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Sound management of late blight, the disease caused by the notorious oomycete pathogen 

Phytophthora infestans (Mont.) de Bary, is dependent on the pathogen’s population 

biology. However, for P. infestans population structure to give guidance for disease 

management, successful information flow between the researchers and the practitioners 

is paramount. We analysed the population in eastern-Africa to determine the pathogen 

genotypes present in the region. We characterized the isolates using microsatellite 

markers and mitochondrial DNA haplotypes to enable comparisons with global 

populations. A European lineage, 2_A1 was found to be dominating the population in 

eastern-Africa. In addition, the 2_A1 lineage was found to be more aggressive in terms 

of lesion size, latent periods and incubation periods when compared to the old US-1 

lineage. We thus concluded that the tested aggressiveness traits could have partly 

contributed to the quick displacement of US-1 by 2_A1 in the region. In a study 

predicting host durability of a genetically engineered potato with a stack of three 

resistance genes as well as a conventionally bred potato with a stack of five resistance 

genes, the assessment of pathogen effector genes proved valuable to deduce which of the 

R-genes were functional in the field. From the effector study, it can be concluded that 

effector genes in target local P. infestans populations should inform selection of breeding 

materials since globally, pathogen populations are very diverse. An assessment of 

commonly grown potato cultivars in eastern-Africa to quantify their susceptibility to late 

blight in the field found out that nearly all cultivars had partial resistance to P. infestans. 

The growers’ choice of cultivars is to high degree governed by market demands. 

Unfortunately, many cultivars with good resistance to late blight have other undesirable 

agronomic traits hence the rationale behind growing cultivars that are highly susceptible 

to late blight. Disease management practices, host durability prediction tools and potato 

breeding approaches should be suitably adjusted to the existing pathogen population.  
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Late blight caused by the oomycete pathogen Phytophthora infestans (Mont.) de 

Bary is the most important disease on potato (Solanum tuberosum L.) and tomato 

(Solanum lycopersicum L.) globally since it causes very serious, direct and 

indirect, crop losses. The disease became infamous in the mid 1800’s when the 

demography of Ireland was changed forever after one million people died and 

another million emigrated to North America after the destructive effects of a 

potato famine, for which late blight was the proximate cause (Bourke, 1993). 

Even to date, devastating late blight epidemics on tomato and potato are still a 

global occurrence (Fry, 2008). In eastern-Africa, the situation with severe late 

blight epidemics is the same despite endless efforts by scientists and other 

stakeholders to develop and implement various disease management options. 

Their struggles have often been rendered ineffectual due to the ability of P. 

infestans to rapidly overcome common control methods. 

In this thesis, I propose that late blight management can be greatly enhanced 

if an understanding of the causal pathogen population is used in the development 

of the control strategy to be employed. Knowing the exact strains of P. infestans 

causing late blight in eastern-Africa, together with their genotypic and 

phenotypic traits, will enable stakeholders in making better-informed disease 

management choices that are suited for the local pathogen populations.  

  

1 Introduction 
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2.1 History and origin 

The origin of P. infestans is disputed to be either central Mexico or the Andean 

region in South America. Mexico is proposed to be the center of origin due to 

the occurrence of the two mating types, high genetic and phenotypic diversity as 

well as the presence of two close relatives, Phytophthora mirabilis and 

Phytophthora ipomoeae, in that region (Goss et al., 2014; Grünwald and Flier, 

2005). However, Gómez-Alpizar et al. (2007) reports that P. infestans came 

from the Andes since that is the center of origin of cultivated potato. Studies 

there have revealed variations of Andean P. infestans lineages as well as the 

presence of Phytophthora andina, a close relative of P. infestans. In eastern-

Africa, the disease was first found in Kenya by Dr. Nattrass in 1941. A year later, 

late blight had spread to the foothills of Mount Elgon on the Kenya-Uganda 

border from where it spread westward into Uganda and into the democratic 

republic of Congo and finally southward into Tanzania (Natrass, 1944). 

2.2 Taxonomy and Biology 

The organism, P. infestans, is a eukaryote in the kingdom Stramenopila in the 

phylum Oomycota. Phytophthora is the largest genus in the order 

Peronosporales and as an oomycete, P. infestans is not considered as a fungus 

since oomycetes have cell walls composed of cellulose and store their energy as 

starch (Rossman and Palm, 2006). The Phytophthora genera contain more than 

140 species which are divided into ten phylogenetic clades comprising both 

saprophytic and plant pathogenic species (Yang et al., 2017). Of these clade 1 

comprises 13 species including P. infestans (Kroon et al., 2012). Other species 

2 Phytophthora infestans and the late 
blight disease 
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in clade 1 that are said to be close relatives of P. infestans include P. andina, that 

has actually been shown to be a hybrid between P. infestans and an unknown 

clade 1c parent (Goss et al., 2011), as well as P. ipomoeae (Flier et al., 2002). 

As a clade 1c member, P. infestans has amphigynous antheridia and 

semipapillate zoosporangia, which develop on distinctly differentiated 

sporangiophores (Kroon et al., 2012). 

 The biology of P. infestans has characteristics similar to other oomycetes 

that are diploid and coenocytic, lack chitin in the cell walls and have the ability 

to produce motile, biflagellate zoospores (Fry et al., 1993). Phytophthora 

infestans is heterothallic with two mating types, designated A1 and A2, and can 

undergo either sexual or asexual reproduction. The two sexual structures, 

antheridia (male organ) and oogonia (female organ), are induced if the two 

mating types coexist and infect the same plant tissue or are grown on the same 

artificial media. Fusion of the antheridia and the oogonia results in the formation 

of oospores, the sexual spore. The oospores possess a thick walled resistant cell 

which provides a means of long-term survival (Mayton et al., 2000). Since the 

oospores are formed via genetic fusion, they provide a means of genetic 

variability. They also act as initial source of inoculum to start an early infection 

since they are mainly soil-borne (Lehtinen and Hannukkala, 2004; Andersson et 

al., 1998; Evenhuis et al., 2007). The oospore germinates either directly by a 

germ tube with or without a sporangium on the end, or indirectly by the 

formation of a vesicle with zoospores. The ability to cause infections directly or 

indirectly is a trait that is temperature dependent with zoospores being produced 

at cooler temperatures (Fry and Grünwald, 2010). In the absence of both mating 

types, P. infestans can form specialized hyphae called sporangiophores, which 

emerge through the stomata of the stems and the leaves to asexually form 

sporangia. Zoosporangia can be formed in the presence of leaf wetness which is 

common in the morning when it’s getting warmer and there is a drop in humidity. 

Due to the high number of the asexual sporangia which play the major role in 

spreading P. infestans, dispersal by wind or rain to nearby plants or neighbouring 

fields is very rapid (Fry and Goodwin, 1997). In fact, the disease has been 

referred to as a community disease due to its ability to spread rapidly from one 

field to another. The ability of P. infestans to be airborne plays an important role 

in late blight epidemiology as inoculum can easily get deposited in neighbouring 

fields to start an epidemic. However, long distance dispersal of the pathogen is 

hindered by the inability of the sporangia to survive the effects of solar radiation 

and low air humidity (Mizubuti et al. 2000). When zoospores or sporangia from 

infected foliage come into contact with tubers (Lacey, 1965; Lacey, 1967), 

infection of the tubers through buds, lenticels or wounds results (Jones et al., 
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1912; Zan, 1962). Blighted potato tubers provide a mechanism for survival 

between cropping seasons as well as long distant spread of the pathogen. 

Phytophthora infestans has also been classified according to physiological 

races depending on the ability to attack different cultivars of the same host 

species, each presumably containing single resistance (R) genes. As such, strains 

have been classified into races depending on their ability to infect known 

Solanum demissum resistance genes (Jones et al., 1912). Race 0 strains cannot 

attack cultivars with any of the resistance genes. Races able to attack one or two 

R-genes are regarded as simple while those with a wider virulence spectra are 

complex (Leonards-Schippers et al., 1992). However, there are suggestions to 

revise the race nomenclature since it only applies to potato cultivars comprising 

the S. demissum R-genes and many other wild Solanums have been used to obtain 

other resistance genes (Vleeshouwers et al., 2011; Pankin et al., 2012). 

2.3 The hosts 

In eastern-Africa, late blight is continually reported on potato and tomato but in 

1950, P. infestans was reported to appear on the leaves of perennial woody 

Solanums (S. indicum, S. panduraeforme and S. incanum) and a tree-like S. 

aculeastrum (Nattrass and Ryan, 1951). The importance of the wild Solanums is 

that they thrive in the wetter forest areas where late blight conditions are always 

favourable and hence, they could act as sources of lasting inoculum. In other 

regions of Africa, other Solanums like Petunia x hybrida (Hort) and garden 

huckleberry (Solanum scabrum Mill.) have been reported to be infected by P. 

infestans (Pule et al., 2013; Fontem et al., 2005). The presence of late blight on 

Petunia x hybrida is of economic importance under greenhouse conditions 

(Deahl et al., 2003; McLeod and Coertze, 2006). On garden huckleberry, a 

popular traditional vegetable crop in west and central Africa, P. infestans isolates 

on this host readily infect potato and tomato indicating the occurrence of 

epidemics from cross-infections (Fontem et al., 2005).  

