
The role of dairy and plant 
based dairy alternatives in 
sustainable diets

SLU Future Food – a research platform 
for a sustainable food system

Future Food Reports 3  Elin Röös, Tara Garnett, Viktor Watz, Camilla Sjörs



The role of dairy and plant based dairy alternatives in sustainable diets

Elin Röös, Tara Garnett , Viktor Watz, Camilla Sjörs

Publication: SLU Future Food Reports 3
Publisher: Swedish University of Agricultural Sciences, the research platform Future Food     
Publication year: 2018

Graphic form: Gunilla Leffler (cover)
Photo: ombadesigns, Pixabay, CC0
Print: SLU Repro, Uppsala
Paper: Scandia 2000 240 g (cover),  Scandia 2000 130 g (insert)

IBSN: 978-91-576-9604-5  



1 

Foreword 

Sustainable diets that are nutritionally adequate, environmentally sound, economically viable 

and socially and culturally acceptable are gaining increasing attention. The focus has long been 

on the role of meat and its association with high environmental pressures, especially greenhouse 

gas emissions, and its detrimental health effects at high consumption levels. Much less attention 

has been paid to the role of dairy products in sustainable diets. There is currently a rise in plant-

based dairy alternatives, e.g. drinks, yogurt-like products, spreads, ice-cream etc. made of soy, 

legumes, seeds, nuts or cereals. These have potentially lower negative impacts than dairy 

products but different nutritional profiles, which raises concerns about their role as 

replacements or complements to dairy products in sustainable diets. These concerns form the 

background to this report. 

As a researcher at the Swedish University of Agricultural Sciences (Elin Röös) and director of 

the Food Climate Research Network (FCRN) (Tara Garnett), for some years we had spoken 

about a need to investigate dairy and plant-based dairy alternatives in diets more specifically 

and thoroughly. During summer 2017, we contacted the Danone company for another reason 

(looking for data for a LCA on instant baby formula) and ended up in a broader discussion on 

the topic of dairy and plant-based dairy alternatives. Danone had recently acquired several 

leading plant-based brands (Silk, Vega, Alpro etc.) and nutritionists and environmental 

managers from both the dairy and the plant-based alternatives side were asking the same 

question as us researchers: What are the respective roles of dairy and plant-based dairy 

alternatives in sustainable diets when health, environmental, ethical and social concerns are 

taken into account? The purpose of this report is therefore to describe the state of current 

research on the broad topic of sustainable diets, dairy and plant-based dairy alternatives, as a 

basis for development of a research roadmap to address this research question.  

This report was partly funded by Danone, while the remainder of the funding was provided by 

SLU Future Food, a strategic platform aimed at stimulating research and collaboration to 

develop knowledge, solutions and innovations ensuring a sustainable food system. We would 

like to thank Agnes Martin, Beatrice Trotin at Danone, Stephanie De Vriese and Greet van der 

Heyden at Alpro and researchers Florent Vieux and Liesbeth Temme for valuable comments on 

the text. However, the authors of this report are the sole responsible for the text and 

conclusions.   

Uppsala, 16 July 2018                            London, 16 July 2018 

Elin Röös                                         Tara Garnett 
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Summary 
Current food systems are responsible for approximately one-quarter of anthropogenic 

greenhouse gas (GHG) emissions and are a leading cause of deforestation, biodiversity loss, 

freshwater use and water pollution. They are also insufficiently effective at feeding people 

adequately; malnutrition in all its forms (hunger, obesity and micronutrient deficiency) affects 

about one-third of the world’s population. At the same time, food systems reflect and exacerbate 

inequalities and abuses of power at all levels (international, national, societal, sectoral and 

familial), while the treatment of farm animals reared for food and draught purposes raises 

serious ethical questions. 

  

There is mounting evidence that a shift towards more sustainable food systems and diets is 

necessary and will require profound changes in how and what food we produce and how and 

what we consume.  This report summarises the current scientifically-grounded state of thinking 

on what such a shift might comprise, with particular focus on sustainable diets. More 

specifically, it considers the respective roles of dairy and plant-based dairy alternatives in 

sustainable diets. Dairy products currently deliver many important nutrients to large population 

groups and are highly appreciated. However, rearing ruminant animals is associated with 

important negative environmental impacts such as high GHG emissions and large land 

requirements. Plant-based dairy alternatives based on soy, legumes, seeds, nuts or cereals are 

now on the market and there is increased interest and demand for such products in many 

countries. Functionally, these could replace and complement dairy products in the human diet, 

potentially reducing the environmental impact of food consumption. However, since dairy 

products and plant-based dairy alternatives differ in their nutrient composition and health 

impact, the nutritional aspects of such a switch need to be considered. 

What is a sustainable diet and how can it be measured? 

One of the most commonly cited definitions of sustainable diets comes from FAO/Biodiversity 

International (2010) and reads as follows: 

  

“Sustainable diets are those diets with low environmental impacts which contribute to food 

and nutrition security and to healthy life for present and future generations. Sustainable diets 

are protective and respectful of biodiversity and ecosystems, culturally acceptable, accessible, 

economically fair and affordable; nutritionally adequate, safe and healthy; while optimizing 

natural and human resources.” 

  

This definition, as well as definitions from other organisations, all acknowledge the multifaceted 

aspects of sustainability, including social, economic and environmental aspects. Other 

definitions also raise the issue of animal welfare, feasibility of diets and the aspect of good 

quality food. 
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To make progress towards sustainable diets, a way to concretise and measure the sustainability 

of diets is needed. Several authors provide frameworks that describe components of sustainable 

foods or diets, but only a few propose concrete indicators on how these aspects should be 

evaluated and quantified and the results displayed. Most current literature on healthy and 

sustainable diets commonly only includes one or a few aspects of sustainability, hence 

potentially failing to capture both important synergies and goal conflicts. A systematic review of 

such studies by Jones et al. (2016) shows that to date, the most commonly used metrics to 

evaluate the sustainability of diets are GHG emissions and land use. This lack of 

multidimensionality is understandable considering the complexity of assessing multiple impacts 

of a large range of foods and the lack of data. That said, rapid progress is being made in this 

field. 

  

In order to make indicators practically tangible and to relate outcomes to sustainability targets, 

there is a need to define threshold levels of e.g. health and environmental sustainability, i.e. a 

level beyond which a system can be said to be unsustainable. Weighting of different 

sustainability indicators is also needed if the results are to be presented as an aggregate score in 

order to enable comparisons among products or diets. Thresholds and weighting methods will 

inherently reflect values and norms. Different weighting strategies have been developed, 

including the distance-to-target approach and panels of experts or civilians. The distance-to-

target approach assesses how far a target is from being achieved and distributes weights to 

different aspects accordingly. It has become increasingly popular to relate indicator results to 

global targets such as the Planetary Boundaries (Rockström et al., 2009; Steffen et al., 2015), 

but much more work is needed in this area. 

How do dairy products and plant-based dairy alternatives compare in terms of nutrition 

and health? 

Dairy milk and plant-based alternatives differ in important nutritional ways, although their 

energy content is fairly similar if low-fat dairy milk is used as the basis for comparison.  Plant-

based drinks are generally lower in protein (<1%) and fat (<1.5%), but have a similar amount of 

carbohydrates as milk (3-5%). The exceptions are oat drinks, which contain considerably more 

carbohydrates (~7%), and soy drinks, which contain protein in similar amounts to milk (3-4%), 

although there are slight differences in protein digestibility and amino acid profile. As regards 

micronutrients (vitamins and minerals), the similarity between dairy and plant-based 

alternatives is entirely dependent on whether the latter are fortified or not. 

  

Moving from nutrients to health outcomes, epidemiological studies on intake of dairy products 

and plant-based dairy alternatives show some clear positive health effects for dairy products 

(e.g. lowered risk of type 2 diabetes from low fat and fermented dairy products) and for fortified 

soy-based products. There is very little or no literature on the long-term health effects of non-

soy plant-based dairy alternatives specifically, however studies on the raw material itself show 

some health benefits (e.g. for oats and almonds). 
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How do dairy products and plant-based dairy alternatives compare in terms of 

environmental impacts in a product-to-product comparison? 

The environmental impacts of foods are commonly compared on the basis of mass using life 

cycle assessment (LCA), which is a well-established quantitative, standardised method for 

assessing the environmental impact of goods and services. Many LCA studies have investigated 

the GHG emissions from dairy production. Surprisingly, no equivalent studies for plant-based 

dairy alternatives have been published in scientific journals, but some LCA studies are reported 

in the grey literature. There is also some literature on the environmental impact of the raw 

materials used in several plant-based dairy alternatives, making it possible to draw some 

conclusions regarding the environmental impacts of the finished products. Based on the 

available literature, dairy products generally have a higher environmental footprint per unit 

mass than plant-based dairy alternatives when it comes to GHG emissions, total land use (not 

considering the type of land), energy use, nitrogen footprint, eutrophication and acidification 

potential. Dairy milk production uses more water than soy and oat drinks, but less than almond 

drink. For biodiversity impacts more research is needed, especially the need to consider the 

positive impacts that grazing animals provide in some circumstances. In general, there is a need 

for more systematic comparisons of dairy and plant-based dairy alternatives, as it is difficult to 

draw solid conclusions when comparing results from different studies. 

  

Comparisons of the environmental impact on the basis of nutritional content, using a nutrient 

density index rather than mass as the unit of comparison, yield variable results depending on 

how the index is constructed. If fortified plant-based dairy alternatives are used in the 

comparison, these seem to score better in terms of combined nutritional and environmental 

aspects than dairy products, but more studies are needed to confirm this. Aspects of protein 

quality and digestibility were included in a study by Sonesson et al. (2018) comparing milk, 

chicken, pork, bread and pea soup. Milk had the highest climate impact of all these products 

when protein quality and digestibility were not considered. The difference between milk and the 

other products decreased when protein quality and digestibility were included, due to the 

beneficial amino acid profile and slightly higher protein digestibility of milk.  However, its 

impact was still considerably higher than that of the two plant-based options. 

How do dairy products and plant-based dairy alternatives compare in a dietary context? 

 

Comparing foods on a per product basis is of limited value for determining the health outcomes 

or environmental impact of eating patterns, as it is the total impact of all foods in the diet that 

determines overall outcomes. Numerous studies assessing the potential effects of reducing meat 

and/or dairy in the diet and replacing them with plant foods show considerably lower climate 

impact and land use from vegetarian or vegan diets. Only a few studies have specifically 

investigated the effects of substituting dairy partially or completely in the diet, i.e. without also 

considering meat. Two studies found reductions in land use and GHG emissions when dairy was 

replaced with plant-based foods, with varying effects on diet quality depending on the substitute 

food, while one study found little or no environmental benefit in terms of GHG emissions and 

land use. 
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More research is needed on how realistic replacement of meat and of dairy affects the 

nutritional and environmental outcomes for different groups of consumers in different 

countries, in order to establish the role that dairy and plant-based dairy alternatives can play in 

sustainable diets. Basically, two approaches, simulation and optimisation studies, can be 

applied.  

 

Simulation studies tend to replace animal products with plant-based foods by mass, 

isocalorically or on the basis of protein content, in some cases based on assumptions as to what 

a normal and culturally acceptable substitute might be (e.g. replacing cheese with peanut butter, 

chocolate spread or jam in the Dutch diet). These studies tend to show favourable outcomes for 

intake of saturated fats and fibre, but highlight risks of deficiencies of some micronutrients at 

high substitution rates.  

 

Optimisation studies use mathematical models to determine nutritionally adequate diets at 

lower environmental (e.g. GHG) cost, while often seeking to keep diets as culturally ‘normal’ as 

possible. In such cases, the meat content of the diet declines but use of dairy products often 

remains similar to current levels, due to their high calcium content and popularity, and thus 

cultural non-negotiability. 

What we know and what are the most important further research needs? 

Assessing the sustainability of diets is a highly complex undertaking due to the multitude of 

sometimes competing concerns inherent in food production and consumption. Individual 

research fields have contributed knowledge of different parts of this complex picture. For 

example, the field of diet-related health research is vast and has provided overarching and 

generally accepted principles of what constitutes a healthy dietary pattern. Studies on the 

environmental impact of food have shown that animal-based products generally generate higher 

negative impacts than plant-based products. However, these guiding principles have to be 

broken down even further to apply to different dietary contexts and population subgroups, and 

have to be considered alongside aspects such as diet acceptability and what can be realistically 

changed. Promising initial attempts have been made to gather several aspects of sustainable 

diets into indicator-based frameworks, in order to provide a way of considering a multitude of 

issues and their trade-offs in different types of decision making. More work is needed in this 

area to make indicators and frameworks for assessing the sustainability of diets more robust, 

transparent, relevant and useful. To enable constructive discussions and sound decision making, 

such frameworks have to distinguish, as clearly as possible, between scientific ‘facts’ and 

normative decisions (choice of indicators, thresholds and weighting methods). Complexity will 

inevitably increase with the number of issues included, which is why trade-offs between 

comprehensiveness and comprehension – i.e. the completeness of the information, as opposed 

to our ability to make sense of and act on that information – have to be resolved. 

  

Research shows some clear positive health effects for dairy products and for soy-based products. 

For other plant-based dairy alternatives, there is very little or no literature on their long-term 

health effects, although there is evidence of positive outcomes for some of the raw materials 

from which they are made. As regards the environmental impacts of dairy products and plant-
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based alternatives, the current literature indicates that the environmental impact of dairy milk 

from industrialised Western systems is higher than that of plant-based dairy alternatives within 

most impact categories. However, the comparison rests on somewhat shaky grounds, as studies 

on plant-based dairy alternatives have not yet been published in scientific journals and as 

different studies use different methodologies. In order to draw solid conclusions, milk and the 

full range of plant-based alternatives need to be compared within the same study, using the 

same methodological choices and applying comprehensive sensitivity analysis. 

  

The limited existing research on replacement of dairy products with different types of plant-

based dairy alternatives indicates that the respective benefits of these products are context-

specific. More modelling studies are needed to test a broad set of consequences of including 

dairy products, a range of different plant-based alternatives or combinations of these in 

different dietary contexts for different types of consumers. To make these studies as relevant as 

possible, more research is needed on how people actually, rather than potentially, change their 

eating patterns when aiming for a less environmentally damaging and healthier diet. 

  

Finally, what people eat naturally affects what is produced, which in turn affects landscapes and 

rural societies. Such socio-economic effects are highly challenging but vital to capture, which is 

why methods that enable inclusion of socio-economic issues in sustainability assessments 

urgently need to be developed.   
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1. Introduction 
  

Current food systems are responsible for approximately one-quarter of anthropogenic 

greenhouse gas (GHG) emissions and are a leading cause of deforestation, biodiversity loss, 

freshwater use and water pollution. However, food is essential for human survival and an 

important part of ‘the good life’, while also at the heart of the discourse on achieving a 

sustainable society. Despite massive investments and developments in food production, current 

food systems are unable to adequately feed everyone, as malnutrition in all its forms (hunger, 

obesity and micronutrient deficiencies) affects about one-third of the world’s population.  

  

Dairy products are nutrient-dense, highly appreciated and in many countries a common product 

in human diets, consumed on a daily basis. Grazing animals can contribute positively to certain 

environmental aspects by preserving high nature value pastures and converting non-human 

edible biomass into meat and milk. However, rearing ruminant animals is also associated with 

large emissions of GHG and high land and water use, as well as other negative environmental 

impacts which are highly variable depending on production practices. 

  

An increasing number of plant-based dairy alternatives based on soy, legumes, seeds, nuts or 

cereals are now on the market and there is increased interest and demand for such products in 

many countries. Available environmental assessments indicate that these products have fewer 

negative environmental impacts, but the picture is less clear when nutritional aspects are 

included, as the nutritional content of plant-based dairy products differs in terms of both macro- 

and micronutrients. This also complicates comparison between dairy and plant-based 

alternatives and makes the dietary context, i.e. the diet in which they are consumed, highly 

important for the outcome. Furthermore, sustainability encompasses many aspects in addition 

to health outcomes and environmental impacts of foods, such as social and cultural aspects, that 

have not been extensively studied to date. 

  

This report summarises current knowledge and research regarding the concept of sustainable 

diets and ways to measure it. In particular, it examines the role of dairy and plant-based dairy 

alternatives in sustainable and healthy diets. The aim is to provide background for a broad 

audience of food sustainability stakeholders from different backgrounds and scientific fields. 

Therefore, the report provides a broad overview of relevant issues when assessing the 

sustainability of diets, rather than a detailed analysis of any specific aspect. Due to the breadth 

and complexity of the subject and the rapid developments in this area, the report does not claim 

to be exhaustive.     

  

The main focus of the report is on sustainable diets, rather than sustainable food systems, foods, 

farms or companies. However, diets are an integral part of food systems, interacting with all 

other parts directly or indirectly, and thus a clear-cut division between sustainable diets, the 

foods themselves and other food system components is not possible. Fig. 1.1 shows a simple 

conceptual diagram of the food system, to illustrate how diets make up one (of several) ‘objects 

of assessment’ when studying the aggregated sustainability of food systems. 
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Fig. 1.1. Conceptual picture of the food system. The scope of this report is ‘Diets’.  

 

 

At an aggregate level, a sustainable and healthy food system includes both consumption (what 

and how much that is eaten) and production (how food is produced). At a global level, these 

come together, but at a national/regional/local level they are often not fully connected due to 

trade. There are several different actors in food systems. On the production side are food 

producers (farmers, fisheries etc.), the food industry, retailers, restaurants etc. On the 

consumption side are consumers. Policy (in the centre of Fig. 1.1) needs to influence all these in 

order to improve production and steer consumption. Connected to the different actors are 

several ‘objects of assessment’, i.e. the sustainability of farms, companies, production systems, 

food ingredients, food products or diets can be assessed. As can be seen, diets are just one entry 

point from which to study food systems.  

  

Although the focus of this report is on sustainable diets as an object of assessment, in order to 

provide some context Section 2 takes a look at the impacts of food systems as a whole, some 

proposed solutions and the magnitude of these. Section 3 provides a brief overview of the 
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concepts of sustainability and health in general and ways to measure progress towards these. We 

then turn to the main topic of this report; sustainable diets. Section 4 reviews current 

definitions, frameworks and indicators of sustainable diets. Section 5 exemplifies and attempts 

to summarise research specifically on the role of dairy and plant-based dairy alternatives in 

sustainable diets, looking at these from three different perspectives: on a product-by-product 

basis, in a dietary context and from a production/landscape perspective. Section 6 presents key 

conclusions from this review of the literature and highlights further research needs. 
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2. Food system sustainability 

2.1 Food system challenges 

At present, food systems1 are failing to deliver healthy diets for all and are a major driver of 

negative environmental impacts.  

  

Starting with environmental pressures, the Planetary Boundaries developed by Rockström et al. 

(2009) refer to nine crucial boundaries for Earth system functioning (Fig. A1 in Appendix A). An 

update of the concept by Steffen et al. (2015) concluded that four of the nine Planetary 

Boundaries have now been breached: climate change, loss of biosphere integrity, land-system 

change and altered biogeochemical cycles (phosphorus and nitrogen flows). Two of these, 

climate change and biosphere integrity, are what the scientists call ‘core boundaries’. 

Significantly altering either of these core boundaries would “drive the Earth system into a new 

state". Professor Will Steffen, lead author of the study, states: 

  

“Transgressing a boundary increases the risk that human activities could inadvertently drive 

the Earth System into a much less hospitable state, damaging efforts to reduce poverty and 

leading to a deterioration of human wellbeing in many parts of the world, including wealthy 

countries [...]” 

 

For public health, the most pressing challenge in high-income settings has long been non-

communicable diseases (NCDs), i.e. cardiovascular diseases, cancer, chronic respiratory 

diseases and diabetes. This is reflected in the United Nations (UN) Sustainable Development 

Goal (SDG) 3.4: “[...] by 2030, reduce by one third premature mortality from NCDs through 

prevention and treatment”. In 2015, NCDs were responsible for 40 million deaths, representing 

70% of all deaths worldwide. A large proportion of these deaths were premature; they included 

over 15 million people between the ages of 30 and 70, representing 38% of NCD deaths and 27% 

of all global deaths (WHO, 2017). Four lifestyle factors are considered to be the most important 

contributors: tobacco smoking, alcohol use, physical inactivity and unhealthy diets. NCDs are 

not just diseases of the affluent, e.g. in 2008, roughly four out of five deaths caused by NCDs 

occurred in low- and middle-income countries (WHO, 2011a). Malnutrition can be divided into 

‘undernutrition’ i.e. the burden of hunger and undernourishment, and ‘overnutrition’, i.e. the 

burden of overweight and obesity. Many countries are now struggling with both these problems 

simultaneously, while micronutrient deficiencies impose an additional burden. Micronutrient 

deficiencies in relation to undernutrition have been a known challenge for some time, while the 

public health community is now also forced to address the role of micronutrient deficiencies in 

                                                        
1The High Level Panel of Experts on Food Security and Nutrition (HLPE) has adopted the following definition (HLPE, 2014):  
“a food system gathers all the elements (environment, people, inputs, processes, infrastructures,institutions, etc.) and activities 

that relate to the production, processing, distribution, preparation and consumption of food, and the output of these activities, 

including socio-economic and environmental outcomes”. Several conceptualisations of ‘food systems’ have been presented by 

different authors. For an overview, see Appendix B.  
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individuals who are supposedly ‘overnourished’. Individuals with obesity have been recorded to 

have lower levels of a wide array of micronutrients, a factor which may play a role in the 

development of obesity-related diseases (Via, 2012). Food systems also struggle with a range of 

other social challenges, such as exploitation of farm workers, land grabbing, uneven power 

structures among food system actors etc. 

 

Gordon et al. (2017) developed a framework based around the Planetary Boundary concept to 

illustrate and quantify the effect of food systems on health (including undernourishment and 

overweight), the food system (including food safety, nutrition and volumes) and the biosphere 

(land system change, biodiversity, climate change, biochemical flows, persistent pollutants and 

water) (Fig. 2.1). By 2015, both biodiversity and biogeochemical flows exceeded Planetary 

Boundaries of land system and climate change, with land system change being pushed into the 

zone of uncertainty by food systems alone and with an estimated 25% of climate change being 

driven by food systems.  

 

In terms of food supply, food systems now produce enough food to feed the global population, 

but struggle to provide adequate nutrition for all. In 2016, 815 million people, or one in nine, 

were undernourished, while in 2014, 600 million people were obese (FAO, 2017a). Overweight 

and obesity now cause more deaths than underweight (WHO, 2009). According to Forouzanfar 

et al. (2015), the most important risk factors for loss of disability-adjusted life years (DALYs) are 

now reported to be ‘dietary risks’, such as low fruit and vegetable intake, high intake of sodium, 

low intake of whole grains and low intake of nuts and seeds. 

 

 

 
 

Fig. 2.1. The food system and its impact (in dark orange) on health and the biosphere, comparing (a) 1961 and (b) 

today. From Gordon et al. (2017).  
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2.2 Solutions to decrease the environmental pressures of food 

systems  

There are basically four overarching ways to decrease the environmental pressures of food 

systems (after Bryngelsson et al., 2016): 

1. Increases in productivity and efficiency, i.e. producing more food with fewer inputs of 

e.g. energy, land, water and nutrients.  

2. Implementation of technological solutions, e.g. manure storage that limits methane 

emissions or improved management practices such as well-designed crop rotations to 

minimise the use of pesticides. 

3. Dietary change towards foods with lower impacts.  

4. Reducing losses and waste in all steps.   

 

Recent research shows that, without a combination of all these approaches, environmental 

targets, e.g. the Paris Agreement on climate change, are unlikely to be reached (Bajzelj et al., 

2014; Bryngelsson et al., 2016; Röös et al., 2017). However, prioritisation among mitigation 

options will largely be determined by stakeholders’ values and perspectives on the feasibility and 

legitimacy of different approaches, and whether technological approaches should be prioritised 

over behaviour change and consumption shifts, or vice versa (Garnett, 2015; see also section 

4.9).  

 

Smith et al. (2008) assessed the mitigation potential in terms of lowered GHG emissions from 

agriculture through improvements in production. They concluded that the total 

technical/biophysical mitigation potential is within the range of current emissions from 

agriculture (5-6 Gt CO2e), but that achieving this technical potential will be highly challenging 

due to economic and legal barriers. For countries where agriculture is already industrialised, the 

mitigation potential achievable via further efficiency gains and implementation of new 

technologies is more limited. For example, the Swedish Board of Agriculture has estimated that 

emissions of GHG from Swedish agriculture could potentially be reduced by 20% by 2050 

through management and technical improvements (SBA, 2012). Mitigation potential also exists 

beyond agriculture and across the food system, but this potential has not been quantified. 

Strategies include increased efficiency in processing and use of renewable energy. Niles et al. 

(2018) provide a review of climate change mitigation options across the food system.  

 

Hallström et al. (2015) performed a systematic review of GHG emissions and land use from 

dietary change and concluded that, in areas with affluent diets, GHG emissions and land use can 

be reduced by up to 50% through a change to diets containing fewer animal products. 

Aleksandrowicz et al. (2016) concluded that, by adopting more sustainable dietary patterns, 

reductions as high as 70-80% of GHG emissions and land use, and 50% of water use, are 

possible. As regards waste reduction, Bajzelj et al. (2014) show that globally, a 50% reduction in 

waste could lower GHG emissions from agriculture by 22-28% and cropland use by 14% 

compared with baseline levels.  
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Bryngelsson et al. (2016) assessed combined technical advances, waste reductions and dietary 

shifts2 in a study in a Swedish context (Fig. 2.2), and concluded that technical advances can play 

a major role in mitigating GHG emissions. Under optimistic assumptions, they found that 

emissions of methane and nitrous oxide could be reduced by 50% by 2050, although this alone 

would not be sufficient to meet European Union (EU) climate targets. Large reductions (>50%) 

in ruminant meat consumption were found to be essential if climate targets are to be met.  

 

 

 
 

Fig. 2.2. Greenhouse gas emissions (by food type) per capita by diet and technology level. For each diet, emissions 

are shown for the current technology (left), moderate technology advances (middle), and optimistic technology 

advances (right). From Bryngelsson et al. (2016). 

 

                                                        
2Description of the seven scenarios in Bryngelsson et al (2016): Current diet corresponds to average consumption per capita in 

Sweden in 2013. Baseline is continued development of current and recent trends of increasing meat consumption at the expense of 

dairy products and carbohydrate-rich food. Less Meat is based on baseline developments, but with all meat consumption (including 

fish and eggs) decreased by 50% and legumes, oil, and cereals increased. Dairy Beef is based on baseline developments, but all beef 

except that from the dairy sector is replaced by poultry meat, which gives about 80% lower ruminant meat consumption than the 

baseline. In the Vegetarian scenario, meat is replaced by legumes, eggs and significant quantities of cheese. Beef from culled dairy 

cows is also included in the Vegetarian scenario but, in contrast to the Dairy Beef scenario, surplus dairy calves are culled at birth. 

Climate Carnivore does not include any ruminant products. The total meat consumption is equal to Baseline, but ruminant meat is 

replaced by poultry and dairy products are replaced mainly by soymilk, but also by vegetable oils. Finally, the Vegan scenario does 

not include any animal products. Dairy products are replaced by soy products and vegetable oils. Meat, eggs and seafood are 

replaced by vegetable sources of protein, mainly legumes, nuts and seeds. Bryngelsson et al. (2016) corrected diets for energy intake 

and macronutrient proportions to be within recommendations. However, they took a ‘conservative approach’ to nutrient adequacy 

and modelled diets to be similar to current diets, assuming unchanged preference for non-essential food items and protein and fat 

where still in excess as in current diets. Their study should therefore been seen as mainly looking at improving diets from a climate 

mitigation perspective, rather than a nutritional perspective.   
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A study by Röös et al. (2017) modelled different scenarios for food production and consumption 

based on different perspectives of the ‘food system problem’ (Garnett, 2015). The results 

indicated that production improvements, consumption changes and waste reduction must all be 

part of the transition to a sustainable food system in order to sustainably meet the growing 

demand for food for an increased population by 2050. Table 2.1 shows the global reduction 

potential of different mitigation options in that study. Trade-offs and challenges with different 

options are also highlighted and discussed by Röös et al. (2017), for example trade-offs in 

animal welfare, increased risk of point pollution and use of antibiotics from livestock 

intensification.  
 

Table 2.1. Reduction (%) in global land use and greenhouse gas (GHG) emissions from agriculture under different 

mitigation scenarios compared with a business-as-usual scenario. From Röös et al. (2017) 

Mitigation option Reduction in land 

use 

Reduction in GHG 

emissions 

Food waste reduced by 50% 11% 9% 

Yield gaps closed by 50% 15% 1% 

Livestock intensification1 31% 22% 

Livestock intensification1 and dietary shift to a healthy diet2 45% 46% 

Dietary shift to plant-based projected diet3 64% 73% 

1Livestock production globally assumed to intensify to current levels of intensive production in North-Western Europe. 
2Vegetable and fruit consumption set to 123 and 119 kcal per person per day, respectively, in all world regions. Sugar content capped 

at 150 kcal per person and day, and vegetable oil at 360 kcal for regions with projections that exceeded that level. Consumption of 

red meat capped at 57 kcal per person per day, poultry at 161 kcal, egg at 50 kcal and dairy at 300 kcal.  
3Legumes and cereals isocalorically replace all animal products. 

 

Other environmental pressures have been less studied, but some studies indicate positive 

outcomes from dietary shifts in other areas, apart from GHG emissions and land use. For 

example, Westhoek et al. (2014) showed that nitrogen emissions could be cut by 40% by a 50% 

reduction in consumption of meat, dairy and eggs in the European Union. For biodiversity 

outcomes, land sparing has been shown to be important (Balmford et al., 2015), strengthening 

the case for diets associated with low land use, but on-farm management and landscape 

characteristics are also important for biodiversity conservation (Bengtsson et al., 2005).  

 

For mitigation strategies that involve financial gains, rebound effects (i.e. money saved being 

spent on other polluting activities) might offset considerable parts of the gains, and have to be 

carefully managed. Such effects have been documented e.g. for waste reduction strategies 

(Martinez-Sanchez et al., 2016). 
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2.3 Food system solutions to improve public health 

In terms of public health, WHO (2016) outlines the following options for policies aimed at 

improving health and preventing NCDs:  

 

● “Promote and support exclusive breastfeeding for the first six months of life, continued 

breastfeeding until two years old and beyond and adequate and timely complementary feeding. 

● Implement WHO’s set of recommendations on the marketing of foods and non-alcoholic 

beverages to children, including mechanisms for monitoring.  

● Develop guidelines, recommendations or policy measures that engage different relevant 

sectors, such as food producers and processors, and other relevant commercial operators, as 

well as consumers, to:  

● Reduce the level of salt/sodium added to food (prepared or processed). 

● Increase availability, affordability and consumption of fruit and vegetables.  

● Reduce saturated fatty acids in food and replace them with unsaturated fatty acids. 

● Replace trans-fats with unsaturated fats.  

● Reduce the content of free and added sugars in food and non-alcoholic beverages.  

● Limit excess calorie intake, reduce portion size and energy density of foods.  

● Develop policy measures that engage food retailers and caterers to improve the availability, 

affordability and acceptability of healthier food products (plant foods, including fruit and 

vegetables, and products with reduced content of salt/sodium, saturated fatty acids, trans-fatty 

acids and free sugars). 

● Promote the provision and availability of healthy food in all public institutions including 

schools, other educational institutions and the workplace. 

● As appropriate to national context, consider economic tools that are justified by evidence, and 

may include taxes and subsidies, that create incentives for behaviours associated with improved 

health outcomes, improve the affordability and encourage consumption of healthier food 

products and discourage the consumption of less healthy options. 

● Develop policy measures in cooperation with the agricultural sector to reinforce the 

measures directed at food processors, retailers, caterers and public institutions, and provide 

greater opportunities for utilization of healthy agricultural products and foods.  

● Conduct evidence-informed public campaigns and social marketing initiatives to inform and 

encourage consumers about healthy dietary practices. Campaigns should be linked to 

supporting actions across the community and within specific settings for maximum benefit and 

impact. 

● Create health- and nutrition-promoting environments, including through nutrition education, 

in schools, child care centres and other educational institutions, workplaces, clinics and 

hospitals, and other public and private institutions.  

● Promote nutrition labelling, according to but not limited to, international standards, in 

particular the Codex Alimentarius, for all pre-packaged foods including those for which 

nutrition or health claims are made.” 

