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Abstract
With the introduction of high‐resolution digital elevation models, it is possible to use digital ter-

rain analysis to extract small streams. In order to map streams correctly, it is necessary to remove

errors and artificial sinks in the digital elevation models. This step is known as preprocessing and

will allow water to move across a digital landscape. However, new challenges are introduced with

increasing resolution because the effect of anthropogenic artefacts such as road embankments

and bridges increases with increased resolution. These are problematic during the preprocessing

step because they are elevated above the surrounding landscape and act as artificial dams. The

aims of this study were to evaluate the effect of different preprocessing methods such as

breaching and filling on digital elevation models with different resolutions (2, 4, 8, and 16 m)

and to evaluate which preprocessing methods most accurately route water across road impound-

ments at actual culvert locations. A unique dataset with over 30,000 field‐mapped road culverts

was used to assess the accuracy of stream networks derived from digital elevation models using

different preprocessing methods. Our results showed that the accuracy of stream networks

increases with increasing resolution. Breaching created the most accurate stream networks on

all resolutions, whereas filling was the least accurate. Burning streams from the topographic

map across roads from the topographic map increased the accuracy for all methods and resolu-

tions. In addition, the impact in terms of change in area and absolute volume between original

and preprocessed digital elevation models was smaller for breaching than for filling. With the

appropriate methods, it is possible to extract accurate stream networks from high‐resolution dig-

ital elevation models with extensive road networks, thus providing forest managers with stream

networks that can be used when planning operations in wet areas or areas near streams to pre-

vent rutting, sediment transport, and mercury export.

KEYWORDS

breaching, culverts, digital elevation model, LiDAR, preprocessing, roads

1 | INTRODUCTION

In order to facilitate protection of surface waters, the first step is to

map streams and lakes so protection can be incorporated in everyday

land‐use planning and management. Today's maps are often created

from aerial photos; therefore, only streams distinguishable from aerial

photos are displayed on current maps, which generate a bias towards

larger streams. Also, because of canopy cover in forested landscapes,

small forest streams are especially poorly mapped (Bishop et al.,

2008; Kuglerová, Ågren, Jansson, & Laudon, 2014; Montgomery &

Foufoula‐Georgiou, 1993). In addition, streams that are present on cur-

rent maps do not always form an integrated drainage network and do

not change with seasons (Ågren, Lidberg, & Ring, 2015). Unless a

stream is network based, it is not possible to trace water from each

stream segment to the outlet of a catchment, and thus, managers are

faced with a puzzle of different stream segments. Seasonal variations
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are also important because the length of stream networks changes

dynamically between high and low flows (Ågren et al., 2015; Blyth &

Rodda, 1973; Jones, 2000).

Recent advances in remote sensing and digital terrain analysis

have paved the way for new techniques and better understanding of

forest hydrology (Creed, Sass, Wolniewicz, & Devito, 2008; Murphy,

Ogilvie, Castonguay et al., 2008; Ågren, Lidberg, Strömgren, Ogilvie,

& Arp, 2014; Laudon et al., 2016). The better understanding of forest

hydrology is partly due to the availability of better hydrological maps

derived from high‐resolution digital elevation models (DEMs) gener-

ated from Light Detection And Ranging (LiDAR; Murphy, Ogilvie,

Castonguay et al., 2008). Early DEMs were created from photogram-

metry, whereas modern DEMs are often derived from LiDAR point

clouds and can have resolutions of less than 0.5 m × 0.5 m (a grid res-

olution of 0.5 m × 0.5 m will, from now on, be written as 0.5 m;

Reutebuch, McGaughey, Andersen, & Carson, 2003). The amount of

country‐wide LiDAR datasets is rapidly increasing, and some examples

of countries with a national DEM created from LiDAR are as follows:

Denmark (Danish Geodata Agency), Finland (National Land Survey of

Finland), and Sweden (Swedish Mapping, Cadastral and Land Registra-

tion Authority). These new DEMs are increasing in popularity amongst

managers and are often used to map hydrological features such as

stream networks (Vaze & Teng, 2007). Streams extracted from DEMs

have three main advantages: First, they form an integrated drainage

network (O'Callaghan & Mark, 1984); second, they are highly accurate

(Goulden, Hopkinson, Jamieson, & Sterling, 2014) and follow actual

channel depression in the DEM (Murphy, Ogilvie, Meng, & Arp,

2008); and third, they can easily be adjusted for seasonal variations

and also display where ephemeral streams appear (Ågren et al., 2015).

Before any hydrological modelling can be applied to a DEM, it

needs to be adjusted in order to be hydrologically correct (Jenson &

Domingue, 1988; O'Callaghan & Mark, 1984). Water can only move

downhill in a DEM, which means that sinks need to be removed to

allow water to continue towards the outlet. Sinks are defined as areas

surrounded by cells with higher elevations, which prevent water from

moving further (Jenson & Domingue, 1988; Lindsay, 2015; Martz &

Garbrecht, 1998; O'Callaghan & Mark, 1984; Zhang & Montgomery,

1994). They can be real depressions in the landscape or artefacts from

urban features such as bridges. Thus, preprocessing of DEMs is impor-

tant, especially because any errors in the input data will be amplified

with each subsequent calculation (Kenward, Lettenmaier, Wood, &

Fielding, 2000; Wise, 2000). There are two commonly used methods

to handle sinks: filling (O'Callaghan & Mark, 1984; Wang & Liu, 2006)

and breaching (Martz & Garbrecht, 1998; Martz & Garbrecht, 1999;

Rieger, 1993). A fill algorithm examines the cells surrounding a sink

and increases the elevation of the sink cells to match the lowest outlet

cell (Planchon & Darboux, 2002; Wang & Liu, 2006). A breaching algo-

rithm instead lowers the elevation of cells along a path between the low-

est cell in the sink and the outlet of the sink (Martz & Garbrecht, 1998).

There are a number of studies that show how different prepro-

cessing methods affect a DEM. Lindsay and Creed (2005) analysed

the impact of the removal of artefact sinks from a 5‐m DEM and found

that methods combining filling and breaching had the least impact on

the spatial and statistical distribution of terrain attributes. Poggio and

Soille (2012) analysed the effect of preprocessing methods on stream

networks and concluded that a combination of breaching and filling

produced the most accurate stream network on a 30‐m DEM. Lindsay

(2015) demonstrated a flexible hybrid breaching–filling sink removal

method on six large DEMs with resolutions of 30 and 90 m and con-

cluded that the hybrid method performed similar to the highly efficient fill

algorithm by (Wang & Liu, 2006) in terms of processing time. Preprocess-

ing of high‐resolution (<2 m) DEM introduces new challenges. There are

mainly two problems associated with increasing the resolution of DEMs.