Potato and tomato can be found growing all year round in eastern-Africa due 

to suitable tropical conditions. The presence of the two hosts all the time makes 

it easy for P. infestans to survive between seasons. As a consequence, wherever 

potato or tomato plants are found, some late blight attacks can always be 

observed, except during extremely dry seasons. When weather becomes 

favourable, pathogen attack can happen at any stage of plant development. 
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2.3.1 Potato 

Potato originated in the Andes of south America (Spooner et al., 2005). The 

British farmers and colonial officials introduced the crop to Kenya and other 

areas of eastern-Africa during the 1880’s (Hijmans, 2001). Late blight on this 

host was first reported on a cultivar Kerr’s Pink whose seed had been imported 

from the United Kingdom for the 1941 cropping season in Kenya (Nattrass, 

1944). The disease completely destroyed two potato cultivars that had been 

grown in the region for a long time and also caused devastating effects to the 

European cultivar Kerr’s Pink. The importation and testing of late blight 

resistant potato cultivars began in 1943 (Wallace and Wallace, 1945) and has 

continued to date. The potato cultivars tested at the time were resistant to attack 

by P. infestans races 0 and 2,4 which were present at the time but eventually new 

races 4; 1,2; 2; and 1,3,4 were reported to attack the potato crop (Wallace and 

Wallace 1945). On potato, the pathogen mostly affects the foliage, but it can also 

affect stolons and tubers (Figure 2). Although tuber blight is not common, 

instances of late blight infected tubers even among ware potato have been found 

(Figure 2d). Tubers get infected during handling and in-store spread of infection 

to healthy tubers is common (Dowley and O'Sullivan, 1991). In fact, tubers are 

a means of long distance dispersal of P. infestans (Abad and Abad, 1997; 

Nyankanga et al., 2004). 

 
Figure 1: Typical late blight symptoms during the early stages of an epidemic (1a); irregular 

necrotic lesions originating from the leaf-stalks (1b); necrotic lesions on the apical stems (1c) 

and brown-rusty symptoms caused by P. infestans on a tuber found amongst ware potato 

traded in an open air market in Kenya (1d). Photos A. Njoroge. 
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2.3.2 Tomato 

Tomato, (Solanum lycopersicum L.) (formerly known as Lycopersicon 

esculentum Mill), is a major vegetable crop worldwide (FAOSTAT, 2011). 

Tomato origins can be traced back to the Andes of South America (Jenkins, 

1948) but there are two competing hypotheses on its domestication, one in Peru 

and another from Mexico (Peralta et al., 2006). It was introduced to Europe in 

the sixteenth century and is thought to have spread to other parts of the world 

from there (Razdan, 2006). In eastern-Africa, late blight on tomato was first 

reported in mid-1940’s and of the blight races reported then, race 3 and 4 were 

identified on tomato (Wallace and Wallace, 1945). Not much on tomato late 

blight has been published for the region but it was reported that the common 

cultivars grown are highly susceptible to P. infestans (Tumwine et al., 2002). A 

host-specialized strain of the US-1 lineage is found on tomatoes in eastern-

Africa (Njoroge et al., 2016; Vega-Sanchez et al., 2000). On tomato plants, P. 

infestans typically attacks the entire plant including the tomato fruits (Figure 3).  

 
Figure 2. Typical late blight symptoms on the leaves of tomato plants (2a, 2b) and on a tomato 

fruit (2c). Photos A. Njoroge. 

2.4 Global populations of Phytophthora infestans  

Migrations of P. infestans from its center of origin to other parts of the world, 

probably starting in the 1970’s, have resulted in changes in global population 

structure of the pathogen (Goodwin, 1997). In all parts of the world except 

Mexico, which is considered the center of origin, the population was dominated 

by a single A1 mating type lineage that was designated as US-1 (Goodwin and 

Fry, 1994). A migration event brought new genotypes to Europe (Hohl and 

Iselin, 1984), supposedly in a shipment of potato tubers from Mexico to Europe 

in 1976 (Niederhauser, 1991), which rapidly displaced the earlier genotypes 

(Drenth et al., 1994; Fry and Goodwin, 1997; Spielman et al., 1991; Sujkowski 
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et al., 1994). The tell-tale signs of P. infestans population shifts at the time was 

the difficulties encountered while managing potato late blight. In addition to the 

presence of both mating types, isolates resistant to Metalaxyl, a systemic 

fungicide that had provided excellent protection against strains of the US-1 

lineage, arose during the 1980s (Davidse and et al., 1981). Analyses of 

herbarium samples collected between 1845 and 1896 indicated that before the 

dominance of the US-1 lineage, the P. infestans populations in Europe were 

dominated by a single genotype named HERB-1 (Yoshida et al., 2014). The 

HERB-1 lineage persisted for about 50 years before it was displaced by the US-

1 clonal lineage (Yoshida et al., 2014). The US-1 lineage eventually spread 

panglobally from Europe (Goodwin, 1997). It is thus apparent that the P. 

infestans populations in Europe have undergone at least two migration events. 

The first happened in the mid-19th century introducing isolates, which did not 

include the A2 mating type, from the United States into Europe. The second 

event in 1976 introduced isolates of both mating types from Mexico into Europe. 

2.5 P. infestans populations in sub-Saharan Africa 

Through potato seed trade, new genotypes were distributed widely in Europe, to 

South America, North Africa and Asia (Fry et al., 2009). However, the new 

genotypes were not introduced into sub-Saharan Africa (SSA) at that time. Initial 

information from South Africa prior to 1980s show that only the A1 mating type 

was present (Smoot et al., 1958). Other A1 mating type genotypes other than the 

panglobally distributed US-1 lineage, were reported in mid-1990’s in Rwanda 

(Forbes et al., 1998), in early 2000 in Ethiopia (Schiessendoppler and Molnar, 

2002) and in 2007-2009 in Kenya (Pule et al., 2013; Were et al., 2013). 

Dominance of a new A1 mating type lineage in Kenya, designated by Pule et al. 

(2013) as KE-1 and by Were et al. (2013) as the 2_A1 lineage, was reported for 

the first time after the lineage managed to completely displace the US-1 lineage 

on potato in Kenya and eastern Uganda (Njoroge et al., 2016). The KE-1 and the 

European 2_A1 were confirmed to be the same lineage by Njoroge et al. (2016). 

The variation in the P. infestans populations even in SSA is largely caused 

by seed tuber movement. In north Africa, both A1 and A2 mating types 

originating from imported seed from Europe, have been reported (Baka, 1997; 

El-Korany, 1994; Hammi et al., 2001; Sedegui et al., 2000). Though the other 

regions of Africa have been largely spared from the introductions of the new A2 

mating type isolates, many countries are importing seed tubers from Europe and 

new pathogen genotypes via this route is expected to continue. Seed trade is the 

route believed to have brought the 2_A1 lineage into eastern-Africa, and there 

are reports of the presence of the A2 mating type (the 33_A2 genotype, 
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commonly found in Europe) in Nigeria (David Cooke, personal 

communication). Occurrence of the two mating types in SSA, a region that 

struggles to manage late blight might result to unbearable severe epidemics 

should P. infestans reproduce sexually. 

2.6 Management of the late blight disease 

Management strategies for late blight include two main approaches; the 

application of fungicides and host resistance. Additionally, use of disease-free 

tubers for planting and cultural control methods can greatly reduce the early 

onset of disease symptoms. 

2.6.1 The use of fungicides 

To the small-scale farmers in eastern-Africa, the use of fungicides to combat late 

blight seems like an acceptable norm and over-dependency on this practice 

threatens to compromise both the environment and human health. Most growers 

apply fungicides on the crops without personal protective equipment, causing 

them to over-expose themselves to the chemicals (Figure 4a). Large amounts of 

fungicide residues due to frequent applications are always evident on tomato and 

potato plants since growers who plant these crops for commercial purposes leave 

nothing to chance (Figure 4b). Despite the frequent fungicide use, late blight 

epidemics are increasingly more difficulty to manage due to occurrence of 

isolates resistant to modern fungicides hence the emphasis on the need for host 

resistance (Deahl et al., 1993; Goodwin et al., 1996; Grünwald et al., 2001). A 

newer fungicide in the region, Infinito (Fluopicolide and Propamocarb) is 

reportedly not able to manage late blight in the field by growers in Uganda 

(Gerald Baguma, personal communication) as well as in Kenya (Daniel Mbiri, 

personal communication). 

In eastern-Africa, isolates of the US-1 lineage exhibiting high Metalaxyl 

resistance have been reported (Mukalazi et al., 2001). The spectrum for 

fungicide response of the 2_A1 genotypes is yet to be determined but 

considering its rapid spread in a region that heavily relies on chemical control, 

indications are that isolates insensitive to the commonly used fungicides exists. 

The European 33_A2 lineage now in west Africa is associated with reduced 

sensitivity to fluazinam, a non-systemic protectant fungicide but mancozeb, 

another commonly used protectant fungicide, is still effective for its 

management (Serge and Daniele, 2015). Depending on what fungicides are 

commonly used, the appearance of 33_A2 genotypes in west Africa could 

negatively affect the possibilities to manage late blight in SSA. These coupled 
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with other challenges associated with chemical control in the region such as high 

cost of fungicides, fungicide adulteration, the use of low dosages and expired 

products, could result in severe epidemics caused by 33_A2.  

 

 
Figure 3. A grower without personal protective equipment spraying potato plants (3a). A small 

tomato field heavily sprayed with fungicides, the sachets seen on the sticks were the ones 

containing the fungicides (3b). Photos A. Njoroge.  

2.6.2 The use of host resistance  

Host resistance is an observed phenotype in which a pathogen is less able to 

cause disease on the host. Development of durable resistant cultivars would thus 

be key for a sustainable late blight control measure (McDonald and Linde, 2002). 

Importantly, the societal outcry to minimize chemical use to manage diseases 

makes the use of host resistance a priority. Two types of host resistance to late 

blight have been described in potato, horizontal resistance and vertical 

resistance.  

Horizontal or general resistance is said to be polygenic and slows the 

development of the pathogen (Leonards-Schippers et al., 1994; Peralta et al., 

2006; Umaerus and Umaerus, 1994). Since this resistance is strongly correlated 

with maturity type (Bormann et al., 2004; Simko, 2002) it creates problems for 

late blight resistance breeding (Wastie, 1991). 