 

The WHO report “Fiscal Policies for Diet and Prevention of NCDs” (2016) reviews the available 

evidence for economic tools with regard to diet. The strongest and most consistent evidence is 

available for taxes on sugar-sweetened beverages, which could reduce consumption by 20-50%, 

and subsidies on fruit and vegetables, which could increase consumption by 10-30%. The 

evidence is mixed on the net effect of fruit and vegetable subsidies on net caloric intake and 

weight, but overall diet quality improves, thus leading to improvements in health outcomes. 
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There is also growing evidence of the likely effectiveness of combinations of taxes and subsidies, 

particularly as a mechanism to reduce potential substitution with unhealthy foods.   

 

A multitude of solutions for ending hunger have been documented (e.g. FAO, 2017b). For 

example, UN SDG 2 (zero hunger) concerns the need to increase investment in rural 

infrastructure, technology and agricultural research and to correct and prevent trade restrictions 

in world agricultural markets and maintain diversity in cultivated plants and domesticated 

animals. The High Level Panel of Experts on Food Security and Nutrition (HLPE) provides a 

comprehensive list of policy options for improved nutritional outcomes targeted across the 

whole food system (HLPE, 2017).  
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3.  Measuring sustainability and health 

3.1 Sustainability and sustainable development 

The Brundtland commission, formally known as the World Commission on Environment and 

Development (WCED), was formed in 1984 in response to an urgent call from the UN to address 

the increasing deterioration of the environment, declining availability of natural resources and 

human inequality. Nine hundred days later, the report ‘Our Common Future’ was released 

(WCED, 1987). The report is also known as the Brundtland report, after the WCED’s chair, Gro 

Harlem Brundtland. 

  

The report addressed the most pressing issues for humanity and outlined guiding principles for 

sustainable development, defining sustainable development as “development that meets the 

needs of present generations without compromising the needs of future generations”. It also 

defined ‘need’ as a concept that prioritises the needs of the poor. The three pillars, or 

dimensions, of sustainability or sustainable development are sometimes mentioned in 

association with the Brundtland report, but the concept was in fact first mentioned at the World 

Summit of the UN General Assembly in 2005. Its resolution states: 

  

“We reaffirm that development is a central goal in itself and that sustainable development in 

its economic, social and environmental aspects constitutes a key element of the overarching 

framework of United Nations activities.” 

  

A wide range of definitions and frameworks for sustainability and sustainable development have 

been developed within academia and by different organisations. The vagueness of the concept 

can be considered an advantage, as it has led to it being widely spread and accepted, but it can 

also be considered a disadvantage, as the concept risks being watered down if interpreted too 

freely. Appendix A summarises a few conceptual frameworks for sustainability and sustainable 

development. 

  

The UN SDGs, the successors of the Millennium Development Goals (MDGs), are the most 

recent operationalisation of the concept of sustainability. They describe humanity's needs with 

clear goals and provide indicators to evaluate progress towards these goals. The recent FAO 

report “Food and Agriculture - Driving Action Across the 2030 Agenda for Sustainable 

Development” illustrates how all SDGs are in some way connected to food provisioning (Fig. 

3.1). That report has a clear focus on eradicating hunger in low-income settings; the coupling of 

SDGs to food systems would look somewhat different in high-income settings, where the 

challenges are different.  
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Fig. 3.1. How food provisioning connects to the United Nations Sustainable Development Goals (SDGs). From FAO 

(2017b). 

 

 

In a keynote speech at the Stockholm EAT Forum in 2016, Rockström and Sukhdev presented a 

slightly different picture of how the food system connects to the SDGs (Fig. 3.2)3. According to 

them, economies and societies have to be seen as embedded parts of the biosphere, rather than 

constituting three pillars of similar weight. Rockström and Sukhdev also point to the synergies 

of certain SDGs; for example, eradicating poverty (SDG 1) and hunger (SDG 2) requires gender 

equality (SDG 5), decent jobs (SDG 8) and reduced inequality (SDG 10). Rockström and 

Sukhdev do not present any specific indicators for measuring the sustainability of food systems 

                                                        
3http://www.stockholmresilience.org/research/research-news/2016-06-14-how-food-connects-all-the-sdgs.html 

http://www.stockholmresilience.org/research/research-news/2016-06-14-how-food-connects-all-the-sdgs.html
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or diets. However, the 17 SDGs provide 169 targets and 304 indicators, some of which are 

applicable to sustainable diets and food systems.

 
 
Fig. 3.2. How food connects all the United Nations Sustainable Development Goals (SDGs). Rockström and Sukhdev 

(2016) presented a new way of viewing the SDGs and how they are all linked to food. 
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3.2 Sustainability assessment tools 

To work towards greater sustainability, and particularly sustainable diets, ways to concretise 

sustainability and ways of measuring it are needed. The concepts ‘metrics’, ‘measures’ and 

‘indicators’ are used differently in different contexts and are commonly used interchangeably. 

According to the Oxford English dictionary, a metric is used to define “a system or standard of 

measurement”; a measure is a value of something related to a standard, e.g. a weight in 

kilograms; and an indicator is related to some specific context, e.g. as defined by OECD/DAC 

(2010): 

  

“A quantitative or qualitative factor or variable that provides a simple and reliable means to 

measure achievement, to reflect changes connected to an intervention, or to help assess the 

performance of a development actor”. 

  

Indicators are important tools for enabling data to be handled in a consistent, comprehensive 

and understandable way. Indicators are commonly aggregated into composite indices (Fig. C2 in 

Appendix C). It is important to remember that indicators are not objective measurements, but 

rather context-laden socially constructed values (Mineur, 2007). When choosing indicators or 

when developing new indicators and indices, a range of different criteria should be considered, 

such as indicators being sensitive to change, possible to verify, objective, easy to use, policy 

relevant, comparable, understandable and so on. Appendix C provides more information on 

indicator selection and development, a full research field of its own. “The Handbook on 

Constructing Composite Indicators” includes valuable guidelines on the development of 

composite indicators (OECD and EC, 2008). 

  

An alternative to aggregating indicators into one or only a few indices is to show results for 

many indicators (commonly aggregated into ‘themes’) on a common scale, using e.g. a spider 

diagram (Fig. 3.3). This is a common approach for evaluating farm-level sustainability (Schader 

et al., 2014; Marchand et al., 2014; Rasmussen et al., 2017). Such tools are sometimes termed 

integrated indicator-based sustainability assessment frameworks and typically include guidance 

on how indicators should be normalised, weighted and aggregated and how results of the 

assessment should be presented.  
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Fig. 3.3. Example of the structure 

(above) and results (left) of an 

integrated indicator-based 

sustainability assessment framework 

for farms and agribusinesses. The 

tool, called SAFA, was developed by 

the FAO and includes four 

dimensions of sustainability: good 

governance, environmental integrity, 

economic resilience and social well-

being (FAO, 2014). Under these, 

there are 21 high-level sustainability 

themes applicable to all areas of 

sustainable development. Under 

these in turn, there are 58 sub-

themes that specifically target 

agriculture and food. A number of 

indicators for each sub-theme are 

suggested. The SAFA guidelines 

further specify how indicators can be 

contextualised and how they should 

be rated, weighted and aggregated.  
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Another commonly used tool for estimating the environmental impact of products or services is 

life cycle assessment (LCA), which is a well-established quantitative and standardised method 

(ISO, 2006a, 2006b) structured into four stages (Fig. 3.4). In an LCA, resources used (e.g. raw 

materials, energy, land and water) and outputs created (products, by-products, emissions and 

waste) are quantified for all steps in the life cycle, starting at raw material extraction and 

continuing through to manufacturing, use and finally ending with disposal of the product. 

Resource use and emissions are aggregated across life cycle stages and related to one unit of the 

product or service under study, the so-called functional unit. Emissions of substances that cause 

the same type of environmental impact are characterised according to their ability to cause the 

impact in relation to a ‘base’ substance. For example, gases causing global warming are typically 

aggregated based on their ability to heat the atmosphere in comparison with carbon dioxide 

(CO2) over a set time period. A common method is to determine global warming potential 

(GWP), which measures how much heat is trapped in the atmosphere by a certain gas over a 

period of time relative to the amount of heat trapped by CO2 (Myhre et al., 2013). An LCA study 

typically contains many impact categories (e.g. eutrophication, toxicity, acidification, ozone). 

However, due to the interest in climate change and since emissions of GHG have the same 

impacts regardless of where they take place, it has become common to limit LCA to emissions of 

GHG, in which case the undertaking is called a product carbon footprint (PCF) and is defined in 

its own standard (ISO 14067).  

 

 

 
Fig. 3.4. The four phases of life cycle assessment.  

 

 

 

To date, LCA has been limited to environmental impacts, but efforts have also been made to 

develop a method for undertaking social LCA (S-LCA) as well as life cycle costing (LCC) studies 

i.e. which also include social and economic perspectives. However, these are applied to a much 

lesser extent.  
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LCA is inherently a measurement of environmental ‘efficiency’ as it measures emissions and 

resource use per unit of produce (although impacts could also be assessed per area e.g. per 

hectare). As such LCA does not in itself provide any ‘sustainability thresholds’ (see section 4.6) 

as the total impact depends on the total usage of a specific product. That is, even though a 

product might have a low impact per kg of product compared to other products or services 

providing the same function, if the use of this product is high, the total impact will be high. 

 

LCA can be applied to a multitude of products and used for answering a wide range of questions. 

Therefore the ISO-standard (ISO, 2006a; 2006b) is limited to providing some overarching 

guidelines and LCAs can be performed in many different ways. To increase comparability across 

studies, the methodology has been further standardised in standards targeting specific products. 

The ENVIFOOD Protocol for instance provides guidance on how to perform an LCA on food in 

general (FOOD SCP RT, 2013), while the International Dairy Federation (IDF) provides 

guidelines on how to calculate the carbon (IDF, 2010) and water footprint (IDF, 2017) of dairy 

products more specifically.    

 

In addition to indicators, indices, sustainability assessment frameworks and LCA there are also 

other tools aimed at sustainability assessments. For an overview, see for example Gasparatos et 

al. (2008).  
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3.3 Health indicators at individual level 

WHO defined health as early as 1948 as: “a state of complete physical, mental and social well-

being and not merely the absence of disease or infirmity”. This definition has been criticized for 

having too much ‘breath and ambition’, but it still serves as a good point of reference for what 

we should strive for. More concretely, health is often estimated in terms of disease outcomes, 

like such as mortality rate and morbidity prevalence. However, metrics for estimating the 

‘healthfulness’ of a population or person based on self-rated health measurements also exist 

(DeSalvo et al., 2005). Since the experience of health or ill-health is ultimately subjective, this 

approach of rating one’s experience of health is well suited in some cases. However, this 

approach also carries significant methodological problems and is perhaps less helpful when 

defining and designing sustainable and healthy diets, although for evaluation purposes it could 

play a role. Personal perception of health relies not only on one’s physical condition but is also 

affected by many other factors, including how one perceives the healthiness of the food 

consumed and the wellbeing (emotional and social) one derives from the eating experience. 

Guyonnet et al. (2008) developed a questionnaire designed to measure the perceived impact 

and effects of the daily diet on several psychological parameters.                                                   

  

Mortality, as the name implies, describes a condition whose outcome is fatal, i.e. the death rate 

in a population. Morbidity, on the other hand, is the rate of disease in a population. Morbidity is 

often considered a relevant indicator of health and of the same magnitude as mortality, due to 

the suffering, societal and economic cost that morbidity causes. Morbidity can be measured in 

two ways, as prevalence and incidence. Prevalence is the total number of people with any given 

disease or condition at any given point in time, while incidence is the new number of cases 

within a specific time frame (i.e. one year). Prevalence is usually reported as the fraction or 

absolute number. Incidence is usually reported as an incidence rate within the population at 

risk, i.e. 2800 cases per 100,000 or 0.028%, for a specific time frame, i.e. one year (Willett, 

2012).  

 

There are several different health indicators available, with some having more depth and 

breadth and others being more specific. The Institute for Health Metrics and Evaluation 

(IHME), which together with several other organisations publishes the Global Burden of Disease 

study, uses the following indicators to evaluate health (IHME, 2013): 

● Mortality 

● Years of Life Lost (YLL) - years of life lost due to premature mortality 

● Years Lived with Disability (YLD) - years of life lived with any short-term or long-term 

health loss 

● Disability-Adjusted Life Years (DALY) - the sum of years lost due to premature death 

(YLL) and years lived with disability (YLD)  

● Healthy Life Expectancy, or Health-Adjusted Life Expectancy (HALE) - the number of 

years that a person at a given age can expect to live in good health, taking into account 

mortality and disability. 
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In nutritional epidemiology, apart from mortality measurements, one common indicator is body 

mass index (BMI), an individual's weight divided by the square of their height, although other 

indicators also exist (Gibson, 2005). WHO has produced a comprehensive report on core health 

indicators (WHO, 2018).  

 

Indicators such as BMI, DALY and the prevalence and incidence of certain diseases (e.g. lung 

cancer) are considered to be indicators with relatively high relevance in clinical applications. For 

example, if smoking is shown to increase the risk of lung cancer, this outcome warrants clear 

policies or recommendations. However, access to data for these kinds of indicators varies and 

epidemiological research therefore often uses indicators of less relevance (similarly to midpoints 

in LCA, see Appendix C3). These kinds of indicators are often markers of a potential disease or 

disease progression, and are less expensive and more readily available, which makes their use 

relatively common. Examples include blood level markers for cholesterol, blood glucose, 

hormone levels or mechanical indicators like blood pressure. Naturally, these indicators may not 

always affect the life quality of the patient and do not always lead to the diseases or outcomes 

associated with the indicators.  
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3.4 Health indicators at food and diet level  

When measuring the ‘healthfulness’ of individual food items, nutrient profiling, i.e. 

categorisation of foods based on their nutrient content, is the main method (WHO, 2011b). A 

common approach in nutrient profiling is to use nutrient adequacy/density scores. Based on the 

nutrient content in foods or diets, several indices have been developed to determine the overall 

quality of foods and diets (Drewnowski, 2009; Arsenault et al., 2012; Drewnowski and Fulgoni, 

2014). However, ranking foods based on their nutritional quality includes both conceptual and 

technical challenges and many design decisions are required, e.g. on which nutrients to include, 

the basis of calculations (grams, kcal or serving size), the choice of reference daily values, 

whether the nutrients should be capped at 100% of recommended daily allowance of nutrients 

or not, and which algorithm to use when calculating the actual index (WHO, 2011b; Hallström et 

al., 2018). In addition, whether nutrient indices are designed to be used on a specific category of 

foods or across all foods is another question. Therefore, results in terms of nutrient quality of 

foods or diets using nutrient profiling are highly dependent on the design of the profiling 

method. Examples of established nutrient profiling methods are the Swedish Keyhole4, the 

European Nutriscore5 and the Australian Five Star6.   

 

Nutrient adequacy/density scores can also be used to measure the healthfulness of diets. Vieux 

et al. (2013) used nutrient adequacy scores to rank individual diets according to their nutritional 

quality. They used the mean adequacy ratio (MAR), mean excess ratio (MER) and dietary energy 

density (DED) to rank diets into four different health categories. These were calculated for 20 

nutrients, including protein and key vitamins and minerals, and three harmful nutrients 

(saturated fat, sodium and added sugars). MAR was calculated as the sum of all mean 

percentages of the daily recommended intake (DRI) for each key nutrient, with the ratio 

truncated at 100 so that high intake of some nutrients would not compensate for low intake of 

other nutrients. MER was calculated as the sum of intake of each detrimental nutrient divided 

by the maximum recommended value, with individual values below 100 truncated to 100 to 

avoid compensation from low values. DED is the total weight of the individual diet divided by 

the total caloric content (considering only items typically consumed as foods). Lower DED is 

expected to be beneficial to health in preventing obesity-associated diseases.   

 

Another approach to measure the healthfulness of diets is to evaluate the quality of diets in 

terms of their dietary components rather than their nutrient content, for example consumption 

of fruit, vegetables, sugary drinks etc. The Healthy Eating Index (HEI) is one example (Heller et 

al., 2013). This can often be combined with certain aspects of nutrient profiling, such as share of 

calories derived from sugar or saturated fat. Scoring systems for dietary quality are often based 

on pre-existing nutritional guidelines or recommendations, but may also be derived from 

specific dietary patterns, such as the Mediterranean Diet Score (Waijers et al., 2007). 

 

                                                        
4https://www.livsmedelsverket.se/en/food-and-content/labelling/nyckelhalet  
5http://www.euro.who.int/en/countries/france/news/news/2017/03/france-becomes-one-of-the-first-
countries-in-region-to-recommend-colour-coded-front-of-pack-nutrition-labelling-system  
6http://healthstarrating.gov.au/internet/healthstarrating/publishing.nsf/content/home  

https://www.livsmedelsverket.se/en/food-and-content/labelling/nyckelhalet
http://www.euro.who.int/en/countries/france/news/news/2017/03/france-becomes-one-of-the-first-countries-in-region-to-recommend-colour-coded-front-of-pack-nutrition-labelling-system
http://www.euro.who.int/en/countries/france/news/news/2017/03/france-becomes-one-of-the-first-countries-in-region-to-recommend-colour-coded-front-of-pack-nutrition-labelling-system
http://healthstarrating.gov.au/internet/healthstarrating/publishing.nsf/content/home
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Hallström et al. (2018) reviewed the literature on dietary quality scores for assessing the 

sustainability of food and human diets and provide an overview of methodological choices for 20 

different dietary quality scores (Fig. 3.5). 

 

 
Fig. 3.5. Overview of nutrient quality scores used in the literature to assess the sustainability of foods and diets. 

From Hallström et al. (2018). (Note that the LIM and SAIN:LIM scores do not have ‘capping of D-Q’ and that MAR 

and MER are not applicable to food items.) 
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4. Sustainable diets 

4.1 Definitions of sustainable diets 

One of the most commonly cited definitions of sustainable diets is the following, from the book 

“Sustainable Diets and Biodiversity - Directions and Solutions for Policy, Research and Action” 

(FAO and BI, 2010): 

  

“Sustainable diets are those diets with low environmental impacts which contribute to food 

and nutrition security and to healthy life for present and future generations. Sustainable diets 

are protective and respectful of biodiversity and ecosystems, culturally acceptable, accessible, 

economically fair and affordable; nutritionally adequate, safe and healthy; while optimizing 

natural and human resources.“ 

  

This book was the result of an International Scientific Symposium “Biodiversity and Sustainable 

Diets: United Against Hunger” organised jointly by the FAO and Biodiversity International (BI). 

It was held at FAO headquarters in Rome in 2010, within the World Food Day/Week 

programme, during the International Year of Biodiversity. The definition stated above is 

sometimes referred to as the ‘FAO definition’ of sustainable diets. 

  

Table 4.1 gives examples of other definitions of sustainable diets from different organisations 

and projects. Most organisations acknowledge the multifaceted aspects of sustainability, 

including social, economic and environmental aspects. In summary, all definitions explicitly 

state that sustainable diets should be healthy and protective of the environment. Almost all also 

include explicit statements on economic aspects, food safety and cultural acceptance. Two 

definitions raise the issue of animal welfare, one includes the feasibility of diets (“is practically 

feasible in everyday life”) and one the aspect of good quality food (“improve people’s experiences 

of good quality food”). Only one of the definitions (sustain org) does not mention explicitly the 

human health-promoting dimension of sustainable diets. 
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 Table 4.1. Definitions of sustainable diets found in the literature through an iterative search on generic search 

engines 

Organisation/author Definition 

FAO and BI (2010). 

Sustainable diets and 

biodiversity. Directions and 

solutions for policy, research 

and action.  

“Sustainable diets are those diets with low environmental impacts which contribute to 

food and nutrition security and to healthy life for present and future generations. 

Sustainable diets are protective and respectful of biodiversity and ecosystems, culturally 

acceptable, accessible, economically fair and affordable; nutritionally adequate, safe and 

healthy; while optimizing natural and human resources.” 

Reisch LA (2010). A definition 

of “sustainable food 

consumption”: Copenhagen 

Business School. 

“For food consumption to be sustainable it has to be safe and healthy in amount and 

quality; and it has to be realized through means that are economically, socially, culturally 

and environmentally sustainable – minimizing waste and pollution and not jeopardizing 

the needs of others.” 

Sustain (2013). The Sustain 

guide to good food: How to 

help make our food and 

farming system fit for the 

future.  

“Provide social benefits, such as safe and nutritious products, and improve people’s 

experiences of good quality food, for instance by growing and cooking it, which helps to 

enrich our knowledge and skills, and our cultural diversity. 

Contribute to thriving local economies that create good jobs and secure livelihoods – 

both in the UK and, in the case of imported products, in producer countries. Enhance the 

health and variety of both plants and animals (and the welfare of farmed and wild 

creatures), protect natural resources such as water and soil, and help to tackle climate 

change.” 

The German Project 

Ernährungswende, lead 

author Doris Hayn. (Reisch, 

2010) 

Food consumption is defined to be sustainable only if it: 

● is environmentally sound (water, soil, climate, biodiversity, avoidance of 

unnecessary risks); 

● is health promoting; 

● allows for socio-cultural diversity; 

● is practically feasible in everyday life. 

British Sustainable 

Development Commission 

(Reisch, 2010) 

The commission considers food and drink sustainable if it: 

● is safe, healthy and nutritious, for consumers in shops, restaurants, schools, hospitals 

etc.; 

● can meet the needs of the less well-off people; 

● provides a viable livelihood for farmers, processors and retailers, whose employees 

enjoy a safe and hygienic working environment whether nationally or abroad; 

● respects biophysical and environmental limits in its production and processing, while 

reducing energy consumption and improving the wider environment; 

● respects the highest standards of animal health and welfare, compatible with the 

production of affordable food for all sectors of society; 

● supports rural economies and the diversity of rural culture, in particular through an 

emphasis on local products that keep food miles to a minimum. 
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4.2 Frameworks for sustainable diets 

To our knowledge, there is no commonly used generic, operationalised broad framework for 

assessing the sustainability of diets, as there is for assessing the sustainability of farms (Fig. 3.3; 

Section 3.2). However, some reports and papers provide conceptual frameworks or indicators 

for a specific context, which are exemplified in this section. 

 

Lukas et al. (2016) provides a framework for assessing the sustainability of meals which could 

also be applied to diets. The framework includes a set of environmental (carbon, material 

footprints, land and water use) and health indicators (intake of energy, sodium, dietary fibre and 

saturated fat), threshold levels (further discussed in section 4.6), a way to aggregate the results 

into one composite index (the Nutritional Footprint) and a ranking system (‘low’, ‘medium’ and 

‘high’ effect). The framework was applied by Lukas et al. (2016) to eight meals and the results 

presented as the aggregated nutritional footprint (Table 4.2), and also in a diagram which shows 

the impacts for each indicator (Fig. 4.1). 

 
Table 4.2. ‘Nutritional footprint’ of meals. From Lukas et al. (2016) 

Menu Nutritional footprint [(subtotal health 

+ subtotal env.)/2)] 

Nutritional 

footprint 

Ranking 

Menu 1 – Spaghetti bolognese with a small salad  [(2.25 + 2.25)/2]  2.25 High 

Menu 2 – Classic curry sausage with chips and 

mayonnaise 

 [(2.75 + 1.75)/2]  2.25 High 

Menu 3 – Beef roll with potatoes and vegetable in red 

wine sauce 

 [(2 + 3)/2]  2.5 High 

Menu 4 – Large mixed salad with a baguette  [(1.25 + 1)/2]  1.125 Low 

Menu 5 – Breaded sea fish fillet with remoulade sauce, 

potato and broccoli 

 [(2.25 + 1.25)/2]  1.75 Medium 

Menu 6 – Veggie, zucchini, spinach and feta lasagne  [(1.5 + 1)/2]  1.25 Low 

Menu 7 – Vegan – Chili sin carne  [(1.25 + 1)/2]  1.125 Low 

Menu 8 – Potato pancake  [(2 + 1)/2]  1.5 Low 
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Fig. 4.1. Nutritional footprint of a veggie lasagne (left) and a beef roll menu (right). From Lukas et al. (2016). 

  

The framework of Lukas et al. (2016) could potentially be useful for communicating the joint 

environmental and health impacts from different meals to e.g. consumers. However, the 

usefulness of the tool in this application has not been investigated, a point which those authors 

also highlight.  

 

In their framework, the healthfulness of a meal is evaluated based on its energy, salt, fibre and 

saturated fat content, which is only a limited set of all the nutrients that are relevant for 

nutritionally adequate diets. Potentially, choosing these four is a valid simplification in the case 

of consumer communication that provides appropriate boundary conditions for a healthy meal; 

ensuring adequate energy intake while limiting salt and saturated fat and ensuring enough 

dietary fibre would steer the consumer towards meals rich in whole grains, roots and vegetables. 

However, inadequate protein intake could potentially be an issue and the same is true for certain 

micronutrients. The appropriateness of using these four health indicators would need to be 

tested on a larger set of meals and diets. An additional point that the authors highlight is that 

this framework has been developed for use in a high-income setting and might need adapting to 

suit another contexts. As regards environmental indicators, the framework lacks consideration 

of e.g. use of pesticides and impacts on biodiversity. In addition, as the authors highlight, there 

is some overlap between indicators. For example, the use of materials will show up in both the 

carbon footprint and the material footprint. 

 

The Lukas et al. (2016) study illustrates several challenges in developing frameworks for 

sustainable diets, including the difficulty in choosing a limited and still appropriate set of 

indicators, how to aggregate and weight these (further discussed in section 4.5) and how to 

define thresholds and rating systems, i.e. what is considered high or low, green or red (see 

section 4.6). Inevitably, the design of a framework for sustainable diets includes a range of 

normative decisions that will influence the results. In addition, for such assessments to be useful 

for different types of decision making, they need to be perceived as understandable and relevant 

for involved stakeholders, which means that tools have to be tailored to different users and 
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contexts. For example, a public agency, a researcher or an industry sustainability manager can 

handle greater complexity than can (most) consumers. 

 

Heller et al. (2013) provide an interesting conceptual framework that views the damage to 

human health of a particular diet as a combined effect of the damage caused by the 

environmental impact and the direct effect of consuming a particular diet (Fig. 4.2). To our 

knowledge, this framework has never been applied quantitatively. 

 

 
Fig. 4.2. Conceptual framework for diet-level integration of environmental impact and nutritional quality 

assessments. Reprinted with permission from (Heller MC, Keoleian GA, Willett WC. Toward a Life Cycle-Based, Diet-

level Framework for Food Environmental Impact and Nutritional Quality Assessment: A Critical Review. 

Environmental Science & Technology. 2013 Nov 19;47(22):12632–47). Copyright 2018 American Chemical Society.  

 

Gazan et al. (2018a) present a method for compiling food metrics related to diet sustainability 

relevant for a specific context. They illustrate their methodology using France as a case study, 

starting with the selection of diet sustainability dimensions and diet-related indicators, based to 

a large extent on data availability (Table 4.3). Data to calculate the metrics were taken from 

national and international standard nutrient composition tables and databases, surveys and 

scientific literature and stored in a common database. The metrics were then applied to 212 

generic French foods. Compilation of these data enables assessment of diets, including health, 

cultural, economic and environmental perspectives. However, as the authors acknowledge, the 

choice of indicators is largely driven by data availability. For example, for environmental 

indicators, water use is missing.  
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Table 4.3. Sustainability dimensions, indicators and metrics used in Gazan et al. (2018) 

Sustainability 
dimension 

Diet-related 
indicator 

Food metrics 

Nutritional adequacy (sub-
domain of the health 
dimension) 

Diet quality ● Energy and nutrient contents 
● Content of other substances (e.g. phytate) 
● Bio-conversion factors (protein digestibility factor, pro-

vitamin A carotenoid conversion factors) 
● Proportion of ingredients of animal/vegetable origin 

Food safety (sub-domain of 
the health dimension) 

Toxicological exposure ● Contaminant content 

Cultural acceptability Dietary pattern ● Distribution of dietary intakes in the population 
● Portion sizes 

Economic affordability Diet cost ● Prices 

Environmental friendliness Diet-related 
environmental impact 

● Greenhouse gas emission 
● Water eutrophication 
● Air acidification 

 

One of the more comprehensive compilations of issues related to sustainable diets is that by 

Garnett (2014), in which a sustainable diet is described by five core components: 1) society and 

ethics, 2) economy and food supply, 3) environment, 4) nutrition and 5) other food-related 

health (Fig. 4.3). Garnett (2014) describes how different food groups relate to the issues listed 

and discusses this in relation to the value-laden social context of sustainable diets, but does not 

provide any concrete metrics to quantitatively assess different diets.  
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Fig. 4.3. Issues to consider when defining a sustainable diet. From Garnett (2014). 

  

 

Building on the work by FAO and BI, Johnston et al. (2014) present key components, 

determinants, factors and processes of sustainable diets (Fig. 4.4). They also highlight the need 

to develop indicators for measuring the different aspects and discuss the difficulty with this, 

especially in low-income settings due to lack of data and other constraints.  
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Fig. 4.4. Components, determinants, factors and processes of a sustainable diet. From Johnston et al. (2014).  

 

Donini et al. (2016) present what they call a ‘consensus proposal’ of nutrition and health 

indicators. These were developed within an informal international working group consisting of 

organisations from mainly Mediterranean countries that worked for four years to identify and 

choose relevant indicators. The starting point was the so-called traditional Mediterranean diet. 

Thirteen indicators in five areas were identified: 

 
● Biochemical characteristics of food (Vegetable/animal protein consumption ratios; Average 

dietary energy adequacy; Dietary Energy Density Score; Nutrient density of diet) 

● Food Quality (Fruit and vegetable consumption/intake; Dietary Diversity Score)  

● Environment (Food biodiversity composition and consumption; Rate of local/regional foods and 

seasonality; Rate of eco-friendly food production and/or consumption) 

● Lifestyle (Physical activity/physical inactivity prevalence; Adherence to the Mediterranean dietary 

pattern) 

● Clinical Aspects (Diet-related morbidity/mortality statistics; Nutritional anthropometry).  

 

For each of these, Donini et al. (2016) provide a definition, methodology, background, data 

sources, limitations of the indicator and references. For environmental indicators, these do not 

describe the actual performance in terms of contributing to different impact categories such as 
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climate impact, water use, eutrophication etc. Instead, potential drivers of such impacts are 

used, based on the assumption that local/regional foods and organic foods provide 

environmental advantages. While this is true for some aspects, e.g. production of organic foods 

is associated with considerably lower use of pesticides than conventional production, it is not 

certain that local foods provide environmental benefits, as that depends on how production is 

carried out rather than where it is located. None of the environmental indicators suggested by 

Donini et al. (2016) would capture the greater environmental impacts generally caused by diets 

high in animal products.    

 

Another approach to evaluate the sustainability of diets is through coupled agriculture and 

health modelling, in which economic models are used to predict food consumption and their 

influence on production and the resulting environmental impacts. For example, Springmann et 

al. (2017) used such an approach including a global risk-assessment framework with five disease 

states and six dietary and weight-related risk factors to predict health outcomes from dietary 

changes induced by placing a tax globally on food in relation to the food’s climate impact.  

 

Downs et al. (2017) present a framework for policy analysis for sustainable diets. It contains a 

comprehensive set of issues (compiled from among others Garnett (2014)) related to sustainable 

diets structured into five domains (1) nutrition and health; (2) agriculture and food security; (3) 

environment and ecosystems; (4) markets, trade and value chains for economic growth; and (5) 

sociocultural and political factors. Downs et al. (2017) use the framework to examine three 

Nepalese food-related policies by evaluating whether and to what extent these policies address 

the different sustainability issues in the framework. 
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4.3 Frameworks for sustainable food systems 

Although the focus of the present report is on sustainable diets, below we present some recent 

examples of multicriteria frameworks evaluating sustainable food systems, as some metrics and 

approaches included in these might also be applicable to diets.  

 

Gustafson et al. (2016) propose a framework based on the concept of ‘sustainable nutrition 

security’ (SNS) and consisting of seven different metrics (Fig. 4.5). Within each metric, there are 

several indicators that are combined into a single score for each metric. The results can then be 

visualised using a spider diagram and serve as a foundation for comparing SNS between 

different countries. 

 

.  
Fig. 4.5. Schematic diagram of the framework presented by Gustafson et al. (2016), incorporating seven metrics for 

sustainable food systems.  

