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Abstract

Across the northern hemisphere, land use changes and, possibly, warmer win-

ters are leading to more abundant and diverse ungulate communities causing

increased socioeconomic and ecological consequences. Reliable population esti-

mates are crucial for sustainable management, but it is currently unclear which

monitoring method is most suitable to track changes in multi-species assem-

blages. We compared dung counts and camera trapping as two non-invasive

census methods to estimate population densities of moose Alces alces and roe

deer Capreolus capreolus in Northern Sweden. For camera trapping, we tested

the random encounter model (REM) which can estimate densities without the

need to recognize individual animals. We evaluated different simplification

options of the REM in terms of estimates of detection distance and angle (raw

data vs. modelled) and of daily movement rate (camera trap based vs. telemetry

based). In comparison to density estimates from camera traps, we found that,

dung counts appeared to underestimate population density for roe deer, but

not for moose. Estimates of detection distance and angle from modelled versus

raw camera data resulted in nearly identical outcomes. The telemetry-derived

daily movement rate for moose and roe deer resulted in much higher density

estimates than the camera trap-derived estimates. We suggest that camera trap-

ping may be a robust complement to dung counts when monitoring ungulate

communities, particularly when similarities between dung pellets from sym-

patric deer species make unambiguous assignment difficult. Moreover, we show

that a simplified use of the REM method holds great potential for large-scale

citizen science-based programmes (e.g. involving hunters) that can track the

rapidly changing European wildlife landscape. We suggest to include camera

trapping in management programmes, where the analysis can be verified via

web-based applications.

Introduction

Species-level estimates of population density are funda-

mental, both for the management and conservation of

wildlife populations and for the understanding of ecosys-

tem dynamics (Noon et al. 2012; Caravaggi et al. 2016).

Across the northern hemisphere, ungulates have been

rapidly increasing in numbers (Apollonio et al. 2010) and

exert a profound sociocultural, ecological and economic

impact (Sandstr€om 2012). Many regions, particularly in

Europe, now host diverse communities of up to four or

five ungulate species, where only one or two species
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occurred a few decades ago (Apollonio et al. 2010). Man-

agement goals are thus increasingly focused towards mul-

ti-species or ecosystem-based approaches (Latham 1999;

Weisberg et al. 2002). This creates a challenge for moni-

toring as many census methods are species or habitat

specific (Singh and Milner-Gulland 2011). For example,

aerial surveys have often been described as the most accu-

rate method for moose Alces alces (Boyce et al. 2012;

R€onneg�ard et al. 2008), but the method is unsuitable for

smaller species like roe deer Capreolus capreolus. Although

numerous methods have been developed for monitoring

ungulates, most studies have sought to identify the opti-

mal method for one species (Mysterud et al. 2007;

R€onneg�ard et al. 2008; M�ansson et al. 2011), rather than

a multi-species approach.

The most commonly used monitoring method for a

wide range of ungulate species is counting of dung pellet

groups (hereafter referred to as dung counts). The infer-

ence of population density from the correlation between

dung counts and the number of individuals is well estab-

lished (Eggert et al. 2003) and has been described as one

of the most accurate methods for determining abundance

(Plhal et al. 2014). However, dung counts can be prob-

lematic in multi-species ungulate communities due to sea-

sonal variation of dung morphology (Alvarez 1994),

varying encounter rates for pellets from differently sized

ungulates (Lioy et al. 2015) and incorrect species assigna-

tion (Yamashiro et al. 2010).

In recent years, the use of camera traps has become

increasingly popular for monitoring wildlife abundance

and community structure (Burton et al. 2015). An advan-

tage of camera trapping compared to dung counts, partic-

ularly for multi-species systems, is that it produces clear

evidence of species identity. However, until recently the

use of camera traps to produce reliable population esti-

mates was limited to mark–recapture techniques, which

rely on the recognition of individuals (Karanth 1995).

This limitation has restricted the use of camera trapping

for population estimates of most ungulate species (Row-

cliffe et al. 2008). Although camera traps may provide

indices of relative abundance, such as detection rates,

these have been criticized for their implicit assumption of

constant detectability across habitats, time and species

(Harmsen et al. 2010; Sollmann et al. 2013). However,

ongoing improvements in this field may improve abun-

dance estimates from occupancy-based methods (Ahu-

mada et al. 2013). Rowcliffe et al. (2008) suggested a

random encounter model (REM) for estimating densities

from camera trap data which does not require the recog-

nition of individuals. Instead, the method is based on

estimates of contact rates between animals and camera

traps (Cusack et al. 2015). Since the first publication in

2008, the REM has undergone continuous development

(Rowcliffe et al. 2014, 2016) and has been applied to a

range of species (Rovero and Marshall 2009; Manzo et al.