Vertical or specific resistance confers immunity or near immunity to the plant 

through a hypersensitive response and is said to be monogenic. The genes 

conferring this resistance are called R-genes and are thought to produce proteins 

involved in pathogen recognition and the initiation of defense responses. In the 

early 1900’s, breeders introgressed R-genes from the Mexican wild species 

Solanum demissum Lindl. into cultivated potato with great success (Müller and 

Black, 1952). Unfortunately, these genes were readily overcome by P. infestans 

races when deployed in potato cultivars making the resistance they confer to 
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have poor durability (Wastie, 1991). Although these R-genes have contributed 

little to practical late blight management, reports indicate that such R-genes 

might have a beneficial effect as resistance in clones with field resistance 

increases if they also have R-genes (Stewart et al., 2003). Moreover, stacking R-

genes in a single crop variety has been shown to increase disease resistance 

(Haesaert et al., 2015; Haverkort et al., 2016). 

As races of P. infestans overcame the resistance obtained from S. demissum, 

researchers turned to other Solanum species for resistance genes. Such 

alternative R-genes includes Rpi-ber from Solanum berthaultii (Ewing et al., 

2000; Rauscher et al., 2006), Rpi-moc1 identified in Solanum mochiquense 

Ochoa (Smilde et al., 2005), Rpi-phu1 from Solanum phureja Juz. et Buk. 

(Śliwka et al., 2006) and Rpi1 from Solanum pinnatisectum Dun. (Kuhl et al. 

2001). Solanum bulbocastum has yielded several R-genes, Rpi-blb1 / RB (Song 

et al., 2003; van der Vossen et al., 2003), Rpi-blb2 (van der Vossen et al., 2005) 

and Rpi-blb3 (Park et al., 2005). Additionally, Rpi-vnt1.1, Rpi-vnt1.2 and Rpi-

vnt1.3 were identified from Solanum venturi (Foster et al., 2009). 

2.7 Engineering host resistance 

Incorporation of resistance to diseases during the development of crop cultivars 

is one of the challenges breeders have to deal with. Conventional breeding 

methods utilizing crosses made between resistant and susceptible parents and 

thereafter evaluating the large progeny populations under disease conducive 

conditions has been the path to incorporating disease resistance genes into 

plants. Currently, genetic modification (GM) techniques has allowed the 

introduction of genetic material into existing potato cultivars to the absolute 

minimum required to achieve the desired trait (Haesaert et al., 2015). Cisgenes, 

the natural indigenous potato genes or those from crossable species, can be used 

in breeding programs to make natural crosses with potato (Haverkort et al., 

2016). Cisgenic plants are highly similar to natural potato, especially if foreign 

genetic material such as selectable marker is absent, and the only difference is 

the way by which the genes are introduced (Haesaert et al., 2015). A genetic 

engineering approach also allows the efficient transfer of multiple R-genes. 

Stacking of several cisgenes is expected to confer durable resistance to late blight 

and this strategy should avert what happened in the past when resistance of 

single genes was broken rapidly. However, to be able to predict and monitor the 

durability of the cisgenes, prior information on the prevailing avirulence (Avr) 

genes in the pathogen population is paramount. This is because R-genes must be 

chosen such that they recognize different avirulence genes in the pathogen so as 

to have a wider resistance spectrum. 
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Genome editing using the CRISPR (Clustered Regularly Interspaced Short 

Palindromic Repeats)/Cas9(CRISPR-associated protein-9 nuclease) would be 

more preferable as it based on RNA-guided engineered nucleases rather than the 

introduction of foreign genes. The transfer of transgenes usually involves the use 

of selectable markers to monitor the transfer success rates. Since the markers are 

mostly antibiotics, this raises a lot of societal concerns as there is fear that these 

will affect the human health. Since resistance to P. infestans is recognition-

dependent where the pathogen must be recognized by the host R-genes, genome 

editing of R-genes might be difficult. In that case therefore, the CRISPR-cas9 

technology can only be used to edit the susceptibility genes in the host as altering 

the resistance genes could result to a gain of virulence in the pathogen. However, 

it is not known if changing the susceptibility genes will result to complete 

resistance phenotypes as seen from gene stacking. Attempts to develop a 

CRISPR/Cas for editing the P. infestans genome have not been successful yet 

(van den Hoogen and Govers, 2018). 

2.8 Recognition dependent disease resistance 

Plants have the capacity to resist potential attack via a highly effective defence 

system that involves recognition of the pathogens through strategies involving 

both conserved and variable pathogen elicitors (Dodds and Rathjen, 2010). The 

first line of the plants’ immune defence involves recognition of conserved 

elements of the invading microbe, designated as microbe-associated molecular 

patterns (MAMPs) which includes bacterial flagellin or fungal chitin, by the 

plants non-specific receptor proteins called pattern recognition receptors (PRRs) 

(Boller and Felix, 2009; Sharpee and Dean, 2016). Plants also respond to 

endogenous molecules such as cell wall or cuticular fragments, called danger-

associated molecular patterns (DAMPs), that are released by the pathogen during 

invasion (Dodds and Rathjen, 2010). Molecular transmission between PRRs and 

MAMPs, or between PRRs and DAMPs, triggers a defence response called 

MAMP-triggered immunity (MTI), or DAMP-triggered immunity (DTI), which 

is able to prevent attacks by a wide range of pathogens. However, in the 

continuous coevolution between microbes and their associated hosts, pathogens 

acquired the ability to deliver secreted proteins, called effectors, that not only 

block MTI and DTI but also alter processes like host metabolism for the benefit 

of the invading pathogen (Bozkurt et al., 2012; Sharpee and Dean, 2016). As a 

counter measure to this, the plants have developed surveillance proteins, the 

products of their R-genes, to directly or indirectly monitor the presence of the 

pathogen effector proteins and avoid pathogen infection, a condition called 

effector-triggered immunity (ETI) (Jones and Dangl, 2006). ETI involves 
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detection of specific avirulence (AVR effectors) directly through direct ligand-

receptor interactions or indirectly through detection of effector action on host 

targets (Dodds and Rathjen, 2010; Liu et al., 2013). The ETI response often 

results to a programmed cell death (PCD) (Jiang and Tyler, 2012) manifested by 

a hypersensitive response (HR) localized to infection sites to kill the invading 

pathogen (Chisholm et al., 2006; Jones and Dangl, 2006). MTI and DTI are 

generally effective against non-adapted pathogens and results to non-host 

resistance whereas ETI is only effective against adapted pathogens. The outcome 

of these interactions largely depend on the elicitor molecules present in each 

infection (Dodds and Rathjen, 2010). 

2.9 Virulence activities of pathogen effectors 

Pathogens manipulate the defence response in plants via secretion of virulent 

effector molecules resulting in effector-triggered susceptibility (ETS) (Jones and 

Dangl, 2006; Dodds and Rathjen, 2010). The effectors operate at two main 

locations: in the host cell, the cytoplasmic space, and in the apoplastic space 

between adjacent cells (Giraldo and Valent, 2013). So, two classes of effector 

proteins, apoplastic effectors, secreted into plants’ extracellular space, and 

cytoplasmic effectors, translocated inside the plant cell, are used by the pathogen 

to target distinct sites in the host plant (Birch et al., 2006; Kamoun, 2006).  

The cytoplasmic effectors alter plant metabolism, signaling pathways and 

gene transcription to manipulate the plant defence response (Sharpee and Dean, 

2016). During the alteration to the plant metabolic pathway, the pathogen 

effectors reduce salicylic acid (SA) levels hence lack of expression of 

antimicrobial PR (pathogenesis-related) genes in the unaffected host tissue to 

protect the rest of the plant from infection (Fu and Dong, 2013). SA, an essential 

plant hormone that mediates MTI, is a key player for systemic acquired 

resistance (SAR) which prepares the plant for pathogen attack (Fu and Dong, 

2013; Sharpee and Dean, 2016). Equally, effectors affect jasmonic acid (JA) 

signaling, another important plant hormone involved in plant defence responses, 

that contributes to ETI (Liu et al., 2016). Effectors have been shown to suppress 

RNA silencing thus enhancing susceptibility to Phytophthora infections (Qiao 

et al., 2013; Qiao et al., 2015). Filamentous pathogens have also been shown to 

use their effectors to directly affect transcription factors and protein kinases in 

order to down-regulate genes involved in defence responses (Sharpee and Dean, 

2016; Dodds and Rathjen, 2010). Cytoplasmic effectors that trigger crinkling 

and necrosis of leaves, the so called crinklers or CRN proteins (Torto et al., 

2003), affect the reactive oxygen species (ROs) whose role is to damage the 

pathogen hence playing an important function in MTI (O’Brien et al., 2012). 
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Effectors have the ability to physically block or alter the necessary components 

of defence from reaching their intended target (Sharpee and Dean, 2016). 

 The apoplastic effectors include enzyme inhibitors and small cysteine-rich 

proteins that contribute to counter-defense by inhibiting host enzymes that 

accumulate in response to pathogen infection (Tian et al., 2005; Tian et al., 2004; 

Rose et al., 2002). The pathogens use these effectors to protect the invading 

hyphae from plant-produced hydrolytic enzymes hence blocking the triggering 

of MTI (De Jonge et al., 2010). Some effectors achieve virulence by competing 

for chitin-elicitor binding PRR proteins that mediate MTI through the 

recognition of chitin, a MAMP, during pathogen invasion (Kaku et al., 2006; 

Miya et al., 2007; Lo Presti et al., 2015). Other effectors have the capacity to 

inhibit glucanase enzymes, produced by the plant, in order to block MTI and any 

other anti-microbial activity the enzymes might have (Rose et al., 2002; 

Sánchez-Rangel et al., 2012). The papain-like cysteine proteases (PLCP), 

secreted from the plant into the apoplast during infection, are activated by the 

presence of salicylic acid and are able to induce PR-gene expressions and trigger 

host cell death during pathogen attack (van der Hoorn and Jones, 2004). A large 

number of filamentous pathogen effectors inhibit the activity of numerous 

PLCPs. An example is the AVRblb2 effector of P. infestans which accumulates 

around haustoria during infection and interacts with cysteine protease C14, 

preventing its secretion into the apoplast and thus rendering plants susceptible 

to late blight (Bozkurt et al., 2011). 