 

Chaudhary et al. (2018) applied the SNS framework with some modifications to three alternative 

dietary alternatives (healthy global diets, lacto-ovo vegetarian and vegan) in 156 countries, using 

the framework to assess differences in food system sustainability depending on different diets. 
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For the Food Nutrient Adequacy metric, two additional indicators were used, the Nutrient 

Balance Score (NBS), i.e. the daily average intake amounts of 25 essential (qualifying) nutrients 

compared with their Reference Daily Intake values, and the Disqualifying Nutrient Score (DNS), 

i.e. the total daily intake of four nutrients to limit (sugar, cholesterol, saturated fat and total fat) 

with their Maximal Reference Values. These two replaced the Nutrient Density Score used in 

Gustafson et al. (2016). Hence, stronger weight was given to the nutrients to limit, which 

decreased the positive bias toward high-income countries. To the Ecosystem Stability metric was 

added the Biodiversity Footprint, which uses the methodology in Chaudhary and Kastner (2016) 

to account for land use biodiversity impacts associated with international trade.  

 

For comparison between diets, Chaudhary et al. (2018) show results explicitly for the NBS, the 

DNS, the PAN (Population Share with Adequate Nutrients) and the carbon and water footprints 

for different regions and countries. To give an example, results for Europe and Central Asia are 

shown in Table 4.4. 

 
Table 4.4. Impact from different diets on five sustainability indicators for two world regions. From Chaudhary et al. 

(2018) 

Region Scenario Nutrient 
Balance 
Score, NBS1 

Disqualifying 
Nutrient 
Score, DNS1 

Population 
Share with 
Adequate 
Nutrients, 
PAN1 

Carbon 
footprint 
(kg CO2e per 
capita) 

Water 
footprint  
(L per capita) 

Europe and 
Central 
Asia 

Reference 80 10 82 3.04 303 

Healthy diet2 +1 +3 -4 -0.89 -68 

Lacto-ovo vegetarian3 0 +10 -5 -1.48 -79 

Vegan4 -4 +50 -12 -2.01 -85 

Sub-
Saharan 
Africa 

Reference 71 38 68 1.48 141 

Healthy diet +3 -1 +9 +0.24 +35 

Lacto-ovo vegetarian +1 +3 +5 -0.25 +33 

Vegan 0 +13 +3 -0.37 +34 

1Scaled from 0 to 100, a NBS or DNS value of 100 means perfectly nutritious diet. A PAN score of 100 implies that 100% of the 

region’s population is meeting daily nutritional requirements. 
2The scenario assumes that people consume just enough calories to maintain a healthy body weight and that food intake complies 

with dietary guidelines on healthy eating. The four constraints included for constructing a diet (per day) were: less than 50 g of sugar 

and 43 g of red meat, a minimum of five portions (400 g) of fruit and vegetables and 2200-2300 kcal of total energy intake 

(depending on the age and sex composition of the population) 
3The five constraints applied in this diet scenario (per day) were: less than 50 g of sugar, no red meat, poultry or fish, 2300 kcal of 

total energy intake, at least six portions of fruit and vegetables (6 × 80 g), and at least one serving (80g) of legumes/pulses. There 

was no constraint or allowable level defined for eggs/dairy intake in this scenario and it was treated in the same way as other food 

items such as wheat or rice. 
4The constraints in the vegan diet scenario were the same as in the vegetarian diet scenario, except a minimum of seven portions of 

fruit and vegetables per day (7×80g) instead of six and also no eggs or dairy. 

 

  



42 

The Barilla Center for Food and Nutrition (BCFN) provides another example of a method for 

assessing food system sustainability and for ranking countries, namely the sustainability index 

(FSI) (BCFN, 2017). The index includes three pillars; 1) food loss and waste, 2) sustainable 

agriculture and 3) nutritional challenges, and is a qualitative and quantitative benchmarking 

model that permits country-to-country comparisons. The index consists of 35 indicators and 

over 55 sub-indicators. The results for a large number of countries and description of the 

methodologies are available on a website7. BCFN provides free and full access to all data and 

models, which makes it possible for anyone to use the data and results. 

 

These two very comprehensive tools provide interesting information on an aggregated national 

level about food system sustainability. However, comprehensiveness inevitably brings 

complexity, making it difficult to grasp the practical relevance of a higher or lower score when so 

many factors are taken into consideration. A more detailed analysis of the results and how they 

are derived is needed to enable wise decisions based on these tools. The aggregation level may 

hide country specific trade-offs such as the importance of grazing animals for biodiversity in 

some regions. Consideration of nutrient status on aggregated level hides nutritional challenges 

for different groups such as children, women and the elderly. However, these frameworks and 

their indicators could be valuable with some modification for studying specific issues in specific 

contexts. Depending on the research question, the stakeholders involved and the budget of the 

project, a subset of relevant indicators from these frameworks can then be selected.  

 

For more information on initiatives for measuring the sustainability of food systems, Prosperi et 

al. (2015) provide a good overview. Furthermore, Heller and Keoleian (2003) suggest a set of 

indicators associated with different stages in the food supply chain.  

  

                                                        
7http://foodsustainability.eiu.com/heat-map/ 

http://foodsustainability.eiu.com/heat-map/
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4.4 Studies measuring specific aspects of sustainable diets 

The number of studies looking at a limited set of aspects related to the sustainability of diets has 

increased substantially during the past decade. Auestad and Fugoni (2015) provide a review of 

papers on sustainable diets across academic disciplines (agriculture, nutrition and health, 

animal science, environmental sciences, social sciences, economics and policy) published up to 

April 2014. Only studies that examined impacts of dietary patterns on at least one indicator of 

environmental sustainability were included. The most recent systematic review on sustainable 

diets is that by Jones et al. (2016), where lack of metrics and shared approaches in the 

assessment of sustainable diets served as the rationale for the study. Jones et al. (2016) 

identified 30 ‘components’ of sustainable diets (Table 4.5) from 113 studies in total. They 

applied a systematic search method covering 30 databases in the fields of nutrition, public 

health, agriculture, ecology, economics, social science, public policy and environmental and 

climate change. They also examined references of identified articles, prominent policy reports, 

previous literature reviews and archives of selected indexed journals.  

  

To complement the study by Jones et al. (2016) with later research findings, when preparing 

this report we conducted an additional search for 2016 and 2017 in 27 databases (through 

Pubmed/Medline), using the same search phrases and exclusion criteria as applied by Jones et 

al. (2016). Our additional results can be seen together with the results from Jones et al. (2016) 

in Table 4.5 (the full list of references and the exclusion criteria used by Jones et al. (2016) are 

provided in Appendix D). In addition to the components in Table 4.5, we identified additional 

components that were not identified in the review by Jones et al. (2016). These were: 

 
●    Material footprint 

●    Dietary diversity score 

●    Physical inactivity/activity prevalence 

●    Adherence to the Mediterranean dietary pattern/Mediterranean diet index 

●    Nutritional anthropometry 

●    Resilience 

●    Socio-cultural wellbeing 

●    Food safety 

●    Food affordability and availability 

●    Employment 

●    Metabolic food waste 

●    Metabolic energy density 

●    Nutrient-scaled carbon footprint. 
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Table 4.5. Components of sustainable diets identified by Jones et al. (2016) and in an updated search in February 

2018 covering the years 2016 and 2017 

Component: No. of studies in Jones et 

al. (2016) in which it is 

included: 

Number of additional 

studies 2016-2017 in 

which it is included: 

Greenhouse gas emissions 71 20  

Land use 32 11 

Consumption of meat and dairy 30  2 

Diet quality 27  10 

Energy use 26  4  

Management practices/organic food 21 1 

Water use 20  9 

Local or seasonal food procurement 18  1 

Cost of diets and revenue generation 13  2 

Eutrophication potential 11  3 

Health 11  2 

Reactive nitrogen 9  1 

Acidification potential 8  2 

Human toxicity/ecotoxicity 8  1 

Social equity 8  1 

Food waste 7  1 

Ozone layer depletion 6  0 

Ecology/environment 5  0 

Animal welfare 5  0 

Fisheries 3  0 

Community 2  0 

Policy 2  0 

Phosphorus use 2  1 

Bottled water consumption 2  0 

Food packaging 2  0 

Biodiversity 2  2 

Cultural appropriateness 2  2 

Abiotic resource use 1  1 

Mineral extraction 1  0 

Landscape character 1  0 

  

Jones et al. (2016) concluded that, although they found 30 distinct components of sustainable 

diets, “neither the distribution nor complexity of components identified in existing conceptual 

frameworks of sustainable diets is evident in the empirical research that has measured 

sustainable diets”. 

  

A comparison of the comprehensive framework presented by Garnett (2014) and the list of 

components compiled by Jones et al. (2016) shows that there are gaps between Garnett’s 

framework and current research investigating sustainable diets. Although several of these 

components could be accounted for implicitly, there is no explicit inclusion of e.g. agriculture-

linked infectious diseases (zoonotic, vector-borne), occupational injuries and taste in current 

literature. Moreover, consideration of soil fertility and health seems to be completely absent.   
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A limitation with the Jones et al. (2016) review is that the ‘components’ presented include 

indicators used to assess diets, such as carbon footprint and water use, and other characteristics 

of potentially more sustainable diets that were investigated in the studies reviewed, but not 

always measured, e.g. management practices/organic food and local and seasonal food. 

‘Consumption of meat and dairy’ was a component found in 30 of the studies reviewed, but it 

did not appear to have been actually used as an indicator in any of the studies. Instead, studies 

were considered to include this component if e.g. they compared diets with different amounts of 

meat. However, ‘amount of animal protein’ could be an interesting, albeit coarse, indicator to 

use for sustainable diets, as it drives several other environmental aspects and is one important 

factor for nutrition. For a more detailed description of some common indicators found in the 

Jones et al. (2016) review, see Appendix E. In addition, a recent literature review by van Dooren 

et al. (2018) (which included the Jones et al. review) intended “to identify a set of crucial 

indicators to assess the most pressing environmental impacts of diets” provides a good 

overview of potential indicators for diet sustainability. They conclude that emissions of GHG 

and land use address most of the environmental impact of diets well, but that these indicators 

should be supplemented with indicators addressing nitrogen and phosphorous efficiency. 

 

In summary, most current literature on healthy and sustainable diets commonly only includes 

one or a few issues when assessing the sustainability of diets, hence potentially failing to capture 

both important synergies and goal conflicts. This is understandable considering the complexity 

of assessing impacts from a large range of foods for many issues. Lack of data is also a major 

limitation. However, several studies indicate that in general, GHG emissions and land use are 

reasonable proxies for some other, but not necessarily all, environmental pressures (see e.g. 

Röös et al., 2013; van Dooren et al., 2018).  
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4.5 Methods for indicator weighting and diet optimisation 

Inherently, multi-dimensional assessments of foods and diets give a multitude of results for 

different indicators. These results can be presented separately, enabling e.g. the study of trade-

offs and the identification of especially problematic areas. Indicators can also be aggregated to 

one or a few indices (section 3.2). In the latter case, the question arises of how indicator results 

can be weighted. As assessments of diets often show trade-offs, one might want to optimise the 

diet to reach the most optimal result in term of several indicators. This section provides some 

information on the issues of weighting and diet optimisation.   

 

Computerised dietary programming (CDP) is one way to optimise diets with regard to several 

indicators and has been used to create new, more sustainable dietary recommendations and 

guidelines (e.g. Gazan et al., 2018b). In CDP, mathematical optimisation of diets is performed 

using linear or quadratic programming. Software programs handle data on several different 

variables, such as macro- and micronutrients, GHG emissions and land use, and optimise diets 

based on minimising e.g. GHG emissions while meeting nutrient recommendations or keeping 

diets as similar as possible to a reference diet (commonly the current diet) while GHG emissions 

are reduced. In the EU project SUSDIET (ended in 2017), CDP (a tool developed by MS 

Nutrition in France) was used to develop nutritionally adequate diets with low GHG emissions 

that deviate as little as possible from current dietary patterns achieved within the EU. Some  

results from this project were recently published in a study by Vieux et al. (2018). In that study, 

nutritionally adequate diets for each gender were developed using optimisation techniques 

starting from average observed diets (gender-specific) in five European countries (France, UK, 

Italy, Finland and Sweden) and applying stepwise 10% reductions in GHG emissions. Results 

from that study are presented and discussed in section 5.2.2 of this report.  

 

The WWF UK report “Eating for 2 Degrees – New and Updated Livewell Plates”8 describes 

another project that used CDP (the Optimeal® program from Blond Consultants). The 

Netherlands Nutrition Centre also used CDP to develop their new ‘Wheel of Five’ tool, which 

gives examples of healthy dietary patterns (Brink et al., 2017). An example of an ongoing 

research project using CDP is Optimat in Sweden9, which aims at optimising Swedish school 

meals. The project includes a modelling study to develop food baskets optimised for low 

emissions of GHG, adequate nutrient composition, good acceptability and low cost. 

 

CDP is a powerful tool for identifying optimal dietary outcomes considering a set of constraints. 

However, it can be difficult to handle a large set of constraints and setting constraints is of 

course to some extent normative. All aspects included need to be documented in a quantitative 

manner, which might lead to diets that deviate widely from current eating patterns and are 

hence unrealistic, although this can be overcome by including criteria on e.g. how much the diet 

may deviate from current diets. Interlinkages within food production (e.g. dairy milk is 

accompanied by a certain amount of ruminant meat) may be difficult to consider, as these are 

                                                        
8https://www.wwf.org.uk/eatingfor2degrees 
9http://ki.se/en/phs/community-nutrition-and-physical-activity 
8http://ms-nutrition.com/ 

https://www.wwf.org.uk/eatingfor2degrees
http://ki.se/en/phs/community-nutrition-and-physical-activity
http://ms-nutrition.com/
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highly relevant on an aggregated population level but less so on an individual level, so are 

commonly not accounted for. However, the study by Barré et al. (2018) included links between 

milk-beef and blood sausages-pork in optimisation of diets, by constraining their respective 

quantities proportionally.   

  

There are several methods available for weighting different aspects or indicators and these can 

be conceptually divided into monetary and non-monetary value-based methods. Monetary 

methods include measuring the willingness-to-pay (WTP) for certain aspects (e.g. biodiversity 

conservation, limiting GHG emissions etc.) among different stakeholders (Ahlroth et al., 2011). 

Non-monetary weighting methods include ‘distance-to-target’ and panel weighting models. 

Distance-to-target models assume that all targets or endpoints are of equal importance and 

therefore should be prioritised in accordance with how far a threshold is exceeded or the current 

state of a given environmental dimension or system. In panel weighting models, participants’ 

values are investigated through questionnaires or interviews where the respondents are asked to 

rank the importance of different aspects. Depending on the purpose of the investigation and the 

topic investigated, panels can have differing composition, although the most common 

participants are experts, stakeholders or the general public. 

  

In a paper by Tuomisto et al. (2012), a distance-to-target approach was implemented with the 

Planetary Boundaries as a proposed framework and applied on five different farming systems10. 

Depending on how far the Planetary Boundaries were trespassed, the systems received different 

weights. For example, as addition of nitrogen (at the time of writing the paper) was 121 millions 

of tonnes per year and the Planetary Boundary is defined as maximum 35 million tonnes per 

year, the weight applied to ‘the nitrogen cycle’ was 121/35=3.46, and so on for the other 

Planetary Boundaries (Table 4.6). However, this method has been criticised on the basis that it 

is not possible to ‘trade’ one Planetary Boundary for another, as they must be considered 

absolute limits. However, this criticism is not unique to the distance-to-target method and 

applies to all weighting methods, as these deal with the aggregation and prioritisation of 

different impacts.  

  
 Table 4.6. Weighting factors for different environmental aspects proposed by Tuomisto et al. (2012). 

Planetary Boundary Weighting factor 

Climate change 1.31 (0.86-1.76) 

Biodiversity loss 10 (1-10) 

Nitrogen cycle 3.46 

Phosphorus cycle 0.82 (0.08-0.86) 

Ozone depletion 1.02 

Ocean acidification 1.05 

Global freshwater use 0.65 (0.43-0.65) 

Land use 0.78 

  

  

                                                        
10Goossens et al. (2016) further suggest how LCA midpoint indicators can be mapped against the Planetary Boundaries. 
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In the framework developed by Gustafson et al. (2016) for sustainable food systems (see section 

4.3), every metric is symmetrically weighed within each of the seven dimensions, which is a 

common approach. 

  

A novel approach for creating weighting factors was presented by Ji and Hong (2016). Through 

the use of Google Trends©, which is an open-access browser software for analysing search term 

popularity, they managed to compile weighting factors based on search terms relating to global 

warming, ozone depletion, resource depletion, photochemical oxidation, eutrophication and 

acidification. Since search terms are country-specific, weighting factors for three different 

countries are presented by Ji and Hong (2016). 

  

For further reading on weighting factors from the field of LCA, see e.g. Soares et al., (2006), 

Agarski et al. (2016), Pizzol et al. (2015), Ahlroth (2014) and Ahlroth et al. (2011). For an 

example of a food-related study that used methods from the field of multi-criteria decision 

analysis, see Linnemann et al. (2015).  
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4.6 Defining rating systems and thresholds for sustainable diets 

If indicator results are to be presented on some type of scale (e.g. in a spider diagram or rated as 

high-low, red-yellow-green etc.), a rating system needs to be established. This inevitably 

involves making normative decisions and, depending on how the results are to be used, different 

strategies make more or less sense. It is possible to differentiate between relative and absolute 

sustainability ratings. Relative rating systems compare the object under study (in this case the 

food item or the diet) with similar objects, e.g. whether the food item or diet performs better or 

worse than average, is among the top 10% performers etc. However, even a system, product or 

diet that is ‘best in class’ in a given situation may not be sustainable. To determine whether a 

system, product or diet is sustainable, there is a need to establish absolute sustainability 

thresholds, which is very difficult.  

 

The Planetary Boundary concept developed by Rockström et al. (2009) and further refined in 

Steffen et al. (2015) is one of the most commonly referenced concept of thresholds for 

environmental impact (Appendix A). It defines quantified Planetary Boundaries for climate 

change, change in biosphere integrity, stratospheric ozone depletion, ocean acidification, 

biochemical flows, land-system change, freshwater use, atmospheric aerosol loading and 

introduction of novel entities. These boundaries are defined on a global scale and for impacts 

from all sectors. Therefore they do not give any guidance on how much of the impact in a 

specific category can come from the food system or the diet of a person. However, such food 

system-specific boundaries are being developed by the EAT Lancet Commission and are to be 

published in the beginning of 201911. Some studies have also broken down the Planetary 

Boundaries in order to apply them to diets or agricultural systems. As an example, the 

boundaries used by Röös et al. (2016a) for absolute sustainability in a study of Swedish diets 

based on the ‘livestock in leftovers’ approach (section 4.7) are shown in Table 4.7.   

 
  

                                                        
11https://foodplanethealth.org/the-report/ 

https://foodplanethealth.org/the-report/
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Table 4.7. Boundaries used for ‘absolute sustainability”. From Röös et al. (2016a) 

  Planetary Boundary Boundary used for the diet in this study 

Climate change CO2 concentration of maximum 

350 ppm 

Since this boundary has been exceeded, production of the diet 

should not give any net emissions 

Biosphere integrity 10 extinctions per million 

species-years  

All current semi-natural grassland and arable land in Sweden 

preserved (these are the most threatened eco-systems in 

Sweden) 

Nitrogen cycle 62 Tg of N added per year from 

industrial and intentional 

biological N fixation 

6.5 kg N per capita added per year to produce the diet 

(the boundary divided by the global population in 2050) 

Phosphorus cycle Maximum of 6.2 Tg mined P 

applied to agricultural soils 

0.65 kg P added per capita per year to produce the diet 

(the boundary divided by the global population in 2050) 

Land system change Max 15% of the global land 

surface should be converted to 

arable 

Production of the diet uses maximum 0.21 ha arable land per 

person (the boundary divided by the global population in 2050) 

  

Quite a few studies have tried to define thresholds for climate change and land use. For example, 

when quantifying GHG emissions, land use and biodiversity impacts for three Swedish diets12, 

Röös et al. (2015a) used a boundary for GHG emissions of 750 kg CO2e per person and year, 

based on emissions pathways to meet the 2-degree temperature goal and a boundary for land 

use of 0.32 ha per person per year based on agricultural land availability in Sweden. By doing so, 

they were able to show the environmental impact of the diets on the same scale as the 

nutritional content, which was normalised based on recommended intakes (Fig. 4.6). 

 

 

                                                        
12The three diets were:  SNÖ - a diet corresponding to Nordic recommendations as defined by the Swedish National Food Agency 

reflecting food preferences in Sweden; Riksmaten - the current average Swedish diet according to the latest food intake survey; 

LCHF (Low-Carb, High-Fat) - a lifestyle diet widely used in Sweden. All diets were adjusted to the same total energy intake level, 

10.1 MJ/person/day. 
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Fig. 4.6. Climate impact, agricultural land occupation and nutrient intake for three different Swedish diets (SNÖ 

=recommended diet, Riksmaten = current diet, LCHF = low-carb, high-fat diet). The y-axis shows the normalised 

values, where 1 corresponds to the per capita ‘sustainable level’ of climate impact and agricultural land occupation as 

defined in the study. For nutrients, 1 on the y-axis corresponds to the recommended intake according to the Nordic 

Nutrition Recommendations. From Röös et al. (2015a). 

 

Another example is the WWF UK’s Livewell Plate project, which used the UK government’s 

commitment to reduce territorial GHG emissions by 61% by 2030 to develop a threshold for 

food consumption. It was assumed that half the reduction will be achieved through 

improvements in production and the other half through dietary changes, giving a daily per 

capita threshold of 4.09 kg CO2e (1.5 tonnes per year) for food in 2030. The Livewell Plate 

project also established thresholds for use of cropland and grassland and several dietary and 

nutritional constraints regarding macro- and micronutrients and food groups (fish, red and 

processed meat, oily fish, fruit and vegetables, beverages). Interestingly, in their One Planet 

Plate concept13, WWF Sweden go considerably further, setting the threshold at 11 kg CO2e per 

week (590 kg CO2e per year) based on the 1.5 degree climate target and not accounting for 

technological advances. Greenpeace’s newly launched food vision aims at limiting emissions 

from agriculture to 4 Gt CO2e per year in 2050, corresponding to approximately 400 kg CO2e 

per person and year (Greenpeace, 2018). This variation in thresholds illustrates how value-laden 

definitions of thresholds are (further discussed in section 4.9). 

 

Lukas et al. (2016) (see section 4.2) define three relative threshold levels for environmental 

indicators and nutritional indicators based on nutritional recommendations and literature data 

(Table 4.8). 
  

  

  

                                                        
13http://www.wwf.se/press/pressrum/pressmeddelanden/1734329-idag-lanserar-wwf-planetsakra-maltider-one-planet-plate-och-
matkalkylatorn. 

 

http://www.wwf.se/press/pressrum/pressmeddelanden/1734329-idag-lanserar-wwf-planetsakra-maltider-one-planet-plate-och-matkalkylatorn
http://www.wwf.se/press/pressrum/pressmeddelanden/1734329-idag-lanserar-wwf-planetsakra-maltider-one-planet-plate-och-matkalkylatorn
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Table 4.8. Basic estimates of threshold levels for environmental indicators. From Lukas et al. (2016) 

  Proposal for threshold level (per capita & day) 

Indicator Strong impact Medium impact Low impact 

Material footprint >12 kg 8-12 kg <8 kg 

Carbon footprint (CO2e) >3.6 kg 2.4-3.6 kg <2.4 kg 

Water footprint >2925 litre 1950-2925 litre <1950 litre 

Land use >5.625 m2 3.75-5.625 m2 <3.75 m2 

Calorie intake >2500 kcal 2000-2500 kcal <2000 kcal 

Sodium >10 g 6-10 g <6 g 

Dietary fibre <18 g 18-24 g >24 g 

Saturated fat >30 g 20-30 g <20 g 

  

 

As regards social boundaries, Kate Raworth’s ‘doughnut economics’14 provides a framework for 

combining the Planetary Boundaries with those of human prosperity, hence providing a ‘social 

foundation’ of what is needed for human well-being and an ‘ecological ceiling’ which has to be 

respected for safe Earth system functioning (Fig. 4.7). The social foundation is not limited to 

diets, nutrition and health, but also includes aspects such as housing and education. It could be 

an interesting exercise to try to establish a social foundation for diets specifically in terms of 

‘good enough’ nutrition including nutrient intakes, variety of foods, cultural acceptance etc. 

 

                                                        
14https://www.kateraworth.com/. 

https://www.kateraworth.com/
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Fig. 4.7. The doughnut concept developed by Raworth (2012) for defining social and environmental boundaries for 

human prosperity.  

 

O’Neill et al. (2018) used this framework to investigate whether countries are currently meeting 

these thresholds. They found that no country is currently meeting basic needs for its citizens 

without also transgressing environmental boundaries. They also concluded that basic needs 

such as nutrition, sanitation, access to electricity and the elimination of extreme poverty for all 

could likely be met within Planetary Boundaries, but that high life satisfaction would require a 

level of resource use that is 2-6 times the sustainable level. 
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4.7 A ‘livestock-on-leftovers’ approach to sustainable diets 

When assessing the sustainability of diets, the starting point is commonly a specific, actual or 

theoretical diet in some situation, e.g. the current diet in a specific country or region, the 

Mediterranean diet, a potential or optimised low meat, vegetarian or vegan diet etc. Commonly, 

no consideration is given to the capacity to produce this diet.  

 

An alternative approach for designing diets is to start by considering the available land 

resources that can be used to produce as much food as possible for the least negative 

environmental impact and what kind of diet that would give. In such an approach, livestock 

production is limited to resources that are not digestible or not wanted by humans, e.g. biomass 

from land unsuited for crop production, by-products from crop production and food waste. 

Several studies based on this concept, called e.g. ‘default livestock’ or ‘livestock on leftovers’, 

have been published and are summarised in Table 4.9. On average, a daily per capita amount of 

animal protein of approximately 21 g could be supplied to all in 2050 while limiting livestock 

production to such non-food-competing feed resources (van Zanten et al., 2018). This 21 g 

corresponds to e.g. approximately 100 g of raw bone-free meat, or 50 g of meat and 300 mL 

milk (or some such combination). It should be noted, however, that much of the animal protein 

comes from feeding pigs food waste, a practice which is currently not permitted in the EU. To 

supply adequate nutrition (recommended daily protein intake is around 0.8 g/kg of body weight 

adult), the omitted animal products in these diets are replaced by cereals, legumes (ensuring 

requirements on protein quality are met) and vegetable oil.  

 

The ‘livestock-on-leftovers’ approach provides a land boundary condition for livestock 

production (van Zanten et al., 2018). As long as livestock eat human-edible feedstock they do 

not contribute to food security, as most of the energy and proteins are lost in the metabolic 

process of the animal. However, if they eat non-food biomass, they recycle nutrients back into 

the food system and contribute positively. Hence, one could argue that livestock should be 

limited to the number needed to consume these ‘leftover’ streams. 

 

However, a food system based on the ‘livestock-on-leftover’ approach would look radically 

different from current systems. For example, poultry production would decrease by over 90%, 

while ruminant numbers would not be reduced as drastically as they are able to digest cellulose-

rich biomass, most importantly grass. Although a food system based entirely on the ‘livestock-

on-leftover’ approach is far from implementation and current trends are moving in the opposite 

direction, it might be useful to include indicators for assessing sustainable diets that account for 

food-feed competition, e.g. kg human-edible protein fed to livestock per kg protein in the diet.  
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Table 4.9. Description and findings in studies based on the ‘livestock on leftovers’ concept. From Garnett et al. 

(2017) 
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4.8 Dietary guidelines and sustainability 

Dietary guidelines are important tools in guiding towards and informing about sustainable food 

choices. The most common approach to dietary guidelines is Food-Based Dietary Guidelines 

(FBDG), often targeted towards the healthy population as a whole. FBDG are commonly based 

on outcomes in terms of nutritional research, current consumption patterns and the health and 

nutritional status in a given population. The guidelines are hence tailored to suit how people are 

currently eating, rather than giving recommendations on the ‘optimal’ diet. FBDG are used to 

encourage healthier diets that are likely to be accepted and adopted by the majority of the 

population. To date, most FBDG are based on nutritional considerations only, but some 

progressive countries have incorporated environmental considerations into the guidelines. 

Gonzalez-Fischer and Garnett (2016) provide a review of such dietary guidelines, identifying 

three different types: 

 

● Official guidelines. These guidelines are formal and represent the country’s ambition to promote 

sustainable eating habits at population level. 

● Quasi-official guidelines. These guidelines combine health and sustainability messaging and stem 

from government agencies or government-funded entities. 

● Non-official guidelines. These are guidelines presented by NGOs, academic bodies or 

corporations and reflect the views expressed by these entities. 

  

At the time of writing their review, Gonzalez-Fischer and Garnett (2016) found that Sweden, 

Brazil, Germany and Qatar in varying ways had national sustainable dietary advice that 

explicitly aims to lead consumers to make more sustainable food choices. Quasi-official 

guidelines distributed in Germany, the Netherlands, Estonia, the UK, France and Sweden, and 

also non-official FBDG that include aspects of sustainability, are summarised in Appendix F. 

There have also been attempts at creating sustainable FBDG in the US and Australia, but due to 

industry intervention they have been unsuccessful (Gonzalez-Fischer and Garnett, 2016). Since 

Gonzalez-Fischer’s and Garnett’s (2016) review, Belgium has also published new 

recommendations that include sustainability messages (FIHL, 2017). The Dutch guidelines were 

updated in 2016 to include environmental aspects; their new ‘Wheel of Five’ includes e.g. 

maximum limits for animal products (Brink et al., 2017).  

  

Below is an excerpt from the executive summary by Gonzalez-Fischer and Garnett (2016) on the 

main findings of their review: 

 

“All the countries who do provide guidance on sustainability say broadly similar things despite 

differences in emphasis and level of detail provided (Table 1). All highlight that a largely plant-based 

diet has advantages for health and for the environment. Sweden is notable in additionally providing 

more detailed advice on which plant based foods are to be preferred, recommending for example root 

vegetables over salad greens. Most guidelines that include sustainability talk about the high 

environmental impact of meat – with the exception of the Qatari guidelines – but the advice often lacks 

specificity, and where recommended maximum levels are given, these are in line with recommendations 

of solely health-oriented guidelines. The Brazilian guidelines are distinct in emphasising the social and 

economic 
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aspects of sustainability, advising people to be wary of advertising, for example, and to avoid ultra-

processed foods that are not only bad for health but are seen to undermine traditional food cultures. 

They stand in contrast to the largely environmental definition of sustainability adopted in the other 

guidelines. Fish is presented as the main area where health-environment trade-offs arise, but advice is 

nevertheless given to continue to consume in quantities consistent with health recommendations. Most 

guidelines that include sustainability mention milk and dairy products directly or indirectly but the 

nature of the advice is variable. Advice on food waste and energy efficient cooking is patchy and 

represent an area with scope for easy ‘win wins.’” 

 

Regarding the environmental impact from following FBDG, a study by Behrens et al. (2017) 

assessed the environmental impact of national recommended diets (NRDs) in 37 countries. 

When stratifying NRDs for high, high-middle and low-middle income countries, they found that 

(on average, but with exceptions) following the NRDs from high and upper-middle income 

countries would mean a reduction in environmental impact compared with the current 

situation, while following the NRDs from low-middle income countries would mean an increase 

in environmental impact. The reduced environmental impact in high-income countries was 

driven by recommendations to decrease calories (approx. 54% of the effect) and changes in diet 

composition (approx. 46% of the effect). The increased environmental impact in low-middle 

income countries was associated with increased intake of animal products and increases in 

caloric intake in some cases. 

  

In a study by Ritchie et al. (2018), the recommended diets of six countries (Canada, USA, 

Australia, China, Germany and India) were investigated. For India, two types of 

recommendations were included, a vegetarian and a non-vegetarian recommendation. The 

distinction between these was that the dietary guidelines by default recommend pulses as the 

main protein source, but for non-vegetarians an option of replacing one portion of pulses with 

one portion of meat, fish or eggs is presented15. The recommendations were evaluated based on 

their GHG emissions, not including post-farm emissions and emissions from land use change. 

The carbon footprint of the recommended diets was found to vary between 687 and 1579 kg 

CO2e per capita per year (Ritchie et al., 2018). Most of the variation was due to differences in 

recommendations for dairy intake. Fig. 4.8 shows the carbon footprint of the recommended 

diets, together with the total per capita budgets for emissions from all sectors as defined in the 

study (see section 4.6 for variation in thresholds). All recommended diets exceeded the limit for 

the 1.5 degree climate target, except for India and the WHO diet. All diets stayed below the 2 

degree target, but left little room for emissions from other sectors (e.g. energy, transport). 