The first problem is processing time, which increases drastically when the

resolution increases and thus the number of data points increases

(Barnes, Lehman, &Mulla, 2014; Qin & Zhan, 2012). The second problem

is that features such as road–stream intersections become detectable,

and, because roads are slightly elevated above surrounding terrain, they

often appear to block the streams they cross. In reality, water may be

draining underneath the road in a culvert or bridge (Shortridge, 2005).

Higher resolution also produces more detailed hydrographic features

such as stream networks (Dehvari & Heck, 2013; Goulden et al., 2014;

Vaze & Teng, 2007; Yang et al., 2014) but does not improve the detec-

tion of large features such as wetlands (Creed, Sanford, Beall, Molot, &

Dillon, 2003) or topographic wetness index (Ågren et al., 2014). LiDAR

is also sensitive to noise from low‐lying vegetation and saturated soil sur-

faces, which need to be dealt with during the preprocessing (Goulden

et al., 2014; Gyasi‐Agyei, Willgoose, & Troch, 1995). An important

advantage of high‐resolution data is that it may contain information of

forest ditching and similar small‐scale features that impact drainage.

In the small country of Sweden, more than 210,000 km are forest

roads built to extract timber from 227,000 km2 of forested land. That

equals roughly to 1 km of roads for every square kilometre of forest land-

scape. Ågren et al. (2015) mapped stream networks from a high‐resolution

DEM and found 2–5 km of streams per square kilometre of forested land,

depending on season. This highlights the importance of handling sinks

caused by road embankments correctly during the preprocessing stage;

otherwise, the resulting hydrologically modelled maps will contain

misplaced streams. The location of culverts needs to be incorporated into

DEMs to prevent this error (Goulden et al., 2014; Shortridge, 2005). It can

be done by breaching a path across roads if their locations are known, but

this is rarely the case, and mapping culverts in the field is both time‐con-

suming and costly. Much previous work has focused on coarser resolution

DEM without small‐scale anthropogenic features such as roads (Lindsay,

2015; Poggio & Soille, 2012); however, recent studies have addressed this

problem (Lindsay & Dhun, 2015; Schwanghart, Groom, Kuhn, & Heckrath,

2013) using high‐resolution data on small geographical areas.

In this study, we focus on digital terrain analysis to extract streams

from DEMs with a range of different resolutions, in watersheds contain-

ing a large number of small‐scale anthropogenic artefacts, which are

mostly roads. The first research question in this study is, “Which prepro-

cessingmethodsmost accurately route water across road impoundments

at actual culvert locations?” For this purpose, a large field inventory has

been conducted in northern and central Sweden, where over 30,000

road culverts in 10 watersheds have been located and mapped manually.

This is a unique dataset and a rare opportunity to evaluate the perfor-

mance of preprocessing methods with focus on road impoundments.

We assume that one wants to enforce continuous flow to the out-

let without losing important information from the original DEM. The

second research question in this study is therefore, “How much of

LIDBERG ET AL. 4661



the landscape is affected by the different preprocessing methods?”

Here, we evaluate area changed and the difference in absolute volume

between original DEMs and preprocessed DEMs.

2 | MATERIALS AND METHODS

2.1 | Study sites

This study consists of nine large catchments in central Sweden

(Gävleån, 2,458 km2; Delångersån, 1,993 km2; Harmångersån,

1,196 km2; Testeboån, 1,111 km2; Hamrångeån, 518 km2; Skarjaån,

329 km2; Norrlanån, 319 km2; Gnarpsån, 229 km2; and Ninån,

197 km2) and one intermediate‐sized catchment in northern Sweden

(Krycklan, 68 km2). When combined, the catchments cover

8,350 km2, of which 82.3% are forested land, 8.7% are lakes and rivers,

6% are open land, 3.8% are agricultural land, and 0.3% are urban areas.

The quaternary deposits in the catchments are dominated by till. All

the large catchments have their outlets in the Baltic Sea, whereas

Krycklan is a subcatchment to Vindeln River (Figure 1).

A culvert survey was conducted in Krycklan during June 29 to 25

July 25, 2013, where culvert locations were mapped using a handheld

GPS with a horizontal accuracy < 10 m. These culverts were manually

adjusted using a 0.5‐mDEM and a 17‐cmOrto photo in order to increase

the precision. The culvert surveys of the larger catchments were con-

ducted in collaboration with the Swedish Forest Agency during the

snow‐free periods of 2014–2015 using a handheld GPSwith a horizontal

accuracy of 0.3 m. A total of 30,883 culverts were mapped during the

field surveys. Densely populated urban areas with underground drainage

systems were excluded from the survey (0.3% of the combined area).

This study uses the Swedish National DEM generated by the Swedish

Mapping, Cadastral and Land Registration Authority using LiDAR. This

DEM has a cell resolution of 2 m and was generated from a point cloud

with a point density of 0.5–1 points/m2 with horizontal and vertical

errors of 0.1 and 0.3 m, respectively. This DEM was resampled using

nearest‐neighbour interpolation to 4‐, 8‐, and 16‐m DEMs.

The preprocessing methods that have been evaluated can be

sorted into three categories: algorithms that fill sinks, algorithms that

breach sinks, and algorithms that utilize a combination of both filling

and breaching to remove sinks. In this study, we focus on efficient

algorithms capable of handling large DEMs (~1,000 km2 at 2‐m resolu-

tion). The following is a short introduction to the evaluated algorithms.

Each method is given a short name in this study (in italics), and all

methods are summarized in Table 1.

2.2 | Fill algorithms (also known as incremental
methods)

Wang and Liu (2006) introduced the priority flood algorithm, which exam-

ines each cell on the basis of its spill elevation, starting from the edge cells,

and visiting cells from lowest order using a priority queue. This algorithm

was modified to work with larger LiDAR DEMs and implemented in SAGA

FIGURE 1 The nine large catchments are located along the coast of central Sweden, whereas the small catchment is 60 km inland in northern
Sweden. (A) Krycklan, (B) Gnarpsån, (C) Harmångersån, (D) Delångersån, (E) Nianån, (F) Norralanån, (G) Skårjån, (H) Hamrångeån, (I) Testeboån,
and (J) Gåvleån
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GIS 2.2 and Whitebox GAT 3.4 and can be set to add a small elevation

increment to flat area cells to impose a flow direction. An increment of

0.001° was chosen for this study and will be referred to as fill.