2.10  Pathogen effector evolution 

The direct and indirect interaction mechanisms between AVR and R proteins as 

well as the virulence functions of AVR proteins affect Avr gene evolution in 

nature (van der Hoorn and Kamoun, 2008). In the co-evolutionary battle between 

plants and their associated pathogens, generally pathogens have an added 

advantage relative to their host due to their shorter generation time and large 

population sizes (Zhan et al., 2014). The co-evolution process is thought to occur 

in natural ecosystems where plant and pathogen exhibit gene-for gene 

interactions (McDonald, 2004). For pathogens to survive upon deployment of 

new R-genes, they must transform new effector genes (Avr gene mutation) 

governing their virulence. The virulent pathogen races in turn gets selected 

resulting in the breakdown of host resistance (Chattopadhyay and Singh, 2017). 

In intensified agricultural systems, there is genetic uniformity in the host 

populations which results to continuous selection for virulent pathogen races 

(Stukenbrock and McDonald, 2008). Some virulence evolution mechanisms 

include diversifying selection and polymorphism with high rates of non-
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synonymous substitutions, which alter amino acid sequences of pathogen 

avirulence proteins and consequently loss of recognition in response to the 

deployed R-genes (Ravensdale et al., 2011; Giraldo and Valent, 2013). 

The best-studied cytoplasmic effectors of the class RxLR-dEER gene family, 

named after a four amino acid (Arginine, any amino acid, Leucine, Arginine 

:RxLR) motif common among oomycete avirulence (AVR) proteins, are 

recognized inside the host cells (Rehmany et al., 2005). The RxLR-effectors 

have an N-terminal domain that consists of a signal peptide, an RxLR-like motif, 

an optional amino acid motif (consisting of two glutamic acid residues and an 

arginine residues, often preceded by an aspartic acid residue) known as the 

dEER-motif, and a carboxyl (C)-terminal effector domain (Stassen and Van den 

Ackerveken, 2011). The N-terminal motif is similar in sequence, position and 

function to the host-cell targeting signal (PEXEL/HT motif) required for 

translocation of proteins from animal parasitic plasmodia into red blood cells 

(Bhattacharjee et al., 2006; Birch et al., 2006). The crinkler effectors motif, also 

called the CRN motif, occurs more frequently in oomycetes (Schornack et al., 

2010). The RXLR-dEER and CRN motifs function as signals for translocation 

into the host cytoplasm (Whisson et al., 2007; Oliva et al., 2010). The C-terminal 

region of the effectors is associated with the biochemical activity of the proteins 

inside plant cells (Schornack et al., 2009) and it is the main target for the adaptive 

evolution forces that drive the antagonistic interplay between pathogenic 

oomycetes and their host (Win et al., 2007). 

Single nucleotide-polymorphisms (SNPs) within allelic forms of pathogen 

effectors, as is the case with P. infestans AVR3a effector, may give rise to 

proteins with changes in the amino acid which retain virulence function of the 

effector (Armstrong et al., 2005; Bos et al., 2010). Also, some effectors have 

achieved virulence by loss of a functional Avr gene, as reported for the truncated 

Avr4 effector gene in P. infestans resulting from frame-shift mutations in the 

open reading frame (van Poppel et al., 2008). Some effector genes are 

maintained as diverse variants and lack of specific variants results in virulence 

on R-genes, as is the case with the ipiO gene of P. infestans (Champouret et al., 

2009). Equally, presence of some allele variants, as reported for Avrblb1 and 

Avrblb2 in P. infestans, suggests they have evolved to avoid recognition by the 

cognate Solanum R-genes (van Poppel et al., 2008; Oh et al., 2009). Gene 

silencing has also been shown to be a mechanism of effector virulence evolution 

in Phytophthora plant pathogens (Foster et al., 2009; Vetukuri et al., 2013).  
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In eastern-Africa, late blight still devastates potato and tomato production 

systems since it was first reported in 1941. In Uganda, potato was practically 

wiped out by late blight in 1946 (Akimanzi, 1982). In Kenya, losses of about 40-

80% have been reported depending on the cultivars and prevailing weather 

conditions (Lung’aho et al., 2008). Late blight was introduced into Rwanda and 

Burundi from Kenya and the disease is still very difficult to manage. Due to high 

disease pressure in the highland tropics, some farmers apply fungicides more 

than ten times per growing season (Namanda et al., 2004). The disease thus 

brings multiple costs plus the negative impact of pesticide use on human health 

and the environment. 

The epidemiology and management of late blight disease is largely 

dependent on pathogen population structure and the host-pathogen interactions. 

This study has therefore monitored the pathogen population dynamics in eastern-

Africa by examining isolates collected from diseased potato and tomato hosts 

over different seasons in different countries. The prevailing pathogen genotypes 

were identified genetically using microsatellite markers and mitochondrial DNA 

haplotypes while pathogen factors that may help the pathogen overcome 

resistance genes were screened with effector-specific primers. The fitness of the 

different genotypes was tested phenotypically by host inoculation studies under 

laboratory conditions and the evaluation of host resistance levels were assessed 

under natural infection pressure in field trials. The results will help to re-evaluate 

disease management measures by incorporating pathogen genetic and 

phenotypic traits for a better pathogen-informed control strategy. It is now 

possible to generate pathogen population data with the current advances in 

molecular biology which allow tracking migrations and changes in pathogen 

3 Population structure and pathogenicity 
evolution of Phytophthora infestans 
affects epidemiology and management 
of late blight disease 
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composition using molecular typing tools. The insights from this research will 

help to improve food security in the region as a result of better management of 

late blight. Moreover, the information will be used to build a regional database 

for future disease surveillance. 

3.1 Statement of the problem 

Although varietal resistance to late blight does exist, farmers in eastern-Africa 

still grow potato cultivars that have low to moderate levels of resistance because 

these cultivars are highly valued by consumers (Nyankanga et al., 2004). For 

example, Victoria is a preferred cultivar grown in Uganda and Rwanda due to 

its short maturity period, but it has succumbed to P. infestans pathotypes over 

the years (Mukalazi et al., 2001). Even though other cultivars with some level of 

field resistance still exist, they are not commonly grown by farmers. In locations 

where disease pressure is high, a susceptible potato cultivar may require 

fungicide applications every 3–5 days. These foliar applications of fungicides 

result in very high input for pesticides in the potato and tomato production. 

Moreover, low affordability of fungicides for smallholder farmers and sub-

optimal application practices results in frequent crop losses. Several resistant 

potato cultivars have been developed over the years but the vast majority of them 

are short-lived since the pathogen has a high potential to evolve new virulence 

genes (Erwin and Ribeiro, 1996) as late blight is a multi-cyclic disease with P. 

infestans completing multiple life cycles in a season. The biggest challenge of 

managing late blight therefore is the ability of P. infestans to undergo major 

population shifts in agricultural systems via the successive emergence and 

migration of asexual lineages (Cooke et al. 2012). Despite the considerable 

attention to introduction of potato clones and their evaluation for resistance, 

durable host resistance has been difficult to develop via conventional methods. 

Pyramiding of R-genes and their careful deployment over time is a promising 

strategy for reducing the devastating outcomes of late blight (Jo, 2013). The use 

of cultivars with several R-genes stacked together will minimize chances of P. 

infestans easily overcoming host resistance governed by single R-genes and this 

could be an approach to more durable host resistance to late blight. All these 

coupled with continuous assessment of the prevailing pathogen population in the 

eastern-Africa region, to better understand the genotypic and phenotypic traits 

of the P. infestans strains present in the region, will aid in re-designing late blight 

management strategies that are workable for the region.  
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This study was designed to assess the pathogen population shifts in eastern-

Africa and screen for pathogen effector genes that may help P. infestans 

overcome deployed host resistance. An understanding of pathogen population 

dynamics is sub-Saharan Africa will aid in designing disease management 

strategies that are suited for P. infestans populations in the region thereby 

effectively reducing losses due to late blight. Host resistance durability, for 

example, is wholly dependent on the dynamics of virulence in the local strains 

of P. infestans. Equally, some P. infestans strains in certain areas are insensitive 

to certain fungicide active ingredients. As such, there may be no resistance genes 

or fungicides that are globally effective. Reports of a new pathogen lineage of 

P. infestans in Kenya catalysed research on the late blight pathogen in the wider 

eastern-Africa region represented here by five countries namely, Kenya, 

Uganda, Tanzania, Rwanda and Burundi. The research commenced by 

quantifying the existing host resistance to P. infestans in some common potato 

cultivars grown in eastern-Africa (Paper IV). The objective was to use the late 

blight resistance ratings from different potato cultivars to assess how the shifting 

pathogen population would affect the existing host resistance. Pathogen 

population studies are rare for the region and the existing ones are mainly for 

individual countries or specific areas within a country. We assessed the 

population structure of the P. infestans using neutral markers to map what 

lineages were causing late blight in the different countries (Paper I). New P. 

infestans lineages are credited with increased levels of pathogenicity hence the 

need to investigate how far the new lineage had spread for better disease 

management designs. Certain phenotypic traits confer competitive advantages 

of new P. infestans lineages over the endemic ones in many regions. To try and 

understand why a new lineage had succeeded in competing and establishing 

itself in the region, we tested some aggressiveness traits which we thought might 

partly contribute to its fitness (Paper II). 

4 Aims and scope of thesis 
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 Due to continuous breakdown of host resistance based on single R-genes, 

stacking several R-genes from wild potato relatives is an improved breeding 

strategy. Recognition dependent disease resistant is becoming increasingly 

important in the breeding for late blight resistant potato but information on 

effectors of targeted pathogen population is essential to monitor emergence of 

virulent pathogen races. The international potato center (CIP) has engineered a 

late blight transgenic potato for Africa with a stack of three R-genes obtained 

from wild potato relatives. The assumption that these genes will recognize the 

P. infestans isolates needed validation by screening the eastern-Africa P. 

infestans population for the presence and absence of the corresponding effector 

genes. Our study tested the effectors matching the R-genes in the CIP material, 

and, in addition, some R-genes present in a conventionally bred potato with a 

stack of five resistance genes, cv. Sarpo Mira, to determine if the R-genes were 

functional for eastern-Africa (Paper III). The functionality of the R-genes in cv. 