  

                                                        
15The Indian diet consisted of 560 g of staples, 90 g of legumes, 300 g of dairy, 30 g of oils, 30 g of sugar and 400 g of fruit and 
vegetables.  
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Fig. 4.8. Per capita greenhouse gas (GHG) emissions from diets based on World Health Organization (WHO) and 

national dietary guidelines. Dashed lines indicate the additional GHG emissions from food waste at household level. 

From Ritchie et al. (2018). 
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4.9 Norms, views and perspectives on sustainable diets 

As the growing body of research and advocacy on sustainable diets makes clear, there is 

increasing recognition of the need for a shift towards diets that are ‘better’ than the status quo, 

across various dimensions. However, notwithstanding the many frameworks and indicators 

developed and under development, the multidimensional nature of sustainability makes it 

difficult to agree on what sustainability actually looks like ‘on the plate’. This is partly for 

practical reasons, as some aspects of sustainability are more difficult to measure than others, 

but is also largely a matter of differing values and priorities. 

  

For example, there can be very different views on how far current dietary and underpinning 

production practices can and should be changed, and how far technological advances will 

preclude the need for radical shifts. Many of these differences derive from disagreements on e.g. 

the importance of personal responsibility versus state action, the extent to which we should 

mitigate rather than adapt to the environmental problems we face, or how far certain desires 

(such as the desire for meat) are a socio-cultural construct, as opposed to a biological 

imperative. 

  

Linked to this, there are different views as to what the ‘boundary conditions’ – the non 

negotiables – for defining sustainable diets should be. For many environmental NGOs and 

researchers, the boundary condition is that of environmental limits and the priority is to shrink 

our consumption patterns to fit the ‘safe operating space’ available for humanity (Rockström et 

al., 2009; Steffen et al., 2015; Appendix A). This points to a need for drastic changes in what we 

eat, and in particular to reduced consumption of animal products.  

  

For other stakeholders, the circumscribing boundary conditions are the workings of the global 

economy, the inevitability of rising demand or the healthfulness of the human diet. While such 

stakeholders recognise that changes in consumption patterns may be possible at the margins 

and can be achieved through e.g. improved consumer awareness, fundamentally these groups 

rely on technological improvements to come up with solutions, such as product reformulations 

to improve the acceptability of healthier or more sustainable foods, the development of methane 

inhibitors in the rumen of cattle or the use of renewable energy sources to produce fertilisers or 

for processing. 

  

These differences in perspective also manifest themselves in discussions about nutrition and 

good health. For example, many environmental campaigners tend to focus more on the  

problematic macronutrients (energy, fat) associated with excessive consumption than on the 

micronutrients (iron, zinc, calcium) associated with insufficiency, which may skew their 

attitudes to the role of meat in the diet. Others, such as nutritionists and members of the food 

industry, point to the nutrient density of animal products and warn that a reduction in their 

consumption could increase the risk of micronutrient deficiencies. These differing perspectives 

play out in their imaginings of what an alternative ‘less meat/dairy’ scenario might look like.  

From one perspective, should access to animal products be limited by (for instance) price, 

regulation or changing societal norms, this could be a positive development nutritionally. The 

assumption here is that less meat or dairy in the diet enables increases in consumption of 
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legumes, nuts, fruit and vegetables. An alternative position might warn of negative 

consequences, however, since people will more likely switch to eating refined carbohydrates, 

high in sugar and possibly salt, with damaging health consequences. 

  

There are also different perspectives on what constitutes ‘good enough’ nutrition, based on 

differing attitudes to risk and to the relative importance of human versus planetary needs. Some 

may accept a diet inadequate in certain micronutrients, arguing that these can be met through 

fortification strategies. They may also place more emphasis on minimum average nutritional 

requirements than on higher ‘safe’ levels – the different calcium recommendations given in 

different national dietary guidelines today provide a case in point. Others may take a more 

cautious attitude to risk that involves ‘safe’ higher level requirements for key nutrients or argue 

that human needs come before the environment. Attitudes to naturalness may also shape ideas 

as to the acceptability of fortification versus the consumption of foods naturally rich in certain 

nutrients. 

  

In conclusion, ideas about sustainability are shaped by values as much as by science. People’s 

values shape which metrics are chosen and prioritised, and what options people believe to be 

possible or necessary. 
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5. The role of dairy and plant-based 

dairy alternatives in sustainable diets 
  

Dairy products include milk, cheese, yogurt, butter and whey protein. Milk can come from any 

mammal, but dairy products used for human consumption are usually provided by (bovine) 

cattle, sheep, goats, horses, camels and buffalos, with cattle milk making up 83% of global 

production in 2016. Milk consumption varies greatly between regions and countries, with the 

global average being 90 kg per capita and year. Western Europe and North America consume 

around 250 kg per capita and year, whereas the average consumption in Africa is approximately 

44 kg per capita and year (FAOSTAT, 2018).  

 

Plant-based dairy alternatives include a wide range of products, including substitutes for milk, 

cheese and cream, yogurt-type products, desserts and spreads, and are made of soy, legumes, 

seeds, nuts or cereals. Some soy-based products (e.g. soy drink) have been used for a very long 

time, while other products (based on legumes, seeds, nuts and cereals) appeared on the market 

only in recent decades. Measured in terms of retail sales, the global dairy alternatives market 

was worth an estimated $16 billion in 2016, a 320% increase compared with 2006. The global 

milk market in considerably larger than the global milk alternatives market, but the gap has 

been closing quickly in the past decade. In 2006, the global milk market was 14.3 times larger 

than the dairy alternatives market, whereas in 2016 it was only 6.5 times larger (Wood, 2017). 

 

In this section, we first very briefly summarise existing research on the health effects of dairy 

and plant-based dairy alternatives (section 5.1). We then move on to look at the environmental 

impacts of the two from different perspectives (section 5.2). Both fields are challenging due to 

their complexity, as is illustrated and discussed in this section.   
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5.1 Health effect of dairy and plant-based dairy 

alternatives 

The ‘healthfulness’ of different foods can be evaluated in different ways, including: 

● Evaluation of the nutrient content (e.g. energy, protein, vitamins etc.) and the nutritional 

density of the food 

● Intervention studies, in which the intervention (e.g. consumption of a certain food) 

involves a group of study objects and outcomes are compared with those of a control 

group not subject to the intervention. Intervention studies are considered to provide the 

most reliable evidence in health research. The most relevant type of intervention study is 

the randomised controlled trial (RCT) 

● Nutritional epidemiology, in which large amounts of data (e.g. on food intake and 

disease prevalence) are collected over extended periods and then used to investigate how 

consumption levels of certain foods correlate with disease risk. The most common type 

of study in nutritional epidemiology is the prospective cohort study, which follows large 

groups of people (the cohort) over long periods before diseases occur (prospective). 

Other types of studies exist, such as case-control studies and retrospective cohort 

studies.  

As it is difficult to isolate the effect of eating a certain food on the outcome, individual 

intervention and epidemiological studies may show differing results. Therefore, to draw general 

conclusions on the health effect of certain foods from individual studies, the results are gathered 

into meta-analyses, which pool together the results and weight them according to the size of the 

study. In order for a meta-analysis to be of value, studies should be collected through a 

systematic search process.  
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5.1.1 Nutritional content 

Data on the nutritional content of different food products are available in different internet-

based databases commonly administered by national food agencies, such as the United States 

Department of Agriculture (USDA),16 the Swedish National Food Agency17,the French Food 

Safety Agency (ANSES)18, the Dutch Food Composition Database (NEVO)19 and Public Health 

England20. 

 

The aims of national food databases can slightly differ and therefore also their structure and 

content. For example, the main aim of the Swedish food composition database is to provide 

nutrient information on representative foods on the Swedish market, and hence to enable the 

food agency to calculate energy and nutrient intakes from diet surveys. Due to cost constraints, 

composite samples using similar products, but from different brands, are often analysed to get a 

representation of the ‘average product’ on the Swedish market (Öhrvik et al., 2015). The 

nutritional value of a product of a specific brand on the market may therefore differ from the 

nutritional value reported in the database for the composite sample of the product. The USDA 

database is slightly differently constructed, presenting data for a wide variety of brands for any 

given food product.  

 

Table 5.1 shows an extract from the Swedish database for milk and unfortified and fortified soy, 

oat and almond drink and soy drink from the UK database. On the European market, over 90% 

of plant-based dairy alternatives are fortified (Stephanie de Vriese, Alpro, personal 

communication 2018). For comparison, Table 5.2 shows the nutrient content of corresponding 

products on the US market. 

 
  

                                                        
16Link: https://ndb.nal.usda.gov/ndb/search/list  
17Link: http://www7.slv.se/SokNaringsinnehall/Home/ToggleLanguage  
18Link: https://www.anses.fr/en/content/anses-ciqual-food-composition-table 
19Link: https://nevo-online.rivm.nl/Default.aspx 
20Link: 
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/416932/McCance___Widdowson_s_Compositio
n_of_Foods_Integrated_Dataset.xlsx  

https://ndb.nal.usda.gov/ndb/search/list
http://www7.slv.se/SokNaringsinnehall/Home/ToggleLanguage
https://www.anses.fr/en/content/anses-ciqual-food-composition-table
https://nevo-online.rivm.nl/Default.aspx
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/416932/McCance___Widdowson_s_Composition_of_Foods_Integrated_Dataset.xlsx
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/416932/McCance___Widdowson_s_Composition_of_Foods_Integrated_Dataset.xlsx
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Table 5.1. Nutritional content of dairy milk and plant-based dairy alternatives according to the Swedish food 
composition and the UK database. Values are given per 100 grams. N/A=Not analysed, Tr=Traces, RAE=Retinol 
activity equivalents. 

 Milk Oat drink Soy drink, 
Swedish d.b. 

Soy drink, UK 
database  

Almond drink 

Nutrients Full fat Semi-
skim. 

Low 
fat 

Fortifie
d 

Un-
fortified 

Fortifie
d 

Un-
fortifie
d 

Fortified
+  

Unfortifiedψ Fortifie
d 

Unfortifie
d 

Energy (kcal) 60 47 39 42 41 37 37 43 26 26 26 

Carbohydrates (g) 4.7 4.8 4.8 7.1 7.6 3.2 3.2 2.5 0.5 3.5 3.5 

Sugars (g) 4.8 4.9 4.9 3.2 4 2.4 2.4 2.2 0.2 3.1 3.1 

Fat (g) 3 1.5 0.5 1.1 0.5 1.5 1.5 2.4 1.6 1.3 1.3 

Saturated fat (g) 1.92 0.96 0.32 0.09 0.1 0.15 0.15 0.38 0.24 0 0.12 

MUFA (g) 0.75 0.37 0.12 0.55 0.2 0.26 0.26 0.51 0.33 0.01 0.81 

PUFA (g) 0.07 0.04 0.01 0.32 0.2 0.61 0.61 1.39 1.1 0 0.26 

Cholesterol (mg) 10.3 6.1 3.3 0 0 0 0 0 0 0 0 

Protein (g) 3.51 3.57 3.6 0.35 0.93 2.57 2.57 3.1 2.4 0 0 

Fibre (g) 0 0 0 0.8 0.8 0 0 0.5 0.5 0.2 0.2 

Calcium (mg) 120 122 124 120 5 96.5 19 130 13 133 133** 

Magnesium (mg) 11 11 11 3.8 4 14.4 14.4 18 15 6.4 6.4 

Iron (mg) 0.02 0.02 0.02 0.15 0.1 0.37 0.37 0.31 0.43 0.05 0.05 

Phosphorus (mg) 102 104 105 26.2 20 89.7 89.7 89 48 67 67 

Potassium (mg) 161 163 165 31.6 30 135 135 119 74 16.5 16.5 

Sodium (mg) 39 40 40 40.3 40 37 37 56 32 49.4 49.4 

Zinc (mg) 0.43 0.43 0.44 0.09 0.05 0.26 0.26 0.3 0.3 0.04 0.04 

Vitamin C (mg) 0.6 0.6 0.6 0 0 0 0 0 0 0 0 

Vitamin D (µg) 1 1 1* 1.62 0 0.74 0 0.8 0 0.93 0 

Thiamine (mg) 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.06 0.06 0 0 

Riboflavin (mg) 0.15 0.15 0.15 0.24 0 0.21 0.17 0.2 0.05 0.2 0 

Niacin eq. (mg) 0.9 0.9 0.9 0.1 0.2 0.6 0.6 0.8 0.7 0.1 0.1 

Vitamin B6 (mg) 0.04 0.05 0.05 0.13 0.13 0 0.03 0.03 0.03 0 0 

Folate (µg) 14.3 14.6 14.7 17.9 0 16.1 16.1 9 14 0.4 0.4 

Vitamin B12 (µg) 0.58 0.59 0.59 0.46 0 0.38 0 0.4 0 0.38 0 

Vitamin A, RAE (µg)  27.7 13.8 4.6 36.3 0 0 0 Tr† Tr† 0 0 

Vitamin E (mg)  0.08 0.04 0.01 1.34 0 0.16 0.16 0.32 0.32 2.9 0 

Iodide (µg) 11.8 12 12.1 0 0.1 0 0 1 1 0 N/A 

Selenium (µg) 1.61 1.62 1.63 0 0 0 0 4 4 0 0 

*Low fat milk is fortified with vitamin D in Sweden **This value cannot be correct through deductive reasoning, but is presented as 

this in the food composition database. †Traces of retinol equivalents. +Sweetened.  ψUnsweetened. 
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Table 5.2. Nutritional content of dairy milk and plant-based dairy alternatives according to the USDA food 

composition database21. Values are given per 100 grams. Zero values with exceptional detail (such as 0.0 to 0.000) 
are rounded off to zero (0). N/A=Not analysed, RAE=Retinol activity equivalents. 

 Milk Soy milk Almond milk, 
fortified 

Coconut  
milk 

Rice milk 

Nutrients Whole22 Red. 

fat23 

Low 

fat24 

Fortifie

d25 

Un-

fortified26 

Sweet-

ened27 

Unsweet-

ened28 

Fortified and 

sweetened29 

Fortified and 

unsweetened30  

Energy (kcal) 61 50 42 28 54 38 15 31 47 

Carbohydrates* (g) 4.78 4.8 4.99 4.14 6.28 6.59 1.31 2.92 9.17 

Sugars (g) 5.05 5.06 5.2 3.65 3.99 6.25 0.81 2.5 5.28 

Fat (g) 3.27 1.98 0.97 0.04 1.75 1.04 0.96 2.08 0.97 

Saturated fat (g) 1.865 1.257 0.633 0 0.205 0 0.08 2.083 0 

MUFA (g) 0.812 0.56 0.277 0 0.401 0.625 0.59 0 0.625 

PUFA (g) 0.195 0.073 0.035 0.036 0.961 0.208 0.24 0 0.313 

Cholesterol (mg) 10 8 5 0 0 0 0 0 0 

Protein (g) 3.15 3.3 3.37 2.47 3.27 0.42 0.4 0.21 0.28 

Fibre (g) 0 0 0 0.2 0.6 0.4 0.2 0 0.3 

Calcium (mg) 113 120 125 116 25 188 184 188 118 

Magnesium (mg) 10 11 11 10 25 7 6 0 11 

Iron (mg) 0.03 0.02 0.03 0.35 0.64 0.3 0.28 0.3 0.2 

Phosphorus (mg) 84 92 95 87 52 8 9 0 56 

Potassium (mg) 132 140 150 105 118 50 67 19 27 

Sodium (mg) 43 47 44 57 51 63 72 19 39 

Zinc (mg) 0.37 0.48 0.42 0.1 0.12 0.63 0.06 0 0.13 

Vitamin C (mg) 0 0.2 0 0 0 0 0 0 0 

Vitamin D (µg) 0.1 1.2 1.2 1 0 1 1 1 1 

Thiamine (mg) 0.046 0.039 0.02 0.022 0.06 0.015 0 0 0.027 

Riboflavin (mg) 0.169 0.185 0.185 0.174 0.069 0.177 0.01 0 0.142 

Niacin (mg) 0.089 0.092 0.093 0.323 0.513 0.075 0.07 0 0.39 

Vitamin B6 (mg) 0.036 0.038 0.037 0.024 0.077 0.003 0 0 0.039 

Folate (µg) 5 5 5 7 18 1 1 0 2 

Vitamin B12 (µg) 0.45 0.53 0.47 0.23 0 1.25 0 1.25 0.63 

                                                        
21From the ‘Standard reference’ database. For cow’s milk, milk types were chosen to match those types presented in Table 5.1. with 
regard to fat content and fortification. For plant-based dairy alternatives, flavoured drinks were avoided, with the exception of 
vanilla which is very common. When several types of products were available, the product with most types of nutrients analysed and 
displayed were chosen. Only one unfortified product was available. There is some difference in the types of vitamins presented in 
Table 5.2 compared with Table 5.1. The data from USDA present values for niacin, instead of niacin equivalents as in Table 5.1. 
Niacin equivalents is the sum of preformed niacin present in the food and the amount of niacin that can potentially be formed based 
on the amount of the amino acid tryptophan present in the food. 60 mg of tryptophan is equivalent to 1 mg of niacin equivalents.  
2201211, Milk, whole, 3.25% milkfat, without added vitamin A and vitamin D. 
2301079, Milk, reduced fat, fluid, 2% milk fat, with added vitamin A and vitamin D. 
2401082, Milk, low fat, fluid, 1% milk fat, with added vitamin A and vitamin D. 
2516230, Soy milk (all flavours), non-fat, with added calcium, vitamins A and D. 
2616120, Soy milk, original and vanilla, unfortified. 
2714016, Beverages, almond milk, sweetened, vanilla flavour, ready-to-drink. 
2814091, Beverages, almond milk, unsweetened, shelf-stable. 
2914171, Beverages, coconut milk, sweetened, fortified with calcium, vitamins A, B12, D2. 
3014639, Beverages, rice milk, unsweetened. 
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Vitamin A, RAE 
(µg)  

46 55 58 61 0 63 0 63 63 

Vitamin E (mg)  0.07 0.03 0.01 0.08 0.11 2.81 6.33 0 0.47 

Iodide** (µg) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Selenium (µg) 3.7 2.5 3.3 1.8 4.8 0.1 0.1 0 2.2 

*Calculated by difference **Not analysed in the USDA's food composition database. Furthermore, iodide is not analysed by the 

USDA and therefore not presented in Table 5.2. 

Energy 

Plant-based drinks generally have a somewhat lower energy content than milk, but this depends 

on the fat content of the milk and on the type of plant-based drink that is compared. Although 

energy intake should be tailored according to an individual's metabolic need, food with lower 

energy density is usually recommended in high- and middle-income settings, as excess energy 

intake is generally a major problem.  

Protein  

Dairy milk contains approximately 3.4% protein31, soy drink approximately 3% and other plant-

based drinks less than 1%. Milk contains all essential amino acids, as does soy protein, although 

the amounts of different amino acids vary (Fig. 5.1). As different age groups have different 

amino acid requirements (EFSA, 2012), the most favourable product for any given individual 

will differ. Cereal-based proteins often have lower lysine content, whereas legume- based 

proteins often have lower contents of cysteine and methionine. Soy protein is an exception and 

is generally regarded as a complete protein for the adult population. Protein quality can be 

determined through various scoring systems, the most readily used and recognised being the 

Protein Digestibility-Corrected Amino Acid Score (PDCAAS), because it combines biological 

value (completeness) and digestibility. The PDCAAS score for milk, soy and wheat is 100 (121 if 

not truncated at 100), 91 and 42, respectively (Schaafsma, 2000).   

 

 

                                                        
31Proteins are made up of amino acids. There are 20 different amino acids commonly found in plants and animals. Amino acids can 
be classified as either essential (indispensable amino acids that cannot be produced during metabolism by the body and therefore 
must be provided by the diet) or non-essential (dispensable amino acids that can be produced endogenously in the body from other 
amino acids). Nine amino acids (histidine, leucine, isoleucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine) 
are considered essential for adults and these nine plus arginine for preterm infants. In addition, there are two semi-essential amino 
acids that can be metabolised in the body from essential amino acids: Cysteine is made from methionine and tyrosine is made from 
phenylalanine. When a protein meets the essential amino acid requirements, it has a high biological value. When one or more 
essential amino acids are present in insufficient amounts to cover human needs, the protein is said to have low biological value. The 
amino acid that is in shortest supply in relation to need is called the limiting amino acid. Essential amino acid requirements for 
human growth and health (differentiated for different age groups) are provided by FAO (2012).  
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Fig. 5.1. Content of essential amino acids (mg per g protein) in soy drink and milk relative to the dietary 

requirement. Data compiled from the Swedish National Food Agency’s food composition database, requirements are 

taken from FAO/WHO (2007). Since the amount of amino acids is expressed per gram of protein, the water content 

of the products compared does not influence the comparison. AA=amino acid, His=Histidine, Ile=Isoleucine, 

Leu=Leucine, Lys=Lysine, SAA=sulphur amino acids (methionine+cysteine), AAA=aromatic amino acids 

(tyrosine+phenylalanine), Thr=Threonine, Trp=Tryptophan, Val=Valine32. 

 

  

                                                        
32Fig. 5.1 should be interpreted in two ways: first is the amount of amino acids (AA) per gram of protein. This is one way (although 
other methods exist) to compare the profile of amino acids from different protein sources, here presented for soy and milk protein. 
Secondly, since these values in themselves are difficult to interpret without any frame of reference, the human AA requirement is 
also shown as amount per gram of protein. Thus, if protein intake is sufficient to meet the nitrogenous need of the body (since 
protein is the only important deliverer of nitrogen) and if protein intake is from a single protein source, the amino acid profile 
should meet the requirement seen in Fig. 5.1. 
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In general, foods of animal origin (especially milk and egg protein) have higher biological value 

and digestibility than foods of plant origin, although the differences are small. Table 5.3 shows 

estimated ‘true ileal digestibility’33 for some different types of food.  

 
Table 5.3. Estimated protein digestibility of different foods.  

Several values for a given food indicate results from different studies  

Food True ileal digestibility  

Milk protein1  95% 

Casein1  94.1% 

Soy protein1  91.5% 

Pea protein1  91.5% 

 89.4% 

 90% 

Wheat protein1  91.5% 

 85% 

Lupin protein1  90% 

Rapeseed protein1  84% 

Rice, milled2  88% 

Oatmeal2  86% 

Peanuts3  94% 

Soy flour3  86% 

Soy protein isolate3  95% 

Wheat gluten3  99% 
1FAO (2012) 
2Bienvenido (1998) 
3FAO and WHO (2007) 

Fat 

The fat content in dairy products can vary. Low-fat varieties are available for almost all types of 

dairy products. The same can be said for plant-based dairy alternatives. The difference is in the 

quality of fat34. Dairy products are predominantly high in saturated fat, whereas plant-based 

products are low in saturated fat and high in unsaturated fat. The exception is plant-based dairy 

alternatives based on coconut.  

                                                        
33Protein digestion starts in the stomach, where proteins are denatured by the acidic environment. Enzymatic digestion also occurs 
in the stomach. Digestion of peptides continues in the small intestine by several different enzymes. Amino acids (and also to some 
extent actual peptides) are absorbed by the cell wall and transported into the blood. Some protein remains in the digestive system 
and reaches the colon, where it is degraded into peptides and amino acids by the gut bacteria. When measuring protein digestibility, 
the fraction of absorbed protein in the small intestine, called the true ileal digestibility, is often considered the most physiologically 
relevant (but not always) parameter after ingestion, since colonic proteolysis by bacteria overestimates total protein digestibility. 
When true ileal digestibility is taken into account, the global quality score is DIAAS, recognised as the best method by WHO, but 
data are lacking to create a large database of DIAAS for all foods (FAO, 2013) 
34The recommendation from most health agencies has long been to limit the intake of saturated fatty acids (SFA). Lately, however, 
there has been some controversy around this recommendation, as some recent studies found no positive health effects on decreased 
intakes of SFA, especially if SFA was replaced by carbohydrates. However, the Scientific Advisory Committee on Nutrition in the UK 
has just completed a major review of all evidence and has concluded that there is no reason to change the recommendation (SACN, 
2018). However, its review did not consider the type of SFA and research indicates that there might be considerable differences 
between different types of SFA (Zelman, 2011).  
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Fibre 

Molecularly speaking, fibre35 comprises different combinations of indigestible starch and sugars 

and is only present in plant-based food; almost no animal food contains fibre as it is defined 

today. The European Food Safety Authority (EFSA) defines fibre as “non-digestible 

carbohydrates plus lignin”, with four different classes of fibre. Most plant-based dairy 

alternatives are also low in fibre content, as most fibre is lost during processing. However, the 

oat drink company Oatly has patented a way to retain loose oat fibre, beta-glucans, in their 

products. Beta-glucans have documented health-promoting effects (Chen and Raymond, 2008; 

Shen et al., 2016).  

Vitamins 

When comparing milk with plant-based milk alternatives on the basis of vitamin content, the 

fortification status of the plant-based products will have a major impact on the result (see 

section 5.1.4 and Appendix G for more information on fortification). Full-fat milk contains the 

important vitamins A and D, while low-fat milk is usually fortified with these. All dairy products 

also contain B12 in substantial amounts. Unfortified plant-based dairy alternatives lack vitamin 

A, D and B12 entirely, although a large percentage of the products on the market are fortified, 

hence reaching the same levels as milk for vitamin D and B12 (and vitamin A for fortified oat 

drink). Soy drink is unique as it provides more riboflavin, folate, vitamin E and vitamin K than 

milk even when unfortified.  

Minerals 

As with vitamins, the fortification status of plant-based products will have an obvious impact on 

the comparison with milk. Unfortified plant-based drinks are low in calcium. Almonds and 

soybeans are naturally rich in calcium, but during production (adding water and grinding) some 

of the calcium is lost. As regards magnesium, phosphorus, potassium and zinc, all plant-based 

drinks are low in these minerals compared with milk, but unfortified soy drink is only slightly 

lower than milk for these minerals. All plant products contain more iron than milk, with soy 

drink excelling at almost 0.4 mg per 100g. To put this in perspective, if consumers were to 

consume soy drink in the same quantity as milk, this would provide 6-11% of their daily 

recommended intake of iron. On the other hand, cow’s milk contains more selenium, zinc and 

iodide than any of the plant-based products. Calcium is present in fortified plant-based drinks in 

similar amounts as in milk. Phytate (or phytic acid) is also a compound that is ubiquitous in 

unrefined plant food, which can contribute to lower bioavailability of minerals. However, due to 

heating during the production of plant-based dairy alternatives, phytates are removed. The 

actual concentration of phytate in soy drink is very low (0.05-0.09%) and is therefore unlikely to 

be a major inhibitor of calcium absorption in fortified soy products (Zhao et al., 2005). 

                                                        
35Fibre was long seen as somewhat of an ‘inert’ nutrient, meaning that it only served through its ‘bulking’ effect, leading to eased 
bowel function and, for viscous fibre, increased satiety and reduced glycaemia and insulinaemia, despite lower energy intake. Today, 
however, fibre has undergone a ‘renaissance’, since researchers have managed to identify several different types of fibre with distinct 
physiological effects. This renaissance has occurred concomitantly with increasing knowledge of the human gut microbiota and the 
role of gut bacteria for human health and development of diseases. Since fibre cannot be broken down by the human digestive 
system, these compounds pass through down to the gut microbiota, which feed on undigested fibre, supplying the colon with 
(healthy) by-products from the fermentation of fibre. 
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Sugars 

Cow’s milk contains more sugars than the plant-based alternatives listed in Table 5.1. These 

sugars come in the form of lactose. The lactose molecule consists of one part glucose and one 

part galactose and this configuration of molecules gives lactose a lower glycaemic index (less 

pronounced glucose response) than refined sugar (saccharose) (Foster-Powell et al., 2002), 

which is used in plant-based dairy alternatives. 

Isoflavones 

Isoflavones are one of three types of phytoestrogens present in foods, the others being lignans 

and coumestans. Isoflavones are present in soya, but they can also be found in legumes such as 

chickpeas and lentils. The chemical structure of isoflavones shows similarities to the structure of 

oestrogen, but these two have clear differences. There are two types of oestrogen receptor (ER) 

in the human body, alpha (ERα) and beta (ERβ) receptors. The hormone oestrogen can bind to 

both receptors. Under normal consumption and physiological conditions, isoflavones from soy 

bind mainly to Erβ, but at lower affinity than oestrogen (Kuiper et al., 1998). This distinction is 

important, since ERα and ERβ have opposing physiological effects, where ERα exhibits an 

oestrogen-like effect and ERβ has anti-oestrogen like properties (Oseni et al., 2008’ Messina, 

2016). Due to the anti-oestrogenic effects of isoflavones, they are believed to contribute to a 

lower risk for cancer in some organs associated with these receptors (such as breast and prostate 

cancer) in relation to soy intake (Messina, 2016).  

 

5.1.2 Health effects 

An extensive body of research has investigated the health effects of dairy products (Dong et al., 

2011a; Dougkas et al., 2011; Abargouei et al., 2012; Beer, 2012; Chen et al., 2012; Aune et al., 

2012, 2013, 2015;  Dror, 2014; Genkinger et al., 2014; de Goede et al., 2015, 2016; Guo et al., 

2015; Alexander et al., 2016; Drouin-Chartier et al., 2016; Gijsbers et al., 2016; Lu et al., 2016a, 

2016b; Pimpin et al., 2016; Thorning et al., 2016; Wang et al. 2016a, 2016b; Harrison et al., 

2017; Onvani et al., 2017; Bian et al., 2018). As plant-based alternatives to dairy are a novel 

concept, much fewer health studies are available for these products specifically. Soy drinks and 

soy products are the exception. These have a very ancient pedigree in South and Southeast Asia, 

so epidemiological data on these types of products are more common, including studies on 

Western populations (Jacobsen et al., 1998; Shu et al., 2001; Wu et al., 2002, 2008;  Cheng et 

al., 2005; Fournier et al., 2007; Korde et al., 2009; Harland and Haffner, 2008; Dong and Qin, 

2011; Matthews et al., 2011; Taku et al., 2011; Tokede et al., 2015; Li et al., 2016; Tranche et al., 

2016; Yu et al., 2016; Morency et al., 2017; Zhao et al., 2017; Applegate et al., 2018). In this 

section, we briefly summarise some of this evidence. While we recognise the need to perform a 

more comprehensive review of health effects of dairy products and plant-based dairy 

alternatives in order to identify where the potential risks and benefits arise in relation to 

different health outcomes, that was a too great a task for this report.  

 

In a recent (non-systematic) review by Thorning et al. (2016), the health effects of dairy 

consumption on human health were summarised. Their overall conclusion was that dairy 

products provide important nutrients with positive health effects with regards to several non-
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communicable diseases, e.g. that dairy consumption is correlated with lower risk of obesity in 

children (but not in adults) and lower risk of developing type 2 diabetes (especially consumption 

of fermented dairy products and cheese). An advantage of dairy consumption on weight loss is 

also seen, but only under conditions of energy restriction. High milk consumption (200-300 

mL/day) has no effect on the risk of cardiovascular disease, with a positive effect of milk 

consumption on the risk of stroke and hypertension. The effect of dairy consumption on bone 

health is positive, but only to a certain extent. Dairy consumption have a positive effect on the 

bone mineral density of children and adolescents, but no protective effects on fracture risk in 

adults (Thorning et al., 2016). The absence of protective effects in adults might be explained by 

the fact that there are several important factors for determining bone fracture events (such as 

physical activity and intake of vitamin D) and not solely bone mineral density. According to the 

World Cancer Research Fund, there is probable evidence that dairy consumption decreases the 

risk of colorectal, bladder, gastric and breast cancer, whereas no association has been found for 

pancreatic, ovarian or lung cancer. The evidence as regards dairy consumption and prostate 

cancer risk is inconsistent. As regards dairy consumption and all-cause mortality, there seems to 

be no consistent evidence in either direction. 