2011; Zero et al. 2013; Carbajal-Borges et al. 2014; Cusack

et al. 2015; Caravaggi et al. 2016). These studies have also

investigated various challenges in parameterizing the REM

with a number of solutions emerging. The most sensitive

model parameter is the average speed of animal move-

ment which can be estimated directly from camera images

or from external data sources like telemetry (Caravaggi

et al. 2016).

Our study compares population density estimates from

camera trapping versus dung counts of four coexisting

ungulate species – moose, roe deer, red deer Cervus

elaphus and fallow deer Dama dama – in an area of

Northern Sweden. All four species are difficult, if not

impossible to individually recognize from camera images

providing the opportunity to implement and evaluate the

REM model. Our objectives were (1) to test which

method would be most suitable for monitoring multi-

species ungulate communities, (2) to test how density

estimates derived with the REM compare with widely

applied dung counts and (3) to develop a method that

assures realistic estimates of density but that can still be

easily performed by a range of people from volunteers to

wildlife managers. This last objective is particularly

important as citizen science programmes are becoming

increasingly incorporated into monitoring programmes

(Silvertown 2009). Given the ongoing developments of

the REM, we evaluated how density estimates are

affected by the method of determining the average speed

of animal movement, that is, directly from camera

images versus from telemetry data. We also used the

camera’s angle and the position of the animal to

estimate average detection angle (ADA) and average

detection distance (ADD), in comparison to the effective

detection angle (EDA) and effective detection distance

(EDD) using a distance sampling approach (Rowcliffe

et al. 2011). We discuss sources of bias for both the

REM and dung counts, and make recommendations for

methodological improvements that would benefit the

conservation and adaptive co-management of multi-spe-

cies ungulate communities.

Materials and Methods

Study area and overall design

We estimated ungulate densities on J€arn€ashalv€on, a

peninsula that encompasses c. 200 km2 in the northern

Swedish province of V€asterbotten. The area is character-

ized by a mixture of boreal forest, mires and agricultural

land and constitutes one of the rare examples in northern

Europe where the four deer species moose, roe deer, red
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deer and fallow deer coexist. The study area is sur-

rounded by the Bothnian Bay on three sides, except to

the north where it is delimited by a fenced highway and

railroad, as well as the towns of Nordmaling and H€orne-

fors (Fig. 1). Due to these major dispersal barriers, we

assumed that there was limited movement of individuals

of all species between the study area and the mainland.

To confirm this assumption, we placed a camera on both

banks of the €Ore€alven river which is the least disturbed

potential corridor for animals moving in and out of the

study area. For both census methods, we randomly

placed 11 hollow grids (1 9 1 km) consisting of 16

evenly spaced sampling plots across the study area

(Fig. 1). Sampling at fixed coordinate locations within a

random grid ensured the comparison of the two methods

with each other. The sampling plots included all types of

non-urbanized habitats in the study area in an unbiased

manner due to the random placement of the hollow

grids.

Dung counts

Between 2 and 22 May 2016, directly after the snowmelt,

we counted the number of dung pellet groups of moose,

red deer, roe deer, and fallow deer in all sampling plots

within a 5.64-m radius from the plot centre (plot

size = 100 m2). We excluded seven plots as they were

positioned in lakes, flooded areas or private gardens. Pel-

let groups were assigned to species according to their

morphological characteristics. However, due to difficulties

in distinguishing between roe deer and fallow deer pellets,

we used the number of pellets per dung group as a deci-

sion criterion. Pellet groups with ≤45 pellets were consid-

ered as roe deer and groups containing >45 pellets as

fallow deer (Edenius 2012). Because the plots had not

been cleaned of old pellets prior to the beginning of the

study, we only counted dung that was deposited no ear-

lier than the previous autumn by excluding highly

decomposed pellet groups or those that were hidden

km

Figure 1. Study area on the J€arn€ashalv€on peninsula. Eleven randomly placed hollow grids (classified as no. 32, 33, 39, 40, 46, 47, 48, 49, 55, 56

and 62) with 16 sampling plots (black points) along the grid boundary. Grids were on average 1.8 km apart from each other, with the exception

of the central part of the peninsula where several lakes and rivers prevented this equal spacing. Sampling plots along the grid boundary were

