the 5’ flanking region of IGF2R including the promoter were found 
close to be significant hypo-methylated for both insulin treatment groups that 
support the increased mRNA expression of IGF2R in response to insulin 
treatment. Whereas, probe 28, covering the imprint control element (ICE) was 
also observed differentially hypo-methylated. 

Further analysis of differentially expressed candidate genes, related to metabolic 
functions, revealed that many of the previously described genes having a 
significant upregulation also had modifications in the CpG methylation pattern. 
Thirteen out of the 24 described genes were upregulated when the promoter 
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region was hypo-methylated which showed a classic methylation pattern in 
relation to the transcriptome. Furthermore, the genes involved in epigenetic 
regulation such as DNA-methyltransferases (DNMTs) and chromodomain 
helicase DNA binding protein 4 (CHD4) and histone variants (HIST1H1C) 
showed an aberrant DNA methylation and gene expression patterns. 

Differential gene expression in bovine endometrial epithelial cells after 
challenge with Lipopolysaccharide (LPS); specific implications for embryo 
maternal interactions 

• Isolation of bovine endometrial epithelial cells (bEEC)

The technique for isolation and cell culture was adapted from Charpigny et al 
(Charpigny et al., 1999). Briefly, the uterus of three Swedish Red Breed (SRB) 
cows from the local slaughter house were transferred to the laboratory on ice. 
The bEEC preparation was performed within one hour and uterine horns were 
cut longitudinally. The endometrial tissue from the middle part of each uterine 
horn were separated from the myometrium and cut into 1 mm3 pieces and 
transferred to enzymatic dissociation solution. The microscopic observation 
revealed that no fibroblasts were found after passage 3 to passage 5 and flow-
cytometry showed that more than 98% of cells expressed cytokeratin, reflecting 
high purity of the epithelial cell culture system (Nongbua et al., 2018; Piras et 
al., 2017b). 

• LPS challenge and Isolation of total RNA

Following in vitro culture, on passage 5, bEEC samples from three cows were 
either mock-challenged (0) or challenged with either 2 or 8 µg/mL LPS from a 
virulent strains of E. coli (serotype O111:B4). The time of LPS challenge was 
taken as 0 hours in the experiment. At time 0 hours and 24 hours later; cells were 
detached, washed and total RNA was extracted. The extracted RNA samples at 
time 0 hours without LPS dosage and 24 hours without LPS (exposed to 0 µg/ml) 
were considered as “control samples” whereas extracted RNA samples after 24 
hours of LPS challenge with 2 µg/ml and 8 µg/ml were considered as “treated 
samples”.  
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• Library preparation and sequencing

RNA sequencing (RNA-Seq) libraries for 4 samples from each cow (on Time 0, 
and with 0, 2, and 8 µg/mL LPS 24h) were prepared by the sequencing platform 
at Science for Life Laboratory, Uppsala University. In total, there were 12 
samples from three cows. RNA-Seq was performed using the Illumina 
HiSeq2500 system. Paired-end reads of 125bp length were generated having 
average sequence depth of 28.33 million reads per sample with SD of 2.03. 

Table 1. Number of raw reads in millions (106) generated from RNA sequencing 
using the Illumina HiSeq2500 system for each sample. 
Time points  Treatment  Cow 1 Cow 2 Cow 3 
0 hours Without 

LPS 
28.43 29.99 26.11 

24 hours Without 
LPS 

27.58 30.08 25.30 

24 hours 2 µg/mL 28.16 29.19 24.97 
24 hours 8 µg/mL 29.82 28.78 31.54 

• Data quality control

We used FastQC to check the quality control of the RNA-Seq data generated 
from control (control time 0, N = 3 and control 24h, N = 3) and LPS-treated 
samples (2 µg/mL, N = 3 and 8 µg/mL, N = 3). We used Trimmomatic 0.32 to 
remove adapter sequences and filter low quality reads (quality score < 30) 
(Bolger et al., 2014). 

• Read alignment to the Bos Taurus reference genome sequence

We used the STAR 2.4.0 software (Dobin et al., 2013) for alignment of our RNA 
sequence reads to the Bos Taurus reference genome sequence bosTau6. After 
trimming and adaptor removal, approximately 97% of the reads were mapped to 
the reference genome whereas around 90% were uniquely mapped with an 
average of 26.35 million and SD of 1.96 million per sample. 
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• Gene expression quantification

We used HTSeq 0.6.1 (Anders et al., 2015) for the htseq-count scripting to count 
for each gene to determine how many aligned reads overlap to specific exons. 
Uniquely mapped reads in SAM/BAM format and ENSEMBLv78 annotations 
file in GTF format were used as an input in the script. This script was designed 
specifically for differential expression analysis and it counted only those reads 
which were mapped unambiguously to a single gene whereas reads aligned to 
multiple positions or overlapping with more than one gene were discarded. 

• Identification of differentially expressed genes (DEGs)

DESeq2 version 1.6.3 (Love et al., 2014) was used to the identify of DEGs using 
pairwise comparisons i) between control at time 0 and control at 24h, ii) between 
control at 24h vs 2 µg/mL LPS iii) between control at 24h vs 8 µg/mL LPS iv) 
between 2 µg/mL and 8 µg/mL LPS-treated samples at 24h, and v) between 
control samples at 24h and LPS-treated samples at 24h (2 and 8 µg/mL LPS 
taken together). The resulting p-values were adjusted for multiple testing using 
the Benjamini–Hochberg procedure. DEGs with adjusted p-values < 0.05 were 
regarded as statistically significant. MA-plots were used to visualize the 
differential gene expression between two samples.   

• Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment were performed using DAVID 6.7 (Huang et al., 2009) with 
Ensembl genes as background. GO analysis used hypergeometric distribution to 
provide information related to three ontologies: biological process (BP), cellular 
component (CC) and molecular function (MF). Furthermore, classification 
analysis of genes that could possibly be involved in disease and physiological 
functions was performed using data available in the GeneCards database 
(http://www.genecards.org/). 