Sarpo Mira was predicted depending on whether the matching pathogen effector 

genes displayed sequence polymorphisms.  
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The study involved sampling of diseased leaflets of potato and tomato leaflets in 

the major potato growing areas of five eastern-Africa countries (Kenya, Uganda, 

Tanzania, Rwanda and Burundi). In all the countries, the survey involved 

collections of single leaf lesions on FTA cards (Figure 4) obtained by crushing 

pieces of leaflets cut from the margins of actively spreading foliar blight lesions 

onto the cards and air-drying them before storage at room temperature. The FTA 

card samples were used for microsatellite genotyping as well as mitochondrial 

DNA haplotyping (Paper I). In Kenya and Uganda, additional sampling of 

infected potato leaflets with single lesions was carried out to isolate live samples 

of P. infestans for phenotypic assessment (Paper II). All P. infestans isolates in 

culture were studied in their country of origin (Paper II). Additionally, samples 

were collected in RNAlater solution from Uganda, Kenya, Rwanda and Burundi 

and used for effector gene expressions studies (Paper III). Field evaluations for 

cultivar susceptibility to late blight were only done in southwestern Uganda. The 

highlands of southwestern Uganda provide favourable weather for disease to 

thrive and the potato cultivars present in Uganda are also found in majority of 

the countries in eastern-Africa (Paper IV). 

 
Figure 4. A potato plant with single late blight lesions on the leaflets that were sampled on the 

FTA card and put under tubers slices for P. infestans isolations. Photos A. Njoroge. 

5 Methodology 
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Late blight infected tomato plants were only sampled if they were found 

growing within the potato growing areas. Volunteer tomato plants with no 

fungicides applied on them were mainly targeted (Figure 5). 

 
Figure 5. Volunteer tomato plants heavily devastated by late blight. Photo A. Njoroge. 
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6.1 Genotyping of Phytophthora infestans in eastern-
Africa reveals a dominating invasive European 
lineage (Paper I) 

In the study reported here, we genotyped 1093 potato and 165 tomato samples 

from five eastern-Africa countries (Kenya, Uganda, Rwanda, Burundi and 

Tanzania) between 2013 and 2016. The results revealed the dominance of a 

European lineage, named 2_A1. This lineage is believed to have been introduced 

into Kenya from Europe via import of potato seed tubers although the exact time 

of introduction is unknown. However, estimates of its arrival are around late 

2000’s since it was first detected in 2007 in only two fields in Kenya (Pule et al., 

2013). Additionally, two years after it was first detected, the 2_A1 lineage was 

found in more fields than the US-1 lineage in a subsequent study conducted in 

2009 (Were et al., 2013). Our current study indicates that the 2_A1 lineage is 

not as diverse as the earlier dominating US-1 lineage. This supports the 

assumption that US-1 lineage has been present in the region for a long period of 

time, maybe even since the first late blight occurrences (Paper I). The US-1 

lineage exhibited 85% multilocus genotypes (MLGs) diversity compared to 36% 

in the 2_A1 lineage. This indicates an accumulation of mutations which other 

than exhibiting large genotype diversity of the lineage, may have resulted to a 

progressive decline in the fitness of the US-1 as explained by Muller’s Ratchet 

effect (Goodwin, 1997), which could partially explain the rapid takeover by a 

fitter 2_A1. 

Overall, the genetic diversity of the P. infestans population in eastern-Africa 

is high (Table 1). Of the 773 samples of the 2_A1 lineage, 278 unique MLGs 

were obtained and only three of these occurred in three consecutive years, 2014-

2016. Also, of these 278MLGs, seven similar MLGs occurred in three countries 

6 Results and discussions 
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with two of them appearing in Uganda, two in Kenya and three in Burundi. For 

a lineage that is new in a region, lesser diversity was expected and possibly a 

high number of MLGs shared amongst the countries. However, even at the time 

of the first discovery of the 2_A1 lineage in Kenya, relatively high diversity was 

evident (Pule et al., 2013). Also, of the 204 MLGs obtained from the 240 US-1 

samples, only two of them occurred in subsequent years. One of the MLG 

occurred in 2014/2015 and the other in 2015/2016 indicating the higher 

variability of the US-1 genotypes in any subsequent years. However, no US-1 

MLGs were shared amongst the five countries. This is probably expected of an 

old US-1 lineage which has co-evolved over the years and has been shaped by 

genotype by environment (GxE) interactions in the individual countries.  

Table 1. The multilocus genotype diversity found in the Phytophthora infestans 

subpopulations on potato and tomato from samples collected between 2014-2016. 

Population Na eMLGb Hexpc 

2_A1 potato 763 22.2 0.498 

2_A1 tomato 31 27.0 0.508 

US-1 Potato 161 29.9 0.527 

US-1 tomato 80 28.9 0.497 

 
a number of samples representing each subpopulation; 

b expected number of MLGs for each subpopulation at largest shared sample size; 

c Nei’s gene diversity showing average genetic diversity per subpopulation. 

 

Our study has also indicated a possible change in host-specialization of P. 

infestans lineage in eastern-Africa. Studies conducted in the region, including 

the current one, have showed that US-1 has genotypes specialized on potato and 

tomato (Njoroge et al., 2016; Vega-Sanchez et al., 2000). In the study reported 

here, discriminant analysis of principal components (DAPC) showed that the 

US-1 genotypes on potato formed distinct clusters away from the tomato 

genotypes (Figure 5, Paper 1). None of the US-1 MLGs were shared between 

potato and tomato. We also found 2_A1 genotypes for the first time on tomato 

in Kenya. The 2_A1 genotypes on potato and tomato clustered together 

indicating genetic similarity (Figure 5, Paper 1). Seven MLGs of the 2_A1 

lineage were found on potato and tomato. The similarity of the tomato and potato 

2_A1 genotypes was found not only in Kenya since two of the seven MLGs 

appeared on potato in Uganda and three in Burundi. It is yet to be determined if 

infecting tomato with 2_A1 genotypes originating from potato causes less 

abundant sporulation and induces dark pigmentation on the potato leaves, a 

characteristic that has been reported to be stable and sufficient to differentiate 
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isolates belonging to potato or tomato populations of P. infestans (Vega-Sanchez 

et al., 2000). 

The US-1 isolates from Tanzania had unique genotypes only present in that 

country. This was due to the presence of private alleles in one of the 

microsatellite markers. While this might indicate that the US-1 population in 

Tanzania could have been introduced from a different source, the history of late 

blight introduction in eastern-Africa (Cox and Large, 1960) seems to negate this 

line of thoughts. Moreover, the US-1 samples from potato and tomato from 

Tanzania clustered separately despite sharing the same private alleles which 

indicates existence of host specialization of the P. infestans in this country 

(Figure 2, Paper I). While similar potato cultivars are found growing in eastern-

Africa, Tanzania seems to have a few other unique potato cultivars. Pathogen 

population structure can be influenced by its interactions with the host R-genes. 

We assume the genetic uniqueness of the Tanzania P. infestans population might 

be shaped by existing R-genes in that country. However, no reports linking 

variability of neutral markers to pathogen-host interactions exist hence we are 

not able to verify our claim. Nonetheless, the microclimate in Tanzania although 

unknown to us, might influence the genetic structure of P. infestans there. 

Potato tuber movement is believed to be route that has enabled the 2_A1 

lineage to establish in all the countries included in the present study. There is no 

formal seed tuber trading in the region but movement of ware potato to 

neighbouring countries is a frequent occurrence. For example, traders in 

southwestern Uganda will sell their freshly harvested potato tubers to Rwanda. 

Should any of these tubers carry infections of any potato pathogen, these biotic 

agents will be transported to the receiving country. Moreover, during conflicts, 

people move with farm produce across countries, which is another possible route 

for human-mediated pathogen movement. From our study, migration patterns 

were however unclear, since samples from countries that were farther apart, 

Kenya and Burundi, were more closely related than those from countries sharing 

land borders. Transfer of airborne inoculum between countries sharing land 

borders is however the likely route that has enabled the 2_A1 lineage to rapidly 

establish and dominate in all the studied countries. 

When it comes to chemical control, most growers combine fungicides with 

the same mode of action, which can increase the risk of fungicide tolerance 

development in the P. infestans population. A high proportion of Metalaxyl 

resistant US-1 genotypes has also been reported in the region (Mukalazi et al., 

2001). The presence of more aggressive strains of P. infestans, like the European 

2_A lineage, in a region that employs suboptimal disease management practices, 

can result in late blight epidemics that are more difficult to manage.  
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6.2 Greater aggressiveness in the 2_A1 lineage of 
Phytophthora infestans may partially explain its rapid 
displacement of the US-1 lineage in east Africa 
(Paper II) 

The displacement of the US-1 clonal lineage of Phytophthora infestans by the 

European 2_A1 lineage has been very rapid. Within a period of four years after 

the first discovery of 2_A1, complete displacement of the US-1 lineage on potato 

was evident in Kenya and eastern-Uganda (Njoroge et al., 2016). The ability of 

a pathogen genotype to displace other genotypes depends on its fitness, i.e, its 

ability to outcompete and contribute to the subsequent gene pool (Orr, 2009). 

Aggressiveness is one component of pathogen fitness and it refers to the 

quantitative components of the host-pathogen interactions (Andrivon et al., 

1993). The US-1 population has presumably been present in easterns-Africa 

since the introduction of the disease in 1941 and it exhibits traits, like high 

Metalaxyl resistance, that would favour its competitiveness against other 

lineages (Mukalazi et al., 2001). Moreover, it has adapted to, and co-evolved 

with many different potato cultivars grown in eastern-Africa, most of which 

were released as resistant cultivars but eventually succumbed to late blight 

(Byarugaba et al., 2013; Olanya et al., 2001). This means US-1 has a wide 

virulence spectrum against the host resistance genes deployed in eastern-Africa. 