200 m apart from each other. The black star represents cameras at the €Ore€alven river. The grey line in the north denotes the fenced highway E4

with the adjacent railroad track.
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underneath a layer of leaves. We estimated species densi-

ties D (km�2) (Cederlund and Liberg 1995) as,

D ¼ n

a � t � d
where n denotes the number of pellet groups counted, a

the total sampled area (km2), t the accumulation period

of dung (days) and d the daily defecation rate of each

species (day�1). We estimated the accumulation period t

to be 215 days–from first leaf fall in autumn 2015

(Bergstr€om et al. 2011) to mean date when dung was

counted. Defecation rates may vary temporally and spa-

tially for a given species. Therefore, we based our density

estimates on rates taken from the literature, that is, 14

pellet groups per day for moose (Persson et al. 2000;

R€onneg�ard et al. 2008) and 20 for roe deer (Mitchell

et al. 1985), but we also provide density estimates using a

range of defecation rates that have been recorded, with

13–23 for moose (Andersen et al. 1992; Persson et al.

2000; Matala and Uotila 2013) and 17–23 for roe deer

(Mitchell et al. 1985).

Camera trapping

We randomly selected 12 of the 16 sampling plots in

each of the 11 grids to monitor with camera traps. We

excluded plots where cameras could not be adequately

mounted on existing trees, that is, lakes and fields. Due

to restrictions in our camera trap permit, we also could

not place cameras in plots that were <100 m from

human habitations or public roads. At each predefined

sampling plot, a location was chosen with at least 10 m

of open view in front of the camera to prevent natural

features (e.g. large boulders, fallen trees) from obstruct-

ing detection. In doing so, we tried to stay as close as

possible to the predefined location. Following these crite-

ria, only 6 out of the resulting 132 camera locations had

to be offset by more than 100 m from their intended

coordinates. Two infra-red-triggered camera models were

available, Reconyx Hyperfire HC 500 (n = 20) and HCO

ScoutGuard SG 560C (n=15) (see Table S1 for detailed

differences between the camera models). To monitor all

132 sampling plots, we used a rotation scheme of

12 days beginning on 7 March and ending 20 May 2016.

Cameras were placed simultaneously in two sampling

plots per grid (i.e. 22 sampling plots were monitored per

rotation) and required six rotations to monitor all 132

sampling plots. To prevent any biases due to camera

performance, the camera models were evenly distributed

among sampling plots so that no grid was being moni-

tored by only one camera model. To account for possi-

ble bias resulting from individual cameras, we randomly

introduced four new cameras of each model into the

pool of camera traps during each rotation event. How-

ever, two ScoutGuard cameras had to be replaced with

Reconyx cameras during the study due to problems with

camera functioning in direct sunlight. Cameras were

mounted on a tree at a height of 1 m pointing towards a

spot with at least 10 m of open view, where signs indi-

cated that ungulate detection might be possible (e.g.

game trails, tracks in the snow, forest gaps). We chose a

height of 1 m to prevent cameras being covered by fresh

snowfall and measured snow depth within the cameras’

field of view when mounting the camera. Finally, we

marked distances of 5 m, 10 m and 15 m in front of the

camera’s central field of view with small red ribbons in

trees (Fig. 2). When triggered, both camera models took

three photos in rapid-fire mode. Since there was no

delay between the trigger sessions, the full passage of an

animal through the cameras’ detection zone was

recorded. Additionally, we set the cameras to take daily

control photos to confirm that all cameras remained

operational throughout the 12 days.

Random encounter model

To estimate population density D (km�2) from the cam-

era trapping data, we used the REM proposed by Row-

cliffe et al. (2008),

Figure 2. Example picture (Reconyx HC 500) of a male roe deer

taken with red distance markers at 5, 10, and 15 m. The white

dashed line in the centre field of view was used as reference point for

distance calculations. r represents distance between the camera and

animal (white dotted line) and a the angle of first detection (white

dotted angle). Both were calculated trigonomically via the vertical and

horizontal distances y and x (white arrows), where r2 = x2 + y2 and

arctan(a) = y/x. For each vertical distance y, the maximum horizontal

distance xmax (white dashed arrow) could be estimated based on the

maximum angle of the cameras lens (extracted from camera manual).