• RT2-qPCR validation and changes in gene expression with time

Technical as well as biological validations of the differential gene expression 
obtained by RNA-Seq data were performed by Real Time-quantitative PCR 
(RT2-qPCR). 19 DEGs from the RNA sequencing data were selected for a 
commercial custom-made array (Control 24 hours and 24 hours after 2 µg/mL 
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LPS). Another set of samples was taken from the cell culture of 3 additional 
cows with 2 µg/mL LPS treatment at three different time points. Cells from these 
cows were exposed to 2 µg/mL LPS for 6, 24 and 48 hours and comparisons 
were performed with controls obtained at the same time. 19 DEGs (over- or 
under-expressed) from RNA-seq were tested for RT2-qPCR validation and all 
the tested genes with adjusted p-value < 0.05 were confirmed as differentially 
expressed by the RT2-qPCR validation. 

  
• Overall differential gene expression analysis 

 
The overall RNA-Seq analysis revealed that a large number of genes has altered 
their gene expression with LPS exposure to bEEC. However, 2035 and 2073 
differentially expressed genes (DEGs) were identified between control samples 
at time 24 hours and treated samples with 2 and 8 µg/mL LPS respectively. 
Moreover, 1748 DEGs were common between these two treatment groups. But 
when comparison was done between two treated samples with 2 µg/mL LPS and 
8 µg/mL LPS, no DEG was found. The comparison of combined LPS treatment 
samples (both groups of 2 and 8 µg/mL LPS are taken together) and control 
samples (at time 24 hours) revealed 3032 DEGs. In almost all cases of response 
to LPS, genes showed similar variation of expression levels. The number over-
expressed genes was higher as compared to under-expressed genes. Out of 2035 
DEGs, 1066 (52.4%) and 969 (47.6%) were over-expressed and under-
expressed, respectively. In general, higher fold changes were observed for the 
over-expressed genes as compared to that of under-expressed genes. 
 
Due to large number of common DEGs detected among the treatment groups 
and high degree of similarity between transcriptomic profiles (r2 = 0.99) 
observed in 2 and 8 µg/mL LPS, the comprehensive analysis of this study was 
performed mainly on the comparison between control samples at time 24 hours 
vs. treated samples 2 µg/mL LPS.  
 
The principal component analysis (PCA) of the top 500 genes revealed common 
response of LPS groups when they were compared to controls and displayed 
variability across samples. Although, cow 2 showed variability in comparison to 
cows 1 and 3 along the first principal component but the three cows were aligned 
along the second principal component.  
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• Gene ontology analysis of the DEGs 
 
Gene ontology analysis of the DEGs were categorized into 484 functional groups 
with a corresponding adjusted p value < 0.001, out of which 274 were over-
expressed and 210 were under-expressed groups. Of the over-expressed groups, 
214, 15 and 45 were categorized into biological process (BP), cellular 
component (CC) and molecular function (MF), respectively. For the under-
expressed groups, 134, 52 and 24 were categorized into BP, CC, and MF, 
respectively. Gene ontology analysis showed that four out of the top 10 
significantly overrepresented pathways were associated to immune response, 
inflammatory response and antigen processing and presentation. External 
stimuli, transcription, catalytic activity, response to stress and glycolysis were 
also among the overrepresented. The top five underrepresented GO-terms are 
related to cell structures, cytoskeleton, cell membrane, binding and organelle.  
 

• KEGG pathway analysis of the DEGs  
 
KEGG pathway analysis revealed 22 significant enriched pathways (adjusted p-
values < 0.05), out of which 11 were overrepresented and 11 were 
underrepresented pathways. As expected, the overrepresented pathways were 
related to inflammation (NOD)-like receptor signaling pathway (16 DEGs) 
enriched, Toll-like receptor signaling pathway (19 DEGs), cytokine-cytokine 
receptor interaction (25 DEGs), antigen processing and presentation (12 DEGs), 
chemokine signaling pathway (23 DEGs), and apoptosis (19 DEGs). Whereas, 
three underrepresented pathways were found to be related to focal adhesion, 
regulation of actin cytoskeleton and adherent junction. 
 

• Downstream analysis of DEGs 
 
According to GeneCards database (http://www.genecards.org), the identified 
DEGs encode protein involved in acute inflammation (410 DEGs), innate 
immunity (441 DEGs), immune tolerance in pregnancy (120 DEGs), allergy 
(153 DEGs), and cell adhesion (626 DEGs). Twenty-four common DEGs 
(EDN1, TGFB2, TGFB3, FAS, C3, ICAM1, CXCL8, IL1RN, TP53, TNF, IL1A, 
CAT, F5, NFKB1, IL1B, PTGS1, CDKN2A, IL1R1, CCL2, ADA, IL6, CSF2, 
MMP1, and MMP9) encode proteins involved in all of the above biological 
processes.  In addition, a large number of genes were also classified for cell 
skeleton (466 DEGs), cell proliferation (880 DEGs), cell apoptosis (760 DEGs) 
and signal transduction (755 DEGs). 
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Nineteen DEGs have log2 fold change > 3 in the list of total over-expressed 
DEGs and out of these 19, seven DEGs (CXCL6, BCL2A1, LGALS9, C3, BIRC3, 
CFB, and CD40) were related with inflammation and 9 DEGs (CXCL6, 
BCL2A1, LGALS9, C3, BIRC3, CFB, CD40, CTSC, and TCN1) were associated 
with infection. Several BoLA (bovine leukocyte antigen) genes were shown to 
over-expressed in response to LPS treatment.  