2.3 | Breaching algorithms (also known as
decremental methods)

The first breaching methods were introduced by Martz and Garbrecht

(1998) and Rieger (1993, 1998) and worked by identifying and

breaching the lowest outflow in a sink if specific criteria of depth and

breach length were meet. Studies by Soille (2004), Schwanghart and

Kuhn (2010), and Schwanghart et al. (2013) propose breach algorithms

based on the least cost auxiliary topography. This algorithm is included

in MATLAB TopoToolbox R2013b and will be referred to as LCAT

breach. An even more efficient breaching algorithm was introduced

by Lindsay (2015) and is available in a small program called GoSpatial.

This method will be referred to as complete breach.

2.4 | Hybrid algorithms (incremental and
decremental combined)

GoSpatial also offers the possibility to combine breaching and filling

into a hybrid solution using a priority flood algorithm where sinks can

be resolved by selective or constrained breaching. Constrained breach

and selective breach was run with a maximum breach length of 50 grid

cells and maximum breach depth of 2 m. This means that sinks that

would require a breaching path of more than 50 grid cells or sinks

deeper than 2 m will be filled instead of breached. The main difference

between constrained and selective breach is that selective breaching

does not breach sinks that do not meet the criteria above, whereas

constrained breaching creates a partial breach up to the above‐defined

criteria in order to reduce the interior sink size (Lindsay, 2015). For

example, constrained breaching will breach a channel of 50 m before

applying fill, whereas selective breaching will stop and fill without

breaching that specific sink.

There is also an option to burn a known stream network into a DEM.

Unfortunately, forest hydrology is often poorly mapped, and only

streams distinguishable from aerial photos are displayed on current maps,

which makes stream burning questionable (Lindsay & Dhun, 2015). Even

so, it is still reasonable to assume that the location of a stream–road

crossing would be easier to distinguish from aerial photos because of

the opening in the canopy along roads, making these locations more reli-

able. Therefore, streams from existing maps were burned into the DEM

where they crossed a road, and only a short distance (maximum 50 m)

that would correspond to the distance necessary to burn across the larg-

est road embankments in the catchments. This step was done using the

tool “burn streams at roads” in Whitebox GAT and will be referred to

as “BR.”Herewe applied (fill, complete breach, selective breach, constrained

breach, and LCAT) separately to the stream–road‐burned DEM. Methods

where the stream–road intersections were burned into the DEM have

“BR” added to the name to clarify this (BR fill, BR complete breach, BR

constrained breach, BR selective breach, and BR LCAT).

2.5 | Evaluation

Field mapping an entire stream network is not an easy task, and stream

networks are tricky to compare in a reliable way (Molloy & Stepinski,

2007). Instead of comparing the entire stream network, we focus on

locations where streams intersect roads. Our unique dataset of field‐

mapped culvert locations allows us to investigate if the modelled

stream network crosses the road at the correct locations, that is, where

the stream drains underneath the road in a culvert. For this assess-

ment, stream networks were extracted from each preprocessed DEM

using the flow routing algorithm Deterministic‐8 (O'Callaghan & Mark,

1984) and a flow initiation threshold or accumulated area (Tarboton,

Bras, & Rodriguez‐Iturbe, 1991) of 0.02 km2 (2 ha), which represents

spring flood on the basis of field observations of stream initiation in

the northernmost study catchment (the Krycklan catchment; Ågren

et al., 2015). This means that culverts located in areas near a water

divide, before a stream has been initiated, will not be intersected by

TABLE 1 The evaluated methods are summarized on the left, using the same name as the main text

Name Description Program

Fill Fill with flat incrementa Whitebox GAT

BR fill BRb + Fill with flat incrementa Whitebox GAT

LCAT breach Least cost auxiliary topography TopoToolbox

BR LCAT breach BRb + Least cost auxiliary topography TopoToolbox

Complete breach Complete breaching modec GoSpatial

BR complete breach BRb + Complete breaching modec GoSpatial

Constrained breach Constrained breaching moded GoSpatial

BR constrained breach BRb + Constrained breaching moded GoSpatial

Selective breach Selective breaching modee GoSpatial

BR selective breach BRb + Selective breaching modee GoSpatial

Note. The descriptions show how each method was run and is further explained below. The programs used to run each method are displayed on the right.
aFlat increment = Flats were given the arbitrary slope of 0.001°.
bBR = Streams were burned across roads with a maximum length of 50 m.
cComplete breaching mode = All sinks were resolved by breaching.
dConstrained breaching mode = 2 m max depth, 50 grid cells length followed by internal breaching and fill.
eSelective breaching mode = 2 m max depth, 50 grid cells length followed by fill.
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this stream network. A lower flow initiation threshold would produce a

more extensive stream network and intersect more of the field‐

mapped culverts, but we decided that it would be more relevant to

use a realistic flow initiation. A stream–road intersection was only con-

sidered to be accurate if a stream passed within 10 m of both ends of a

culvert. The 10‐m search radius was chosen to avoid nearby culverts at

road intersections and similar locations.

2.6 | Effects of preprocessing methods on DEMs

Preprocessed DEMs were compared to original DEMs in order to analyse

how preprocessing methods changed the DEM. This comparison included

area changed and absolute volume changed, which are commonly used to

assess the impact of preprocessing methods (Lindsay & Creed, 2005;

Poggio & Soille, 2012). Absolute volume change is the sum of the abso-

lute height difference for all cells in the catchment before and after the

preprocessing multiplied by the total number of cells (Equation 1).

Abs volumeð Þ ¼ a ∑
N

i¼1
zi;orig−zi;proc
� �

: (1)

a is the area of a raster cell, zi,orig is the elevation for raster cell i in the

original DEM, zi,proc is the elevation for raster cell i in the preprocessed

DEM, and N is the number of raster cells in the DEM.

LiDAR is absorbed by water, so elevation data in these surfaces were

interpolated from surrounding terrain during the DEM creation. They were

also flattened using lake and river polygons from a topographical map and

given an arbitrary slope towards the coast. These areas were excluded

from the evaluation of preprocessing methods impact on the DEMs.

3 | RESULT

3.1 | Correct stream–road crossings

Stream networks from all preprocessed DEMs were intersected with

over 30,000 field‐mapped road culverts, and the number of correct

FIGURE 2 The accuracy of topographically derived stream networks increases with increasing digital elevation model (DEM) resolution.
Preprocessing methods that prioritize breaching over filling lead to more accurate stream networks on all DEM resolutions
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stream–road crossings was used to evaluate accuracy of each method.