However, in many parts of the world, an increased problem of controlling late 

blight coincides with the displacement of the US-1 lineage by new more variable 

P. infestans populations (Spielman et al., 1991). This is because the new 

pathogen populations are marked by more aggressive genotypes of P. infestans 

(Day and Shattock, 1997). This is a parallel to the displacement of the US-1 

lineage by the more aggressive 2_A1 lineage in eastern-Africa. 

In this study, we quantified components of aggressiveness, namely: lesion 

size, latent and incubation periods for 2_A1 and US-1. The experiment was 

conducted in Kenya and Uganda on the detached leaflets of the potato cultivars 

Kachpot-1 and Sarpo Mira, and it revealed that 2_A1 genotypes were more 

aggressive than US-1 for all the aggressiveness components tested. For the leaf 

lesion sizes, the US-1 genotypes caused lesions that were 25% smaller than the 

2_A1 genotypes. Equally for the incubation and latent periods, the 2_A1 

genotypes produced late blight lesions and new sporangia in a shorter time 

compared to the US-1 genotypes. 

We further tested the ability of the 2_A1 genotypes to infect tomato (Figure 

6) since at the time of this study, no 2_A1 genotypes had been reported on tomato 

in the field. Host-specialization of the US-1 lineage on potato and tomato has 

been reported in eastern-Africa (Vega-Sanchez et al., 2000) as well as in other 
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parts of the world (Oyarzun et al., 1998; Ghimire et al., 2003). In eastern Uganda, 

the 2_A1 lineage had been found on potato while all the tomato isolates there 

were US-1 (Njoroge et al., 2016). This means that the 2_A1 lineage seemed not 

able to replace the host-adapted US-1 on tomato. Since all Kenyan isolates on 

potato were 2_A1, we used these isolates to infect tomato leaflets to assess to 

what extent this lineage would cause leaf lesions on this host (Figure 6). The 

results showed evidence of host preference since the potato 2_A1 isolates caused 

larger lesions on potato than on tomato. Whether the 2_A1 genotypes found on 

tomato in Kenya (Paper I) are host-specific is yet to be determined. 

A tuber-slice assay was also included in this study to determine if the 2_A1 

differed from the US-1 genotypes in their ability to cause tuber blight. New P. 

infestans genotypes have been reported to cause severe foliar and tuber blights 

when compared to the US-1 lineage. For example, the presence of the US-8 

genotype in the USA and the 13_A2 genotype in Europe were characterized by 

increased aggressiveness on potato foliage and tubers (Cooke et al., 2011; 

Lambert and Currier, 1997). Tuber blight is said to act independently of foliar 

blight in potato cultivars even though it is also a factor associated with greater 

pathogenicity in P. infestans lineages (Oyarzún et al., 2011). 

 
Figure 6. Macroscopic (6a) and microscopic(6b) late blight symptoms on tomato detached leaflets 

infected with P. infestans 2_A1 genotypes. Sporulating leaf lesions (6a) and sporangiophores with 

sporangia (6b). Photos A. Njoroge. 

This study found out that though isolates within the US-1 and 2_A1 lineages 

varied significantly for tuber colony sizes, there were no differences between 

US-1 and 2_A1. The foliar and tuber assays were not correlated. Potato cultivars 

can vary greatly, and it might be important to screen a large number of potato 

cultivars grown in the region for tuber susceptibility to late blight. This is 

because tuber blight can have huge impact on potato production and latent 
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infection on tubers is a mechanism for long-term dispersal of new P. infestans 

genotypes (Abad and Abad, 1997; Nyankanga et al., 2004).  

Continuous assessment of the 2_A1 lineage for pathogenicity traits as well 

as for fungicide insensitivity might provide information that can be used to better 

understand late blight epidemics in eastern-Africa. In Kenya, most growers are 

complaining of severe stem blight attacks even after fungicide application on 

their crop. The foliage other than the stems usually appear disease-free following 

fungicide treatments (Figure 7). The stem blight results to severe crop losses. 

Such incidences were unheard of when US-1 was the only lineage on potato. It 

thus seems the 2_A1 lineage has a means of fungicide avoidance and survival. 

The rise in stem blight will have direct impact on disease epidemiology. After 

harvesting, the vines are usually heaped on the sides of the farms and these cull 

piles become perfect places for P. infestans to survive between seasons. 

Moreover, the proximity of stems to the ground increases the risk of tuber 

infections. 

 
Figure 7. A potato plant with a broken off stem due to late blight caused by P. infestans. 

The leaves and stalks look healthy due to fungicide treatments. Photo A. Njoroge.
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6.3 Predicting durability of host resistance to late blight 
disease via effectors screening of eastern-Africa 
Phytophthora infestans population (Paper III) 

An understanding of how Phytophthora infestans evades disease resistance is 

needed to advise the deployment of durable resistance. In this study, we 

examined the P. infestans population in eastern-Africa for presence / absence 

and variations of virulence factors (effector genes), that help the pathogen defeat 

deployed host resistance. Ever since the discovery of late blight, breeding for 

host resistance against P. infestans has been a never ending mission for potato 

breeders. In 1950’s, optimism was high to find good host plant resistance when 

wild species in Mexico, especially Solanum demissum, were found to provide 

high levels of resistance or even immunity to P. infestans (Wastie, 1991). The 

resistance which was conferred by single genes (R-genes) was however 

qualitative, meaning it could only provide protection against specific pathogen 

races, and thus quickly eroded due to P. infestans evolution. Nevertheless, 

another type of resistance, which was deemed partial (quantitative or field 

resistance) was discovered (Bradshaw et al., 1995). While it is difficult to breed 

for partial resistance, a number of cultivars were released in eastern-Africa but 

many are not grown in large scale since they have some undesirable agronomic 

traits (Forbes, 2012).  

Growers still prefer certain potato cultivars due to market demand hence the 

need to introduce different late blight R-genes into existing potato cultivars. The 

International Potato Center (CIP) has therefore pyramided three resistance genes 

via genetic engineering in farmer-preferred cultivars in eastern-Africa under the 

premise that P. infestans will not evade recognition by the three R-genes stacks. 

The 3R potato events remained late blight free under high disease pressure for 

four consecutive seasons in the field (Figure 8; Ghislain et al., 2018). We thus 

tested the 2_A1 and US-1 P. infestans isolates collected from Uganda, Kenya, 

Rwanda and Burundi for the presence and absence of the effector genes, 

Avrblb1, Avrblb2 and Avrvnt1 corresponding to the three R-genes, Rpi-blb1(RB), 

Rpi-blb2 and Rpi-vnt1.1 in the 3R potato. The results showed the presence of 

avirulent effector transcripts, in both 2_A1 and US-1 lineages, that some of the 

R-genes in the 3R potato recognized to avert late blight development. Within the 

US-1 lineage, there were no effectors that would allow the functionality of the 

RB gene. The potato adapted US-1 had no Avrblb1 effector gene whereas the 

tomato-adapted US-1 expressed the virulent Avrblb1 (IpiO4) variant.  
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The results from this study confirms that pyramiding of R-genes can provide 

quantitative resistance against P. infestans. It was evident that only two of the 

R-genes in the 3R potato would work for a US-1 lineage P. infestans population. 

However, the fact that all resistance genes are present as a stack means that even 

though RB was not functional, the US-1 isolates could still not escape 

recognition by the Rpi-blb2 and Rpi-vnt1.1 genes. Had a preliminary study of 

the P. infestans population in eastern-Africa been carried out prior to the 

selection of the three resistance genes, it would have been noted that RB was not 

suited for the region. It is therefore important to study the biological function 

(including the effectors being recognized) of each R-gene individually before 

combining them in potato breeding transformation programs. Nevertheless, the 

uncertainty of RB functionality changed due to pathogen dynamics in eastern-

Africa. The 2_A1 lineage which expresses all avirulent effectors that allow the 

functionality of the three resistance genes quickly replaced the US-1 lineage on 

potato. The 3R potato is thus currently effective against the dominating 2_A1 

pathogen genotypes but the population should be continually monitored for 

occurrences of dynamic P. infestans races. In the Netherlands, an isolate able to 

overcome a stack of RB and Rpi-blb2 has been reported (Förch et al., 2010). 

 
Figure 8. A confined field trial with 3R transgenic potatoes being assayed for field resistance 

to P. infestans before late blight attack (8a) and one month after a severe late blight attack 

(8b). The brown patches (8b) are the non-transgenic control plants. Photos A. Njoroge. 

 

While the tomato-adapted US-1 lineage still exists in all countries studied in 

eastern-Africa (Paper I), no known reports of infection of potato with a tomato-

adapted US-1 in the field exists. We cannot however rule out a possible scenario 

of a host-jump in future where the tomato-adapted US-1 genotypes infect potato. 

However, if this ever happens, two of the 3R resistance genes would still be 

functional against the tomato-adapted US-1, since we found that the US-1 

isolates from tomato had all the avirulent effectors matching Rpi-blb2 and Rpi-

vnt1.1. Nonetheless, the RB gene would be non-functional. While the 2_A1 

lineage has moved to tomato in Kenya and isolates on the two hosts are 

genetically identical (Paper I), it will be important to determine if effector 
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composition varies within isolates collected from infected potato and tomato 

plants. 

A European potato cultivar Sarpo Mira has been tested in the field in Kenya 

and Uganda (Figure 9). This cultivar has a stack of five resistance genes and it 

shows extreme resistance to late blight in the field (Rietman et al., 2012; Kim et 

al., 2012). In a detached leaf assay (DLA) however, genotypes of the 2_A1 and 

US-1 were able to infect cv. Sarpo Mira (Paper II). A similar DLA test in 

Sweden found that the genotypes there could not infect Sarpo Mira but rather 

hypersensitive responses were evident (Ali et al., 2012). These two scenarios are 

indicators of how different P. infestans populations in different regions can be. 

 
Figure 9. Potato cultivar Sarpo Mira (9a) without late blight infections versus a heavily 

infected potato plant (9b) in a field trial in Uganda. At maturity, cv. Sarpo Mira had no late 

blight symptoms while other cultivars had very severe late blight attacks. Photos A. Njoroge. 