Via the centimetre ratio between xmax and x on the photo, x could be

calculated.

4 ª 2017 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd.

Camera Trapping vs. Dung Counts S. E. Pfeffer et al.



D ¼ y

t
� p
v � r � ð2þ hÞ

where y denotes the number of capture events, t the sur-

vey effort (camera trapping days), v the average daily dis-

tance travelled (km/day), r the ADD (km) and h the ADA

(radians). Approximately 50 captures per species are rec-

ommended as a minimum for reasonable REM density

estimates (Rovero et al. 2013). Since we were interested

in an overall population density across the study area, we

pooled the camera trapping data across all grids to

achieve this sample size. We defined a capture event as

the first photo of an individual entering the camera’s field

of view (Rowcliffe et al. 2011) and determined detection

distance and detection angle trigonomically using an

adaptation of Caravaggi et al. (2016). The squared detec-

tion distance r2 is the sum of the squared vertical distance

y2 and the squared horizontal distance x2 to the animal

based on the centre line of the cameras view (see Fig. 2).

The angle of first detection h was calculated as two times

the arctan (a) ratio of the vertical and horizontal distance

y and x respectively. For each vertical distance, we used

the maximum angle of the camera lens (Table S1) and

the centimetre ratio on the photo to estimate the hori-

zontal distance. We estimated the distance and angle at

which animals were detected using two different parame-

ters to be able to compare the effect of the estimation

method on density estimates. We calculated ADD and

ADA by averaging detection distances and detection

angles, respectively, across all capture events per species.

In addition, we modelled EDD and EDA using a distance

sampling approach (Rowcliffe et al. 2011). For each spe-

cies, we fitted detection probability functions (half-normal

models with and without a cosine expansion term) to our

measured distance and angle data using the R package

mrds (Laake et al. 2014). We used a point detection

model to estimate EDD and a line detection model to

estimate EDA (Rowcliffe et al. 2011). We tested for the

effect of camera type by including it as a covariate in the

species-specific model. Finally, we estimated densities for

each species based on EDD and EDA as well as ADD and

ADA and compared both approaches.

For estimating the mean distance travelled per day, v,

we used both telemetry data (see next section) and infer-

ence from the camera trapping photos. For the latter, v

can be interpreted as

v ¼ s � a

where s is the daily distance travelled (km/day) if the spe-

cies would be active the whole day [derived from the

average speed (m/sec) at which animals moved in front

of the cameras] and a the proportion of the day when a

species is active (activity level as defined by Rowcliffe

et al. 2016). Speed si is defined as,

si ¼ di
ti

where di is the distance (m) walked over a certain period

of time ti (sec) in front of the camera. The walked dis-

tance di per capture event was visually estimated from the

photos as the distance between the animal’s positions in

all photos of a capture event. Time ti was calculated as

time between the first and last photo in a capture event

accounting for animal movement (see Rowcliffe et al.

2016 for detailed description). The daily proportion of

time spent active, a, was estimated per species as shown

in Rowcliffe et al. (2014) using the R package activity

(Rowcliffe 2016) which fits probability density functions

to frequency data from the capture events. We used the

bootstrapping option available in the activity package with

10,000 iterations to obtain 95% confidence limits and

Wald tests to check for differences in activity patterns

among the species. In northern latitudes, the progression

of sunrise and sunset flattens activity peaks when using

clock time (since ungulates are most active around dawn

and dusk), which leads to an overestimation of activity

levels (Rowcliffe et al. 2014) and thus an underestimation

of density. We therefore transformed clock time to sun

time using the code provided by Nouvellet et al. (2012)

with the mean sunrise and sunset times of the study per-

iod serving as reference points. To determine the 95%

confidence limits for the REM density estimates we boot-

strapped with 10,000 iterations from the original data.