• Genes related to implantation and maternal response to the embryo

In our study, several DEGs encode protein with functions related to embryo 
maternal interactions and implantation in response to LPS treatment. These have 
been involved in cell structure, calcium metabolism and membrane properties, 
cell adhesion, and enzymes such as Matrix Metallo Peptidase (MMPs) regulating 
tissue remodelling. Four members of the cadherin superfamily (ITGB6, CDH26, 
ITGAV, and CELSR1)  and MMPs family (MMP1, MMP7, MMP9, and MMP13) 
were over-expressed whereas their inhibitor TIMP3 was found to be under-
expressed after LPS-treatment. Many genes of the mucin family (MUC1, MUC4, 
MUC13, MUC16, MUC20, and F1MUC1) were found to be over-expressed. 
Mucins are proteins that elicit gel-like secretions for lubrication and cell 
signalling. Their role in vertebrates bone formation is also reported and they bind 
to pathogens as part of an active immune system. Four transcripts of the integrin 
family (ITGB3, ITGB4, ITGB5, and ITGA7) and most of transcripts coding for 
cell adhesion molecules (CTNNA3, CTNNAL1, CDH2, PCDH7, CT, PKP1, and 
PKP4) were found to be under-expressed after LPS-treatment. A well-balanced 
combination of adhesion molecules (like cadherins, integrins and MMPs) is 
essential for regulation of tissue remodelling that plays an vital role in successful 
embryo implantation (Aplin, 1997; Lessey, 2002). 

Several interferon-τ (IFNT)-induced genes (IFIT1, IFIT2, IFIT3, IFIT5, 
IFITM2, IFITM3, PARP12, ZNFX1, HERC6, RNF213, CXCR7, DDX58, 
PLAC8, RSAD2, and STAT1) were also found over-expressed after LPS-
treatment. Among other significant genes, leukemia inhibitor factor (LIF) was 
found over-expressed that has crucial role in successful implantation and Gal-9 
(LGALS-9) was over-expressed which is involved in infection response whereas 
Gal-1 (LGALS-1) and LGALS-3 were found to be under-expressed.  
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LPS-treatment of bovine endometrial epithelial cells causes differential DNA 
methylation of genes associated with endometrial function and inflammation 

• Isolation of bovine endometrial epithelial cells (bEEC)

The uterine horns from three Swedish Red Breed (SRB) cows were collected 
from Lövsta slaughterhouse. Endometrial epithelial cells were purified 
according to procedures previously described  in Paper II and in detail 
Charpigny et al (Charpigny et al., 1999; Piras et al., 2017a). 

• LPS challenge and genomic DNA isolation

At passage 5 in vitro culture bEEC samples from three cows were challenged 
with 0 or 2 or 8 µg/ml LPS with the same time points as in our previous study 
Paper II.  Genomic DNA was extracted  from samples at time 0 hours and 24 
hours without LPS for control samples whereas genomic DNA was extracted for 
treated samples with 2 µg/ml and 8 µg/ml LPS at time 24h. 

• Library preparation and sequencing processes

Reduced Representation Bisulfite Sequencing (RRBS) method was used for the 
detection and quantification of DNA methylation at single base resolution. 
Following genomic DNA extraction of 4 samples from each cow (on Time 0 
without treatment, and after 24h with 0, 2, and 8 µg/mL LPS), libraries for RRBS 
were prepared at The Babraham Institute, UK. In total, there were 12 samples 
from three cows. DNA libraries for sequencing were generated by MspI 
digestion followed by end-repair/A-tailing and 5mC adaptor ligation, and 
bisulfite conversion plus PCR. RRBS was then performed by using Illumina 
HiSeq2500-RapidRun at The Babraham Institute, UK. Illumina sequencing 
platform generated an output of 17-21 million 50bp single-end raw reads per 
sample in the compressed fastq format containing phred quality scores. 
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• Data quality control

The quality of the RRBS data sets generated from control samples (control time 
0, N = 3 and control 24h, N = 3) and LPS-treated samples (2 µg/mL, N = 3 and 
8 µg/mL, N = 3) were analysed by using FastQC version 0.11.5. Then adapter 
contaminated sequences and low-quality reads (quality score < 30) were filtered 
by using TrimGalore version 0.4.1(Krueger F: Trim Galore! 
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ ). TrimGalore 
used automatically Illumina standard adapters by default and removed 2 
additional bases containing a cytosine which was artificially introduced in the 
end-repair step during the RRBS libraries preparations. 

• Reads alignment to the Bos Taurus reference genome sequence

After removing adapter contamination and performing quality control, we used 
BS-Seeker2 (Guo et al., 2013) for the alignment of quality reads with the 
reference genome bosTau8 (Bos_taurus_UMD3.1) that produced an average of 
42% uniquely mapped reads per sample.  

• Calculation of differential DNA methylation and DMRs

R package methylKit v0.9.5 (Akalin et al., 2012) was used to define differential 
DNA methylation and to identify DMRs. The cytosines having the coverage of 
at least five reads were considered for analysis. Logistic regression test was used 
to determine which one regions are differentially methylated between the 
samples. The genome was tiled for 100bp and statistically significant DMRs of 
100bp were calculated based on i) at least two CpG sites in the region, ii) 
methylation difference > 10%, iii) and adjusted p-values (q-value) < 0.05. DMRs 
were identified by taking comparisons between samples i) control on time 0 vs 
control 24h, ii) control 24h vs LPS-treated 2 µg/ml, iii) control 24h vs LPS-
treated 8 µg/ml, iv) control 24h vs LPS-treated combined. For annotation of 
genic regions, we used Ensembl genome browser database whereas UCSC 
genome browser database was used for CpG islands and repetitive element 
annotations.  

• Gene Ontology over-representation and pathways analyses

The Database for Annotation, Visualization and Integrated Discovery (DAVID) 
was used for Gene Ontology (GO) analysis of DMR-associated genes with all 
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annotated genes in Bos taurus genome as background. KEGG database available 
within DAVID platform (Huang et al., 2009), and with WikiPathways database 
(https://www.wikipathways.org/) were used for pathway enrichment analysis. 

• Quality control and alignment

RRBS of bEEC generated 17 to 21 million raw reads per sample. After 
performing quality control and removing adapter contamination, 60-62% of the
raw reads were successfully aligned to the reference genome sequence 
(bosTau8), whereas an average of 42% reads per sample were uniquely mapped. 