We tested for sequence variation of two effector transcripts, Avr4 and Avr8, 

that correspond to and are recognized by two resistance genes, R4 and R8 / Rpi-

smira2 in cv. Sarpo Mira. The Rpi-Smira2 which is a homolog of R8 is credited 

for the field resistance in cv. Sarpo Mira (Rietman et al., 2012; Jo, 2013). Our 

results showed no variation in the Avr8 effector transcripts after multiple 

sequence alignments against the reference Avr8 transcript in the GenBank. For 

the Avr4 transcripts, multiple sequence alignments revealed a frame shift 

mutation in the open reading frame in all the samples. This means while the R8 

would recognize P. infestans and prevent late blight development, the R4 gene 

is non-functional since the mutated Avr4 effector transcripts would synthesis 

truncated proteins that cannot be recognized by R4 host gene. We therefore 

predict suitability of R8 in host resistance breeding for eastern-Africa region. 

However, the durability of the resistance offered by R8 will entirely depend on 

the biology of P. infestans in eastern-Africa since isolates that are able to escape 

recognition by R8 have been reported (Rietman et al., 2012). 

The assessment of effector genes should thus allow for detection of adaption 

within P. infestans populations for new virulence against newly introduced host 
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resistance. Most of the potato cultivars used in eastern-Africa have been bred 

elsewhere based on pathogen structures of those regions. Since pathogen 

populations are variable, suitability of the introgressed or engineered host 

resistance genes must thus be confirmed to work for targeted local P. infestans 

populations. Effector gene studies is therefore one way to predict suitability of 

new disease resistance genes even before they are deployed in the field. 

6.4 Quantifying levels of late blight susceptibility in some 
potato cultivars found in east Africa (Paper IV)  

Genetic resistance of potato cultivars to Phytophthora infestans is one of the 

many goals hoped for by potato breeding programs. In the past, potato cultivars 

with either specific or general resistance have been released in eastern-Africa 

but most have been abandoned by growers due to their high susceptibility to late 

blight (Forbes, 2012). Phytophthora infestans pathogen can completely 

overcome specific resistance which is governed by single resistance (R) genes 

(Flier et al., 1998 ; Flier et al., 2003). General resistance credited to the additive 

effects of many minor (r) genes, is said to be stable even though at times it does 

not result to a late blight free phenotype (Bradshaw et al., 1995). 

Despite the availability of late blight resistant potato cultivars, growers still 

prefer the susceptible ones due to their market value (Forbes, 2012). Moreover, 

even the cultivars said to be resistant are only partially resistant and fungicides 

have to be used to avoid yield loss (Kromann et al., 2014). In this study we tested 

ten potato cultivars widely grown in southwestern Uganda namely, Victoria, 

Rwangume, Rwanshaki, Kimori, Kinigi, Rutuku, Bumbamagara, Kachpot-1, 

Cruza and Nakpot-5, for late blight susceptibility. The study was conducted for 

three consecutive seasons between 2013 and 2014. Rainfall patterns differed in 

the three seasons, making proper comparisons between seasons difficult. Our 

results do, however clearly indicate that cv. Victoria is the most susceptible and 

cv. Kinigi is the most resistant under local blight conditions (Figure 10). Overall 

though, all cultivars other than Victoria were moderately resistant as revealed by 

susceptibility score values of 1.7 to 4.3 calculated according to the method of 

(Yuen and Forbes, 2009). The method, based on an ascending-susceptibility 

analysis, estimates that zero disease represents the highest level of resistance. 

We tried to estimate if the shift from the old US-1 to a dominating 2_A1 

lineage in the pathogen population affected the potato cultivars ranking to late 

blight susceptibility. An ideal hypothetical scenario would be that the new P. 

infestans lineage, that is not adapted to the local conditions, would result in local 

cultivars having low susceptibility scores. This would be explained by the fact 

that the new pathogen genotypes have not encountered the existing host 
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resistance so initially the potato cultivars might display some level of disease 

resistance. After a while, the pathogen adapts and defeats the R-genes. We only 

compared results from season one and three since all isolates in the first season 

were US-1, while in the third season, 60% of the isolates were 2_A1. Although 

there was a reduction in susceptibility when the two seasons were compared, a 

stronger effect of pathogen genotypes on late blight scores should, theoretically, 

be evaluated when the entire P. infestans population is 2_A1. Such an 

assessment should be followed by other field evaluations to check if the 2_A1 

fully defeats all the available host resistance. The indicator for such an outcome 

according to Yuen & Forbes (2009) would be very high susceptibility scores, on 

the resistance scale, for cultivars that now exhibit partial resistance. 

 
Figure 10. A field trial to quantify P. infestans susceptibility of potato cultivars in east Africa. 

Potato plants early in the season (10a); cultivar Victoria (10b) and cultivar Kinigi (10c) 

towards the end of the season after a severe late blight attack. Photos A. Njoroge. 

Despite the fact that breeding potato cultivars that combines necessary 

agronomic and market traits together with the quantitative resistance is difficult 

(Haverkort et al., 2009), some cultivars have been grown for many years without 

quantifying their late blight resistance (Yuen and Forbes, 2009). We can 

conclude from this study that despite using methods that allow for cross-

locational and cross-seasonal assessments to explain evaluation procedures, 

unpredictable weather patterns play a big role in experimental outcomes. During 

the long rain seasons in eastern-Africa, the environment is highly conducive for 

late blight development to an extent that makes susceptibility of cultivars to be 

overestimated. Equally, the short rains can sometimes end abruptly, as was 

evident in season two in the present study, making the assessments incomplete. 
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Evaluating late blight progress helps to determine not only the differences 

amongst various potato cultivars but also finding dissimilarities in the same 

potato cultivar in separate cropping seasons. The findings from this research can 

be used not only in potato breeding but also in fungicide application programs. 
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The takeover of the European 2_A1 genotype in the P. infestans population in 

eastern-Africa in a changing wet and warmer climate, a favourable environment 

for P. infestans to thrive, could make late blight management more difficult. 

Despite using fungicides more frequently than before, growers are getting lower 

yields as cultivars that were previously released as resistant to late blight always 

ended up becoming susceptible.  

➢ The eastern-Africa P. infestans population is highly variable despite the 

fact that it is composed of only two lineages, US-1 and 2_A1. The region 

is one of the few remaining areas to still report existence of the tomato-

adapted US-1. However, in the recent past, eastern-Africa seems to be the 

first of the remaining areas with the tomato US-1 variant, to be 

experiencing displacement of the tomato US-1 by a lineage originating 

from potato (Paper I). 

➢ Confirmation for greater aggressiveness of the 2_A1 compared to the US-

1 lineage is evident. The conquest of the 2_A1 is probably due, at least in 

part, to the fact that it was more aggressive based on several parameters 

measured. Although there was genetic similarity observed between the 

2_A1 genotypes on potato and tomato using microsatellite markers 

(Paper I), inoculation tests showed a preference to potato before tomato 

of the 2_A1 genotypes sampled from potato (Paper II). 

➢ Effector gene studies predicted the stability of resistance of a transgenic 

potato, with a stack of three resistance genes, to the present P. infestans 

population in eastern-Africa, based on matching avirulent effectors to the 

introgressed host resistance genes. The suitability of the R8 gene in late 

blight management was confirmed by the presence of nonpolymorphic 

Avr8 effector transcripts in the local P. infestans genotypes. However, the 

R4 gene is unsuitable for the region as evidenced by the presence of a 

frame shift mutation, in the open reading frame, in all the eastern-Africa 

isolates tested (Paper III). 

7 Conclusions 
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➢ Field evaluations for late blight susceptibility showed that all the potato 

cultivars tested in eastern-Africa exhibited some partial resistance in the 

field when compared against the susceptible check. The incomplete 

displacement of the old US-1 lineage by the new aggressive 2_A1 lineage 

during the field evaluations did not allow for proper inferences as to 

whether the lineage change has an effect on disease severity or the relative 

levels of resistance of the cultivars (Paper IV). 
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Despite the late blight pathogen being studied for over 170 years since its 

discovery in Europe, very few P. infestans studies in Africa exist. As a 

consequence, many countries in Africa have no data on what pathogen lineages 

exist in their countries. In addition, the countries have undeveloped seed systems 

and a lot of external seed tuber importation occurs. Seed tuber trade is the main 

mechanism by which P. infestans is moved around the world. African countries 

import mostly from Europe, a continent that harbours very diverse P. infestans 

populations. If new P. infestans strains reach the African countries that do not 

focus on pathogen studies, the new strains thrive undetected. The effects of 

introduction of aggressive pathogen strains may be felt as occurrences of severe 

epidemics. This could be the situation in Nigeria where numerous reports of 

recent severe late blight attacks in growers’ fields have surfaced (Emmanuel 

Nnadi, personal communication). The epidemics were later associated with the 

European 33_A2 lineage (David Cooke, personal communication). The 

appearance of the 33_A2 genotype in west Africa could be an enabler to future 

sexual reproduction of P. infestans in Africa. 

There is need to assess effectiveness of fungicides currently used against the 

new P. infestans genotypes. The 2_A1 is aggressive but other fitness traits it 

possesses needs to be determined. As reported, severe stem blight is common in 

the field in eastern-Africa. This should be investigated if it is a fungicide 

avoidance trait occurring for specific active compounds. Moreover, the 

fungicide resistance spectrum of the 2_A1 genotypes need to be determined to 

make an informed decision as to which fungicides are effective in its 

management. 

It is important to monitor the possibilities of the US-1 tomato-adapted 

genotypes eventually getting completely displaced by 2_A1 genotypes in all the 

countries in eastern-Africa. Also, it should be determined if the 2_A1 genotypes 

on potato and tomato are phenotypically different or host-specificity exists for 

2_A1 genotypes isolated from potato and tomato. These are many of the 

8 Future perspectives 
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questions that need to be answered to determine whether tomato plants may act 

as source of inoculum for potato growers; information that lead to 

recommendations such as implementing disease control on volunteer tomato 

plants. 