Using telemetry data to estimate average
distance travelled

Following previous authors (e.g. Caravaggi et al. 2016),

we also estimated the mean distance travelled per day, v,

from GPS telemetry data. We used data from seven

moose and four roe deer that had been tracked in our

study area from early 2017. For the analysis, we

extracted GPS data from March 2017 to May 2017, the

same months as our camera trapping period. Unfortu-

nately, no GPS data were available for red deer and fal-

low deer. The frequency of GPS locations may influence

estimates of distance travelled per day due to the way

that straight lines are drawn between recorded GPS loca-

tions. To determine how GPS position recording inter-

vals influence the estimate of total daily movement rate,

we split the data into time intervals that ranged from

the highest available resolution (30 min for moose, 1 h

for roe deer) to a low of 6 h intervals. Based on the R2
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value, we fitted a third-order polynomial regression

model to the data in which the intercept indicated the

presumed full day range, that is, if the tracking had

been continuous. These values were then used in the

REM for moose and roe deer respectively. All analyses

were carried out using the program R (R Core Team

2016) with a significance level of a = 0.05 for statistical

tests.

Results

Dung counts

In total, we counted 88 dung pellet groups of ungulates

(moose: n = 45, roe deer: n = 25, red deer: n = 4, fallow

deer: n = 14). Due to the low sample size, red deer and

fallow deer were excluded from further analysis. Density

estimates derived from dung counts were 0.88/km2 for

moose and 0.34/km2 for roe deer. When applying a range

of defecation rates for both species, density estimates were

0.54-0.95/km2 for moose and 0.30-0.40/km2 for roe deer

(Table 1).

Camera trapping

Over a period of 1584 camera trapping days, we recorded

174 capture events of the four ungulate species (moose:

n = 54, roe deer: n = 69, red deer: n = 45, fallow deer:

n = 6). We only detected four roe deer and one fallow

deer leaving or entering the study area via the €Ore€alven

river valley. Mean snow depth was 6.96 cm (min = 0 cm,

max = 30 cm) during the study period. In 15 capture

events, the species could not be identified on the pho-

tographs. Since the number of capture events for fallow

deer and red deer did not meet the threshold of 50

capture events recommended for the REM by Rovero

et al. (2013), we again excluded both species from the

analyses.

Ungulate activity patterns generally showed a bimodal

distribution which was especially pronounced for roe deer

(see Fig. S1). Activity peaked around mean sunrise

(05:01:17) and mean sunset (19:53:40). Daily activity

levels varied slightly between moose (0.38) and roe deer

(0.41; see Table S2), but differences were not significant

(Wald tests, P > 0.05).

The daily distance travelled by moose estimated via GPS

telemetry data (Fig. 3) was 2.08 km which yielded an REM

density estimate of 2.50 moose/km2. For roe deer the daily

distance travelled was estimated as 4.22 km which converts

to a density estimate of 2.36 roe deer/km2. The estimated

daily distance travelled for moose from the camera trap

footage was 8.59 km, while it was 11.90 km for roe deer

(Table 1). The basic REM density estimates based solely on

data from the camera trapping photos (ADD and ADA val-

ues) resulted in 0.61 moose/km2 and 0.84 roe deer/km2.

Similar density estimates were obtained when using the

EDD and EDA with 0.60 moose/km2 and 0.73 roe deer/

km2. Model comparisons showed that models including

camera type as a covariate did not perform better than

models that did not include camera type, except for the

species-specific estimate of EDD for moose (DAIC = 3.91).

For consistency, we thus decided to exclude the camera

type as covariate. Model parameters and density estimates

are summarized in Table 1.

Discussion

Monitoring animal populations and thus estimating pop-

ulation densities are essential for managing wildlife, and

dung counts may be a useful, simple method for a wide

range of ungulate species (Cromsigt et al. 2008).

Table 1. Sample size n, distance, angle, day range and density estimates for moose and roe deer in Northern Sweden based on four different

approaches: dung counts, REM when estimating the average detection distance (ADD) and angle (ADA) from camera trapping images, REM when

estimating effective detection distance (EDD) and angle (EDA) via a modelling approach and REM when estimating day range based on telemetry

data.