• DNA methylation profiles and identification of DMRs

For DNA methylation profiles on uniquely mapped reads, we found 2.1 to 2.3 
million CpG sites per sample, out of which 1.93 million CpG sites were common 
in all samples, that covered 7.1% of the total CpG sites. When genome was tilled 
for 100bp regions on the basis of at least one CpG site and read coverage >=5, 
we identified 700,323 regions. Among these regions, 157,202 regions were 
scrutinized, having at least two CpG sites for differential methylation analysis. 
Analysis of RRBS data revealed 822 significant DMRs (q-value < 0.05) between 
control samples at 0h vs. 24 h. The analysis further revealed 511 significant 
DMRs between control 24h and samples treated with LPS at low concentration 
(2 µg/ml), whereas 469 significant DMRs were identified in comparison 
between control 24h and high concentration (2 µg/ml samples. Only 69 DMRs 
were found common between 2 µg/ml and 8 µg/ml LPS groups that may be due 
to coverage threshold in these groups. Therefore, we performed a combined 
comparison of 2 and 8 µg/ml LPS groups with 24hr control samples that revealed 
803 significant DMRs  having 423 DMRs common between both LPS group. 
Then we merged 803 DMRs of combined group with those (488) DMRs of 
individual groups which were not found in combined group.  Hence, an overall 
aggregate of 1291 significant DMRs was finalized for further analysis, and out 
of which 707(55%) and 584(45%) DMRs were hypo-methylated and hyper-
methylated respectively.  
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• Genomic and CGI distribution of DMRs  
 

In order to assess the functional significance of the methylation differences 
arising due to LPS treatment, the distribution of these DMRs in the genome was 
examined. To define the genomic distribution of the identified 1291 DMRs, their 
positions in the bovine reference genome sequence were investigated in relation 
to annotated bovine protein-coding genes, their established promoters and CpG 
islands. This revealed that almost 46% of the DMRs were overlapping with CpG 
islands (CGIs), 31% with CGI shores, and 23% with other genomic regions. 
Furthermore, approximately 47.5% (n=613) of the DMRs were found to be 
associated with gene body (exons and introns), 47.6% ( n=615) were intergenic 
and 4.8% (n=63) mapped to the promoter regions (-2kb upstream of TSS). 
Furthermore, out of 600 differentially methylated genes (DMGs), 589 protein-
coding, 7 miRNA, and 4 pseudogenes were also identified. In addition, the 
number of DMRs were found significantly correlated with the number of genes 
per chromosome (R=0.45, P = 0.011) but DMRs were not  significantly 
correlated with chromosomal size (R=0.32, P = 0.084). 
 

• Distribution of methylated region vs. telomeric region on chromosome  
 
The DNA methylation pattern of all target regions (n = 157,202) was skewed 
towards chromosomal ends. When telomeric region was taken as 20 kbp, we 
found that there was no association between the distribution of targeted regions 
and telomeric regions. Whereas, Fisher’s Exact test (p-value < 1.14e-05) 
revealed that DMRs were significantly enriched in 2Mbp regions (taken adjacent 
to telomeres) compared to non-telomeric regions.  
 

• Comparison between DNA-methylation and RNA-Seq in bEEC: 
(DMRs vs. DEGs) 

 
We performed overall comparison of differential DNA methylation obtained 
using RRBS analysis with the DEGs identified by RNA-Seq analysis on the 
same cell samples in our Paper II. We observed a significant negative 
association of gene expression with mean methylation of promoter regions 
(Spearman rho = −0.41; P < 2.2e-16) and gene body (Spearman rho = −0.22; P 
< 2.2e-16). However, 39 DEGs had inverse relationship between their gene 
expression and degree of methylation having |Δmethylation| > 5% and 
|Δexpression log2FC| >1. Their combined functional analysis disclosed that they 
were related to ion/calcium ion transport and signal transduction processes.  
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• Gene ontology and pathway analysis

GO analysis revealed that these genes were also distributed among important 
biological and molecular processes related to signal transduction, cell 
proliferation, apoptotic process, vasculogenesis and embryo development. 
Furthermore, for molecular functions, DMRs were observed enriched for 
calcium and zinc ion binding, ATP binding and transcription coactivator 
activity.  

KEGG pathway analysis revealed significantly enriched pathways including 
“Calcium Signaling Pathway”, “MAPK Signaling Pathway”, and “Oxytocin 
Signaling Pathway”. However, pathway analysis with WikiPathways database 
revealed enrichment of additional pathways including “Wnt Signaling”, 
“Sudden Infant Death Syndrome (SIDS) susceptibility”, “Iron metabolism in 
placenta”, “Myometrial relaxation and contraction”, and “IL-2 Signaling”.  

Genome-wide identification of transcription factor binding sites in LPS-
associated differentially methylated regions in bovine endometrial epithelial 
cells 

• Isolation of bovine endometrial epithelial cells (bEEC)

The technique for isolation and cell culture was generally explained in our study 
Paper III and specifically in Charpigny et al (Charpigny et al., 1999; Piras et al., 
2017a). 

• LPS challenge and genomic DNA isolation

LPS treatment and extraction of genomic DNA from bEEC samples in vitro 
culture was performed with the same time points as explained in our previous 
study Paper III.   
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• Library preparation and sequencing processes

DNA libraries for RRBS were prepared at The Babraham Institute, UK for 12 
samples from three cows as explained in our study Paper III. 

• Data quality control

The quality of the RRBS data sets was analysed by using FastQC and maintained 
by using TrimGalore on the same samples as discussed in our Paper III. 

• Read alignment to the Bos Taurus reference genome sequence

BS-Seeker2 was used for the alignment of quality reads with the reference 
genome bosTau8 (Bos_taurus_UMD3.1) as discussed in our Paper III. 

• Identification of Transcription Factor Binding Sites

Our previous study Paper III revealed overall 1291 differentially methylated 
regions (DMRs) which were used for identification and classification of  
transcription factor binding sites by using JASPAR database (Khan et al., 2018) 
through oPOSSUM application programming interface (API) (Kwon et al., 
2012). 