The accuracy of topographically derived stream networks increased

with increasing DEM resolution. Stream networks from the 2‐m DEM

intersected roughly twice the number of culverts as stream networks

from the 16‐m DEM. Further, preprocessing methods that prioritized

breaching over filling lead to more accurate stream networks on all

DEM resolutions (Figure 2). The difference between breaching and fill-

ing increased with increasing resolution. Burning streams from the

topographic map across roads from the topographic map (BR), before

applying a complete preprocessing method, increased the number of

correct stream–road crossings for all methods, especially for filling.

This step was sensitive to scale, and the effect increased with increas-

ing DEM resolution. The least cost auxiliary topography breaching

method (BR LCAT) intersected most culverts on all DEM resolutions,

which means that stream networks extracted from the 2‐m DEM

preprocessed by BR LCAT were most accurate in this study. BR com-

plete breach, BR constrained breach, and BR selective breach also per-

formed well, whereas fill had the least amount of correct stream–

road crossings on all resolutions.

3.2 | Preprocessing effects on DEMs

The impact of each method was defined by changes in DEM area and

absolute volume between the original DEMs and the preprocessed

DEMs.Methods that prioritized breach over fill made the least changes,

to both area and absolute volume (Figure 3). Thiswas the case for all res-

olutions. All methods changed larger areas on higher resolution DEMs,

especially fill. The difference in area changed betweenmethods that pri-

oritize breaching and methods that prioritize filling also increased with

increasing DEM resolution. Burning streams from the topographic

map across roads from the topographic map (BR), before applying

another preprocess method, reduced the change in area for all methods

on the 2‐ and 4‐mDEMs but had little effect on the 8‐ and 16‐mDEMs.

Changes to absolute volume decreased with increasing resolution for

pure breaching methods, whereas hybrid and filling methods made the

most changes to absolute volume on the 2‐m DEM. BR LCAT and LCAT

made the least changes on DEM area, whereas BR complete breach and

complete breach made the least changes to absolute volume regardless

of DEM resolution. Fill and BR fill had the biggest impact on both area

and absolute volume on all resolutions.

FIGURE 3 Change in absolute volume of the digital elevation models in Million M3 against changed area in percent of total area. (a) BR LCAT, (b)
LCAT, (c) BR complete breach, (d) complete breach, (e) BR constrained, (f) constrained, (g) BR selective, (h) selective breach (i) BR fill, and (j) fill
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4 | DISCUSSION

In this study, we assessed different methods to preprocess DEMs of

varying resolutions by analysing the number of field‐mapped culverts

intersected by extracted stream networks. The effect of each prepro-

cessing method was assessed by area changed, and absolute volume

changed, from the original DEMs. Our results showed that the least

cost auxiliary topography method proposed by Schwanghart and Kuhn

(2010) and Schwanghart et al. (2013) (LCAT) was the most accurate in

terms of number of culverts intersected, regardless of DEM resolution.

We also found that the accuracy increased when streams from the

topographic map were burned across roads from the topographical

map, before applying a complete preprocessing method. In this study,

a stream–road intersection was only considered to be accurate if a

stream passed within 10 m of both ends of a culvert. Using a 10‐m

search radius for all resolutions allows for a more direct comparison

between resolutions, but it can potentially cause some issues with

the 8‐ and 16‐mDEMs because the nodes of the extracted stream net-

work are located in the centre of the resampled grid cells.

Increasing resolution also increased the accuracy in terms of num-

ber of correct stream–road crossings. This is consistent with a study in

Canada where Goulden et al. (2014) evaluated stream networks delin-

eated from 1‐, 5‐, 10‐, 15‐, and 50‐mDEMs and concluded that stream

networks from the 1‐m DEM produced the highest spatial accuracy.

Dehvari and Heck (2013) did a similar study in Canada and observed

large differences between 1 m and 10 m DEMs on all topographical

and hydrological attributes, suggesting that 10 m might be to course

to extract streams in that landscape.

Increasing DEM resolution increased the area affected by prepro-

cessing, especially for methods that prioritize fill. This is likely due to

sinks caused by small‐scale features, which become visible at higher

resolutions. Features such as road embankments could explain increas-

ing differences in area changed, and number of correct stream–road

crossings, between breaching and filling at higher resolutions. BR LCAT

created the most accurate stream network, and it changed 52% less of

the study area compared to the classic fill method on the 2‐m DEM.

This is also consistent with recent findings. Lindsay and Dhun (2015)

evaluated preprocessing algorithms on a 1‐mDEM in a landscape dom-

inated by agriculture and found that breaching changed an area 86.5%

smaller than filling. This is consistent with results from a study on a 30‐

m DEM by Poggio and Soille (2012). Some of the difference in impact

between filling and breaching can be attributed to flat areas in our

catchments. If a road crosses the outlet of a flat area, the fill algorithms

will fill up the whole area in order to remove the sink, whereas breach

algorithms will breach a channel across the road. Burning streams from

the topographic map, across roads from the topographic map, reduced

the impact on the DEMs and improved the accuracy for all methods

but especially for filling methods. This shows just how sensitive filling

is to road embankments.

Previous studies have shown that methods that change the DEM

less produces more accurate stream networks (Lindsay & Creed,

2005; Poggio & Soille, 2012). This is consistent with our results, but

there is no reason why minimizing the impact should be a goal by itself.

The aim of any preprocessing method is to create accurate flow direc-

tions and by extension accurate stream networks. One of the most

important advantages with breaching instead of the filling used here

is the behaviour of flow paths upstream of a road embankment.

Streams from both methods might cross the road in a correct location,

but fill will produce straight parallel streams across the filled area,

whereas breach uses the flow path information of the unfilled DEM

to the beaching point. This means that filling fails to utilize information

about flow directions in the filled areas (Figure 4).