 

In a review by Messina (2016), the health effects of soy-based foods were investigated on the 

basis of the best available evidence in epidemiological research. Soy protein has been shown to 

have beneficial effects on risk factors for cardiovascular disease, including improved lipid levels, 

lower blood pressure, improved endothelial function and less arterial stiffness. However, effects 

on risk factors do not necessarily translate into lowered incidence of disease in all types of 

populations (most studies investigating soy are conducted on women). With regard to coronary 

heart disease (CHD) events, there are mixed findings on the effect of soy consumption. There 

may be an important interaction between the type of foods soy products replace in the high 

consumption category, which might alter the health effects of soy. There is also a possibility that, 

due to the unique properties of soy with its high isoflavone content, the health effects of soy 

consumption are more pronounced in women than men. Furthermore, soy intake has been 

shown to decrease the risk of breast cancer, prostate cancer (Applegate et al., 2018) and 

colorectal cancer (Yu et al., 2016). There has been some concern about soy intake by breast 

cancer patients, as it has been suggested that the isoflavones in soy might adversely affect the 

prognosis for such patients. However, the evidence for this is only derived from animal studies, 

whereas some epidemiological studies have found that soy intake could improve the prognosis 

in breast cancer patients. In addition to the potential role of soy foods in chronic conditions, as 

mentioned above, there may be beneficial effects of soy food in reducing menopause symptoms 

and improving mental and skin health (Messina, 2016).   

 

Many plant-based dairy alternatives include functionally active components with health-

promoting properties, such as beta-glucans in oats and alpha-tocopherol in almonds. See Sethi 

et al. (2016) for a review of these.  
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5.1.3 Authorised health claims 

Food authorities such as the European Food Safety Authority (EFSA) and the US Food and Drug 

Administration (FDA) evaluate the available evidence on the ‘healthfulness’ of different foods, in 

order to test different health claims that food product manufacturers want to use in marketing.  

 

Health claims related to dairy and plant-based dairy alternatives include the following:  

 

● Improved lactose digestion for yogurt in the EU: Scientific Opinion on the substantiation 

of health claims related to live yoghurt cultures and improved lactose digestion (ID 1143, 

2976) pursuant to Article 13(1) of Regulation (EC) No 1924/2006)  

● Positive health claims for oat beta-glucan in the EU: Scientific Opinion on the 

substantiation of a health claim related to oat beta glucan and lowering blood cholesterol 

and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 

1924/2006 

● A ‘Health claim about Soy Protein and Cholesterol Lowering’ (approved by Health 

Canada’s Food Directorate on 23 April 2015). According to Health Canada’s Food 

Directorate, scientific evidence exists to support the health claim that consumption of 

soy protein helps to lower blood cholesterol levels. The Directorate based its decision on 

literature research covering the period January 1980-March 2010. All foods containing 

soy protein, such as isolated soy protein, soy protein concentrate, textured soy protein 

and soy flour, but also foods made from the whole soy bean, are eligible for the health 

claim. Foods containing at least 6 g of soy protein per reference amount and per serving, 

and also complying with a list of conditions regarding the presence of recommended 

nutrients, maximum levels of cholesterol, alcohol, etc., are allowed to bear the health 

claim. 

5.1.4 Fortification of dairy and plant-based drinks 

Since the nutritional quality of plant-based drinks is dependent on whether they are fortified or 

not, the question of fortification is central to comparison between dairy and plant-based dairy 

alternatives. The most common nutrients used in fortification are calcium, riboflavin, vitamin D 

and vitamin B12. Fortification strategies vary in different countries, based on the nutritional 

challenges of a specific population and differences in jurisdiction surrounding the fortification of 

products. One example of how micronutrients and fortification are important and context-

specific is provided by the WWF UK Livewell Plate project. In this analysis, cheese consumption 

was reduced compared with the current UK diet, while other dairy products were slightly 

increased for adults. One of the reasons for this was that dairy products are the most important 

source of iodine in the current UK diet, and intake of this trace element is currently below the 

requirement. However, in countries where iodised table salt is commonly used (such as Sweden, 

Belgium, the Netherlands), iodine would not be a reason to keep a high dairy level in the diet.  
  

There is an ongoing debate on fortification of foods and whether intake of micronutrients 

already present in foodstuff is better for health than micronutrients provided through 

fortification. Research suggests that whole foods are in general superior in promoting health 

than supplements of vitamins and minerals, and that some supplements like vitamin E, 
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selenium and beta-carotene are even associated with an increased rate of cancer in some 

populations (Harvie, 2014). This can probably be explained by 1) intake of micronutrients as 

part of food not resulting in overconsumption, whereas intake of supplements can result in 

overconsumption; and 2) whole foods containing a wide array of bioactive substances, some of 

which are still unknown to the medical community. Bioactive compounds can elicit e.g. more 

antioxidant power when combined than when evaluated individually. The so-called ‘matrix 

effect’ takes into account the structural organisation of whole foods, which elicit different health 

effects than nutrients exert on their own (Thorning et al., 2017).  

 

The bioavailability of naturally occurring compounds compared with fortification agents is 

another issue, but lower bioavailability can usually be compensated for by higher fortification 

levels (further discussed in Appendix G). There are several cases of successful public health 

interventions where staple foods have been fortified and have in practice eliminated diseases, as 

is the case for iodine fortification of salt in Sweden and goitre. What does raise concern is the 

emerging evidence on calcium supplementation and cardiovascular events. In a study by 

Bolland et al. (2013), an increased risk of cardiovascular events (non-lethal included) of between 

17-31% was seen for calcium supplementation, depending on the outcome. The proposed 

mechanism is how calcium is delivered; dietary calcium is incorporated in organic compounds, 

whereas calcium supplements are carried by an associated salt, thus being inorganic. This 

different molecular context is thought to give rise to high serum concentrations of calcium, 

which might then exert detrimental effects on the cardiovascular system. However, a later 

review by Weaver (2014) summarised the evidence for calcium supplements and cardiovascular 

disease risk and concluded that the totality of the epidemiological evidence does not constitute a 

strong case for concern. The National Food Agency in Sweden, America’s USDA, the UK’s 

Eatwell Guide, the Wheel of Five in the Netherlands and the healthy living food triangle from 

Flanders all recommend fortified plant-based products as an alternative to dairy products.  
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5.2 Environmental impacts of dairy and plant-based 

dairy alternatives 

In general, scientific studies on the effect of diet on social and economic dimensions are very 

scarce, while studies focusing on the impact on the environment in general and climate in 

particular have grown rapidly in recent years. Here we summarise and give examples of results 

of studies comparing dairy and plant-based dairy alternatives. The section is divided into three 

parts; comparison on a product-to-product basis, either per unit mass or based on nutrient 

density (section 5.2.1), comparison in a dietary context (5.2.2) and comparison from a 

production system perspective (section 5.2.3).  

5.2.1 Comparison on a product-to-product basis 

The most common way of comparing food products in on the basis of mass, commonly per kg. In 

LCA, this unit of comparison is called the functional unit. However, different food products 

provide different ‘functions’, e.g. some provide a lot of protein, while others are low in protein 

but rich in other nutrients and so on. Therefore comparing foods based on mass has been 

criticised for failing to consider the function of foods, leading to ‘unfair’ comparisons 

(Notarnicola et al., 2017). An alternative is to compare foods based on their energy or protein 

content or their nutrient density. Choice of functional unit can strongly influence the 

comparison of different foods (Masset et al., 2015). 

 

The choice of functional unit is not straightforward. For example, as the average protein intake 

in many high-income countries is far beyond recommendations and as many consumers also 

over-consume food in general, it could be argued that the prime function of food in such settings 

is to supply pleasure rather than nutrients, which could justify the use of mass as the functional 

unit after all. In addition, when consumers shop for food they shop for quantities rather than 

nutrients, for example a serving of sausage in a meal is often the same size as a serving of pure 

meat, although the protein content in the sausage might be considerably lower. In low-income 

countries, livestock have additional functions to providing food, e.g. providing manure for fuel, 

draught power and financial insurance, which needs to be considered in comparisons of 

different foods or production systems (Weiler et al., 2014). Hence, the choice of functional unit 

is highly dependent on the context and aim of the study.  

 

For LCA on milk, a metric that corrects for the varying fat and protein content of the milk is 

commonly used, e.g. energy-corrected milk (ECM) (Sjaunja et al., 1990). For comparisons of 

milk with plant-based dairy alternatives, there is no consensus on how that should be done and 

studies to date have used comparisons per kg and different nutrient profiling methods.  
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Comparison per kg product 

Climate impact 

In a meta-analysis and systematic review by Clune et al. (2017), 369 studies were reviewed to 

investigate the carbon footprint (measured as the global warming potential (GWP) in CO2e per 

kg product) of 168 varieties of produce. The results comprise 1718 individual values, of which 

those relevant for dairy and plant-based dairy alternatives are presented in Table 5.4. The 

carbon footprint for the dairy product category was based on 90 LCA studies with 341 values for 

milk. The carbon footprint included emissions up to the regional storehouse.  

 

Gerber et al. (2013) present estimates of the carbon footprint of dairy, in aggregated form and 

separated for ruminant species and place of production (Table 5.4). To compare milk with 

differing content of fat and protein, their estimates are fat- and protein-corrected, i.e. they are 

converted to a standard with 4% fat and 3.3% protein content. The estimates reported by Gerber 

et al. (2013), like those reported by Clune et al. (2017), include post-harvest emissions, such as 

transport and processing. However, the contribution of these emissions is small and was 

estimated by Gerber et al. (2013) to be 6.1% of the total carbon footprint of cattle milk. 

Variations in the carbon footprint of dairy milk between regions reflect the intensity of 

production, with more extensive systems releasing more GHG emissions per kg milk produced, 

mainly due to lower milk yields.  

 

While Clune et al (2017) compiled results from case study LCAs, Gerber et al. (2013) performed 

a global top-down modelling study that covered both extensive and intensive systems. This 

explains the large difference in the world average carbon footprint of dairy (2.8 in Gerber et al. 

(2013) and 1.39 in Clune et al. (2017)), as LCA on extensive systems are uncommon and thus the 

average value in Clune et al. (2017) is biased towards high-income settings. In Clune et al. 

(2017), only five studies on milk production systems in Central and South America are included 

and only two for Asia and Africa. The same lack of studies applies for milk from other animal 

species, and also for processed dairy products like cream and butter.  
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Table 5.4. Global warming potential (GWP) values for dairy products, adapted from Clune et al. (2017) and Gerber et 

al. (2013) (SD=standard deviation, OC=Oceania, WE=Western Europe, LAC=Latin America and the Caribbean, 

ESEA=East and Southeast Asia, SSA=Sub-Saharan Africa) 

  CO2e per kg product  Statistics for Clune et al. 

Dairy product Gerber et al. 

(2013) 

Clune et al. 

(2017) 

(mean) 

SDa Min-Max No. of 

studiesa 

No. of 

valuesa 

Milk: world average 2.8b  1.39 0.58 0.54-7.50 77 262 

Milk: Australia and 

New Zealand 

~1.6 (for OC) 1.19 0.15 0.94-1.40 10 10 

Milk: North America ~1.8 1.34 0.40 0.94-2.06 11 19 

Milk: British Isles ~1.7 (for WE) 1.26 0.23 0.88-1.99 16 35 

Milk: Europe ~1.7 (for WE) 1.32 0.29 0.54-2.39 52 175 

Milk: Central and South 

America 

~3.9 (for LAC) 1.69 0.61 1.14-3.30 5 10 

Milk: Asia ~2.4 (for ESEA) 2.53 1.09 1.38-4.60 2 7 

Milk: Africa ~9 (for SSA) 3.34 1.90 1.02-7.50 2 5 

Yoghurt - 1.43 0.25 1.17-2.00 7 11 

Buffalo milk 3.4b  3.75 0.86 2.87-5.20 1 7 

Sheep and goat’s milk 6.5  -        

Cream - 5.32 1.62 2.10-7.92 3 4 

Cheese - 8.86 2.07 5.33-16.35 22 38 

Butter - 11.52 7.37 3.70-25.0 4 8 

Plant-based products 

Soy milk - 0.88 0.27 0.66-1.40 2 8 

Almond, coconut milk - 0.42 0.03 0.39-0.44 1 4 

aThese only relate to values provided by Clune et al. (2017). 
BThis value includes post-harvest emissions such as transport and processing. 

  

The carbon footprint of milk is sensitive to several LCA modelling choices, most importantly the 

allocation of emissions between milk and meat, which can be based on economic or physical 

relationships, e.g. fat and protein content in the meat and milk, or the percentage of feed needed 

to cover milk production (Cederberg et al., 2003). Another approach is to use ‘system 

expansion’, in which the emissions caused by the product that the dairy meat ‘replaces’ on the 

market, e.g. beef from suckler herds, pork, poultry or potentially even legumes (Flysjö et al., 

2011), are subtracted from the total emissions from the dairy system, hence isolating the 

emissions attributed to the milk (Fig. 5.2).  
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Fig. 5.2. Carbon footprint of milk from New Zealand (NZ) and Sweden (SE), estimated using different methods to 

allocate emissions between milk and meat. From Flysjö et al. (2011).  

 

Another issue to consider is that in 2013, the International Panel on Climate Change (IPCC) 

changed the factor used to weight methane into the common unit of carbon dioxide equivalents 

(CO2e) from 25 to 28 (34 including carbon-climate feedbacks) (100-year perspective; Myhre et 

al., 2013). Most studies published to date, including Gerber et al. (2013) and all studies in Clune 

et al. (2017), have used the old factor of 25 (or the even older factor of 23). Applying the new 

factor of 34 would mean an increase in the carbon footprint of dairy milk of approximately 20%. 

There are also other metrics for weighting the different greenhouse gases that can give quite 

different results (Persson et al., 2015). 

 

We were unable to find any peer-reviewed studies published in scientific journals on the climate 

impact of plant-based dairy alternatives. In the review by Clune et al. (2017), only two studies on 

plant-based dairy alternatives were included. One of these, by Feraldi et al. (2012), is from a 

conference and to our knowledge not is available online. The other is a report from Tesco in the 

UK which lists the carbon footprint of a large set of Tesco products, including six own brand 

soya drinks whose carbon footprint ranged from 0.7 kg CO2e for unsweetened soya drink to 1.4 

kg for its organic counterpart (Tesco, 2012). We summarise the grey literature we found on the 

environmental impact of plant-based dairy alternatives later in this section.  

Ecotoxicity impacts 

Nordborg et al. (2017) evaluated freshwater ecotoxicity from the production of six different 

foods in Sweden; minced pork, chicken fillet, minced beef, milk, wheat bread and pea soup. 

They found that Swedish milk had an impact of the same magnitude as cereals and legumes 

cultivated in Sweden when compared per kg product (3-4 times higher for milk when compared 

per kg protein), while the impact from meat, especially pork and chicken, was almost 100 times 

higher, mostly as an effect of the use of heavily sprayed soy as animal feed. In contrast to the 

climate impact, the ecotoxicity impacts are a direct consequence of the management of the 

production system, rather than whether it is an animal or plant-based product. For example, 

organic systems, regardless of the product, have very low ecotoxicity impacts.  
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Impacts on water resources 

Mekonnen and Hoekstra (2011) quantified the green (rainwater), blue (surface or groundwater) 

and grey (water needed to assimilate pollutants) water footprint of global crop production in a 

spatially explicit way for the period 1996-2005. Mekonnen and Hoekstra (2012) assessed the 

water footprint of animal products, considering different production systems and feed 

composition per animal type and country. Ercin et al. (2012) studied the water footprint of soy 

milk produced in Belgium from soy bean grown in Canada and France. Results from these 

studies are summarised in Table 5.5, which also presents data on water footprint for almonds, 

oats, rice and soybeans. In order to compare drinks made of these commodities with milk and 

soy drink, it has to be considered how much of these products are used per ton of drink, as well 

as the water footprint from other ingredients (e.g. vegetable oil) and from processing (which is 

usually low compared with that of raw material production). For oat drink, approximately 0.2 kg 

of oats is needed per kg of oat drink (Florén et al., 2013). Using this value, the data in Table 5.5 

indicate, very approximately, that drinks made of oats and soy have a lower blue water footprint 

than dairy milk, while the impact of rice drink is of the same magnitude as that of dairy milk and 

that of almond drink is considerably higher. However, metrics that take water scarcity into 

account show that milk can be produced with very little impact on water resources (Ridoutt et 

al., 2010), which shows that where production takes place is crucial for water use impacts. See 

Appendix E3 for more on water use methodology.  

  
Table 5.5. Water footprint (m3 per tonne). From Mekonnen and Hoekstra (2011*, 2012**) and Ercin et al. (2011)*** 

Product Green Blue Grey 

Milk: world average grazing** 1087 56 49 

Milk: world average mixed** 790 90 76 

Milk: world average industrial** 1027 98 82 

Soy drink: world average* 35741 1231 651 

Soy drink: Belgium*** 276 10 10 

Soybeans: world average* 2037 70 37 

Oats: world average* 1479 181 128 

Rice: world average paddy rice* 1146 341 187 

Almonds: world average shelled or peeled* 9264 3816 3015 

1These values seem unreasonably high, as the water footprint of soy milk should not be higher than the water footprint of soy bean. 

 

Nitrogen footprint 

Leip et al. (2014) modelled the nitrogen footprint of 12 food commodities in the EU and found 

that dairy products on average had a nitrogen footprint of approximately 30 g N per kg product, 

while the corresponding value for cereals and legumes was approximately 10-20 g N per kg 

product, which implies that drinks made of these raw materials have a nitrogen footprint in the 

range or 1-4 g N per kg product. Legumes had the lowest ‘nitrogen investment factor’ (quantity of 

new reactive nitrogen required to produce one unit of nitrogen in the product) of all foods, i.e. 1-

2 kg N per kg of N in legumes, compared with approximately 6 kg N per kg of N in milk.  See 

Appendix E5 for more on metrics of impacts on biogeochemical flows. 
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Biodiversity 

Quantifying the impact on biodiversity from food production is challenging for many reasons. 

For example, biodiversity impacts arise from several impact pathways (e.g. land use, use of 

pesticides, water pollution, climate change), biodiversity includes a diversity of ecosystems, 

species, breeds and genes, and determining the reference state to which to compare impacts is 

often not straightforward. Chaudhary and Kastner (2016) estimated species loss embodied in 

global food trade for four vertebrate taxa. Their analysis, based on number of species lost due to 

land use, covered 170 crops in 184 countries. For livestock, only the crop part of the feed was 

included in their analysis, i.e. biodiversity impacts from livestock grazing were not included. The 

results showed the highest impacts for cropland use in tropical regions, followed by temperate 

regions and the lowest impacts for boreal regions, with a variation of over six orders of 

magnitude. Country-specific biodiversity impacts per ton of crop are presented in Chaudhary 

and Kastner (2016). Some results relevant for dairy production and the production of plant-

based dairy alternatives are summarised in Table 5.6. 

 
Table 5.6 Biodiversity impact from one tonne of crop production. From Chaudhary and Kastner (2016) 

Product No. of species lost 

Almonds: France 1.4 * 10-5 

Almonds: USA 1.2 * 10-6 

Rice: France 5.8 * 10-7 

Rice: Vietnam 3.3 * 10-6 

Oats: France 1.6 * 10-7 

Oats: Sweden 1.2 * 10-7 

Rapeseed: Sweden 2.9 * 10-7 

Forage crops: Denmark 6.8 * 10-8 

Soy: Brazil 3.0 * 10-7 

Soy: China 9.4 * 10-7 

Soy: Canada 3.7 * 10-7 

Soy: USA 2.9 * 10-7 

 

Chaudhary and Kastner (2016) do not present the impact for animal products explicitly, but 

these can be calculated based on the crops in livestock diets. Very approximately, assuming that 

a typical dairy system in Europe uses approximately 0.4 kg of cereals, 0.03 kg of soy (from 

Brazil) and 0.4 kg of forage crops per kg milk produced (based on data from Sweden; Cederberg 

et al., 2009), this gives a biodiversity impact (number of species lost) of 8.4 x 10-8 based on the 

values in Table 5.6. In comparison, oat drink, under the assumption that 0.2 kg of oats and 0.1 

kg rapeseed is used per kg of oat drink, gives a biodiversity impact of 5.8 x 10-8. Hence, 

assessments of biodiversity impacts using this methodology yield results of the same magnitude 

for dairy milk and oat drink from Europe. However, almond drinks and rice drinks would score 

one or two orders of magnitude higher.  
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Studies on plant-based dairy alternatives in the grey literature 

Several food manufacturers have commissioned LCA studies on their products for internal or 

marketing purposes. These are commonly performed by consulting companies and vary in 

quality and transparency. Some are available online. We summarise the results from such 

studies in Table 5.7. The climate impacts of plant-based drinks are within the range 0.3-0.6 kg 

CO2e per kg or litre of drink, while those of milk are within the range 1.3-1.7 kg CO2e per kg milk 

in these studies. There is one exception; the report from Tesco gives considerably higher values 

for soy drink.  

 

Milk also shows higher impacts in most other impact categories, with a few exceptions. 

Freshwater eutrophication for one type of Swedish oat drink is higher than for Swedish milk, 

due to electricity generation in Germany (where the oat drink is produced) emitting phosphate 

into waterways. Use of water in Germany, rather than Sweden, also explains the higher water 

use for the oat drink compared with milk, since that study accounts for water scarcity in 

different countries. Furthermore, water use seems to be higher for almond drink than for milk, 

while the LCA commissioned by Alpro on soy drink and milk shows that ionising radiation and 

resource depletion36 are lower for milk than for soy drink.  

 
Table 5.7. Summary of the environmental impacts of plant-based dairy alternatives, according to manufacturer- 
commissioned life cycle assessments (LCA). Highest value for each impact category marked in pink 

 

Study Results 

Life Cycle  Assessment of 

Ripple Non-Dairy Milk 

https://www.ripplefoods.c

om/pdf/Ripple_LCA_Rep

ort.pdf (Retrieved May 24 

2018)  

 
Impact 
category 

Unit Ripple pea 
drink 

Almond Soy drink Dairy milk 

Carbon footprint g CO2e 
(per kg 
protein) 

387 
(11.7) 

454 
(110) 

476 
(14.5) 

1.467 
(44.4) 

 

Oatly  
Florén et al. (2013). 
Internal confidential 
report) 
 
Data for 1 L of drink; 
covers all life cycle stages 
including waste 
management of packaging 
at the consumer 

 
Impact category Unit Aseptic oat 

drink 
Fresh oat drink Milk  

Carbon footprint kg CO2e 0.3 0.4 1.3  

Primary energy use MJ-eq 7.7 9.2 19.6  
Terrestrial 
eutrophication 

molc N eq 0.005 0.006 0.103  

Freshwater eu. kg P eq 0.00010 0.0019 0.00008  
Marin eu. kg N eq 0.002 0.002 0.006  
Acidification mol H+ eq 0.002 0.002 0.024  
Ozone formation kg NMVOC eq 0.001 0.002 0.004  
Land use m2 0.6 0.6 2.9  

Water use m3 water eq 0.0005 0.008 0.0009  
 

Feraldi et al. (2012). Life 
Cycle Assessment of 
Coconut Milk and Two 
Non-Dairy Milk Beverage 
Alternatives. Franklin 
Associates. 

Impact category         Unit                       Coconut milk            Almond drink        Soy drink  
Energy demand           MJ eq                        1.91                           1.39                    3.62 
Global warming           kg CO2e                     0.1                             0.11                    0.61 
Ozone depletion          kg CFC-11 eq             2.4*10-9                    1.8*10-9               3.2*10-9 

Water consumption     litre H2O eq                6.81                           126                     50.8 
Acidification                 H+ moles eq               0.057                         0.05                    0.09 

                                                        
36The higher resource depletion for soy drink is explained by longer transport distances for soy compared with milk and therefore a 
higher need for lead in the maintenance of trucks and for indium, a metal with a high characterisation factor.   

 

https://www.ripplefoods.com/pdf/Ripple_LCA_Report.pdf
https://www.ripplefoods.com/pdf/Ripple_LCA_Report.pdf
https://www.ripplefoods.com/pdf/Ripple_LCA_Report.pdf
http://lcacenter.org/lcaxii/final-presentations/719.pdf
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http://lcacenter.org/lcaxii
/final-
presentations/719.pdf 
(Retrieved March 13 
2016). Values are per 0.5 
gallon (2.27 L) of drink. 

Eutrophication             kg N eq                      6.7*10-5                    4.1*10-4                1.5*10-4 

Smog                          kg NOx eq                  8.1*10-4                    3.9*10-4                0.0014 
Solid waste                 kg SW eq                   0.0087                      0.0095                 0.023 
 
 

Ho et al. (2016). Almond 
milk vs cow milk - Life 
cycle assessment. 
Environment 159. Values 
are per litre of drink. Link: 
https://www.ioes.ucla.edu
/wp-
content/uploads/cow-vs-
almond-milk-1.pdf 
(Retrieved May 24 2018)  

Impact category           Unit                 Almond drink                  Cow’s milk  
Global warming            kg CO2e                  0.36                               1.67       
Water consumption      litre H2O                6100.6                            291.5 

Kerkhof and Terlouw 
(2015). Ecofys. Life Cycle 
Assessment of Alpro Plain 
Calcium Soy  Drink and 
Dairy Milk in Belgium, 
Germany, the Netherlands 
and the United 
Kingdom.Values are per 
litre of drink. 
Commissioned by Alpro.  

Impact category        Unit          Alpro soy drink          Dairy milk UHT             Fresh dairy 
milk 
Climate change       kg CO2e               0.48                               1.65                                1.69 
Ozone depletion   kg CFC-11 eq       2.8*10-7                        2.67*10-7                          3.25*10-7 

Human toxicity           CTUh              2.98*10-7                       3.14*10-6                          3.15*10-6 

(non cancer)  
Human toxicity           CTUh             2.16*10-8                      3.28*10-8                            3.4*10-8 

(cancer) 
Particulate matter  kg PM2.5 eq       3.26*10-4                        1.2*10-3                            1.2*10-3 

Ionising                 kBq U235 eq          0.123                            0.102                                0.105 
radiation HH 
Ionising radiation       CTUe              3.32*10-7                      3.49*10-7                         3.57*10-7 

E (interim)   
Photochemical      kg NMVOC eq     1.57*10-3                      2.22*10-3                         2.23*10-3 

ozone formation 
Acidification            molc H+ eq         4.22*10-3                     4.48*10-2                         4.48*10-2 

Terrestrial                molc N eq            0.0139                           0.196                                0.196 
eutrophication 
Freshwater                kg P eq            1.04*10-4                      2.65*10-4                         2.65*10-4 

Eutrophication 
Marine                       kg N eq            1.59*10-3                      1.43*10-2                        1.43*10-2  
eutrophication          
Freshwater                 CTUe                  6.75                               9.62                                 10.4 
ecotoxicity      
Land                       kg C deficit              4.89                                12                                    12 
transformation   
Water resource       m3 water eq         1.8*10-3                         2.87*10-3                       2.91*10-3 

depletion 
Mineral, fossil &       kg Sb eq            2.46*10-5                        2.09*10-5                       1.56*10-5 

renewable resource depletion 

Tesco (2012).  Product 
Carbon Footprint 
Summary. Link:  
https://www.tescoplc.com
/assets/files/cms/Tesco_
Product_Carbon_Footpri
nts_Summary(1).pdf 
(Retrieved May 24 2018)  
 

Soy drink product                                                            Carbon footprint 
Tesco fresh sweetened soya milk 1 litre                                  0.8 kg CO2e 
Tesco unsweetened soya alternative to dairy 1 litre                0.7 kg CO2e 
Tesco calcium enriched soya drink 1 litre                                0.9 kg CO2e 
Tesco value unsweetened soya drink 1 litre                             0.7 kg CO2e 
Tesco organic U/SWT soya drink 1 litre                                   1.2 kg CO2e 
Tesco organic SWTND soya drink 1 litre                                 1.4 kg CO2e 
 

 

  

http://lcacenter.org/lcaxii/final-presentations/719.pdf
http://lcacenter.org/lcaxii/final-presentations/719.pdf
http://lcacenter.org/lcaxii/final-presentations/719.pdf
https://www.ioes.ucla.edu/wp-content/uploads/cow-vs-almond-milk-1.pdf
https://www.ioes.ucla.edu/wp-content/uploads/cow-vs-almond-milk-1.pdf
https://www.ioes.ucla.edu/wp-content/uploads/cow-vs-almond-milk-1.pdf
https://www.ioes.ucla.edu/wp-content/uploads/cow-vs-almond-milk-1.pdf
https://www.tescoplc.com/assets/files/cms/Tesco_Product_Carbon_Footprints_Summary(1).pdf
https://www.tescoplc.com/assets/files/cms/Tesco_Product_Carbon_Footprints_Summary(1).pdf
https://www.tescoplc.com/assets/files/cms/Tesco_Product_Carbon_Footprints_Summary(1).pdf
https://www.tescoplc.com/assets/files/cms/Tesco_Product_Carbon_Footprints_Summary(1).pdf
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As an example of a study that jointly evaluated many aspects of milk and plant-based milk 

alternatives, here we briefly present results from a report from Healthcare without Harm37 

(2017). In that report, the health, environmental, social justice and animal welfare aspects of 

dairy and plant-based milk alternatives are assessed. A summary of the results is provided in 

Table 5.8. The impact of products is defined as positive (moderate or strong), negative 

(moderate or strong), neutral or debated, and is based on how other products perform in the 

same category. Rankings are based on the relative per-serving impact of that food group 

compared with other food groups. Health rankings are based on the extent of research 

demonstrating health benefits or risks associated with consuming that food type. For the social 

justice rankings, no product is ranked “positive”, given the generally poor labour standards in 

both domestic and international food production. However, foods that have been associated 

with serious labour concerns during production are ranked moderately or strongly negative in 

the report, depending on the extent of the concerns. For animal welfare rankings, strong 

negatives are attributed to food types associated with significant welfare harms; relative 

improvements in welfare practices (while taking into consideration new potential harms from 

these practices) are noted as moderately negative, neutral, or moderately positive, depending on 

the extent of the difference. Inevitably, the classification system is arbitrary to some extent and 

rankings are based on subjective norms, although if such classification systems are 

transparently described and developed with stakeholder involvement, they may be useful for 

evaluating products from many perspectives. However, grouping all plant-based alternatives 

into one category is too coarse to give valuable information. In addition, there are many more 

alternative dairy systems. 
  

Table 5.8. Comparison between dairy and plant-based milk alternatives (MP=moderately positive, SP=strongly 

positive, MN=moderately negative, SN=strongly negative, D=debated, N/A=not applicable). From Healthcare 

without Harm (2017). 

Dimension Dairy, conventional Dairy, grass-fed Plant-based alternatives 

Health MP(D) MP(D) Neutral 

Environmental 

Climate MN (D) MN (D) SP 

Land use MP MP SP 

Resource input SN Neutral MN 

Biodiversity MN SP MN 

Social justice SN Neutral Neutral (SN cashew) 

Animal welfare SN Neutral N/A (MN/D coconut) 

                                                        
37Healthcare Without Harm Europe is a non-profit European coalition of hospitals, healthcare systems, healthcare professionals, 
local authorities, research/academic institutions and environmental and health organisations. It currently has 84 members in 26 
countries. 
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Comparison of environmental impact using nutrient density scores 

One way to account for the varying nutrient content in dairy milk and different types of plant-

based dairy alternatives when comparing their environmental impacts is to use the nutrient 

density of the products as a basis for comparison, rather than comparison per kg of food (section 

3.4).  

 

Smedman et al. (2010) designed a Nutrient Density to Climate Impact (NDCI) index to compare 

milk, unfortified soy and oat drink, soft drink, orange juice, beer, wine and bottled carbonated 

water. They used data on unfortified rather than fortified products in order to minimise error 

and to enhance generalisability, and suggest that future studies include fortified drinks in 

similar comparisons when data on GHG emissions are available for these products. The nutrient 

density score used by Smedman et al. (2010) included three macronutrients (protein, 

carbohydrates, fat), and 18 micronutrients (retinol equivalents, vitamin D, vitamin E, thiamin, 

riboflavin, ascorbic acid, niacin equivalents, vitamin B6, vitamin B12, folate, phosphorus, iron, 

potassium, calcium, magnesium, selenium, zinc, iodine). Fibre was not included. The index did 

not include nutrients to be limited, e.g. saturated fat or added sugar. The nutrient density was 

calculated by summarising the proportions of recommended daily intake of each nutrient 

provided by 100 g of the beverage, multiplied by the proportion of nutrients contributing to 

more than 5% of value given in the Nordic Nutrition Recommendations. The nutrient density of 

each beverage was then combined with its GHG emissions to create the NDCI index. Smedman 

et al. (2010) found that milk had the highest nutrient density in relation to GHG emissions of all 

the beverages compared (Table 5.9). 