Approach Species n Distance (m) Angle (radians) Day range (km/d)

Density (per km2)

Estimate SD 95% CI PRP

Dung counts Moose Alces alces 45 – – – 0.54–0.95 – – –

Roe deer Capreolus capreolus 25 – – – 0.30–0.40 – – –

ADD and ADA Moose A. alces 54 8.24 0.50 8.59 0.61 0.06 0.44–0.66 18.10

Roe deer C. capreolus 69 5.59 0.45 11.90 0.84 0.08 0.70–1.01 18.57

EDD and EDA Moose A. alces 54 8.16 0.58 8.59 0.60 0.05 0.49–0.70 16.95

Roe deer C. capreolus 69 5.51 0.86 11.90 0.73 0.06 0.66–0.89 16.28

Telemetry Moose A. alces 7 8.24 0.50 2.08 2.50 0.23 1.82–2.72 18.00

Roe deer C. capreolus 4 5.59 0.45 4.22 2.36 0.23 1.98–2.87 18.86

PRP represents the percentage relative precision according to Sutherland (2006).
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However, there are valid concerns that species may be

incorrectly identified based on dung morphology (Yama-

shiro et al. 2010), especially where several similarly sized

ungulates coexist. There are also biases towards detecting

species with larger pellets and intra-specific variation in

dung morphology among seasons or landscapes puts fur-

ther limits on the method (Alvarez 1994). Several studies

have demonstrated that density estimates from dung

counts correlated well with direct counts (red deer:

Batcheler 1975; fallow deer: Bailey and Putman 1981). In

our study, density estimates of moose were similar

between the REM and dung counts, and these slightly

over- or under-estimated the current official estimate of

0.78 moose/km2. This estimate was calculated by Svensk

Naturf€orvaltning AB (2016) based on bag statistics and

moose observation data. When considering how defeca-

tion rates might vary by habitat or season, the range of

moose density estimates from dung counts overlapped

both with the REM estimate and the current official esti-

mate. Unfortunately independent density estimates are

not available for roe deer, which is also where we observe

the largest discrepancies between dung count and REM

based estimates. The REM-based density estimate of roe

deer was consistently more than double that of dung

counts even when considering variation in defecation

rates. The density estimate based on dung counts may be

influenced by not only the detectability of pellets, but also

by the correct identification of pellet groups, given the

diverse ungulate community in our study area and

overlap in dung morphology.

The encounter rate of pellets of differently sized ungu-

lates, and correct species classification, are important

considerations when designing dung count surveys. The

larger and more distinct moose pellets are easier to

detect than the pellets of roe deer, especially in areas

with dense ground vegetation (Lioy et al. 2015). This

might explain why the density estimates for moose were

fairly similar among methods, especially after accounting

for possible variation in defecation rates. However, failing

to detect pellets and misclassifying species would bias

population densities for smaller species. This may explain

why roe deer estimates from dung counts were consis-

tently lower than the REM-based estimates, even after

accounting for variation in daily defecation rates. Fur-

thermore, a high level of empirical knowledge and expe-

rience is required to assign pellet groups to a species in

the field (Smith 2012). The classification threshold of 45

pellets suggested by Edenius (2012) needs further testing

and may have resulted in a proportion of pellet groups

being assigned to the wrong species. Dung morphology

may not only overlap for roe deer and fallow deer, but

also for red deer (Kohn and Wayne 1997), given the low

number of encountered pellet groups, but relatively high

number of camera images. Further studies are needed to

validate field identification methods for ungulate dung,

especially for similar species with overlapping ranges.

One possibility would be to validate morphometric dif-

ferences as done by Bowkett et al. (2013). Alternatively,

molecular methods like DNA barcoding are rapidly

becoming more affordable and could offer an alternative

for morphometric identification of species (Waits and

Paetkau 2005). It is in these instances that the ability to

identify species from camera trap images may provide an

important tool for estimating densities in multi-species

ungulates communities.
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Figure 3. Estimation of daily distance travelled for (A) moose and (B)

roe deer in Northern Sweden based on a third-order polynomial

regression model fitted to 30 min and 1 h GPS collar positioning

intervals, respectively. The intercept with the y-axis indicates the day

range of the species. The slope most notably declines within the first

120 min suggesting that the time intervals between recorded

positions strongly influence day range estimates.
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Recent technical and methodological advances have

made camera trapping an attractive alternative for esti-

mating ungulate densities, particularly since the REM

removed the need for individual recognition. The method

produced density estimates with similar percentage rela-

tive precision (see Table 1) when using raw estimates for

ADD and ADA from photos as when accounting for

detection probability, that is, incorporating EDD and

EDA (Rowcliffe et al. 2011). Variation between species-

specific density estimates averaged around 0.05/km2. One

could argue that EDD and EDA might vary due to differ-

ences in the field of view of the two camera models used.

However, models including camera type as covariate did

not generally perform better than models without.