FIGURE 4 One of the most important differences between filling and breaching is not where they cross a road but rather how they affect the
upstream flow paths. (a) The road embankment in the bottom right corner is creating a sink at the stream–road intersection. A stream channel is
visible in the original digital elevation model. (b) Filling creates a flat area of arbitrary values upstream of the road embankment, which results in
parallel and unrealistic stream segments. (c) Breach, on the other hand, manages to utilize the flow path information of the area upstream of the
road embankment
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However, there are other filling methods such as the one

described by Martz and Garbrecht (1998) that impose convergent flow

paths away from a higher elevation towards a lower elevation. Selec-

tive filling and constrained breaching give the user the option to

choose which sinks to fill or breach. Optimally, very deep sinks, such

as quarries, should be filled, whereas road embankments and bridges

should be breached (Lindsay, 2015). This was especially important on

the high‐resolution DEMs in this study because our catchments

contained a large number of road embankments, which means that

there were many sinks that should be solved by breaching. If most

sinks were caused by artificial sinks from open mines and quarries,

instead of artificial embankments, it is likely that filling would be a pre-

ferred method. Selective filling or constrained breaching might be pref-

erable if the DEM contains both deep sinks and road embankments.

Selecting appropriate thresholds for maximum breach depth and

length can be difficult and will vary with resolution because the origin

of sinks changes with resolution.

Road embankments, bridges, and culverts are some of the biggest

issue to address in order to create reliable stream networks from high‐

resolution LiDAR DEMs (Schwanghart et al., 2013). One advantage

with high‐resolution LiDAR DEMs is that they might contain informa-

tion about small‐scale anthropogenic features such as ditches that

can be incorporated in the hydrological models in order to improve

the accuracy of stream networks. This would allow us to shed some

light on the unknown headwaters described by Bishop et al. (2008).

Forest managers could use these stream networks to better plan oper-

ations in wet areas near streams in order to prevent rutting (Ågren

et al., 2015) and subsequent sediment transport (Kreutzweiser &

Capell, 2001) and mercury export (Munthe & Hultberg, 2004).

5 | CONCLUSIONS

The accuracy of stream networks, in terms of correct culvert intersec-

tions, increased with increasing DEM resolution. Stream networks

extracted from DEMs that had been breached instead of filled created

more accurate stream networks on all resolutions and had less impact

in terms of change to area and absolute volume. The difference in

accuracy between breaching and filling increased with increasing reso-

lution. The accuracy also increased when streams from the topo-

graphic map were burned across roads from the topographical map,

for all methods and resolutions.
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Abstract 
Headwaters make up the majority of any given stream network, yet, they are poorly mapped. A solution 
to this is to model stream networks from a high resolution digital elevation model. Selecting the correct 
stream initiation threshold is key, but how do you do that on a national scale across physiographic 
regions? Here the Swedish landscape is used as a test bench to investigate how mapping of small stream 
channels (<6 m width) can be improved. The best modelled stream channel network was generated by 
pre-processing the DEM, calculating accumulated flow, and extracting stream networks using a stream 
initiation threshold of 2 ha. The Matthews Correlation Coefficient (MCC) for the 2 ha stream channel 
network was 0.463 while the best available maps of today, the Swedish property map (1:12 500) had 
an MCC of 0.387. 

A residual analysis of the 2 ha network show that there is additional improvements to be made by 
adapting the model to local conditions, as 15% of the over and underestimation could be explained by 
the variability in runoff, quaternary deposits, local topography and location. The most accurate stream 
channel network had a length 4.5 times longer the currently mapped stream network, demonstrating 
how important accurate stream networks is for upscaling aquatic and climate research.

Keywords: Stream network, Stream mapping, digital elevation model, LiDAR, Headwater streams

1 Introduction
Headwaters dominate surface water drainage networks 
and studies of headwater catchments have provided un-
derstanding of different sources and controls on biogeo-
chemistry in streams (Seibert et al. 2009; Tiwari et al.
2017), and also interactions with the atmosphere 
(Natchimuthu et al. 2017; Wallin et al. 2013). Despite 
the importance of headwaters, it’s a paradox that at the 
same time small headwaters can be called Aqua Incog-
nita (Bishop et al. 2008; Kuglerová et al. 2017), a rele-
vant term as the majority of headwater streams are 
poorly mapped. Maps have traditionally been con-
structed from aerial photos, but small stream channels 
are difficult to observe from the air, especially under a 
dense tree canopy. Hence there is a bias on maps that 
show larger streams, and streams in agricultural areas 
where trees are scarce, while smaller streams are miss-
ing. Even the best available map for Sweden (the 1:12 
500 property map), will therefore severely underesti-
mate the total length of stream networks. This can have 
repercussions for research questions such as process un-
derstanding and budgets. For example, in the Krycklan 
Study Catchment (Laudon et al. 2013) it was shown that 
CO2 evasions was high from small scale streams, 72% 
of the CO2 was evaded to the atmosphere from 1st to 

2nd order streams (Wallin et al. 2013). Wallin et al. 
(2018) highlighted the importance of low order headwa-
ter streams by estimating CO2 emissions from a 400 000 
km stream network that was based on a 50*50 m digital 
elevation model. They concluded that low order head-
water streams emitted CO2 corresponding to 21% of the 
estimated terrestrial C sequestration. Benstead and
Leigh (2012) estimated that global estimates of CO2 
evasion from streams would increase from 0.56 Pg C 
yr 1 to 1.6 Pg C yr 1 if one assumes a 50% increase in 
area of small rivers (1st to 5th order).  

Headwater streams have a high amount of stream 
edge relative to stream surface area (Richardson and 
Danehy 2007) and local ground water discharge is a ma-
jor contributor to water flow in these streams (Leach et 
al. 2017). Therefore headwater streams and their ripar-
ian zones constitutes an interface between water and 
soil, and largely control inputs from surrounding land-
scapes to downstream ecosystems (Lidman et al. 2017). 
They also provide important ecosystem services such as 
cycling nutrients (Blackburn et al. 2017; Bormann and
Likens 1967) and buffering impact of pollutants 
(Klaminder et al. 2006). Headwater streams also func-
tion as important habitat for both invertebrates and 
plants and functions as migration corridors (Freeman et 
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al. 2007). This strong coupling between soils and 
streams brings up important issues regarding manage-
ment of small streams. Any perturbation in headwaters 
will affect downstream environments, so in order to pro-
tect large streams, it’s important to protect the headwa-
ter streams (Kuglerová et al. 2017; Wipfli et al. 2007). 