 
Table 5.9. Nutrient density in relation to climate impact. From Smedman et al. (2010) 

Food item Number of nutrients ≥ 

5% of NNR 

Nutrient density Greenhouse gas 
(GHG) emissions 

Nutrient Density to 
Climate Impact 
(NDCI) index 

Milk 9 53.8 99 0.54 

Soft drink 0 0 109 0 

Orange juice 4 17.2 61 0.28 

Beer 0 0 101 0 

Red wine 1 1.2 204 0.01 

Mineral water 0 0 10 0 

Soy drink 3 7.6 30 0.25 

Oat drink 1 1.5 21 0.07 

 

In a letter to the editor, Scarborough and Rayner (2010) expressed concern that the NDCI index 

is flawed, as the ranking of the drinks produced by the index is dependent on an arbitrary choice 

of threshold for contributing to the Nordic Nutrition Recommendations (NNR). When the 

threshold is set at a value lower than 5% of the NNR, soy drink achieves the highest NDCI score. 

Milk achieves the highest NDCI score when the threshold is set at 5 or 10% of the NNR. When 

the threshold is set at 20% of the NNR, orange juice instead achieves the highest NDCI score. 
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In a recent study, van Dooren et al. (2017b) proposed a nutrient density index that considers the 

GHG emissions associated with different foods. Based on the correlation between GHG 

emissions and nutritional density, van Dooren et al. (2017b) devised a modified nutritional 

index, the Sustainable Nutrient Rich Food (SNRF) index, where only the six most important 

nutrients reflecting health and GHG emissions are included: plant protein, saturated fat, 

essential fatty acids, sodium, fibre and added sugar. The authors claim that this modified index 

reflects a much more relevant correlation between nutrition and environmental impact. It also 

creates a foundation for classifying foods into three ‘traffic light’ categories, as shown in Fig. 5.3.  

 

 
Fig. 5.3. Sustainable nutrient rich food (SNRF) index of different food groups, plotted as a function of greenhouse 

gas emissions (GHGE). From van Dooren et al. (2017b).  
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Sonesson et al. (2017) used three different protein-related functional units to compare the 

climate impact, land use and freshwater ecotoxicity impact of bread, chicken fillet, minced pork, 

minced beef, milk and pea soup. The functional units were grams of protein, grams of digestible 

protein and weighted protein quality index (PQI). The PQI considers the importance of the 

studied product as a provider of essential amino acids (EAAs) in the specific dietary context, 

hence providing a novel approach for including consideration of protein quality and the dietary 

context into the comparison of individual food products.  

 

The PQI is created by using product-specific EAA ratios, the EAA ratio for the total dietary 

intake (in three specific dietary contexts) and the nutritional requirement for each EAA. If a 

product contains EAAs that are lacking in the diet, the PQI of that specific product will be 

higher, and vice versa. The three dietary contexts used in Sonesson et al. (2017) were an average 

Swedish diet, a hypothetical lacto-ovo vegetarian diet and a hypothetical low-meat diet. The 

total protein content of the average Swedish diet was 136% of recommended intake, while that of 

the hypothetical lacto-ovo vegetarian diet was 106% of recommended intake. This lacto-ovo 

vegetarian diet was based on the average Swedish diet, but meat and seafood were replaced with 

pulses, eggs, and dairy products delivering the same quantity of energy. On an energy basis, 

meat was replaced by 72% pulses, 16% eggs and 11% cheese. The total protein amount in the 

hypothetical low-meat diet was 93% of recommended intake. This diet was created by reducing 

the meat, seafood, and dairy content in the average diet and replacing them in part with low-

protein foods supplying 70% of the energy. Part of the meat, seafood and dairy content was 

isocalorically replaced with 50% whole wheat bread, 30% tubers and 20% potatoes. 

 

Milk had the highest GWP for all functional units. However, the difference between milk and the 

other products decreased considerably when GWP per kg was compared with the weighted 

protein quality index (PQI), due to milk’s beneficial amino acid profile and slightly higher 

protein digestibility. However, its impact was still considerably higher than that of the two 

plant-based options (Fig. 5.4). As regards land use, the difference between animal and plant-

based foods decreased when a protein-based functional unit was used, with milk showing the 

greatest improvement. As regards ecotoxicity, chicken and pork had considerably higher 

impacts than ruminant production, as a large share of the feed consists of soy and grain for 

which pesticide use is much greater than in ley. Plant-based products had lower impacts mainly 

because less crop needed to be harvested per kg of final product compared with production of 

animal products, which required 3-10 kg of feed per kg of meat.  
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Fig. 5.4. Global warming potential (GWP, top), land use (centre) and ecotoxicity (expressed as comparative toxic 

units (CTU), bottom) impacts expressed in relation to three different protein-based functional units (g protein, g 

digestible protein, kg PQI-weighted food), the latter for three dietary contexts (AD=average Swedish diet, LO=lacto-

ovo diet, LM=low-meat diet). Bread=100%. From Sonesson et al. (2017).  
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As mentioned in section 3.4, there are many design decisions that have to be taken into account 

when creating nutrient density scores, including which nutrients to include (both nutrients to 

encourage and nutrients to limit), how to weight nutrients (equally as in e.g. the Smedman et al. 

(2010) study, or considering which nutrients that are a concern in a specific dietary context), 

whether to cap nutrients for which the food item delivers amounts above recommendations and 

which algorithm to use for aggregation. 

 

Hence, nutrient density indices can be created in many different ways, which will strongly affect 

the results (Saarinen et al., 2017). This is one of the limitations with using nutrient density 

indices for comparing the nutritional quality of foods and diets. It is therefore very important 

that studies using such scores show, using sensitivity analysis, how the results are affected by 

the design of the index, which e.g. the Smedman et al. (2010) study failed to do. More elaborate 

indices, e.g. the protein-related functional unit suggested by Sonesson et al. (2017), may provide 

valuable information. However, the complexity of such indices makes them more difficult to 

interpret. In terms of using nutrient density scores, Hallström et al. (2018) summarise the 

following research needs: inclusion of a wider set of sustainability issues (e.g. biochemical flows 

or freshwater use), including the dietary context, combining consumption and production 

perspectives (e.g. distinguishing between different cultivation and livestock systems, as well as 

process settings and preparation methods), including consumer and acceptability aspects, 

distinction between populations, further refinement and validation of scores and the application 

of methods in society.  
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5.2.2 Comparison in a diet context 

Comparing foods on a per product basis has limited value for determining the health outcomes 

or environmental impact of eating patterns, as it is the total impact of all foods in the diet that 

determines final outcomes. Increasing numbers of studies have investigated the effect on 

nutrient intakes, dietary quality and environmental impacts from dietary change, commonly 

reducing the consumption of animal-based products and replacing it with plant-based foods. 

The reviews by Hallström et al. (2015) (Fig. 5.5), Aleksandrowicz et al. (2016) (Fig. 5.6) and 

González-García et al. (2018) provide good overviews of the results from such studies, which in 

general show considerably lower climate impact and land use from vegetarian or vegan diets. 

However, there are exceptions; Vieux et al. (2012) found that when some meats were replaced 

by fruit and vegetables on an iso-caloric basis, no reduction or even an increase in GHG 

emissions was observed, due to the large amounts of fruit and vegetables needed.  

 

 
 

 
Fig. 5.5. Relative change (%) in greenhouse gas emissions (kg CO2e per year) brought about by different dietary 

changes. From Hallström et al. (2015).  
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Fig. 5.6. Reduction in climate impact, land use and water use from transitioning a vegetarian diet (blue) and from a 

vegan diet (green). Based on data from Aleksandrowicz et al. (2016).  

 

 

Several different approaches for evaluating and designing more healthy and sustainable diets 

exist (see Mertens et al. (2017) for an overview). Such studies can roughly be categorised into 1) 

simulation studies, in which different pre-defined changes to diets are evaluated, e.g. a certain 

reduction in meat consumption or adherence to a certain dietary pattern, and 2) optimisation 

studies, in which mathematical methods are used to find a diet that meets several goals, typically 

the fulfilment of nutritional recommendations and lowering of GHG emissions while keeping 

diets as similar as possible to current diets. We summarise some interesting studies of each type 

below. 

  



90 

Examples of simulation studies in which both meat and dairy are replaced by plant 

based foods 

Temme et al. (2013) evaluated how a 30% and 100% decrease in meat and dairy, randomly 

replaced by the same amount (mass) of plant-based dairy and meat-replacing foods, affected 

land use and nutrient intake of 398 Dutch women aged 19-30 years. Liquid dairy foods were 

replaced by soy-based dairy alternatives and meat by a vegetarian meat substitute (43%, three 

times weekly), egg (29%, twice weekly), pulses (14%, once weekly) or tofu/tempeh (14%, once 

weekly), based on the proportion of these in the current consumption patterns in this group. 

Animal-based sandwich toppings were replaced by a combination of peanut butter, chocolate 

nut spread, jam and chocolate sprinkles, based on current consumption. This approach was 

chosen in order to make the choice of replacement foods as realistic as possible. The results 

showed that land use decreased from 3.7 to 1.8 m2 per day when all animal-based foods were 

replaced, while for a 30% reduction land use was 3.1 m2 per day. Intake of saturated fatty acids 

decreased considerably compared with the current consumption in this group (making three 

times the number of women meet the recommendations), and total iron increased by 2.5 mg per 

day for 100% replacement and 0.7 mg per day for 30% replacement (from the average 9.5 mg 

per day in typical current consumption), although most iron was in less bioavailable form. The 

authors comment on this as follows: 

 

“At baseline, however, about 10 % of the total Fe intake was haem-Fe, whereas in the 100 % scenario all 

Fe was non-haem. This might be a concern since it is known that non haem-Fe is absorbed less 

efficiently than haem-Fe. On the other hand, Fe absorption is tightly regulated by Fe status and body 

storage; if Fe storage is depleted, more Fe is absorbed. Cross-sectional studies suggest that vegetarian 

women have similar or even higher Fe intakes and similar Hb concentrations than meat-consuming 

women.” 

 

Temme et al. (2015) repeated the evaluation for children and concluded that partial replacement 

(30%) of meat and dairy by plant-based foods is beneficial for children’s health, as intake of 

saturated fatty acids is lowered, fibre intake is increased and intake of micronutrients is similar. 

When all animal-based products are replaced, attention is needed to ensure adequate intake of 

thiamin, vitamin B12 and zinc. The proportion of girls (4-6 years old) with intake below the 

recommendation was 15% for thiamin, 10% for vitamin B12 and 6% for zinc. A similar study was 

conducted on Dutch adults (Seves et al., 2017), with similar results (Table 5.10). 
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Table 5.10. Summary of studies by Temme et al. (2013, 2015) and Seves et al. (2017) in which nutrient intake, land 

use and greenhouse gas (GHG) emissions (except Temme et al., 2013) were studied for two dietary scenarios: meat 

and dairy reduced by either 30% or 100%, and replaced with plant-based foods including fortified plant-based meat 

and ‘dairy imitates’. SFA = saturated fatty acids, Fe = iron, Ca = calcium, Zn = zinc 

 Subjects Studied outcomes Results for 30% 
reduction in meat and 
dairy 

Results for 100% 
reduction in meat and 
dairy 

Temme et al. (2013) 398 Dutch women 

aged 19-30 years 

SFA and Fe intakes 
Land use 
 

SFA down 8% 
Fe up 7% 
Land use down 19%. 

SFA down 30% 
Fe up 26% 
Land use down 51%. 

Temme et al. (2015) 1279 Dutch 
children aged 2-6 
years 

Nutrient intakes (energy, 
protein, SFA, fibre, Ca, 
Fe, Zn, vitamin B12, 
thiamin) 
Land use and GHG 
emissions for meat and 
dairy and plant-based 
replacements only 

SFA down 9% 
Fibre up 8% 
Similar micronutrient 
content except for B12 

SFA down 26% 
Fibre up 29% 
Ca, Zn and thiamin down by 
5-13%, and vitamin B12 down 
by 49%. Total  Fe up.  

Seves et al. (2017) 2012 Dutch adults 
aged 19-69 years 

Nutrient intakes (energy, 
protein, SFA, 
monodisacc., fibre, Na, 
Ca, Fe, Zn, vitamin A, B12 
and D, thiamin and 
riboflavin) 
Land use 
GHG emissions 

Beneficial for SFA, Na, fibre 
and vitamin D intakes, 
neutral for other nutrients. 
Land use down 14%. 
GHG emissions down 14%. 

SFA down ~35% 
NA down ~8% 
Fibre, Fe and vitamin D 
increased. 
Zn, thiamin, vitamins A and 
B12, and probably Ca, were 
below recommendations. 
Land use down 41.,  
GHG emissions down 47%. 

 

Examples of studies using optimisation techniques to design more sustainable diets 

A recent study worth highlighting is that by Vieux et al. (2018), in which observed diets from five 

countries (France, UK, Sweden, Italy and Finland) were optimised using linear programming 

(see section 4.5), with the aim of reducing diet-related GHG emissions while at the same time 

ensuring nutrient adequacy. One of restrictions initially applied was that total weight of 

modelled diets could vary between 120% and 80% of the original total weight. When just 

adjusting diets to achieve nutrient adequacy by replacing items in the category sugar/fat/alcohol 

with foods from the fruit and vegetables and starchy foods groups, the GHG emissions of the 

diets increased. Once nutrient adequacy was achieved, stepwise reductions in GHG emissions 

were modelled (in 10% increments). At 30% reduction, energy coming from dairy products 

increased for both men and women in Sweden and France, and it increased in men, but 

decreased in women, in Finland, Italy and the UK. The dairy group also contained ‘dairy 

imitates’, but these only constituted a minor part of the consumption. It is unclear why these did 

not make up a larger part of the diet, but one possible explanation could be that their sugar 

content made them a less optimal product. 

 

Kramer et al. (2017) used linear programming to optimise diets for Dutch men and women (9-

69 years old) based on minimal changes to diets, meeting nutritional constraints and stepwise 

lowering of environmental impacts (GHG emissions, fossil energy use and land occupation - 

accounting for approximately 90% of the total ReCiPe score in food products). Fortified soy 

drink, legumes and fortified meat replacers were included as alternatives to animal-based 

products. Grams consumed was used as a proxy for popularity; foods for which consumption is 

high were given a higher penalty for decreased consumption. Fig. 5.7 shows how the amount of 
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different food groups changed for Dutch men as the requirements for environmental impact 

gradually decreased and how the penalty score increased. At the ‘critical point’ in terms of the 

penalty score, the consumption of dairy products was relatively unchanged, but the intake of 

meat decreased.    

 

 

 
Fig. 5.7. Amounts of food groups and penalty score of different environmental impacts (pReCiPe points) for diets for 

Dutch men aged 31-50 years. From Kramer et al. (2017). 

Studies specifically investigating replacement of dairy 

To our knowledge, only a few studies have specifically investigated the effects of substituting 

dairy partially or completely with plant-based dairy alternatives in a dietary context, i.e. without 

also reducing meat intake. These include studies by Werner et al. (2014), van Dooren et al. 

(2014) and Blonk Consultants (2015), as summarised below.  

 

Werner et al. (2014) specifically aimed at investigating the role of dairy in diets in terms of 

nutritional value and GHG emissions. The starting point was a constructed baseline diet which 

was in agreement with the Danish dietary guidelines, using foods included in the Danish 

national dietary survey. For example, to be in line with the Danish recommendations, a fruit and 

vegetable intake of 600 g was set where 100 g of fruit were taken to comprise 45.3 g apple, 15.6 g 

pear, 16.4 g orange and 22.7 g banana, reflecting the average fruit intake of the population. The 

baseline diet included 349.5 g of dairy. Eight dietary scenarios, with different quantities of dairy 

products in each, were designed, all with the same energy content. Three diet scenarios excluded 
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dairy entirely, one including instead unfortified soy drink instead of milk, one including soft 

drinks instead of milk and marmalade instead of cheese and the third was a vegan diets in which 

soy drink and beans replaced animal products. Naturally, the nutritional outcome of the 

scenario with soft drink and marmalade replacing dairy products was negative and GHG 

emissions were not decreased. The diet in which soy drink replaced dairy lowered GHG 

emissions by approximately 20% and the vegan diet lowered them by nearly 50%. Added sugar 

was above recommendations for the diet in which soy drink was used, while for the vegan diet 

fat content was below the recommendation. As regards micronutrients, both the soy drink and 

the vegan diet were below the recommendation for vitamin D (as was the baseline diet) and the 

soy drink was also below the recommendation for iron (as was the baseline diet). Both the soy 

drink and the vegan diet were below the recommendations for calcium, iodine and selenium.  

 

van Dooren et al. (2014) investigated the GHG emissions, land use and nutritional quality of 

diets using 10 different indicators: the amount of fruit and vegetables, total fatty acids, trans-fat, 

saturated fatty acids, fibre, sugar, salt, fish and the energy content. They applied these to six 

different diets; current average Dutch, official ’recommended’ Dutch, semi-vegetarian, 

vegetarian, vegan and Mediterranean. In the vegan diet, milk was replaced with calcium-

enriched soy drink and meat with pulses, nuts and ready-to-eat meat substitutes (e.g. tofu) and 

vegetables rich in calcium. The authors highlight that for the vegan diet, products fortified with 

B12, vitamin D and calcium should be chosen. The Mediterranean diet scored the highest in 

terms of nutritional quality (122), closely followed by the vegan diet (118), the recommended 

diet (105), the semi-vegetarian diet (103), the vegetarian diet (100) and the current average 

Dutch diet (75). The vegan diet scored higher than the vegetarian diet for all nutrition 

indicators. The GHG emissions of the vegan diet were the lowest of all diets, at 2.7 kg CO2e per 

day, which was 34% lower than for the current average diet, while the value for the vegetarian 

diet was 3.2 kg CO2e per day (22% lower than for the average Dutch diet).  

 

Blonk Consultants (2015) found little or no environmental benefit in terms of GHG emissions 

and land use of replacing dairy products with non-dairy foods when using the Optimeal® 

optimisation program to perform the analysis, while the outcome for meat was significantly 

different. Optimeal® was used to help investigate sustainable and healthy diets. The starting 

point was a full diet including a certain amount of dairy. The amount of dairy was varied in steps 

of 100 g of milk per day (starting from 0 g and going up to 1 kg) and replaced by other foods 

including vegetables, nuts, fortified soy drinks, eggs and fish. As the amounts of dairy products 

increased compared with the current diet, the amounts of meat, eggs and nuts were reduced and 

the amounts of pulses, vegetables and fruit were increased (Meike van de Wouw, Blonk 

Consultants, personal communication 2018). As the environmental impact of the diet at each 

optimisation step did not vary greatly, the authors concluded that replacing dairy products with 

alternative products had little effect on the GHG emissions. 
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5.2.3 Comparison from a production system perspective 

 

A third perspective to include when comparing dairy and plant-based dairy alternatives is the 

production perspective, e.g. by including the opportunity cost of land and ecosystem services 

that grazing cattle provide. This is a highly complex and context-specific question which relies 

on a large set of assumptions on what would potentially happen to the land. Therefore, few such 

studies have been performed.  

 

Röös et al. (2015b; 2016a) performed a study for Sweden in which the GHG emissions, 

eutrophication and acidification potential and ecotoxicity impacts from dairy production were 

compared with those from oat drink production from a farm perspective. The starting point was 

a fictional farm of 336 ha (49 ha of pasture and 287 ha of arable land - the same proportions of 

pasture and arable land as in Sweden as a whole) with 100 dairy cows, which served as a 

reference scenario. Eight alternative scenarios in which the production of dairy milk on the farm 

was replaced with production of oat drink (based on mass) on the same farm were analysed (Fig. 

5.8). Land ‘spared’ in the oat drink scenarios was used to produce bioenergy in the form of 

biogas from grass-clover leys and the surplus energy was assumed to be exported from the farm, 

where it could replace diesel. In all scenarios, the same amount of land was used and grazing 

animals were assumed to be kept on semi-natural pastures. Hence, the study compared the 

environmental impacts assuming similar land use for both dairy and oat drink production.   

 

 
 

 

 

Fig. 5.8. Schematic illustration of a study comparing the environmental impact from the production of either milk or 

oat drink on a fictional farm in Sweden. In both cases, the same area of semi-natural grassland is grazed and the same 

amount of cropland is used. From Röös et al. (2015b). 
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In scenario 1, the beef produced in the reference scenario from the dairy cows and their 

offspring was replaced with beef from suckler herds. In scenario 2, dairy beef was replaced with 

chicken and in scenario 3 with a combination of cereals and grain legumes. In scenario 4, a 

combination of dairy milk, oat drink, beef meat and vegetable protein was produced. The other 

four scenarios (HP1, HP2, HP3 and HP4) corresponded to scenarios 1-4, with the only 

difference being that additional plant protein in the form of cereals and grain legumes was 

grown on the farm, so that it produced as much total protein as in the reference scenario.  

 

The results showed that the climate impact was lower for all eight alternative scenarios 

compared with the reference scenario, due in particular to reduced methane emissions from 

ruminants (Fig. 5.9, left). When the substitution effect of biogas replacing diesel in society at 

large was considered, the benefit to the climate from producing oat drink instead of milk was 

substantial. Even in scenarios producing the same amount of beef as in the reference case 

(scenarios 1 and HP1), the GHG emissions were lower due to lower methane emissions from 

suckler cows compared with dairy cows and less need for feed. However, the eutrophication 

potential was somewhat higher in the oat drink scenarios and the acidification potential was 

substantially higher in scenarios 1-4. This was a consequence of the higher amounts of spared 

land in these scenarios, which gave more biogas production and in turn more nitrogen-rich 

digestate as a by-product from this production. Handling of digestate can result in considerable 

ammonia losses during storage and spreading. The substitution effect of biogas replacing diesel 

in society was found to be very small for eutrophication and acidification potential, since it was 

assumed that emissions of eutrophying and acidifying substances were about the same for 

biogas and diesel.  

 

 

 

 

Fig. 5.9 Impacts on climate change and eutrophication of a Swedish dairy farm and of eight different scenarios 

producing oat drink instead of dairy milk on the farm. In all scenarios, the same amount of semi-natural pasture was 

grazed and the same amount of arable land was used. From Röös et al. (2016b).  
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6. Conclusions and further research 

needs 
Assessing the sustainability of diets is highly complex, due to the multitude of issues that can be 

considered crucial for the sustainability of human eating habits and food systems (health, 

different environmental and social issues, use of antibiotics, animal welfare etc.). Individual 

research fields have supplied knowledge about parts of this complex picture. For example, the 

field of diet-related health research is vast and has identified overarching principles of healthy 

eating that most researchers agree upon (diet with plant-based foods, limited intake of salt, 

sugars and red and processed meat, use of whole grain and unsaturated fats, use of low-fat 

dairy). Studies on the environmental impact of food have shown that animal-based products in 

general have higher negative impacts than plant-based foods. Research on animal welfare has 

provided knowledge on how different production systems affect animal health and wellbeing, 

and so on. However, these guiding principles have to be broken down even further to be 

applicable in answering questions on the appropriateness of different diets for different groups 

and have to handled alongside aspects such as diet acceptability and what can realistically be 

changed. Promising initial attempts have been made to gather several aspects of sustainable 

diets into indicator-based frameworks, in order to provide a way to consider a multitude of 

issues and their trade-offs in different types of decision making. Much more work is needed in 

this area to make indicators and frameworks for assessing the sustainability of diets more 

robust, transparent, relevant and useful. To enable constructive discussions and sound decision 

making, such frameworks has to, as far as possible, show what are scientific ‘facts’ and what are 

normative decisions (choice of indicators, thresholds and weighting methods). Complexity will 

inevitably rise with the number of issues included, so trade-offs between comprehensiveness 

and comprehension have to be managed.  

 

As regards the role of dairy products and plant-based dairy alternatives in sustainable diets, 

research shows some clear positive health effects for dairy products and for fortified soy-based 

products. For other plant-based dairy alternatives, there is little or no literature on their long-

term health effects (although there has been some research on the raw material used for some 

products, e.g. oats). Hence, epidemiological studies on these products are urgently needed. 

However, it will take a long time before there is any solid evidence on this, as consumption of 

these products has only begun recently, and therefore information on consumption of these 

products is not available in existing cohorts. Unfortunately, there is no time to await such 

evidence, as environmental issues need urgent attention.      

 

Regarding the environmental impacts of dairy products and their plant-based alternatives, the 

current literature indicates that the climate impact of dairy milk from Western industrialised 

systems (a little over 1 kg CO2e per kg milk on average, but with large variation) is twice or three 

times higher than for plant-based drinks. However, this comparison rests on somewhat shaky 

grounds, as existing studies on plant-based alternatives are not peer-reviewed and as different 

studies have used different methodological choices (e.g. in terms of allocation methods). In 

order to draw solid conclusions and better understand the drivers behind differences in carbon 
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footprint, dairy and plant-based drinks should be compared within the same study, using the 

same methodological choices and applying comprehensive sensitivity analysis. For other 

environmental impacts, the data are very limited. The few studies that exist (on water use, 

ecotoxicity, nitrogen footprint, eutrophication and acidification potential and negative 

biodiversity impacts) indicate higher impact for milk than for most plant-based dairy 

alternatives, but the data are too limited to allow any general conclusions to be drawn on the 

average magnitude of the differences and the impacts are also highly site- and context-specific. 

An important exception to the higher negative impacts of dairy milk is the positive contribution 

of grazing animals to some semi-natural pastures, which promotes biodiversity conservation in 

those sites, contributes to landscape aesthetics and acknowledges the ability of animals, 

especially ruminants, to upgrade low-value biomass streams into nutritious foods for humans, 

an aspect that conventional LCA studies have not been able to capture.   

 

Comparisons on a per kg basis might give different results if the health effects of the different 

products were taken into account. To date, this has been done only in a few studies and using 

nutrient density indices, which inevitably involves a range of normative decisions that strongly 

influence the results. More research is needed in this area, applying different nutrient indices to 

a range of plant-based dairy alternatives in order to evaluate whether a general pattern can be 

distinguished or whether the results are dependent on the design of the nutrient index. If plant-

based alternatives are fortified to resemble dairy milk, they score very similarly to dairy milk in 

terms of the nutrient density, and the environmental advantage of plant-based alternatives will 

remain. However, it is unclear whether the nutrient content reached by fortification is ‘the same’ 

as ‘natural’ occurrence of nutrients in the diet. This is another question in need of more 

discussion and investigation. In addition, ways are needed to include health effects, rather than 

nutritional content, in this comparison, including bioavailability, the ‘matrix-effect’, nutrient 

interactions and presence of active compounds. 

 

Ultimately, comparing products on a product-by-product basis, whether per kg product or using 

nutrient profiling provides, only provides limited information, as the nutritional benefit depends 

on the diet in which the product is placed and the total environmental impact of the product 

depends on how much of the product is included in the diet and how the substitution affects 

other food categories. The limited existing research on replacement of dairy products with 

different types of plant-based dairy alternatives indicates that the benefits of these products are 

context-specific. More modelling studies are needed to test a broad set of consequences of 

including either dairy products or a range of different plant-based alternatives, or combinations 

of these, in different dietary contexts for different types of consumers. To make these as relevant 

as possible, more research is needed on how people actually, rather than potentially, change 

their eating patterns when aiming for a less environmentally damaging and healthier diet. 

 

Finally, what people eat naturally affects what is produced, which in turn affects landscapes and 

rural societies. Such socio-economic effects are highly challenging to capture in conventional 

indicators, and therefore methodologies that enable inclusion of socio-economic issues also 

need to be developed.  
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Appendix A. Frameworks for sustainable development 

Fig. A1 shows the updated version of the Planetary Boundaries framework based around nine 

critical processes that regulate the functioning of the Earth systems (Rockström et al., 2009; 

Steffen et al., 2015). By combining scientific understanding of the processes regulating the 

Earth’s functioning with the precautionary principle, the framework identifies different levels of 

anthropogenic activities for which the risk of destabilisation of the Earth’s systems is likely to 

remain low - called the ‘safe operating space of humanity’. The red zone represent a dangerous 

level for the given process, where there is a high risk of serious impacts on earth systems. The 

zone in between the safe operating safe and the dangerous level is regarded as a zone of 

uncertainty, which still means an increased risk of serious impacts. At the ‘safe’ end of the zone 

of uncertainty, current scientific knowledge suggests that there is very low probability of 

crossing a critical threshold or substantially destroying the resilience of the earth’s system. 

Beyond the ‘danger’ end of the zone of uncertainty, current knowledge suggests a much higher 

probability of a change to the functioning of the Earth’s system that could be harmful for human 

societies. Application of the precautionary principle means that the Planetary Boundary is set at 

the ‘safe’ end of the zone of uncertainty. This does not mean that transgressing a boundary will 

instantly lead to an unwanted outcome, but rather that the further the boundary is transgressed, 

the higher the risk of potential shifts, destabilised processes, erosion of resilience with fewer 

opportunities to prepare for such changes. 

 

 

Fig. A1. The planetary boundaries defined by Steffen et al. (2015). Question marks represent processes for which 

global-level boundaries cannot yet be quantified (atmospheric aerosol loading, novel entities, the functional role of 

biosphere integrity). From [Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, et al. (2015) 

Planetary boundaries: guiding human development on a changing planet. Science 347(6223):1259855]. Reprinted 

with permission from AAAS. 
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Fig. A2 shows the ‘Oxfam doughnut’ created by Raworth (2012). This concept combines the 

Planetary Boundaries established by Rockström et al. (2009), here called the ‘environmental 

ceiling’ by Raworth (2012), with a ‘social foundation’ based on different governments’ priorities 

in terms of sustainable development. These include 11 social endpoints, which can be grouped 

into three clusters, focused on enabling people to be: 

● Well: through food security, adequate income, improved water and sanitation, and 

health care 

● Productive: through education, decent work, modern energy services and resilience to 

shocks 

● Empowered: through gender equality, social equity and having a political voice. 

The ‘safe and just space for humanity’ arises between this social foundation and the limitations 

on economic activities imposed by the environmental ceiling. 

 

 

 
Fig. A2. A framework for incorporating environmental and social boundaries for human development. From 
Raworth (2012). 
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A framework developed by Whitmee et al. (2015) shows how the proposed UN Sustainable 

Development Goals (SDGs) representing human wellbeing (inner circle) are dependent on those 

that provide the enabling infrastructure for development (the first ring) and the supporting 

natural systems (the outer ring) (Fig. A3). The framework identifies three categories of 

challenges that have to be addressed to maintain and enhance human health in the face of 

increasingly harmful environmental trends: i) Conceptual failure, such as an over-reliance on 

gross domestic product as a measure of human progress. This is a failure since it does not 

account for future health and environmental harms over present-day gains, and the 

disproportionate effect of the harms on the poor and those in developing nations. ii) Failures of 

knowledge, such as the failure to address social and environmental drivers of ill-health, and a 

historical lack of transdisciplinary research and funding, together with an unwillingness or 

inability to deal with the uncertainty within decision-making frameworks. iii) Implementation 

failures, such as how governments and institutions delay recognition and responses to threats, 

especially when faced with uncertainties, with failure to pool common resources and time lags 

between action and effect.  The proposed framework also suggests a need for strong governance 

to ensure that infrastructure-related goals are not achieved at the expense of those supporting 

natural systems.  
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Fig. A3. Framework for examining interactions between Sustainable Development Goals 1-17. From Whitmee et al. 
(2015). 
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Broman and Robért (2017) present a framework for strategic sustainable development as a five-

level model, which is shown in Table A1.  

 
Table A1. Summary of the five-level model of framework for strategic sustainable development. 

Level Description  

1. System The system level includes principles for the functioning of the global system, i.e. the human 
society within the biosphere, and our knowledge with regard to the planetary and the human 
condition.  

2. Success The success level includes the definition of the sustainability vision. The framework for strategic 
sustainable development requires any vision to be framed by basic sustainability principles. 

3. Strategic guidelines  The strategic guidelines level includes guidelines for how to approach the principle-framed vision 
strategically. 

4. Actions The actions level includes the concrete actions that have been prioritised by the specific 
organisation into a strategic plan, using the strategic guidelines and the vision to inspire, inform, 
and scrutinise the possible actions. 

5. Tools The tools level includes methods, tools and other forms of support that are often required for 
decision making, monitoring and disclosures of the actions to ensure they are chosen in line with 
the strategic guidelines to arrive step-by-step at the defined success in the system. Examples in 
the sustainability context include modelling, simulation, life cycle assessment, management 
systems, indicators etc. 