TFBS Enrichment analysis by using oPOSSUM revealed overall 73 significantly 
over-represented motifs within the 1291 DMRs identified in our previous study 
Paper III. We found that among the overrepresented motifs include TFBS for 
five members of the signal transducer and activator of transcription (STAT) 
family (STAT1, STAT2, STAT3, STAT5a/b, STAT6), three members of 
interferon regulatory factor family (IRF1, IRF2 and IRF7), early growth 
response 3 (EGR3), activating enhancer-binding protein 2 (TFAP2A and 
TFAP2C), aryl hydrocarbon receptor nuclear translocator (ARNT), and 
neuroblastoma MYC oncogene (MYCN). However, seven motifs were found 
significantly enriched in both hyper-methylated and hypo-methylated regions 
(AHR::ARNT, ARNT::HIF-1α, NRF1, HES1, HEY1, FOXB1, and TFE3). 

On classification of over-represented motifs for transcription factors, we found 
that a large number of overrepresented motifs were the members of basic helix-
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loop-helix factors (bHLH), basic leucine zipper factors (bZIP), and homeo-
domain factors classes. 
 
The enrichment analysis of TFBS in the promoter regions (1 kb upstream) of the 
differentially expressed genes (DEGs) previously reported in our Paper II, 
revealed that 145 motifs were enriched, which indicates that corresponding 
factors are relevant for the functional changes during infection.  
 
Five significantly enriched transcription factors with most hits (hits >20% of 
total DMRs sequences) were selected for co-localization with other TFBS 
consensus sequence motifs. This analysis showed that motifs of 
hypermethylated regions Arnt::HIF-1α, PAX2, NRF1, HLTF and MEIS1 were 
found to be co-localized, and motifs of hypomethylated regions Ahr::Arnt, 
Arnt::HIF-1α, NRF1, TCFL5, and HES1 were found to be co-localized. 
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Bioinformatics is the application of computer science, applied mathematics and 
statistics to answer questions regarding complex biological systems using 
different omics-based technologies in molecular biology, genomics, and 
epigenetics. Biological processes are essential for living organisms to survive 
such as metabolism, cell differentiation, reproduction etc. In particular, the 
biological processes controlling reproduction in mammals including modern 
dairy cattle are complicated. Disorder of metabolism due to higher levels of 
insulin during pregnancy and disturbance of immune response due to bacterial 
infections after calving are considered very detrimental in reproduction. The 
determinants involved in controlling these molecular mechanisms are not fully 
understood. The results reported in the current thesis provide additional 
information regarding these complex biological systems. 

Previous studies from our group have shown the detrimental effect of elevated 
insulin concentrations on development of blastocysts during oocyte maturation 
such as decreased blastocyst rates (D. Laskowski et al., 2016), morphological 
changes (Laskowski et al., 2017a), and disturbed gene expression especially in 
genes related to lipid metabolism, proliferation, mitochondrial functions, and 
oxidative stress (Laskowski et al., 2017b). 

In the present study, we used the EDMA platform to define the potential 
molecular effects of insulin treatment on embryonic development during in vitro 
oocyte maturation. Differential gene expression and DNA methylation patterns 
were analysed using the EmbryoGENE DNA Methylation Array (EDMA). A 
stronger differential DNA methylation effect was observed when the higher 
concentration of insulin was employed. When using the highly concentrated 
INS10 group, a higher number of hyper-methylated probes were observed that 
advocates the difference of dose-dependent methylation patterns. However, an 
overlap of DMRs exists that showed the methylation pattern in the same 
direction in both insulin treatments. Thus, the two treatments can serve as 
biological replicates. 

We observed different relationships between transcriptome and DNA 
methylation pattern such as a classic one (downregulation vs hypermethylation 
and vice versa) and a less typical one (upregulation vs hypermethylation). 
Conservation odds of methylation were found to be higher in exons, promoters, 
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enhancers, and CpG islands. An inverse correlation between methylation pattern 
and transcriptome is well established for promoter regions of genes (Weber et 
al., 2007) and DNA methylation in the first exon of protein-coding genes has 
been reported to be correlated with silencing of transcription but might have 
different effect in introns (Brenet et al., 2011; Jones, 2012).  

Insulin can be mitogenic through its own receptors and its mitogenic functions 
are reflected in our study for the activation of genes associated to growth and 
proliferation such as Insulin-like growth factor 2 receptor (IGF2R), DEAH-Box 
Helicase 38 (DHX38), lamin A (LMNA), mitogen-activated protein kinase kinase 
2 (MAP2K2), protein tyrosine phosphatase non-receptor type 5 (PTPN5), and 
tubulin beta-3 chain (TUBB3). Previous studies have reported that the expression 
level of IGF2R in the embryo varies due to maternal metabolic conditions 
(Arias-Álvarez et al., 2013). Insulin binds to IGF2R receptor and its maternal 
expression eradicates increased amount of insulin (O’Dell and Day, 1998). In 
our study, the upregulation of IGF2R mRNA expression in the insulin-treated 
groups advocates a mechanism to remove the excessive amount of insulin 
molecules. 

The maternal expression of imprinted gene IGF2R is controlled by an imprint 
control element (ICE) known as Region2 that overlaps the promoter of the 
noncoding AirRNA gene (AIRn) (Zwart et al., 2001). The hypomethylation at 
the promoter region of IGF2R validates our finding of increased IGF2R mRNA 
expression whereas the observed complex pattern of DNA methylation, at the 
imprinted IGF2R locus in response to insulin treatment, was expected in the 
array-based method used because of the fact that the probes cannot distinguish 
between two alleles. To further define the exact results of insulin-treated bovine 
embryos at the maternal or paternal alleles, we need further differential RNA 
sequencing studies that can scrutinize the paternal and maternal genetic variants 
along with whole genome bisulfite sequencing (WGBS) for epigenetic studies. 