In order to give small streams good protection, the 
first step is to know where they are. Topographical mod-
elling using digital elevation models (DEM) is a com-
monly used method to map streams (Jaeger et al. 2019;
González-Ferreras and Barquín 2017; Julian et al. 2012)
and high resolution DEMS derived from airborne light 
detection and ranging (LiDAR) can be used to map even 
the smallest streams (Goulden et al. 2014). Some ad-
vantages with this approach is that modelled stream net-
works form integrated drainage networks (Vaze and 
Teng 2007) and follow channel depressions (Murphy et 
al. 2008b). There are however some problems with this 
approach. First, high resolution DEMs contains artificial 
features such as roads and require pre-processing to be-
come hydrologically correct (Lindsay and Creed 2005). 
Secondly is to define appropriate stream initiation 
thresholds. This threshold is the minimum catchment 
area required for groundwater to become surface water 
and form a stream. This threshold regulates how exten-
sive a stream network is and often require area specific 
knowledge or field data to make educated guesses. 
There are a number of studies where stream heads 
(Ågren et al. 2015; Avcioglu et al. 2017; Imaizumi et al.
2010; McNamara et al. 2006) or entire stream networks 
(Benstead and Leigh 2002; Jensen et al. 2017; Murphy 
et al. 2008b) have been field mapped to validate DEM 
derived stream networks. However, Jensen et al. (2017) 
determined that it requires a full day to field map the 
stream network of a 40-45 ha catchment. A research 
question that remains is therfore; How does one select 
the correct stream initiation threshold and validate DEM 
derived stream networks when scaling up from a 
catchment scale to regional or national scale? Stream in-
itiation thresholds vary between physiographic regions 
(Avcioglu et al. 2017; Heine et al. 2004) and as the list 
of National LiDAR datasets is growing (Guo et al. 2017;
van Leeuwen and Nieuwenhuis 2010) and high resolu-
tion DEMs are becoming accessible to managers it is 
important to evaluate the performance of these topo-
graphically modelled stream networks over larger 
scales. 

The aim of this study was to determine the optimum 
threshold for stream initiation on a national scale, using 

the Swedish landscape at a test bench. As to our 
knowledge, this is the first attempt at working with Li-
DAR DEM derived stream networks on this large scale. 
We also asses how accurate these DEM derived stream 
channels perform in comparison to existing maps of 
streams and the potential to improve performance of 
DEM derived stream channel networks by incorporating 
variability in local topography, soil texture and runoff.

2 Material and methods

2.1 Study site
Sweden is located between latitude 55° and 70° N and 
longitude 11° and 25° E, placing most of the country 
within the boreal zone. Annual mean air temperatures 
range from 8 -2
(Seekell et al. 2014). The bedrock is mainly made up 
from Precambrian crystalline rocks with remains of 
younger sedimentary rock in the Caledonian mountains. 
Sweden has been through multiple glaciations during 
the last 2-3 million years and most of the quaternary de-
posits were formed during and after the most recent gla-
ciation, around 10 000 years ago. As a result 75 % of 
Sweden is covered by glacial till and 13 % is covered by 
peat (Fransson 2018). The remaining 12 % consists of 
exposed rock, glaciofluvial and post glacial sedimentary 
deposits. According to the Swedish Land Cover data-
base (based on satellite imagery) (Ansén 2004) the land 
cover in Sweden is: Forest 63.0 %, lakes 8.9 %, open 
mire 8.7 %, heathlands 7.7 %, arable land 6.1 %, for-
ested mire 2.8 %, urban areas 2.3 %, other 0.5 %.

2.2 Field data
As it’s not possible to field map all stream channels or 
stream heads when working on a regional or national 
scale, we choose to utilise data from the Swedish na-
tional inventory of landscapes (NILS) (Ståhl et al. 2011) 
to evaluate the performance of modelled stream chan-
nels. The NILS inventory consists of 631 5*5 km 
squares, systematically distributed throughout Sweden, 
covering all landscapes (forest, agricultural areas, 
mountains, wetlands, shores, and cities). This inventory 
was designed to secure statistically accurate estimates 
for the country as a whole and capture variability in rare 
landscapes. Therefore rare landscapes were sampled 
with a denser grid while common landscapes were sam-
pled with sparser (Figure 1). 
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Figure 1: The black points are field sites with observations of stream channels in the NILS database.

Data collected from 631 square shaped line inventories 
with 200 m line segments, 12 in each square, in total 7
572 segments, giving a total length of the line invento-
ries of 1 512 km was used in this study. 3 323 stream 
channels narrower than 6 meters were mapped in the 
line inventory. Instead of mapping stream heads or en-
tire networks, the pixels in the high resolution DEM 
containing a line inventory can be viewed upon as a 
point measurement with a presence or absence of a 
(small <6 m) stream channel, giving a total of 619 767 
observations. Due to the national coverage of the field 
inventory it was impossible to investigate all stream 
channels during similar flow conditions. Therefore flow 

conditions during this inventory ranged from “temporar-
ily dried out” to “extreme high flow”. Another issue 
with this dataset was uncertainties in the GPS position-
ing. Some mapped stream channels were up to 20 m 
away from its actual location. Especially underneath 
dense forest canopy. To account for the uncertainties in 
the GPS positioning the mapped stream channel points 
were moved, snapped, to the closest modelled stream 
channel within 20 m.

2.3 Topographically modelled stream channels
The Swedish National DEM generated by the Swedish 
Mapping, Cadastral and Land Registration Authority 
using LiDAR data was used for hydrological modelling.
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The resolution was 2*2 m and was generated from a 
point cloud with a point-density of 0.5-1 points /m2 with 
a horizontal and vertical error of 0.1 m and 0.3 m, re-
spectively. The mountain region in north-western Swe-
den were not covered by this DEM at the time of this 
study. The DEM was split into 2 818 sub catchments 
where each catchment had 2 km overlap with surround-
ing catchments to avoid edge effects during stream ex-
traction. The raster stream network grids were later mo-
saicked back together to form a cohesive stream net-
work before analysis. Before any hydrological calcula-
tions could be conducted on the DEM it had to be pre-
processed to become hydrologically correct (Marks et 
al. 1984). Lidberg et al. (2017) showed that breaching 
was the best way to pre-process high resolution DEMs
in the Swedish landscape. Therefore a three step breach-
ing approach was used as described below:  

1. Stream lines from the 1:12 500 scale property map, 
produced by the Swedish Mapping, Cadastral and 
Land Registration Authority, were burned 1 m into 
the DEM on agricultural land using the tool “burn 
streams” in Whitebox GAT 3.4 (Lindsay 2014).

2. Stream lines from the property map were burned 
across road lines from the property map using the 
tool “burn streams at roads” in Whitebox GAT 3.4 as 
described by (Lidberg et al. 2017).

3. Remaining sinks were resolved by the complete 
breaching algorithm developed by (Lindsay 2015)
using Whitebox tools (Lindsay 2018).