 
 

In order to explain, formulate and visualise the challenges ahead in sustainable development, 

Broman and Robért use the metaphor of a funnel (Fig. A4). The detrimental effects that human 

society have on the planet are shown by a narrowing of the funnel; as the cross-section of the 

funnel decreases, humanity’s potential to fulfil its needs becomes more difficult to achieve, in 

terms of social, economic and ecological sustainability. The wall of the funnel represents the 

systematic changes that will occur when our civilisations ‘hit the wall’; at this point we will have 

no choice but to adapt to the current situation. The slight opening at the end of the funnel 

represents the hope of restoring some of the lost potential through restorative actions and 

increased freedom and prosperity for future generations.  
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Fig. A4. Funnel metaphor presented by Broman and Robért (2017) to describe the sustainability challenges ahead. A: 
a sustainability vision is captured. B: the current challenges and assets in relation to the vision are captured. C: 
possible steps towards the vision are captured. D: steps A-C are prioritised into a strategic plan.  
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Appendix B. Conceptual frameworks for food systems 

Several authors provide conceptual frameworks for foods systems. Here we present a few 

examples.  

 

A visual representation of the conceptual framework of a food system according the High Level 

Panel of Experts on Food Security and Nutrition (HLPE, 2017) is presented in Fig. B1. As can be 

seen, the diet is just one part of the food system as a whole. However, diets interact with many 

components and activities in the food system more or less directly. For example, diets directly 

influence consumer health, as ‘dietary factors’ is a major contributor to declining life expectancy 

(Forouzanfar et al., 2015). 

 

 
 
Fig. B1. Conceptual framework of food systems developed by the High Level Panel of Experts on Food Security and 

Nutrition (HLPE, 2017). 

  

There is also a rather short pathway between diets and the environmental impact from food 

production. Even if some environmental dimensions are difficult to assess and couple to 

individual food products, the link between diets and its impact on the environment is strong for 

other aspects, e.g. emissions of GHG. Diets also impact and are impacted by socio-economic 

activities and components. However, the causal pathway for these is associated with a higher 

degree of uncertainty and some outcomes are also to a large extent determined by other factors 

than explicitly the type of foods in diets. For example, social factors such as working conditions 
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and the fair distribution of food are to a large extent determined by factors independent of the 

type of diets. They are more a result of e.g. regulations and public support systems to vulnerable 

groups in society. 

 

Furthermore, the HLPE defines a sustainable food system as: 

  

“a food system that ensures food security and nutrition for all in such a way that the economic, 

social and environmental bases to generate food security and nutrition of future generations 

are not compromised”. 

 

Sustainability aspects can be evaluated on food systems as a whole or on different parts of food 

systems, e.g. farms, production systems, food commodities, food products, meals or diets, 

depending on the purpose of the study. For example, if the purpose of a study is to compare the 

environmental impact of the production of pig meat using either rapeseed cake or soybean meal 

as a protein source, comparing the production of 1 kg of pig meat at the farm level is an 

appropriate scope. If the purpose is to evaluate e.g. the environmental impacts of diets based on 

local food versus globally traded foods, or to compare current dietary patterns with alternative 

diets (e.g. recommended diets), it is necessary to assess the whole diet. Fig. B2, taken from 

Heller et al. (2013), illustrates in part how the unit of assessment depends on the goal and scope 

of the study. 
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Fig. B2. Visual representation of appropriate units for evaluating the sustainability of agriculture, food and diets 

depending on the scope of the study. Reprinted with permission from (Heller MC, Keoleian GA, Willett WC. Toward a 

Life Cycle-Based, Diet-level Framework for Food Environmental Impact and Nutritional Quality Assessment: A 

Critical Review. Environmental Science & Technology. 2013 Nov 19;47(22):12632–47). Copyright 2018 American 

Chemical Society. 
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Horton et al. (2016) provide a ‘generic agri-food ecosystem template’ with four components: 1) 

the ecosystem, 2) key actors and external factors, 3) food loss and waste and 4) the 

environmental and health penalties (Fig. B3). The orange lines represent feedback pathways, 

which should be interpreted as damage affecting ecosystems and human health and the public 

(people) affecting external factors, such as governments and NGOs.  

 

 

Fig. B3. A generic agri-food ecosystem template with its relevant components and interactions. From Horton et al. 
(2016). 
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Kanter et al. (2015) present a visual representation of the links between agriculture, the food 

system, nutrition and public health (Fig. B4). In that study, ‘Nutritional outcomes’ were defined 

as the following: undernutrition in terms of total energy intake, micronutrient deficiencies or 

low-weight-or height-for-age, and overweight and obesity. ‘Agricultural and food policies’ were 

defined as: domestic and international policies, and policy-related programmes, private and 

public, including trade policies, with some form of agriculture or food system impact. 

 

The framework conceptualises the key influences of agriculture and food systems on nutrition 

and public health, while remaining relevant to a range of contexts (e.g. countries with different 

income levels and rural and urban settings). The framework was designed as a guide for use by 

policymakers.  
 

 
 

  

Fig. B4. A visual representation of the links between agriculture, the food system, nutrition and public health. From 

Kanter et al. (2015). 
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Appendix C. More on metrics and indicators 

C1. Indicator selection and development 

Indicator selection, development and evaluation is a whole research field of its own and several 

authors have suggested methods and requirements for this. Here we provide some examples.  

  

According to Bossel (1999), the necessary requirements for finding relevant indicators for 

sustainable development include: 

 

●    The indicators must represent all important concerns: an ad hoc collection of indicators that just 

seem relevant is not adequate. A more systematic approach must look at the interaction of systems 

and their environment. 

●    The number of indicators should be as small as possible, but not smaller than necessary. That is, 

the indicator set must be comprehensive and compact, covering all relevant aspects. 

●    The process of finding an indicator set must be participatory, to ensure that the set encompasses 

the visions and values of the community or region for which it is developed. 

●    Indicators must be clearly defined, reproducible, unambiguous, understandable and practical. 

They must reflect the interests and views of different stakeholders. 

●    From a look at these indicators, it must be possible to deduce the viability and sustainability of 

current developments, and to compare with alternative development paths. 

●    A framework, a process and criteria for finding an adequate set of indicators of sustainable 

development are needed. 

  

Like Bossel (1999), Hák et al. (2016), who discuss indicator selection for the Sustainable 

Development Goals, also call for a systematic approach for indicator development, especially the 

need to start from a theoretical framework of the concept one is assessing rather than ad-hoc 

gathering indicators guided by e.g. data availability (see Fig. C1 for an example). They also call 

for a “...combination of top-down and bottom-up approaches, in which indicators are 

formalised (defined, constructed and assessed) by measurement experts but their choice 

depends on political and social preferences…”. 
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Fig. C1. Indicators should be developed within a conceptual framework starting from the goal or target to be reached 

and developing indicators that relate to these. From Hák et al. (2016). 

 

Mineur (2007) also provides a set of characteristics that are desired for sustainability indicators, 

divided into two types; scientific and functional (Table C1). Scientific criteria aim to guarantee 

the scientific approach with high validity and methodological legitimacy. Functional criteria 

describe how useful indicators are in a context of politics and policy, where availability of data is 

one important functional criterion. It is preferable that indicators are both functional and 

scientific, even though that might not always be the case. 
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 Table C1. Desired characteristics of sustainability indicators. From Mineur (2007) 

Scientific Functional 

Sensitivity 

Sensitive to changes 

Simplicity 

Easy to use 

Quantification 

Possible to quantify 

Policy relevant 

Support prioritised policies and issues 

Measurable 

According to standardized methods 

Available 

Use available data 

Verifiable 

Possible to verify by third party 

Timeliness 

Able to be produced in reasonable and appropriate time-

scale 

Clear in value 

Show a clear direction of possible and negative values 

Few 

Manageable to handle 

Clear in content 

Measure what they intend to measure 

Comparable 

Serve as benchmarking tool 

Appropriate in scale 

Not over- or under-aggregated 

Feasible 

Realistic to measure 

Objective 

Independent of assumptions 

Understandable 

Possible to understand by all stakeholders 

Changeable 

Possible to influence 

Democratic 

People should have input to indicators choice and have 

access to results 

Comprehensive 

Embraces all aspects of the issue 

Participatory 

Include stakeholders in the measurement process 

  

 

Moller and MacLeod (2013) provide a review of indicators and measures for sustainability 

assessments (Table C2 and C3). Those authors try to identify and present issues that balance 

between practicality and complexity. The report was created to support the development of the 

New Zealand Sustainability Dashboard, an online sustainability assessment and reporting tool 

for the country’s primary industry sectors. The design roadmap is based upon three basic 

questions that need to be answered: (1) Why monitor? (2) What to monitor? and (3) How to 

monitor? The last question identifies the specific measures and elements used to quantify the 

indicators.  



123 

 
Table C2. Possible criteria for selecting individual agricultural sustainability indicators. From Moller and MacLeod 

(2013)  

Criterion Description 

Sustainability relevance Indicators should measure key properties of the environment, economy, society or governance 

that affect sustainability (e.g. state, pressure, response, use or capability) 

Clearly defined and 

standardized 

Indicators must be based on clearly defined, verifiable and scientifically acceptable data 

collected using standardised methods, so that they can be reliably repeated and compared 

against each other 

Easily communicated 

and understood 

Easily communicated and understood 

Broad acceptance The strength of an indicator depends on its broad acceptance by major stakeholders (e.g. 

growers, policy-makers, scientists, customers) 

Affordable 

measurement 

Affordable measurement increases participation and regularity of monitoring or broadens the 

scope of what can be measured for overall sustainability assessment 

Performance rather 

than practice based 

It is better to measure actual performance and outcomes rather than just practices that are 

expected to promote sustainability and resilience 

Sensitivity Indicators should be sensitive (change immediately and a lot if agricultural system status 

changes). This helps detect trends or breaches of thresholds within the time frames and on the 

scales that are relevant to the management decisions, and before it is too late to correct any 

problems 

Quantification Indicators should be fully quantified whenever practicable. Counts and continuous variables 

(interval and ratio scales) are more favoured than ranks (ordinal scales) or ‘yes/no’ scores 

(binary); any form of quantification is preferable to a fully qualitative assessment 

Specificity for 

interpretability 

Indicators should be affected only by a few key drivers (risks, opportunities, causes) of 

sustainability, rather than being affected by many things (local context, multiple stressors etc.) 

in order for any change in the indicator to be interpretable for sustainability 

High precision and 

statistical power 

Indicators must have sufficient precision and accuracy and sufficiently low natural variance 

for monitoring to detect trends and probability that some limit or threshold has been breached 

Capacity to upscale Indicators should be designed and measured in a way that allows their aggregation at multiple 

spatial and temporal scales for different purposes 

  
Table C3. Possible criteria for balancing the collective set of indicators for agricultural sustainability assessment. 

From Moller and MacLeod (2013).  

Criterion Description 

Participatory co-

development 

Indicator sets and frameworks that are co-designed by key stakeholders are more likely to be 

relevant, trusted, practical, heeded and used for learning 

Wide scope and 

integration 

The framework and indicator sets must cover and cross-link multiple dimensions of 

sustainability and values encompassing environment, economics, social and governance 

dimensions 

Linked to 

targets/thresholds 

Indicators should be linked to realisable, action-oriented, measurable and time-delimited 

targets or critical thresholds of risk, performance or best professional practice 

Transparency and 

accessibility 

Datasets that are accessible to all stakeholders (including the public) and explain assumptions, 

uncertainty and sources are more likely to be trusted and used 

Policy relevant and 

meaningful 

Indicators should send a clear message and provide information at an appropriate level for 

policy and management decision-making by assessing changes in the status of and risks to 

agricultural sustainability 
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Just enough indicators The fewer the indicators, the better, provided the critical determinants of sustainability have 

been covered. Having just enough indicators will result in more participation, improved 

accuracy in reporting and clearer communication of the overall picture to farmers, 

policymakers and the public 

Mix of generalised and 

specific 

Indicator sets must include enough general indicators to allow cross-comparison between 

agricultural sectors, regions, countries and diverse social-ecological systems. However, some 

highly specific and locally grounded indicators must be included to guide fine-grained 

management adjustments that are especially relevant to one sector or region/country 

Balance of current and 

future 

Monitoring is part of risk management, so it must inform current options and drivers while 

preparing actors for future turbulence (shocks and drivers). At least some of the indicators 

and measurements should monitor potential new threats and opportunities just over the 

horizon 

Explanatory and context 

info 

Management guidance is more focused, effective and reliable and benchmarking is more fair if 

additional information is gathered to identify covariates and additional information to 

determine why the indicators change 

  

In a study by de Olde et al. (2017), experts were asked to rank which criteria for indicator 

selection they considered most important for indicators aimed at measuring sustainable 

agriculture. The experts were from the New Zealand Sustainability Dashboard and Temperate 

Agriculture Research Network and were intended to represent researchers and consultants with 

expert knowledge on sustainability assessments of agricultural systems from many different 

regions. The results revealed a great lack of consensus on the criteria deemed most important. 

de Olde et al. (2017) explained some of the variation as a result of context, which is determined 

to be an important factor when choosing appropriate indicators. 
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C2. The relationship between data, indicators and indices 

The ‘information pyramid’ is useful for understanding how concepts such as an index and 

indicators relate to each other (Fig. C1). 

 

 
  

Fig. C2. The information pyramid. HDI: human development index, GDP: gross domestic product. From Mineur 

(2007) and examples added by the authors of the present report.  

  

On moving up towards the top of the information pyramid, information becomes easier to 

communicate but at the same time it loses precision about the system it is trying to represent. 

The different categories in the pyramid can be defined as follows (Segnestam et al., 2002; 

Mineur, 2007): 

 

●    Data represent the most basic component of information and thus cannot be broken down to 

smaller or individual components. Data can be collected through measurements, surveys, 

observations, interviews or other relevant methods. 

●    Indicators are derived from data and represent or point to the state of a phenomenon. A 

commonly used indicator is gross domestic product (GDP). 

●    Key ratio indicators (also called headline indicators or core indicators) usually comprise well-

selected indicators with high communicative value that indicate trends and prioritised areas. Unlike 

indicators, the key ratio indicators require an in-depth and holistic analysis of the system or society in 

order to act as the basis for policy decisions. 

●    Index (or composite indicator) is a set of aggregated or weighted indicators and is often used to 

compare or describe the state of systems. Indices are sometimes seen as more political tools for 

communication, rather than giving accurate information about the system in question. An example 

within the field of sustainable development is the Human Development Index (HDI), which is 

frequently used as a reference point of a nation’s wellbeing. HDI is a composite measurement and 

comprises three dimensions: health and longevity, level of education and standard of living. 
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C3. Indicators and damage pathways 

Indicators can measure different points in the causal chain of the damage pathway. To illustrate 

this for environmental issues, here we use the conceptual framework from life cycle impact 

assessment (LCIA). Along the impact pathway from resource use and emission of pollutants to 

final damage on ecosystems and human health, midpoint and endpoint indicators are defined 

which represent different types of impacts. The endpoint indicators try to capture what we 

ultimately want to protect, and commonly include: 1) damage to human health, 2) damage to 

ecosystems and 3) damage to resource availability, while the midpoint indicators describe 

intermediate steps in the cause-effect chain, e.g. human toxicity and global warming.  The 

endpoint of human health is commonly measured as DALYs, as this is one of the most relevant 

endpoints for human health.  
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Appendix D. Review of sustainable diet indicators - an update of 

Jones et al.  

Table D1 lists the exclusion criteria used by Jones et al. (2016). In order to encompass all 

relevant studies, Jones et al. (2016) applied a systematic search method covering 30 databases 

in the fields of nutrition, public health, agriculture, ecology, economics, social science, public 

policy and environmental and climate change. They also examined references of identified 

articles and prominent policy reports, previous literature reviews and archives of select indexed 

journals. The search was conducted with a uniform set of search terms with a priori exclusion 

criteria and no time period restrictions. Two reviewers then independently performed a first-

stage screening of the title and abstract of English language peer-reviewed articles. 

 
Table D1. Exclusion criterion used in Jones et al. (2016) 

Exclusion criterion Description 

Non-peer-reviewed 

documents 

Conference proceedings, non-peer-reviewed grey literature reports and/or discussion papers 

Non-empirical study Purely conceptual article with no empirical analytical component (i.e. no primary, secondary, or 

simulated data were analysed to examine specific, testable research questions); this included 

commentary, perspectives and review papers 

Inapplicable use of 

“diet” 

Use of “diet” was in reference to a weight loss plan 

Inapplicable use of 

“sustainable” 

Use of “sustainable” was in reference to the persistence of an intervention or programme, rather than 

the characterisation of diet or consumption patterns 

No data on human diets The article addressed animal diets or crop production only 

Inapplicable to study 

objective 

The study centred on the health of the intestinal mucosa (related to the term “econutrition”) 

Focus on individual 

foods 

The article examined environmental impacts of a single food or commodity, rather than overall 

dietary patterns or comparative food groups 

  

In the updated search, the following papers were included: 

 
Birney CI, Franklin KF, Davidson FT, Webber ME (2017) An assessment of individual foodprints attributed to diets 

and food waste in the United States. Environ Res Lett 1;12(10):105008.  

Blas A, Garrido A, Willaarts B (2016) Evaluating the water footprint of the Mediterranean and American diets. Water. 

2016 Oct 13;8(10):448. 

Donati M, Menozzi D, Zighetti C, Rosi A, Zinetti A, Scazzina F (2016) Towards a sustainable diet combining 

economic, environmental and nutritional objectives. Appetite 106:48–57.  

Donini LM, Dernini S, Lairon D, Serra-Majem L, Amiot M-J, del Balzo V, et al. (2016) A consensus proposal for 

nutritional indicators to assess the sustainability of a healthy diet: The Mediterranean diet as a case study. 

Frontiers in Nutrition 3:37. 

van Dooren C, Aiking H (2016) Defining a nutritionally healthy, environmentally friendly, and culturally acceptable 

Low Lands Diet. Int J Life Cycle Assess 21(5):688–700.  

van Dooren C, Douma A, Aiking H, Vellinga P (2017) Proposing a novel index reflecting both climate impact and 

nutritional impact of food products. Ecol Econ 131:389–98. 

Gustafson D, Gutman A, Leet W, Drewnowski A, Fanzo J, Ingram J (2016) Seven food system metrics of sustainable 

nutrition security. Sustainability 23;8(3):196.  
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Hadjikakou M (2017) Trimming the excess: environmental impacts of discretionary food consumption in Australia. 

Ecol Econ 131:119–28. 

Harris F, Green RF, Joy EJM, Kayatz B, Haines A, Dangour AD (2017) The water use of Indian diets and socio-

demographic factors related to dietary blue water footprint. Sci Total Environ 587–588:128–36.  

He X, Qiao Y, Liu Y, Dendler L, Yin C, Martin F (2016) Environmental impact assessment of organic and conventional 

tomato production in urban greenhouses of Beijing city, China. J Clean Prod 134:251–8. 

Hendrie G, Baird D, Ridoutt B, Hadjikakou M, Noakes M (2016) Overconsumption of energy and excessive 

discretionary food intake inflates dietary greenhouse gas emissions in Australia. Nutrients 31;8(12):690.  

Horgan GW, Perrin A, Whybrow S, Macdiarmid JI (2016) Achieving dietary recommendations and reducing 

greenhouse gas emissions: modelling diets to minimise the change from current intakes. Int J Behav Nutr 

Phys Act 13(1) 

Hyland JJ, Henchion M, McCarthy M, McCarthy SN (2017) The climatic impact of food consumption in a 

representative sample of Irish adults and implications for food and nutrition policy. Public Health Nutr 

20(04):726–38. 

Lukas M, Rohn H, Lettenmeier M, Liedtke C, Wiesen K (2016) The nutritional footprint – integrated methodology 

using environmental and health indicators to indicate potential for absolute reduction of natural resource 

use in the field of food and nutrition. J Clean Prod 132:161–70. 

Ribal J, Fenollosa ML, García-Segovia P, Clemente G, Escobar N, Sanjuán N (2016) Designing healthy, climate 

friendly and affordable school lunches. Int J Life Cycle Assess 21(5):631–45. 

Rosi A, Mena P, Pellegrini N, Turroni S, Neviani E, Ferrocino I, et al. (2017) Environmental impact of omnivorous, 

ovo-lacto-vegetarian, and vegan diet. Sci Rep 7(1).  

Röös E, Patel M, Spångberg J, Carlsson G, Rydhmer L (2016) Limiting livestock production to pasture and by-

products in a search for sustainable diets. Food Policy 58:1–13. 

Serafini M, Toti E (2016) Unsustainability of obesity: Metabolic food waste. Front Nutr 3(40). 

Sjörs C, Raposo SE, Sjölander A, Bälter O, Hedenus F, Bälter K (2016) Diet-related greenhouse gas emissions 

assessed by a food frequency questionnaire and validated using 7-day weighed food records. Environ Health 

15(1).  

Springmann M, Godfray HCJ, Rayner M, Scarborough P (2016) Analysis and valuation of the health and climate 

change cobenefits of dietary change. Proc Natl Acad Sci 113(15):4146–4151. 

Tessari P, Lante A, Mosca G (2016) Essential amino acids: master regulators of nutrition and environmental 

footprint? Sci Rep 6(1).  

Tyszler M, Kramer G, Blonk H (2016) Just eating healthier is not enough: studying the environmental impact of 

different diet scenarios for Dutch women (31–50 years old) by linear programming. Int J Life Cycle Assess 

21(5):701–9. 

Ulaszewska MM, Luzzani G, Pignatelli S, Capri E (2017) Assessment of diet-related GHG emissions using the 

environmental hourglass approach for the Mediterranean and new Nordic diets. Sci Total Environ 574:829–

36. 

Yue Q, Xu X, Hillier J, Cheng K, Pan G (2017)  Mitigating greenhouse gas emissions in agriculture: From farm 

production to food consumption. J Clean Prod 149:1011–9. 
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Appendix E. Examples of currently used indicators for sustainable 

diets 

In this section, we describe in more detail some of the indicators used in different studies (taken 

from Jones et al. (2016) and identified in our complementary search) to assess the sustainability 

of diets. 

E1. Climate change 

The most common way to assess the climate impact of a diet is to quantify the total amount of 

emissions of GHG (including carbon dioxide, nitrous oxide and methane) associated with 

production of the foods in the diet. This is also called the carbon footprint of the diet. Data on 

the climate impacts of individual foods are commonly collected from LCA studies and multiplied 

by the amount of a specific food in the diet to calculate the total climate impact from the diet. 

  

There are several different types of LCA studies used to calculate the climate impact of different 

foods: 

● Process-based LCA 
This is the most common type of LCA and studies the emissions and resource use from a bottom-up 

perspective considering the processes involved in the production of a product.  

● Consequential LCA 
Consequential LCA (as opposed to attributional LCA) aims at evaluating the consequences of a change in 

demand for a product. Consequential LCA can therefore be more useful in a decision-making process, as it 

analyses the consequences of certain activities.  

● Input-output model LCA  
Input-output model LCA uses monetary transactions to determine the environmental impact of goods and 

services and how they relate to other industries.  

● Hybrid LCA 
 Hybrid LCA combines economic input-output models with process-based LCA.  

  

Instead of using the LCA approach of multiplying the amount of food in the diet by its respective 

carbon footprint, emissions of GHG from different diets can also be modelled using biophysical 

or economic models that include emissions of different pollutants. This approach was applied by 

Westhoek et al. (2014) to model the effect on health and environment of reducing meat and 

dairy intake in Europe by 50%. Modelling approaches based on biophysical or economic models 

are more complex and less transparent than the LCA approach, but are better able to account for 

dependencies in production systems and biophysical and economic limits in production. For 

example, when using the LCA approach to calculate the GHG emissions from e.g. a lacto-

vegetarian diet, this would not account for the emissions allocated to the beef meat that is 

inevitably produced in the dairy system.     
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E2. Land use 

The most common method for determining the requirement for land of a specific food item is as 

follows: 1) the agricultural product that forms the basis of a food product is determined (for 

pasta this would be wheat), 2) the amount of agricultural product needed for 1 kg of food 

product (pasta) is then determined (in the case of pasta, it takes approximately 1.4 kg of wheat 

to produce 1 kg of pasta). This value is divided by the yield of the crop (kg/ha), giving the area 

needed to produce 1 kg of the given food product (Temme et al., 2013). Similarly, for animal 

products, the type and amount of feed are used to calculate the land requirement.  

Land use is commonly divided into different land types, although some studies show results of 

land use on an aggregated level only. The importance of differentiating between different types 

of land is important, as described by Hallström et al. (2014): 

“When discussing availability of agricultural land it is necessary to distinguish between 

different types of land [...] However, only some 30% of agricultural land available consists of 

cropland. Meadows and pastures, which represent the remaining agricultural area, are only 

to a limited extent suitable for cultivation. As the majority of current global food supply is 

dependent on cultivated land pressure on agricultural land is especially intense on cropland.” 

Peters et al. (2007) calculated annual per capita land requirement based on dietary intake, crop 

yield and livestock feed requirements. Three types of land use were accounted for: cropland 

usable for all crops, cropland limited to perennial crops and pasture, and land limited to 

pasture. To account for annual variation in yields, land requirement was calculated using five 

years of crop data. In an paper by Meier et al. (2014), land use for German consumption 

patterns was analysed using seven land types in total: arable land (domestic or abroad), pastures 

(domestic or abroad), permanent culture (domestic or abroad) and forest (wood production for 

pallets, paper production for packaging material). Eshel et al. (2014) analysed the 

environmental impact of the US diet and for dairy and beef production included three different 

land types: pastureland, cropland and processed roughage land. Those authors discuss the 

important distinction that these livestock systems use pastureland and not cropland, as these 

pasture lands, at least in the western US, are unfit for crop production.  

Stehfest et al. (2009) used IMAGE (Integrated Model to Assess the Global Environment), which 

includes cropland and grassland as the main land types. For livestock systems, two variants are 

included: pastoral and mixed/landless systems. Pastoral systems cover about two-thirds of the 

global area of permanent pasture and are dominated by ruminant grazing. Landless ruminant 

production systems are included in mixed/landless systems, since they have the same 

interrelationships with crop and grass production systems (feed crops, fodder, manure, etc.) as 

livestock production in mixed systems.  

Arnoult et al. (2010) used a Land Use Allocation Model (LUAM) to analyse the landscape effects 

in the UK of a dietary change to a healthy recommended diet according to the UK Department of 

Health. Three main land types were identified: arable/grass ley, permanent pasture and rough 

pasture.  
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Some studies have used the ‘ecological footprint’ (EF) methodology to describe land use, e.g. 

Fairchild and Collins (2011) and Downs and Fanzo (2015). The EF measures how much 

biologically productive land and sea is needed to support the consumption by an individual or 

region. Biologically productive land and sea include cropland, forest and fishing grounds and 

space for infrastructure and the land needed to absorb waste products generated by human 

activities. The unit of EF is ‘global hectares’ (gha) and is usually expressed on a yearly basis for a 

given population.  

E3. Water use 

The papers included in the review by Jones et al. (2016) often refer to the definition of a water 

footprint (WF) as set out by the Water Footprint Network (Hoekstra et al., 2011). The WF is the 

demand for freshwater resources required in all life cycle steps to produce goods and services. It 

represents a measure of human appropriation of freshwater, which is measured as volume of 

water used. Water use can be direct or indirect, where direct use is the individual’s direct 

consumption of water, such as water for cooking, whereas indirect use, sometimes called ‘virtual 

water’, is the water needed for all goods and services earlier in the supply chain. In addition, 

water is divided into green, blue and grey water. Blue water is surface or groundwater, green 

water is rain water or moisture stored in the topsoil layer and grey water is the volume of 

freshwater needed to ‘assimilate a load of pollutants’ caused by the activity in question. The grey 

water volume is affected by the natural background concentration of pollutions and existing 

water quality standards. As blue water in some respect represents water as a finite resource, it is 

common to let blue water represent the overall WF (Eshel et al., 2014).  

 

Methodologies to account for differences in the actual impact of water use given regional 

differences in water scarcity have also been developed (Ridoutt and Pfister, 2010). Hess et al. 

(2015) suggests an indicator called Water Stress Index (WSI) which reflects blue water 

availability. The WSI is expressed as a number between 0.01 and 1, where a value <0.01 

indicates no water stress, values between 0.1 and <0.2 indicate low water stress, values between 

0.2 and <0.4 indicate moderate water stress, values between 0.4 and <0.8 indicate high water 

stress and values >0.8 indicate very high water stress. Hess et al. (2015) used the WSI to 

calculate a blue water scarcity footprint (WSF) (m3 H20 equivalents) which reflects the 

equivalent amount of water withdrawn from a water body at the global average level of water 

stress.  

 

There is some controversy as to whether water use quantification or including water stress is 

most appropriate. Hoekstra (2016) lists the potential pitfalls and dangers of weighting the water 

footprint with water stress or scarcity and argues that the WSI obscures the debate of water 

resources, neglects the importance of green water scarcity, is inconsistent with how other 

environmental footprints are designed and lacks ‘meaningful physical interpretation’. A recent 

consensus building process within the UNEP-SETAC Life Cycle Initiative recommends the use 

of the AWARE method which is based on “the quantification of the relative available water 

remaining per area once the demand of humans and aquatic ecosystems has been met” 

(Boulay et al., 2018). 
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E4. Energy use 

One common method for evaluating energy use in relation to diets or food items is the 

Cumulative Energy Demand, which corresponds to the primary energy use, i.e. the amount of 

energy as it is found in nature before any human-engineered conversion or transformation has 

been applied. Davis and Sonesson (2008) analysed different meals using several environmental 

impact categories and report results for both primary energy and secondary energy use, where 

the latter is energy that has been converted to more ‘convenient forms of energy’ (sic) such as 

electricity.  

 

Some studies make a distinction between renewable and non-renewable energy. For example, 

He et al. (2016) evaluated energy use of two different agricultural systems using the demand for 

non-renewable energy resources. This assessment included energy used to produce fertilisers 

and pesticides and the amount of diesel used on farms (evaluated through interviews with 

farmers). Energy use was then aggregated into an impact category called ‘Energy depletion’, 

which measured energy use (MJ) per tonne of produce.  

 

Several studies have energy use incorporated into aggregate methods, such as the 

Ecoindicator95+ or ReCiPe life cycle impact assessment methods, where energy use is combined 

with other impact categories to yield an overall environmental score (e.g. Baroni et al., 2007, 

2014; Tyszler et al., 2016). 

 

Coley et al. (2009) conducted analyses on different models for consumer shopping habits, where 

the distance travelled by car assigned for shopping was compared with a centralised system 

where food was instead transported to a semi-local hub of the retailer. Different types of fuel 

and energy use were calculated, but were not related to food production specifically, but rather 

to consumer activities ‘around’ food. 

 

E5. Biogeochemical flows 

One of the most commonly used metrics to assess the impact of foods, meals and diets on 

biogeochemical flows is Eutrophication Potential (EP) (Guinée et al., 2002). The EP accounts for 

different types of nutrient pollution (including nitrate leaching from fields, emissions of 

ammonia from manure management, phosphate runoff from fields etc.) by aggregating their 

impact based on how much each substance contributes (in terms of mass) to forming a typical 

aquatic organism, commonly an alga. In its simplest form, the EP do not consider any site-

specific issues, e.g. the nutrient that is limiting in a certain waterway or how much of a certain 

substance actually reaches the waterway (fate). Such a simple EP method was used by e.g. 

Muñoz et al. (2010), while Saarinen et al. (2012) used site-specific factors for Finland. Since the 

actual negative impact from the release of nutrients into the environment is highly site-specific, 

regional factors that include more relevant factors along the damage pathway are preferable. 

However, when looking at diets including many food categories, it is not always possible to trace 

products back to the actual sites where production takes place and, even if it is, regional factors 

might not be available.   
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Other indicators in this area include ‘added nitrogen’ (Eshel et al., 2014; Gill et al., 2015) and 

‘phosphorus use’ (Meier and Christen, 2013; Gill et al., 2015), hence using the amount of ‘new 

nutrients’ added into the agricultural system as a proxy for the imbalances caused by agriculture 

in terms of biogeochemical flows. The nitrogen footprint is another indicator, defined as “the 

total direct N-losses to the environment that occur for the production of one unit of (food) 

product, measured in g N/kg food product” (Leip et al., 2014). Leip et al. (2014) also introduce 

the ‘nitrogen investment factor’, defined as the external N required to produce one unit of 

product in terms of N contained. 