DNA methyltransferases (DNMTs) are highly conserved and considered as 
writers of the epigenome and responsible for maintenance of CpG methylation 
patterns through mitosis by binding to hemi-methylated DNA at CpG sites or de 
novo methylation of DNA, which occurs after embryo implantation (Okano et 
al., 1999; Uysal et al., 2015). Significantly higher expression level of DNMT3B 
was observed that influenced the epigenetic modifications which were reported 
for embryonic development, X-chromosome inactivation and imprinting 
through de novo methylation (Walton et al., 2014).  
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The observed over-expression of genes encoding cytokines and chemokines in 
LPS-treated bEEC in vitro model supports the notion that such effects are 
occurring in vivo during conditions such as inflammation and could cause 
migration of immune effector cells to the inflamed tissues and ultimately the 
persistent presence of immune cells in the endometrium that possibly impairs 
implantation (Dekel et al., 2010). A prominent example that we identified as 
being over-expressed in response to LPS is Tumor Necrosis Factor alpha (TNF-
α), which has well-known pleiotropic effects on inflammation, innate immunity 
and cell growth in the endometrium and its high concentrations has been reported 
to be the source of implantation failures and pregnancy loss (Torchinsky et al., 
2005). Other examples that we observed are the chemokines CXCL1 and 
CXCL6 that both lead to the recruitment of neutrophils and are linked to 
inflammation and apoptosis pathways (Chittur et al., 2011). From this in vitro 
model, although cells were exposed to low dosages of LPS for a short period of 
time, we observed significant changes in gene expression of genes encoding 
cytokines and chemokines.  

Another prominent example of DEGs was the finding of several over-expressed 
BoLA (bovine leukocyte antigen) genes. This was an expected finding as BoLA 
genes encode Major Histocompatibility Complex (MHC) antigen presenting 
molecules that have essential functions as immune response activators for the 
acquired immune system and bind antigens derived from pathogens and present 
these antigens to T cell receptors expressed on T lymphocytes. During a normal 
pregnancy expression of both MHC class I and II genes needs to be suppressed 
preventing premature abortion of the fetus. A further example is that four 
members of the cadherin superfamily are among the over-expressed DEGs 
which encode proteins that are transmembrane glycoproteins that mediate cell-
cell interactions through calcium binding and has role in cell adhesion to bind 
cell with each other and possible changes could impair implantation (Lessey, 
2002). 

MMPs enzymes are involved in immune response and fusion of muscle cells 
during embryo development by remodelling of the extracellular matrix (ECM) 
(Tency et al., 2012), and down-regulation of MMP2 and TIMP3 in the 
endometrium is associated with implantation failure (Konac et al., 2009), our 
obtained data supports that down-regulation of TIMP3 may be detrimental for 
implantation.  
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The interferon-τ (IFNT)-induced genes encode proteins that belong to a group 
of signalling proteins with crucial functions in response to pathogen challenges. 
Developing embryo during pregnancy activates STAT signal transduction 
pathway through secretion of IFNT having crucial role in implantation (Binelli 
et al., 2001; Maj and Chelmonska-Soyta, 2007). The up-regulation of IFNT-
induced genes increases our understanding for biological consequences during 
endometrial inflammation in vitro LPS-bEEC model. The activation of leukemia 
inhibitor factor (LIF)-dependent STAT signal transduction pathway is crucial 
for embryo implantation and its over-expression is reported in mouse uterus 
during receptivity phase (Stewart et al., 1992) whereas its under-expression 
causes implantation failure (Salleh and Giribabu, 2014). In our current study, 
exposure of LPS to bEEC for 6 hours increased the expression levels of both LIF 
and STAT1 but their differential expressions were gradually decreasing after 
time 48 hours. The duration of these changes demands further investigation for 
understanding of response to a living embryo at early pregnancy stage. 

LPS-treatment also significantly de-regulated the galectin family genes. Strictly 
controlled expression levels of galectin family genes are crucial during 
pregnancy and especially for early embryo–maternal interactions. During 
normal pregnancy, over-expression of Gal-1 leads towards immune tolerance 
and is vital in human preimplantation embryos and its expression becomes 
significantly increased during implantation (Popovici et al., 2005). Low 
expression of Gal-1 in the endometrium has been connected with early 
pregnancy loss and miscarriages (Barrientos et al., 2014). Studies reported the 
presence of Gal-1 in the bovine endometrium (in lamina propria) (Froehlich et 
al., 2012), but its exact role to regulate BoLA gene expression during pregnancy 
is unknown in cattle. Due to the unknown implication and significance of these 
changes for the successful implantation / pregnancy in cattle, specific functional 
studies would be beneficial. 

We used RRBS for identification of differentially methylated regions (DMRs) 
in bovine endometrial epithelial cells (bEECs) in response to LPS. Furthermore, 
the obtained DMRs were scrutinized in relation to DEGs from our study Paper 
II. Previously it has been reported that the endometrium is dynamic tissue whose
methylome changes throughout the reproductive life cycle such as menstrual
cycle (Houshdaran et al., 2014; Saare et al., 2016), implantation and even its
extensive remodelling is required after calving (Sheldon et al., 2008). To our
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knowledge, no study has been performed using bEEC to investigate the DNA 
methylation changes taking place while uterine infection is being established.  
We found a global DNA hypomethylation trend on comparison of control vs LPS 
treated samples, which indicates that LPS induces hypomethylation in bEECs. 
DNA methylation changes were observed enriched in sub-telomeric regions, 
which approves that mammalian telomeres are rich in repetitive regions but lack 
of CpG islands, whereas adjacent regions to telomere are rich in CpG islands 
(Blasco, 2007; Gadalla et al., 2012). More hypomethylated genes were observed 
in X chromosome as compared to other chromosomes. Enrichment of DMRs in 
the X chromosome of uterine leiomyoma has been reported (Maekawa et al., 
2011).  
 
A large number of DMRs were mapped to genes involved in the controlling the 
endometrial functions or were related to endometrial dysfunction and infertility. 
Furthermore, gene ontology and pathway analyses of these genes revealed 
several pathways such as proliferation and differentiation, cell migration, cell 
adhesion and extracellular matrix remodelling and immune responses.  
 