A flow accumulation grid was created from the hydro-
logically correct DEM using deterministic-8 (D8) 
(O'Callaghan and Mark 1984) and stream channel net-
works were extracted using stream initiation thresholds 
of 1 ha, 2 ha, 5 ha, 10 ha, 15 ha and 30 ha. Since the field 
data only contain channels <6 m, the larger streams were 
erased using a mask from the Swedish Property map, 
where all streams >6 m were mapped as a polygon layer.
The total lengths of the mosaicked stream channel net-
works were calculated (Table 1).

2.4 Evaluation of accuracy
As it’s not possible to field map all stream channels in 
Sweden, and we know from experience that the stream 
networks on current maps (the propery map; 1:12 500)
are lacking and therefore cannot be used for validation, 
field data from the NILS inventory were used to evalu-
ate the performance of the different DEM derived 

stream networks. The results were evaluated using con-
fusion matrixes, accuracy (ACC) and Mathews Correla-
tion Coefficient (MCC) (Boughorbel et al. 2017). A 
confusion matrix consist of true positives (TP), i.e. 
where the map accurately predicts a channel. False pos-
itives (FP), i.e. where the map inaccurately predicts a 
channel. True negatives (TN), where the map accurately 
predicts the absence of a stream channel and false nega-
tives (FN) where the map misses an existing stream 
channel (Figure 2). The confusion matrix for the mod-
elled stream channel networks was calculated as fol-
lows:

True positives (TP) were calculated by snapping the 
coordinates of the field mapped channels to the high-
est flow accumulation along the inventory line within
20 m. TP, is the number of observations with an ac-
cumulated flow above the selected flow initiation 
thresholds. 
False negatives (FN) were calculated by snapping the 
coordinates of the field mapped channels to the flow 
accumulation using a snapping distance of 20 m. FN, 
is the number of observations with an accumulated 
flow below the selected flow initiation thresholds.
False positives (FP) were calculated as number of 
cells intersecting the line inventories, with a flow in-
itiation above the thresholds, minus the number of 
TP. A large number of FP’s was noted for the mod-
elled stream networks. A common occurrence was 
that a modelled stream runs along the lines of the 
field inventory, resulting in several adjacent cells be-
ing marked as many FP even though it’s just one 
stream observation. To try and correct for this all ad-
jacent FP’s were merged to one observation before 
calculating the FP. However when a modelled stream 
is meandering back and forth across the line, it is still 
considered as several FP.
True negatives (TN) was calculated as the total num-
ber of cells intersecting the line inventories, minus 
TP, FP and FN. Due to the projection (Sweref 99 
TM) the inventory lines are somewhat out of align-
ment from a straight N-S or W-E line, thereby intro-
ducing extra cells (each line should in theory be 1
200 cells, but the lines rage 1 222 to 1 231 cells. This 
introduces of an overestimation of TN of around 2%, 
which is negligable for the purpose of this study.

To compare the modeled stream networks with the 
current best available map the confusion matrix from the 
Swedish Propery map (1:12 500) was also calulated.
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Figure 2. Panel a shows an example of the 200 m segments in the line inventory as black lines superimposed on the Swedish prop-
erty map (1:12 500) and the red points are field observations of stream channels, in this case all streams were missing on the map 
(FN). Panel b shows the same square but with a modelled stream channel network (2 ha) superimposed on a hillshade. The green 
points indicate streams that are accurately shown on the map (TP) while the red points indicate streams that are still missing on the 
map (FN).Yellow points are locations where the modelled stream channel network intersect an inventoried line without an observa-
tion of a stream channel (FP). To summarize the results in panel B; the 2 ha stream network captured 5 out of the 6 stream channels, 
misses one and generates 3 false positives in this case. This illustrates that the new DEM derived stream networks, while not per-
fect, is an improvement compared to the property map (panel a).

2.4 Residual analysis and potential for 
improvement
Residuals from the confussion matrix from the optimal 
stream channel network were converted into an ordinal 
variable; 1 for FN and 2 for FP to be used to analyse 
potential improvements of the stream channel network 
modelling. These residual points were used to extract 
existing map data as described below. The aim was to 
understand what caused over estimations (FP) and under 
estimations (FN) of stream channels.

Variability in runoff from between sites can affect 
the challelization of water. Annual runoff increases, 
roughly one order of magnitude, from the SE coast to 
the NW mountain range. Therefore runoff data provided
by the Swedish metrological and hydrological institute 
was included. A model known as S-HYPE was used to 
model seasonal runoff in 33605 sub-catchments be-
tween 1982 and 2015 (Arheimer et al. 2011). Meteoro-
logical seasons of winter, spring, summer and autumn, 
were used to calculate seasonal as well as annual runoff 
for each site. Spatial differences in soils can affect 
permeability and drainage capacity on each site which 

may impact stream initiation thresholds. Therefore qua-
ternary deposits were extracted from maps created by 
the Swedish Geological Survey. The scale of these maps 
ranges from 1:25 000 (1.7 %), 1:50 000 (2.7 %) 1:100 
000 (47 %), 1:200 000 (1.4 %), 1:250 000 (21.2 %), 
1:750 000 (33.6 %) and 1:1 000 000 (100 %). Some of 
these maps have significant overlap but and the map
with the highest resolution was selected if more than one 
were avaliable for a site. The quartenary deposits maps
were simplified into 5 classes; till, peat, rock outcrops, 
coarse sediment (e.g. silt to boulders), and fine sediment 
(e.g. clays). Local topography may also affect the 
channel initiation (Avcioglu et al. 2017; Imaizumi et al.
2010). Therefore local topography was calculated as a 
standard deviation of the digital elevation model in a
moving window of 5, 10, 20, 40, and 80 cells. High 
values represent steep terrain and low values flat terrain.
The coordinates of each site were also included in the 
residual analysis in order to capture other potential 
spatial gradients. First the X-matrix was tested for mul-
ticolinearity, using IBM SPSS Statistics 24 and since 
many of the explanatory variables in the residual 
analysis showed multicolinearity a multivariate 
approach was used. In order to enchance group 
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seperation we choose to perform a Orthogonal
Projections to Latent Structures Discriminant Analysis 
(OPLS-DA) using SIMCA 14. Prior to analysis a 
balanced dataset was created by randomly selecting and 
equal number of FN and FP and all variables were scaled 
and centered.