Since ADD and ADA are simple means, their calcula-

tion is arguably more straightforward than modelling

EDD and EDA. This may make the former more conve-

nient to use for citizen scientists, for example, local hunt-

ing or conservation groups interested in adopting camera

traps for monitoring ungulate populations. Our results

suggest that in this instance the simpler approach would

not compromise the quality of the estimate. In order to

improve the precision and accuracy of variables extracted

directly from the camera trap footage, a detailed grid of

distance markers as suggested by Caravaggi et al. (2016)

could be adopted. Additionally, distances and angles

could be estimated in classes rather than exact numbers

(Hofmeester et al. 2017). However, in our study the

much simpler application of markers at only three dis-

tance classes away from the camera resulted in realistic

density estimates. Again, this simpler alternative to the

labour intensive detailed grid may be preferable when

involving volunteers in monitoring.

The method estimating daily distance travelled had a

large impact on density estimates from the REM. Even

after accounting for GPS positioning intervals, daily dis-

tance travelled for moose based on telemetry data was

2.08 km/day and resulted in much higher density esti-

mates than those resulting from the camera trapping with

8.59 km/day. A similar trend is visible for roe deer where

daily distances travelled based on telemetry data were

4.22 km/day and 11.90 km/day from the camera trapping.

These observations correspond well with Rowcliffe et al.

(2016) findings that camera-based estimates of day range

were between 1.9 and 7.3 times higher than those indi-

cated by telemetry data. As an explanation, they suggested

that distance travelled can be prone to underestimation

when extracted from tracking data in which spatial loca-

tions are not fixed frequently enough to capture fine-scale

movements. In fact, Rowcliffe et al. (2012) showed that

one would need several fixes per minute to include

detailed micro-movements to arrive at accurate estimates

of day range. These micro-movements were visible on

pictures of the camera trapping which would explain the

higher estimates of daily distance travelled for both spe-

cies. Thus, our 30-min and 1-h recording intervals from

GPS data might still have been too long, which is also

suggested by the shape of the regression line (Fig. 3). One

would expect the slope to level off at very high fix fre-

quencies, but for our data the slope remained steep close

to the intercept. Therefore, telemetry data may have

underestimated the true day range of moose and roe deer

in our study, although considerable individual variation

exists. This may be inconsequential in migration studies

focusing on large-scale movement patterns, but can

severely bias the REM density results. Given the potential

importance of this bias, future methodological studies

need to focus on disentangling sources of error in daily

movement when comparing cameras and telemetry.

Our sampling strategy was largely random although

some cameras were slightly biased in the direction they

were pointing. Since ungulate densities are rather low in

our study system, we wanted to ensure that cameras

pointed towards locations where capture of ungulates was

possible. Thus, our first criterion was to ensure visibility

for c. 10 m in front of the cameras lens as close as possi-

ble to the predefined locations. We did not have enough

capture events of red deer and especially not of fallow

deer, while dung counts suggested that they do occur at

reasonable numbers. Moreover, we regularly observed fal-

low deer in the southern part of the study area while con-

ducting fieldwork. Our pellet counts as well as previous

studies suggest that fallow deer frequently leave forests to

feed in open habitats (Putman 1996). Only 2 of the 132

camera locations were in fields or meadows. Since fields

and open areas were mostly located close to public roads

or houses, we were not able to mount cameras close to

our coordinate location since the camera permit required

a minimum distance of 100 m to human activity centres.

This could explain why our camera trapping was unsuc-

cessful for fallow deer. A more stratified approach to

camera placement that incorporates all available habitats

would improve future studies.

In conclusion, our results suggest that using camera

traps may be a viable alternative compared to classical

monitoring methods, and may be especially advantageous

to monitor multi-species guilds. We show how a straight-

forward method of parameter estimation (ADD & ADA)

for the REM leads to reliable density estimates exempli-

fied by our deer species data. Our field setup can be used

for developing citizen science-based programmes, where

non-governmental organizations and interest groups col-

lect the data and public agencies verify the analysis via

web-based applications. Similar citizen science-based pro-

grammes are already part of today’s management (Singh

et al. 2014) to keep track of the rapidly changing

8 ª 2017 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd.

Camera Trapping vs. Dung Counts S. E. Pfeffer et al.



European wildlife landscape. We suggest the next logical

step is to include camera trapping into those successful

programmes.
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