Class II histone deacetylases (HDACs) are signal transducers often acting as co-
repressors of transcription by removing histone acetylation (Li and Yang, 2016). 
The function of Class II histone deacetylases (HDACs) is influencing histone 
modification and thereby chromatin structure. Two hypomethylated and one 
hypermethylated DMRs were found in HDAC4 intron. Due to its multiple 
targets, other functions may be changed in the endometrium. The above result 
associated to the proliferative phenotype previously observed in our model 
(Chanrot et al., 2017) indicates the specific studies to decipher the implications 
of the multiple changes in HDAC4 methylation for epithelial cell proliferation. 
 
Wnt signaling pathway is among the most important pathways involved in cell 
proliferation and differentiation in the endometrium. Wnt7A has been reported 
to encode a protein that acts as a main actor for the controlling of β-catenin 
expression. In our LPS model, the Wnt7A gene has two hypo-methylated DMRs 
that may be consistent with the proliferative phenotype previously observed 
(Chanrot et al., 2017) in cow epithelial cells. 
 
A strong hypomethylation of the hypoxia inducible factor 1-alpha (HIF-1A) was 
observed and has negative correlation with its strong mRNA over-expression in 
our study Paper II. HIF-1A is reported to be involved in physiological processes 
in the endometrium such as tissue repair (Maybin et al., 2018, 2011), 
implantation (Gou et al., 2017), peri-implantation blastocyst development (Song 
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et al., 2008), and its over-expression is associated with miscarriages in the 
human (Chen et al., 2016). Due to its vital role in the development of endometrial 
vascularization, pregnancy and in uterine pathology, the disturbed methylation 
and transcriptomic profiles of this gene under LPS would demand further studies 
to explain its potential role in tissue repair and persistence of inflammation 
following infection. 

We performed an in silico annotation of the transcription factor binding site 
(TFBS) that were present in differentially methylated regions (DMRs) identified 
in our previous study Paper III. After enrichment analysis, a detailed in silico 
annotation of the identified consensus sequence motifs using the Jaspar database 
of transcription factor binding profiles was performed (Khan et al., 2018; 
Mathelier et al., 2016). Enrichment analysis revealed 73 enriched TFBS 
consensus sequence motifs that were sub-classified for their presence in hyper-
methylated and hypo-methylated DMRs. Majority of these motifs were located 
in promoters, followed by enhancers. We next analysed the enrichment of TFBS 
in the promoter regions (1 kb upstream) of differentially expressed genes 
(DEGs) identified by RNA-Seq of the same cells in our Paper II . We found 145  
enriched motifs and most of these were present in the promoter regions of DEGs. 

Co-localization between the five most significantly enriched transcription 
factors and other TFBS revealed that binding motifs of transcription factors: 
Arnt::HIF-1α, PAX2, NRF1, HLTF and MEIS1 were found to be co-localized 
in hyper-methylated regions, and motifs of Ahr::Arnt, Arnt::HIF-1α, NRF1, 
TCFL5, and HES1 were found to be co-localized in hypo-methylated regions. 
Several of these transcription factors are well-known to have their transcriptional 
role for the genes involved in inflammatory and hypoxia-related pathways. 

Further comparison of  the top 10 TFBS and their relative mean expression level 
revealed that all the top 10 TFBS were significantly hypo-methylated and the 
mRNA expression of two of the genes, HIF-1A and STAT1 was found to be 
highly over-expressed in response to LPS-treatment.  Significant enrichment of 
STAT1, STAT2 and STAT3 consensus sequence motifs were observed in hyper-
methylated DMRs. STAT proteins have been reported to perform significant 
biological functions during early pregnancy (Maj and Chelmonska-Soyta, 2007). 
STAT family members are known to be involved in LPS-induced pathways and 
has crucial role in embryo implantation and fertility processes. This indicates the 
critical functional role of STAT1 during endometrial inflammations. The gene 
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expression patterns altered by hypoxic conditions are mostly controlled at the 
transcriptional level and hypoxia-inducible transcription factor 1 alpha (HIF-1α) 
is among the main transcription factors responding to hypoxia. We observed that 
mRNA expression of  HIF-1A was highly over-expressed whereas HIF-1α/Arnt 
consensus binding motifs were observed highly enriched in the hypomethylated 
DMRs. 
 
A functional association between inflammation and hypoxia is reported in 
rheumatoid arthritis (Konisti et al., 2012). In our study, both hypoxia-inducible 
and inflammatory transcription factor were found critically activated and the 
enrichment of their consensus sequence binding motifs strongly advocates a 
connection between hypoxia and inflammation in endometritis. 
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Paper I 
Insulin treatments have affected the epigenome and transcriptome of bovine 
embryos during oocytes maturation by inducing changes in overall DNA 
methylation patterns as well as on the individual gene level of candidate genes. 
Overall 13,658 and 12,418 probes (DMRs) were identified for insulin-treated 
samples INS0.1 and INS10 respectively on comparison with controls samples 
INS0.  An overlap of 3,233 DMRs was found for both insulin groups with 1,381 
hypomethylated and 1,852 hypermethylated. A relative hyper-methylated 
pattern was observed in the INS0.1 and comparatively much higher number of 
hyper-methylated probes was observed in INS10 showing the dose-dependent 
methylation patterns. In comparison of transcriptome with epigenome, 13 out of 
24 candidate genes were upregulated while their promoter region was hypo-
methylated and one gene was downregulated and its corresponding methylation 
pattern was hyper-methylated. Differentially expressed transcripts (DET) of 
genes, related to lipid metabolism, glucose metabolism and insulin-dependent 
signaling and resistance, were observed in the vicinity of DMRs. Mitogenic 
function of insulin due to DNA methylation have been observed in activation of 
genes related to growth and proliferation such as Insulin-like growth factor 2 
receptor (IGF2R) and its increased mRNA expression corresponding to 
hypomethylation at promoter region describes a mechanism to eradicate the 
excessive quantity of insulin. Futhermore, expression levels of DNMT3B was 
significantly increased, which influenced the epigenetic modifications which 
were critical in embryonic development, X-chromosome inactivation and 
imprinting. 