The possibility of P. infestans overcoming host resistance in cultivars with 

gene pyramids needs continuous monitoring. Effector genes studies should 

continue to aid in early detection of pathogen race variants that could overcome 

the resistance genes if and when they are eventually deployed. Moreover, 

quantifying potato cultivars, hopefully within each country should be carried out 

when a complete shift in the pathogen population happens to determine the 

existing levels of resistance. Even though most potato cultivars are grown in all 

countries, some unique ones are found in individual countries especially with 

the current acceptance of certain European cultivars which are finding their way 

into local seed systems. 
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Crop disease management in eastern-Africa can and should succeed if deliberate 

and thought-out actions are formulated in a clearly defined impact pathway. The 

aim of the impact pathway is to have more coordination as well as use of internal 

resources in managing crop health instead of merely importing developed 

technologies. To effectively apply the science generated to real time growers’ 

issues, a number of stakeholders must work together.  

Departments of agriculture: Instead of having agricultural policies as 

negotiated agreements, the policies should be based on widely shared scientific 

knowledge and growers’ concerns. This affects mainly the seed trade where 

experiences are that there has been importation of disease-susceptible crop 

cultivars since the overall aim was looking for other agronomic traits in those 

crops. Consequently, growers are left with the burden of managing crop 

diseases.  

International research organizations / NGOs: They should make efforts to 

transfer the high-end research into sustainable farming practices. Such efforts 

include letting the growers assess their own situations and voluntarily agree to 

support the sustainable agriculture. Information should be availed to growers via 

farmer field schools to allow for interaction and feedbacks on different plant 

health issues. Growers could be the first people to identify a new invasive species 

if they have prior knowledge on what exists. 

Agrochemical companies: Companies should be mandated to allow for 

product performance feedback. This should be followed by withdrawal of 

products that are no longer effective. It has been observed over the years that 

companies still sell non-functional chemicals to uninformed growers hence 

making profits at the expense of growers. Unfortunately, the Agro-chemical 

industry is not regulated. Scientists need to provide hard evidence to policy 

makers on the inefficiency of some products to then allow for trade cessation. 

  

9 Author’s concluding remarks 
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Since the introduction of potato in eastern-Africa by the British farmers in the 

1880s, the crop has become an important staple food as well as a source of 

income to the growers. Nearly all potatoes in eastern-Africa are consumed 

locally with rural people selling the surplus to the urban-dwellers. Also, trading 

with immediate neighbouring countries does happen. Seed multipliers can obtain 

profits upwards of 1,500 US dollars per hectare signifying the importance of the 

crop in the region. More than 5.6 million farmers grow potato on approximately 

1.3 million hectares in sub-Saharan Africa. However, the yields obtained 

average between 6-10 tonnes/hectare although the projected yields can reach up 

to 20-30 tonnes/hectare. When it comes to tomatoes, they are grown for home 

consumption in the backyard of almost every homestead across sub-Saharan 

Africa. Tomatoes are an important cash crop for both smallholders and medium-

scale commercial growers, but their yields are also generally far below the 

potential of the crop. A number of challenges come in the way of achieving the 

realistic yields for both crops and these include limited access to cultivars with 

good agronomic traits, low quality seed, minimal knowledge of good 

agricultural practices as well as pests and diseases.  

Late blight is one of the diseases heavily affecting potato and tomato 

production in eastern-Africa. The disease is caused by the pathogen called 

Phytophthora infestans and it occurs wherever potatoes and tomatoes are grown. 

The disease thrives in cool and wet environments and it has been estimated to 

cause losses of about 13 billion US dollars per year. These losses are as a result 

of direct crop losses due to damages by the disease as well as the indirect costs 

of fungicides applications. Late blight is managed mainly by use of fungicides 

but use of host cultivars that are resistant to the disease could greatly reduce the 

cost of production. To be able to know what fungicides or plant cultivars are 

appropriate to manage late blight in the region, a good understanding of the 

pathogen population is paramount. Continuous surveillance of the pathogen 
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characteristics on potato and tomato will provide information that can be used to 

design and implement control strategies suited for the local pathogen population. 

Globally, P. infestans populations are different but similar chemical control or 

even host resistance genes have been used to manage the dissimilar pathogen 

populations. 

In eastern-Africa, the late blight pathogen has not been studied extensively, 

but reports do indicate that a new type of P. infestans from Europe, named 2_A1, 

has outcompeted the older P. infestans type called US-1. The new 2_A1 had 

only been reported in Kenya in 2007 but in 2011, it was found in Uganda in the 

districts bordering Kenya. The older US-1 was the only type attacking potato 

and tomato in eastern-Africa before the arrival of the 2_A1. The US-1 type of P. 

infestans had subtypes attacking potato and tomato. The subtype on potato could 

not infect tomato in the field and vice versa. Armed with the knowledge that a 

new type of P. infestans was taking over the population in the region, we studied 

different aspects of the P. infestans population in the region. We began 

investigating the pathogen population in Kenya, Uganda, Tanzania, Burundi and 

Rwanda to determine the extent to which the 2_1A type had spread in the region. 

It was found that the 2_A1 type was dominating the P. infestans population in 

all the five countries. While all the P. infestans types on potato in Kenya were 

2_A1, the old US-1 subtype on potato was still present in low numbers in 

Uganda, Tanzania, Rwanda and Burundi. The US-1 subtype on tomato was still 

present in all countries but in Kenya, both US-1 and 2_A1 were found co-

existing on tomato plants. The 2_A1 isolates on tomato were more numerous 

than US-1 indicating the rapid displacement of the US-1 tomato subtype by the 

new 2_A1 specifically in Kenya. We also wanted to find out some of the 

characteristics the 2_A1 type had that likely enabled it to displace the US-1. 

Greater aggressiveness of the 2_A1 over US-1 was found to be one of the 

characteristics that allowed the rapid displacement of the US-1 in the region. 

Genetically modified potatoes with three resistance genes, that were all put 

together, have been tested in the field in Uganda. For the four seasons they were 

in the field, the potatoes did not to get late blight attacks. The potatoes are 

planned to be grown in the different eastern-Africa countries in the future. For a 

potato resistance gene to provide protection against the invading pathogen, it 

must recognize pathogen genes, called effectors. Effectors are protein molecules 

that P. infestans produces to manipulate the potato so that it can invade the potato 

and cause disease. Sometimes these pathogen proteins are in a form that can be 

recognized by known potato receptors, called the resistance genes. When the 

pathogen proteins are recognized by the resistance genes, we call them avirulent 

proteins. The avirulent proteins and plant resistance genes behave like a key-

and-lock system. When this happens, disease does not occur. If the form of the 
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avirulent proteins changes and does not match the lock-and-key system, disease 

results. At this point, we say the proteins are virulent proteins. Disease can also 

happen if the avirulent proteins are missing. We thus tested the P. infestans 

population in Kenya, Uganda, Rwanda and Burundi to see if the avirulent 

proteins that the genetically modified potato match to were present. We also 

checked for presence of the virulent proteins. The information would help to 

assess if the genetically modified potato would remain disease free if and when 

it is grown in the different countries. Results showed that the types of P. infestans 

in the region had avirulent proteins that matched the resistance genes in the 

genetically modified potato. Therefore, if the potato is grown in the different 

countries, it would not get affected by late blight disease for now. However, P. 

infestans types that have virulent proteins that do not match the potato genes 

might appear in future. Therefore, the best thing is to keep testing the pathogen 

types and subtypes present in the region to know early enough when this 

happens. 

A European potato cultivar, Sarpo Mira, was also tested in Uganda and 

Kenya for its ability to adapt and retain its agronomic characteristics when grown 

in eastern-Africa conditions. During the field trials, cultivar Sarpo Mira, which 

has five resistance genes, was not attacked by late blight and is thus considered 

to have long-lasting resistance to late blight disease. Pathogen proteins that 

match two of the five resistance genes in cv. Sarpo Mira, were examined. This 

was to find out if they were avirulent proteins (full length protein sequences) that 

allowed the Sarpo Mira resistance genes to match in the lock-and-key style. The 

two pathogen proteins tested were AVR4 (matching the R4 gene in Sarpo Mira 

potato gene) and AVR8 (matching the R8). Results showed that the AVR8 

sequences were full length proteins hence perfectly matched the Sarpo Mira R8 

potato gene to prevent late blight development. However, the AVR4 protein 

sequences were short as they had some parts deleted. This means the AVR4 

could not be recognized by the Sarpo Mira R4 potato gene. Therefore, if the R4 

gene was on its own in a potato cultivar, it cannot stop late blight development. 

It thus seems that even if R4 is one of the potato gene in cultivar Sarpo Mira, it 

was not contributing to the observed late blight resistance in the field. Any potato 

cultivars with only R4 gene should not be grown in eastern-Africa as they will 

get diseased. The R8 gene can be transferred to other potato cultivars grown in 

eastern-Africa to provide protection against late blight. But also, the P. infestans 

population need to be tested continually to look out for pathogen types and 

subtypes that could defeat the R8 resistance gene. 

The potato growers in eastern-Africa, just like other growers elsewhere, have 

some popular potato cultivars that they grow in large scale, due to their market 

demand. Unfortunately, these cultivars get very severe late blight disease attacks 
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which sometimes finish the plants completely if chemicals are not used. An 

assessment of the commonly grown potato cultivars in eastern-Africa to 

determine their level of resistance to late blight disease in the field was carried 

out. It was found that all cultivars tested had some resistance to the late blight 

pathogen. Unfortunately, many of these cultivars with good resistance to late 

blight disease have other characteristics that growers do not like. Some do not 

have good taste while others take a long time in the field to mature. These are 

some of the explanations growers use to justify growing cultivars that easily get 

attacked by late blight disease. The findings from this study do indicate that late 

blight disease management practices and estimating the usefulness of host 

resistance to disease, should be made to match the characteristics of the P. 

infestans types and subtypes for the specific area.  
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