  

Westhoek et al. (2014) modelled decreased consumption of meat and dairy in Europe using 

several indicators, including added nitrogen, emissions of nitrate to groundwater and surface 

water, emissions of ammonia to air and nitrogen use efficiency. 

  

Similarly to the EP, there is also a method for quantifying the Acidification Potential (AP) that 

some studies have used. As the AP from agriculture is dominated by emissions of ammonia, 

using ‘ammonia emissions’ as an indicator, as done e.g. by Meier and Christen (2013) and 

Westhoek et al. (2014), is a good proxy for the acidification for foods and diets if post-farm 

stages do not add considerable amounts of acidifying substances from energy use.   

E6. Biodiversity 

The review by Jones et al. (2016) included only one paper assessing the impacts of different 

diets on biodiversity (Röös et al., 2015a) and our complementary search identified another two 

articles (Röös et al., 2016a; Gustafson et al., 2016). 

  

Röös et al. (2015a) investigated biodiversity damage potential (BDP) from land use with a 

method developed by de Baan et al. (2012). The method assesses the impact on biodiversity on a 

global scale and is based on differences in species richness between land use types. The data 

inputs are: hectares of land occupied, classified by land type (annual crops, permanent crops, 

pastures and meadows) and biome (natural vegetation type, e.g. temperate broadleaf forest or 

tropical savannah). The resulting BDP is based on differences in species richness between 

agricultural and natural land use of the biome. One limitation with this method is that the 

positive biodiversity effects of semi-natural pasture in Sweden and around Europe are not 

included in BDP, nor are potential benefits from organic production. Another limitation is that 

positive biodiversity effects by preservation of agricultural land in forest-dominated regions, for 

example in Sweden, are not included in the method. 

  

A later paper by Röös et al. (2016a) created three scenarios based on the concept of ‘livestock on 

leftovers’ for livestock production (see section 4.7). Biodiversity impacts were not quantitatively 

assessed, but the preservation of current semi-natural grassland and arable land in Sweden was 

set as a boundary condition. 

 

Gustafson et al. (2016) defined seven metrics (each based on a combination of multiple 

indicators) for use in characterising sustainable nutrition outcomes of food systems (section 4.3) 
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and used the indicator ‘Ecosystem Status’, one of five indicators of the metric ‘Ecosystem 

Stability’. The data used for the indicator Ecosystem Status are underlying national data for 

Environmental Performance Index (EPI)38. The EPI is used to rank countries using 24 

performance indicators for environmental health (household solid fuels, PM2.5 exposure and 

exceedance, drinking water, sanitation, lead exposure, air and water quality and heavy metals) 

and ecosystem vitality (indicators related to biodiversity and habitat, forests, fisheries, climate 

and energy, air pollution, water resources and agriculture). Although many of these are related 

to food production, many are not directly so, which makes this index a blunt instrument for 

describing food system biodiversity impacts. Gustafson et al. (2016) point out that it would be 

desirable to include additional measures of ecosystem status, such as desertification, 

salinisation and soil degradation, in this indicator. Chaudhary et al. (2018), who applied the SNS 

framework, therefore added the indicator Biodiversity Footprint (Chaudhary and Kastner, 2016) 

to the Ecosystem Stability metric, which enabled the land use biodiversity impacts associated 

with internationally traded foods to be accounted for. Chaudhary and Kastner (2016) quantified 

biodiversity impacts from habitat loss/degradation due to land use for cropping by assessing the 

species loss by a specific land use compared with the original natural habitat. However, crop 

production also leads to negative impacts on biodiversity, from e.g. nutrient leaching from fields 

causing eutrophication of waterways and other damage pathways that this method does not 

capture. Hence, biodiversity impacts are probably underestimated. Quantifying impacts on 

biodiversity from all such pathways is highly challenging.  

 

In the general LCA literature, several methods for capturing the biodiversity impacts from land 

use have been suggested (Curran et al. (2016) provide an overview and Chaplin-Kramer et al. 

(2017) provide some further interesting advances). However, the review by Jones et al. (2016) 

and our follow-up search showed that these have not yet been used extensively in assessing the 

sustainability of diets, probably due to lack of data.  

E7. Social equity 

It is difficult to find an indicator that measures social equity in relation to food and diets in a 

straightforward manner. None of the studies investigated explicitly measured social equity. 

However, some other concepts might be useful to capture social equity in relation to food, for 

example, the distribution of food. Since the FAO has data on the calorie consumption of 

different regions, as well as divided between calories from plant and animal products, we can 

easily handle calories (and their origin) in the same manner as sociologists and economists 

would handle income. Through indicators such as the Gini coefficient and Hoover concentration 

index, we can determine the distribution of calories between countries and regions and easily 

measure when equity is falling or rising in the world (White, 2000). By relating calorie 

consumption to environmental impact of a region's food consumption, we can also measure 

whether all countries or regions ‘contribute’ to environmental issues equally. White (2000) also 

relates food consumption of a region or a country to its food production, i.e. how much global 

land is taken to uphold a country’s consumption level. This also relates to the production 

                                                        
38https://epi.envirocenter.yale.edu/ 

 

https://epi.envirocenter.yale.edu/
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capacity of a country, where countries or regions that produce less than they consume would 

contribute to injustice in the distribution and consumption of food. White (2000) also discusses 

different indicators for evaluating the diversity of food items in a particular food system, where 

large differences in food system diversity could be a relevant indicator of injustice in the 

availability of food.  

 

Gustafson et al. (2016) provide metrics for ‘sustainable nutrition security’, where several 

indicators might be useful. The dimensions ‘food nutrient adequacy’, ‘food affordability and 

availability’ and ‘sociocultural wellbeing’ all have some indicators that try to evaluate certain 

aspects of social and nutritional equity in a country or a region. Furthermore, Gustafson et al. 

(2016) use indices for child labour, gender equity and respect for community rights to evaluate 

sociocultural wellbeing.  

 

There are several labelling schemes to enable consumers to purchase foods that have been 

produced with social aspects accounted for, Fairtrade being one of the best known. The studies 

included in the review by Jones et al. (2016) only analysed consumer perception in relation to 

Fairtrade products, and not the impact of diets containing Fairtrade products on social equity.  

E8. Animal welfare 

As with the topic of social equity, the few studies that mention animal welfare do this in relation 

to consumer behaviour and determinants of food purchases. Gustafson et al. (2016) include the 

indicator ‘Animal Protection Index’, which ranks countries from a high ‘A’ to a low ‘G’. However, 

as with social equity, this is on a country rather than on a diet basis. Scherer et al. (2017) present 

a framework for including animal welfare in LCA and exemplify this for eight products; beef, 

pork, poultry, milk, eggs, salmon, shrimps and insects, which could enable inclusion of  this 

aspect in assessments on dietary level.  

E9. Cultural appropriateness 

Few studies to date have considered the cultural appropriateness of diets. One rare example is 

the study by Wilson et al. (2013), in which the authors constructed ‘familiar’ meals with 

constraints regarding cost and GHG emissions. Some studies that have optimised diets for 

nutrient adequacy and low environmental impacts have included the constraint that the diets 

should resemble current eating patterns in term of amounts of different food types in the diet 

(Kramer et al., 2017; Vieux et al., 2018). Capturing the cultural appropriateness of diets is highly 

challenging, as diets are constantly changing and highly variable among population groups 

(Röös et al., 2016a).  
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Appendix F. Sustainable dietary recommendations  

 Table F1. Official dietary guidelines that include sustainability 

Country, link to more 

information 

Summary of advice on: 

● Sustainability (first bullet) 

● Dairy and plant-based dairy alternatives (second bullet) 

Germany (2013). 

http://www.fao.org/3/a-

i5640e.pdf page 18-20 

● The actual text only provides some mention of environmental issues. Each 

guideline is followed by a brief paragraph expanding on the particular issue. 

While there is no mention of sustainability in the top level messaging, some of 

the explanatory paragraphs do contain sentences that refer to sustainability or 

the environment. 

● Consume milk and dairy products daily. Choose low fat. No advice on plant 

based alternatives. 

Brazil (2014). 

http://www.fao.org/3/a-

i5640e.pdf page 23-28 

  

  

  

  

● Sustainability is a cross-cutting theme in the guidelines, if not always explicitly 

articulated. The third principle of the guidelines is: “healthy diets derive from 

socially and environmentally sustainable food systems”. Each recommendation 

in the ‘Choosing foods’ chapter is followed by the rationale behind the 

recommendations, including health, environmental and social implications. 

However, the summary of main recommendations only briefly mentions 

environmental sustainability. 

● Milk drinks and yogurts that have been sweetened, coloured and flavoured are 

ultra-processed foods, and as such should be avoided. No advice on plant-based 

alternatives. 

Sweden (2015). 

http://www.fao.org/3/a-

i5640e.pdf page 28-32 

● Sustainability is embedded throughout the guidelines – the document actually 

begins with a prologue entitled “Sustainable big picture”. On entering the main 

website of the NFA, the first, highly visible, subheading on the site is “Food 

habits, health and environment”. The document highlights a broad range of 

environmental concerns, from climate change to pesticide use and the 

eutrophication of water bodies. It touches too on broader sustainability issues, 

such as animal welfare and antibiotic use in farm animals. Unlike most of the 

other guidelines reviewed, it also considers some of the complexities inherent in 

defining sustainability. 

● Choose low-fat, unsweetened products enriched with vitamin D.  No advice on 

plant-based alternatives. 

Nordic countries: Nordic 

Nutrition Recommendations 

(NNR) (2012):  

http://norden.org/en/theme/for

mer-themes/themes-

2016/nordic-nutrition-

recommendation/nordic-

nutrition-recommendations-2012 

page 137-154 

  

● The Swedish dietary guidelines are based on the Nordic Nutrition 

Recommendations (NNR) and the Swedish national dietary survey, which takes 

into account the specific dietary pattern of the Swedish population. NNR are 

released every eight years and aim to create recommendations on micro- and 

macronutrients for the population in the Nordic countries. A chapter on 

“sustainable food consumption - environmental issues” was included for the 

first time in the latest edition of NNR, released in 2012. The chapter also 

included a presentation of possible dietary changes from current consumption 

patterns to reach a sustainable diet. The Swedish National Food Agency is the 

first, and as of today the only, Nordic stakeholder to translate the sustainable 

food recommendations into national dietary guidelines. 

● See section 5.2.3 

Qatar (2014). 

http://www.fao.org/3/a-

i5640e.pdf page 33-35 

  

  

● The Qatar guidelines include “eat healthy while protecting the environment” as 

one of the eight guidelines. The section of the document dedicated to this 

guideline starts by justifying the inclusion of sustainability in the 

recommendations, describing some of the ways food is linked to the 

environment. That section offers advice on how to eat sustainably. Almost all 

references to sustainability are limited to this section. The only exception is in 

the section about fish, where the guidelines recommend looking in “online 

seafood guides” for information about the “healthiest and most environmentally 

friendly” products. Most notably, the section on meat and meat alternatives 

does not discuss the environmental impact of those products – although it does 

http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
http://norden.org/en/theme/former-themes/themes-2016/nordic-nutrition-recommendation/nordic-nutrition-recommendations-2012
http://norden.org/en/theme/former-themes/themes-2016/nordic-nutrition-recommendation/nordic-nutrition-recommendations-2012
http://norden.org/en/theme/former-themes/themes-2016/nordic-nutrition-recommendation/nordic-nutrition-recommendations-2012
http://norden.org/en/theme/former-themes/themes-2016/nordic-nutrition-recommendation/nordic-nutrition-recommendations-2012
http://norden.org/en/theme/former-themes/themes-2016/nordic-nutrition-recommendation/nordic-nutrition-recommendations-2012
http://norden.org/en/theme/former-themes/themes-2016/nordic-nutrition-recommendation/nordic-nutrition-recommendations-2012
http://norden.org/en/theme/former-themes/themes-2016/nordic-nutrition-recommendation/nordic-nutrition-recommendations-2012
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
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recommend eating at least one meatless meal per week, limiting red meat 

consumption to 500g per week and avoiding processed meats. 

● Consume milk and dairy products daily. Choose low fat. If you do not drink 

milk or eat dairy products, choose other calcium- and vitamin D-rich foods (e.g. 

fortified soy drinks, almonds, chickpeas) 

 

 
Table F2. Quasi-official guidelines. 

Country/guide, link to more 

information 

Summary of advice on sustainability 

Germany. 

The Sustainable Shopping Basket (2013). 

http://www.fao.org/3/a-i5640e.pdf page 21 

  

https://friendsoftheearth.uk/sites/default/f

iles/downloads/Sustainable_diets_January

_2016_final.pdf 

page 25 

The German government has supported the development of guidelines to inform 

purchasing decisions: The Sustainable Shopping Basket. The recommendations 

for reducing meat consumption (to between 300 and 600 g per week) and to 

consume 5 servings of fruit and vegetables every day are based on the German 

dietary guidelines. 

Germany. 

AID-Food Pyramid. 

http://www.fao.org/3/a-i5640e.pdf page 22 

The German Agency for Consumer Information (AID) information service has 

developed its own pyramid, based on the German dietary guidelines, but presents 

simplified food groups. The AID website has a section on advice on nutrition and 

climate protection. 

The Netherlands (2011). 

Guidelines for a healthy diet: the 

ecological perspective. 

http://www.fao.org/3/a-i5640e.pdf page 

38-41 

Environmental analysis of the 2006 Dutch guidelines for a healthy diet 

The Netherlands (2015). 

Dutch Dietary Guidelines, 2015 

Summary (“The guidelines in brief”): 

https://www.gezondheidsraad.nl/sites/de

fault/files/guidelines_in_brief_201524ed

utch_dietary_guidelines_2015_0.pdf 

Complete publication: 

https://www.gezondheidsraad.nl/sites/de

fault/files/201524edutch_dietary_guideli

nes_2015.pdf page 78 

The Health Council of the Netherlands published new Dutch dietary guidelines in 

2015. The guidelines focus on health. The summary of Dutch dietary guidelines 

does not mention any other sustainability consideration except health. The 

complete publication also focuses on health, but sustainability considerations are 

mentioned in half a page of text about ecological aspects. The Committee has 

concluded that: ”as well as having health benefits, following a number of the 

recommendations would lead to dietary patterns with ecological benefits... 

Generally speaking, a diet that includes less food from animals and more plant-

based food has a lower ecological burden than a conventional Dutch diet. From 

that perspective, it is advisable to moderate high dairy product consumption as 

well”. 

Estonia 

http://www.fao.org/3/a-i5640e.pdf page 

46 

The dietary guidelines (2006) do not mention sustainability. However, the website 

that hosts the guidelines presents an updated version of the principles upon which 

a healthy diet is based, with the inclusion of the following principle: 

“Eat in an environmentally conscious way (this includes: 1) plant based, 2) 

biologically diverse and species rich, 3) local, seasonal and traditional, and 4) 

produced sustainably”. 

United Kingdom (2007) 

http://www.fao.org/3/a-i5640e.pdf page 

47-51 and 

“The principles of healthy and sustainable 

eating patterns. Follow-on work to the 

Green Food Project, focusing on 

sustainable consumption” by Tara Garnett 

and Maureen Strong (2014). These 

authors also co-chaired the working 

groups for this report. 

The dietary guidelines (2007) do not mention sustainability. However, the UK 

government enabled a multi-stakeholder process, which led to eight “Principles of 

healthy and sustainable eating patterns”. 

Each principle is communicated by a short headline message, followed by a brief 

explanation of the message and the rationale behind it, relevant qualifiers and 

caveats to the advice provided and a list of the literature sources to support of each 

recommendation. 

Note that the principles are not owned or endorsed as such by Government. 

http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
https://friendsoftheearth.uk/sites/default/files/downloads/Sustainable_diets_January_2016_final.pdf
https://friendsoftheearth.uk/sites/default/files/downloads/Sustainable_diets_January_2016_final.pdf
https://friendsoftheearth.uk/sites/default/files/downloads/Sustainable_diets_January_2016_final.pdf
https://friendsoftheearth.uk/sites/default/files/downloads/Sustainable_diets_January_2016_final.pdf
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
https://www.gezondheidsraad.nl/sites/default/files/guidelines_in_brief_201524edutch_dietary_guidelines_2015_0.pdf
https://www.gezondheidsraad.nl/sites/default/files/guidelines_in_brief_201524edutch_dietary_guidelines_2015_0.pdf
https://www.gezondheidsraad.nl/sites/default/files/guidelines_in_brief_201524edutch_dietary_guidelines_2015_0.pdf
https://www.gezondheidsraad.nl/sites/default/files/guidelines_in_brief_201524edutch_dietary_guidelines_2015_0.pdf
https://www.gezondheidsraad.nl/sites/default/files/guidelines_in_brief_201524edutch_dietary_guidelines_2015_0.pdf
https://www.gezondheidsraad.nl/sites/default/files/guidelines_in_brief_201524edutch_dietary_guidelines_2015_0.pdf
https://www.gezondheidsraad.nl/sites/default/files/201524edutch_dietary_guidelines_2015.pdf
https://www.gezondheidsraad.nl/sites/default/files/201524edutch_dietary_guidelines_2015.pdf
https://www.gezondheidsraad.nl/sites/default/files/201524edutch_dietary_guidelines_2015.pdf
https://www.gezondheidsraad.nl/sites/default/files/201524edutch_dietary_guidelines_2015.pdf
https://www.gezondheidsraad.nl/sites/default/files/201524edutch_dietary_guidelines_2015.pdf
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
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United Kingdom (2016) 

The Eatwell Guide has replaced the 

Eatwell Plate and continues to define the 

government’s advice on a healthy 

balanced diet. 

https://www.gov.uk/government/public

ations/the-eatwell-guide 

and 

https://www.carbontrust.com/resources

/reports/advice/sustainable-diets/ 

The dietary guidelines (2016) have the headline “Use the Eatwell Guide to help 

you get a balance of healthier and more sustainable food”.  

The names of the food group segments have been updated to place emphasis on 

certain food products within a food group that can be considered more 

environmentally sustainable. For example, the pink segment is named ‘‘Beans, 

pulses, fish, eggs, meat and other proteins’ to highlight the contribution non-

meat sources make to protein intake. Sustainability issues are also discussed 

when it comes to seafood. According to the Carbon Trust analysis, the Eatwell 

Guide shows an appreciably lower environmental impact than the current UK 

diet. We note that parallel improvements in production efficiency and waste 

reduction will help too. 

A number of differences contribute to the reduction, such as increasing potatoes, 

fish, wholemeal & white bread, vegetables and fruit whilst reducing amounts of 

dairy, meat, rice, pasta, pizza and sweet foods. 

France (2002) 

http://www.fao.org/3/a-i5640e.pdf page 

51 

The dietary guidelines (2002) do not mention sustainability. However, the 

French Agency for the Environment and Energy has produced a set of 

recommendations aimed at individuals and “eco-citizens” to promote sustainable 

shopping habits. A section of their website called “Mes Achats” (My purchases) 

provides three main messages: to promote seasonal products, to ‘adopt diets that 

combine health, environment and fun’ (i.e. replace a meat dish with one based on 

grains or legumes once a week), ‘buy products with environmental labels’, and 

limit food waste. 

Sweden, Eat S.M.A.R.T. 

http://www.wageningenacademic.com/d

oi/abs/10.3920/978-90-8686-187-3_15 

  

  

The ‘Eat S.M.A.R.T.’ concept was first released in Sweden in 2001 by Stockholm 

County Council and the latest update was in 2008. The concept is still used in 

different contexts in Sweden, for example in the Swedish city of Malmö. 

(Information in Swedish: 

http://folkhalsoguiden.se/amnesomraden/mat/informationsmaterial/smart/) 

Healthy and sustainable eating with the 

Flemish Food Triangle. The Food 

Triangle is based on an extensive 

literature review and consultation with 

experts. The result is a realistic and 

sustainable model that fits perfectly with 

Flemish eating culture. 

Link:https://www.gezondleven.be/files/

voeding/Healthy-Living-2017-Food-

Triangle.pdf  

 

1. Eat proportionally more  foods that are derived from plants than foods 

that are derived from animals. 

2. Avoid ultraprocessed foods as much as possible 

3. Don’t waste food. Moderate your consumption 

 

 

  

https://www.gov.uk/government/publications/the-eatwell-guide
https://www.gov.uk/government/publications/the-eatwell-guide
https://www.carbontrust.com/resources/reports/advice/sustainable-diets/
https://www.carbontrust.com/resources/reports/advice/sustainable-diets/
http://www.fao.org/3/a-i5640e.pdf
http://www.wageningenacademic.com/doi/abs/10.3920/978-90-8686-187-3_15
http://www.wageningenacademic.com/doi/abs/10.3920/978-90-8686-187-3_15
http://folkhalsoguiden.se/amnesomraden/mat/informationsmaterial/smart/
http://folkhalsoguiden.se/amnesomraden/mat/informationsmaterial/smart/
http://folkhalsoguiden.se/amnesomraden/mat/informationsmaterial/smart/
https://www.gezondleven.be/files/voeding/Healthy-Living-2017-Food-Triangle.pdf
https://www.gezondleven.be/files/voeding/Healthy-Living-2017-Food-Triangle.pdf
https://www.gezondleven.be/files/voeding/Healthy-Living-2017-Food-Triangle.pdf
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Table F3. Non-official sustainable dietary guidelines 

Organisation, link to more 

information 

Summary of advice on sustainability 

WWF UK: LiveWell (2011) 

http://www.fao.org/3/a-

i5640e.pdf page 52-53 

http://assets.wwf.org.uk/downloa

ds/livewell_report_jan11.pdf 

WWF Europe: LiveWell for LIFE 

http://livewellforlife.eu/knowledge

-centre 

Project initiated by WWF UK, where researchers developed diets that conformed to 

the government’s dietary guidelines and also achieved reductions in absolute food-

related greenhouse gas emissions. 

The project and its approach were subsequently extended to Sweden, France and 

Spain under the name Livewell for LIFE. Although it has no official status, LiveWell 

has been instrumental in introducing sustainable diets onto the European political 

agenda. Based on the experiences gained, WWF now promotes the “6 Livewell 

Principles”. 

WWF UK: Eating for 2 degrees – 

new and updated Livewell Plates 

(2017) 

https://www.wwf.org.uk/eatingfor

2degrees 

New Livewell report which looks at what we need to eat between now and 2030 to 

meet our Paris Agreement commitments. Besides carbon reduction targets, the 

report includes further environmental criteria – particularly water use and land 

footprint. The report also includes Livewell Plates for adolescents, the elderly and 

vegans for the first time. 

Barilla Center for Food and 

Nutrition (BCFN): Barilla double 

pyramid (version 6th: 2015) 

http://www.fao.org/3/a-

i5640e.pdf page 53-54 

The model presents two pyramids. The first is the familiar food pyramid – in this 

case, based on the principles of the Mediterranean diet. The second is inverted and 

reclassifies foods according to their environmental impact, with the most damaging 

foods placed at the top. 

Food Climate Research Network 

(FCRN) - Changing what we eat - 

http://www.fao.org/3/a-

i5640e.pdf page 55 

http://www.fao.org/3/a-

i5640e.pdf Box 1 on page 1 

”Characteristics of low 

environmental impact diets 

consistent with good health”. 

  

Report based on discussions arising from a workshop in April 2014, organised by the 

FCRN, funded and hosted by the Wellcome Trust with additional support from the 

UK‟ s multi-agency Global Food Security programme. The aim of the workshop was 

to bring together academic researchers spanning diverse disciplines, as well as 

stakeholders from business & civil society, to consider the state of thinking on 

sustainable healthy eating and food systems and begin scoping a research agenda on 

how our eating practices might be shifted in healthier and more sustainable 

directions. The report includes a list of the 10 general principles of sustainable 

healthy diets. The list was previously published in 

https://fcrn.org.uk/sites/default/files/fcrn_wellcome_gfs_changing_consumption_

report_final.pdf Box 1 on page 8: “Characteristics of healthier and less GHG- and 

land-intensive eating patterns”. 

 

The only quasi-official guidelines that mention dairy and plant-based dairy alternatives are the 

UK Green Food Project, which states: “Include milk and dairy products in your diet or seek out 

plant based alternatives, including those that are fortified with additional vitamins and 

minerals.” Among the non-official guidelines, it can be noted that the Barilla pyramids have 

cheese towards the top, while milk and yogurt are in the middle of the pyramid. The FCRN’s 

Changing What We Eat report say that dairy products or alternatives, i.e. fortified milk 

substitutes and other foods rich in calcium and micronutrients, should be eaten in moderation. 

http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
http://assets.wwf.org.uk/downloads/livewell_report_jan11.pdf
http://assets.wwf.org.uk/downloads/livewell_report_jan11.pdf
http://livewellforlife.eu/knowledge-centre
http://livewellforlife.eu/knowledge-centre
https://www.wwf.org.uk/eatingfor2degrees
https://www.wwf.org.uk/eatingfor2degrees
https://www.wwf.org.uk/eatingfor2degrees
https://www.wwf.org.uk/eatingfor2degrees
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
http://www.fao.org/3/a-i5640e.pdf
https://fcrn.org.uk/sites/default/files/fcrn_wellcome_gfs_changing_consumption_report_final.pdf
https://fcrn.org.uk/sites/default/files/fcrn_wellcome_gfs_changing_consumption_report_final.pdf
https://fcrn.org.uk/sites/default/files/fcrn_wellcome_gfs_changing_consumption_report_final.pdf
https://fcrn.org.uk/sites/default/files/fcrn_wellcome_gfs_changing_consumption_report_final.pdf


140 

Appendix G. Fortification 

Calcium 

In a systematic review by Rafferty et al. (2007), the question of bioavailability of calcium 

supplements and fortification was assessed. The authors concluded that calcium uptake depends 

on several factors, such as associated salt, size of calcium load, vitamin D status and the 

associated matrix, i.e. calcium suspended in food or liquid. For calcium suspended in a matrix 

(as is the case for plant-based dairy alternatives), the absolute absorption fraction varied 

between 24 and 40 %. In relation to cow’s milk, calcium uptake varied between 81.7 and 111.4 %. 

  

The most common calcium fortificants for soy milk on the American market are calcium 

carbonate (CC) and tricalcium phosphate (TCP) (Zhao et al., 2005). According to Heaney et al. 

(2000), TCP in soy milk has 25% lower uptake than calcium from cow’s milk. This was 

confirmed by Zhao et al. (2005), who found that CC in soy milk had the same fractional 

absorption as that in cow’s milk (both ~21%), whereas TCP in soy milk had lower fractional 

absorption (~18%). Zhao et al. (2005) concluded that higher absolute fortification with TCP in 

soy milk can compensate for the slightly lower fractional absorption, thus making it a viable 

fortification agent. 

  

Vitamin D 

Vitamin D is formed from cholesterol in humans when sunlight hits the skin, thus making intake 

of vitamin D redundant in theory. In practice, however, vitamin D deficiency is very common in 

some populations, especially in the northern hemisphere where the body’s ability to form 

vitamin D is inhibited during the winter season (Melina et al., 2016). Dietary intake of vitamin D 

is therefore recommended. Vitamin D is present in two different forms, D2 (ergocalciferol) and 

D3 (cholecalciferol).  

 

While D2 is exclusively derived from plants, D3 can be derived from both plants and animals 

(although the majority of supplements and food fortification agents use D3 derived from 

animals). In a systematic review and meta-analysis, Tripkovic et al. (2012)  investigated the 

effect of D3 and D2 on raising serum levels of vitamin D for bolus doses (large doses given 

infrequently) and for all protocols combined, Vitamin D3 was found to be more efficacious than 

D2 in raising plasma levels of vitamin D. However, when daily supplementation (25-100 µg per 

day) was analysed separately, there was no difference in efficacy between the two forms of 

vitamin D. However, the recommended daily intake of vitamin D is defined by most nutrition 

authorities to be between 7.5 µg and 15 µg, significantly lower than was investigated in any of the 

trials in the systematic review. In a recent trial with the same lead author, Tripovic et al. (2017) 

investigated whether smaller daily doses of 15 µg of vitamin D2 versus D3 as a food fortificant 

differed in their effect in raising serum levels of vitamin D. Both forms of vitamin D managed to 

satisfactorily raise the serum level of vitamin D, but vitamin D3 was twice as efficacious as D2 in 

raising serum levels (by 74-75%, compared with 33-34% for vitamin D2. In conclusion, even if 

vitamin D2 is satisfactory in raising serum levels of vitamin D, a higher fortification level might 

be warranted in order to achieve the same magnitude of effect as with vitamin D3. 
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Iodine 

Since dairy products are a source of iodine and plant-based dairy are not, how the individual’s 

iodine status is affected by iodine fortification is a relevant question. The literature on iodine 

fortification in liquids is scarce, but iodine fortification in general is a more established topic. 

Organic iodine biofortification is subject to cooking losses under some circumstances (Cerretani 

et al., 2014), although not in the majority of the cases, and the stability of iodised salt in the 

form of potassium iodate seems to be stable up to 350 degrees Celsius (Bhatnagar et al., 1997). A 

commercial fruit drink (NutriStar™) fortified with several vitamins and minerals (iodine 

included) showed excellent bioavailability of all nutrients included (Mehansho et al., 2003). 

  

Riboflavin 

Riboflavin plays a small but important part in human energy metabolism. Deficiency leads to 

inflammation of the mouth cavity and possibly birth defects if it occurs during pregnancy. 

Riboflavin is slightly sensitive to light and humidity, but otherwise considered a stable 

micronutrient (Gadient, 1986). Absorption of free riboflavin is estimated to be 50-60% in doses 

from 2 to 25 mg (NNR, 2014). 

  

Vitamin B12 

Vitamin B12 is a vitamin that is exclusively found in animal-derived foods, such as dairy, meat 

and eggs. Inactive analogues may be found in certain plant foods, such as algae. Since these 

analogues only block the receptor for the uptake of B12, these types of food should not be taken 

simultaneously with B12-rich foods (NNR, 2014). In the early stages, B12 deficiency typically 

leads to anaemia and later to nerve cell damage. The most common form of B12 in food 

supplements and fortified foods is cyanocobalamin. The different forms of B12 are estimated to 

have approximately the same bioavailability (Adam et al., 1971). Vitamin B12 is slightly sensitive 

to temperature, oxygen and humidity, but otherwise considered stable (Gadient, 1986). 

 

Environmental impacts from fortification agents 

Data on the environmental impact of fortification agents are scarce. In a Master’s project at 

Lund University, the environmental impact of fortification agents for oat drink was estimated 

and found to be relatively small compared with the impact of the rest of the production (Jarlbo, 

2016). More research is needed in this area in order to quantify the magnitude of the 

environmental impact from fortification. A relevant contribution to this discussion is that 

fortification of dairy cow feed is also common practice, in amounts similar to that of plant-based 

dairy alternatives (~140 mg of minerals and 1 mg vitamin per 100 g milk) (Röös et al., 2015b). 

However, when ‘processed’ through the animal, the calcium fortified in the feed reaches a higher 

quality than the direct fortification in plant beverages.  

 

Fortification and naturalness 

When discussing fortification, the question of ‘naturalness’ often arises. ‘Natural’ is a term with 

highly positive connotations and is frequently used to label food products. To a large extent, the 

use and definition of the term natural is a philosophical question. Sandin (2017) points out that 

the term ‘natural’ is both vague and polysemous (several related meanings), which poses a 

challenge to anyone who wish to operationalise and define this term.  
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Challenges in developing fortification strategies 

Weighting optimal nutrition of the individual against a level of adequate or ‘good enough’ 

nutrition for the many, for example in developing nutrient recommendations, is challenging. 

The requirement of any given nutrient is assumed to be normally distributed, meaning that if 

recommendations are set at the mean level of requirement, 50% of population would not have 

their nutrient requirements met at the recommended level of intake. The prevailing approach to 

this dilemma has been to add at least two standard deviations to the mean requirement and in 

that way include at least 95% of the population. However, different demographic groups have 

different nutritional requirements, so it has to be decided whether fortification programmes and 

nutritional and dietary recommendations should be designed to fit the most vulnerable, or the 

average population as a whole. For example, there is a large minority (women and girls of 

childbearing age) which has a larger iron requirement than the rest of the population, while at 

the same time there is a small minority (0.5%) which is especially sensitive to high iron intake 

(people with haemochromatosis). When considering these two groups simultaneously, should 

staple foods be fortified with iron? Another consideration is that the adverse effect of excess iron 

in the few people with haemochromatosis is far larger than the adverse effects of insufficient 

iron intake for many women and girls. Hence, it is not easy to decide which strategy is 

preferable, and different countries choose different strategies.  
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