Whether or not the above methylome changes persist later during embryonic 
development is not known and, we have not investigated in our current study 
about their effects on the health of offspring later in life.    

Paper II 
LPS in vitro treatment of bEECs at biologically relevant concentrations was 
shown to profoundly affect gene expression. More than 2000 protein-coding 
genes (approx. 10% of all genes) were found to be differentially expressed. A 
large number of biological pathways was influenced suggesting that LPS has a 
major impact on multiple functions in the endometrial cells. We observed that 
DEGs involved in pathways relating to immune response, proliferation, 
glycolysis, oxidative stress and general metabolism were detected. Many of 
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these have also been reported in literature before but the specific molecules 
involved in implantation and immuno-tolerance mechanisms in response to LPS 
are documented here for the first time. This shows that our in vitro model both 
confirms previous knowledge concerning endometritis but, importantly it also 
identified novel DEGs in such pathways. Our results also pinpoint that LPS-
induced cellular disturbances responsible for crucial functions in the 
endometrium at implantation and subsequently during embryonic development 
may impair successful fetal development. These results provide new insights in 
the molecular mechanisms linking LPS and impairment of bovine reproductive 
function. These findings also open the way for further functional studies to link 
the results from this in vitro model to the in vivo situation and find reliable 
markers of persistent inflammation in the bovine endometrium that may damage 
fertility even after infection has disappeared.  

Paper III 
LPS treatment has affected DNA methylation patterns of bEEC and overall a 
hypo methylation pattern was observed. In aggregate, 1291 DMRs were 
identified, out of which 707(55%) and 584(45%) DMRs were hypo-methylated 
and hyper-methylated respectively. The genomic distribution of DMRs revealed 
that 46% of the DMRs were overlapping with CpG islands (CGIs), 31% with 
CGI shores, and 23% with other genomic regions. Furthermore, 47.5% were on 
the gene body, 47.6% were intergenic and 4.8% mapped to the promoter regions. 
Furthermore, 600 differentially methylated genes (DMGs) were found 
comprising 589 protein-coding, 7 miRNA, and 4 pseudogenes. DMRs were 
found significantly enriched in 2Mbp regions, taken adjacent to telomeres as 
compared to non-telomeric regions. A negative correlation was found between 
39 DEGs ( |Δexpression log2FC| >1) and DMRs  (|Δmethylation| > 5%) and 
related to ion/calcium ion transport and signal transduction processes. GO 
analysis of methylated genes revealed that apoptotic process, signal 
transduction, cell proliferation, vasculogenesis and embryo development were 
enriched. In addition, significantly enriched pathways including Calcium 
Signaling, MAPK Signaling, Oxytocin Signaling, Wnt Signaling, Sudden Infant 
Death Syndrome (SIDS) susceptibility, and IL-2 Signaling were found. 

These analyses allow the identification of regions harbouring candidates for key 
regulatory elements of endometrial function, thus contributing to the 
understanding of LPS-induced deregulation that may impact implantation. 
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Paper IV 
Our previous study Paper III, revealed 1291 differentially methylated regions 
(DMRs) using RRBS data in the genome of bEEC, challenged with LPS 
treatment. In this study, we used these DMRs to explore their regulatory role in 
gene transcription by identifying consensus sequence motifs within these DMRs 
and corresponding potential transcription factor binding sites (TFBS). The most 
enriched motifs were further scrutinized for TFBS and their known transcription 
factors. TFBS were found related to some immunologically important 
transcription factors. 

Furthermore, mRNA expressions of HIF-1A and STAT1 were highly over-
expressed and the enrichment of their consensus sequence binding motifs 
strongly indicates a link between hypoxia and inflammation in endometritis. 
Identification of additional transcription factors that regulate gene expression 
under normal and hypoxic conditions in bEEC may lead to useful clinical 
applications to treat patients with endometritis as well as other inflammatory 
diseases. Results obtained from studies of endometritis in cattle may also be used 
as a model for endometritis in women and thereby having a substantial 
comparative value. 
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In Paper I, it is clear from our in vitro model that insulin has a major functional 
effect. The fact that insulin treatment during oocyte maturation has a massive 
effect on both the transcriptome and epigenome suggests that standard in vitro 
fertilisation regimes needs to be further investigated. There is a concern based 
on our findings that the effects of persistent DNA methylome and mRNA 
expression changes during early development of in vitro fertilised embryos may 
also have an impact on the health of individuals born after such conditions. 

In Papers II, III and IV we have performed an in depth analyses of differential 
gene expression and methylation in our in vitro model for bacterial-induced 
inflammation in the bovine endometrium. The future perspectives and 
implications of our results are largely based on an increased knowledge of the 
changed transcriptome and the identification of the regulatory networks of cis-
acting and trans-acting factors that are critical for these biological processes. 
Our obtained results may lead to the development of future strategies to treat and 
prevent major consequences of uterine inflammation in mammals. There is a 
need for further functional studies aiming to relate the results from LPS treated 
bEEC in vitro model to uterine diseases where cow endometrium is exposed to 
higher LPS concentrations for a longer time and to study them in vivo.  

Due to the limitation of RRBS technology, whole genome-based approaches 
should be conducted because we might have missed to identify some regulatory 
regions that could play vital role in regulation of genes regarding reproduction, 
hence WGBS is recommended for further / deep investigation. Our in depth 
Bioinformatics study regarding enriched and co-localized TFBS located within 
the identified DMRs opens up obvious experiments to analyse the molecular 
mechanisms for how such transcription factors regulate transcription during an 
ongoing inflammation. We have identified novel TFs in combination with well-
known TFs involved in inflammatory responses. Our in vitro model for bovine 
endometritis and their in silico annotation will guide us for further functional 
studies aiming at characterization of the functional factors which could be 
involved during bacterially-induced inflammatory diseases in cattle and other 
mammals including human.  
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