3 Results
The result of the field investigation showed that stream 
discharge varied with time during the field 
investigation, 1 % were recorded during extreme high 
flow, 16 % during high flow, 54 % during normal flow, 
11 % during low flow and 18 % channels were 
temporarily dried out. 33 % were natural channels, 4 %
were straightened channels and ditches made up 63 %. 
Out of the ditches, 15 % were found in agricultural ar-
eas, 28 % were roadside ditches, the majority of the rest 
were found in forested land where 45 % were found in 
mineral soils and 11 % in peat.

3.1 Confusion matrix
As the flow initiation threshold decreases, the stream 
network expands and more of the missing headwaters 
are captured, as indicated by the increasing number of 
true positives (Table 1, Figure 2). However, simultane-
ously the number of false positives also increases (Table 

1, Figure 2). As an example, out of the 3323 channels in 
the field inventory, only 618 were found on the property 
map, while the 1 ha stream channel network located 
2185 channels (Table 1). A downside to the new DEM 
derived 1 ha stream channel network is that it also cre-
ated a large number of false positives, the number of 
false positives increased from 143 on the Swedish prop-
erty map to 5076 for the 1 ha stream network. All stream 
channel networks have extremely high accuracy at 
around 99%. However, the numbers for accuracy cannot 
be trusted due to the imbalance in the data (Daskalaki et 
al. 2006). This occurs when the sample size in the data 
classes are unevenly distributed. In our case most of the 
field sites consist of land and a typical channel intersec-
tion only occupy a single cell. For unbalanced datasets, 
such as this, the best measure of model performance is 
MCC (Boughorbel et al. 2017; Daskalaki et al. 2006). 
MCC for the newly derived stream networks from the 
DEM was highest for the 2 ha flow initiation threshold 
channel network (0.463).

The length of all streams under <6 m on the property
map is 693 042 km which would correspond to a stream 
initiation threshold of almost 30 ha (Table 1). The 2 ha 
network which was the most accurate was 4.5 times 
longer (2 639 163 km) than the stream channel network 
currently on the property map.

Table 1. Confusion matrix showing true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN), as well as 
accuracy (ACC (%)), Mathews Correlation Coefficient (MCC) and stream length for stream channel networks with different f.i.t 
(flow initiation thresholds) which is the catchment area required to form a channel.

Mapped stream channels TP TN FP FN ACC (%) MCC Length (km)

Channel network with 1 ha f.i.t 2 185 611 575 5 076 931 99.0 0.456 3 811 247

Channel network with 2 ha f.i.t 1 869 613 360 3 291 1 247 99.3 0.463 2 639 163

Channel network with 5 ha f.i.t 1 429 614 845 1 806 1 687 99.4 0.447 1 603 704

Channel network with 10 ha f.i.t 1 107 615 513 1 138 2 009 99.5 0.416 1 089 122

Channel network with 15 ha f.i.t 914 615 793 858 2 202 99.5 0.387 864 370

Channel network with 30 ha f.i.t 684 616 103 548 2 432 99.5 0.347 576 452

Property map stream lines 618 616 301 143 2 705 99.5 0.387 593 042

3.2 Residual analysis 
In an ideal world, the two classes (FP and FN) would 
have separated on either side of the score scatter plot
(Fig. 3A), however, the scores showed a large overlap 
between the two groups; FP and FN. The predictive 
power of the model was also quite low with R2Y(cum) 
= 0.16 and R2X(cum) =  0.59 and Q2(cum) = 0.15, 
meaning that only 15 % of the variability in the X-vari-
ables was correlated to the two classes. However, de-

spite low predictive power, we can still analyse the load-
ing plot to detect in what landscapes FP and FN are 
over-represented. 

According to the loading scatter plot (Fig. 3B) more 
FN are found in regions with high runoff during winter 
and in areas with high standard deviation (i.e. in steep 
terrain). More FP’s are found in regions with high Y and 
X-coordinates, where summer and spring runoff is high. 
When looking at quaternary deposits FNs were mostly 
found on fine sediments while FPs were found on peat 
and till.
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Figure 3. A Score scatter plot from the OPLS-DA model. B) Loading scatter plot from the OPLS-DA model. The variables “Winter, 
Spring, Summer, Autumn and Annual” refers to the seasonal and annual runoff.

4 Discussion
A striking result of this study was that 81.5 % of the 
NILS field mapped channels were missing on the 
Swedish property map (Table 1). Similar result were 
found in a detailed study of the 68 km2 Krycklan Catch-
ment in Northern Sweden, where the stream network 
on current maps were missing 58 % of the perennial 
and 76 % of the fully expanded network during high 
flow (Ågren et al. 2015). MCC (Table 1) suggest that a 
modelled stream channel network with a flow initiation 
threshold of 2 ha is the most accurate stream network 
for the Swedish landscape, and therefore an improve-
ment compared to the property map. However, a down-
side to the new DEM derived 2 ha stream channel net-
work is that it also created a large number of false posi-
tives, the number of false positives increased from 143 
on the property map to 3291 for the 2 ha stream channel 
network.

The relatively low optimal channel initiation thresh-
old of 2 ha in this study can be explained by relatively 
humid climate and high hydraulic conductivity of the 
Fennoscandia till soils but also extensive human impacts 
on drainage systems. It’s close to the 1.7 ha average 
channel initiation threshold found in Kansans (Heine et
al. 2004).  63 % of all field mapped channels in this 
study were man made ditches, 4 % were straightened 
channels (for timer floating) and only 33 % were natural 
channels. Ditches have been dug for different purposes, 
for example; to increase rational agricultural production
(Avilés et al. 2018), to increase timber production on 
wet forest soils or mires (Lõhmus et al. 2015) or to sta-
bilize roads (Kalantari and Folkeson 2013). Similar 

numbers were found in a study on the ditch network in 
the Krycklan Catchment in Northern Sweden, which 
showed that the ditch network doubled the length of the 
stream channel network (Hasselquist et al. 2017). This 
is due to a long a history of ditching in the Nordic coun-
tries that stared in the late 1800s or early 1900 
(Hasselquist et al. 2017). This practice has fundamen-
tally changed the hydrology of the landscape where 
many patches of wet soils with subsurface flow have 
been ditched, draining the land, lowering the water table 
and creating many more channels in the landscape. 
Without these man-made channels the optimum flow in-
itiation for the Swedish landscape would likely be 
higher. When applying the same methodology to other 
landscapes and biomes it’s therefore necessary to adapt 
the models and find the optimum flow initiation thresh-
old for that landscape.

There is a considerable seasonal variability in the 
stream networks. This variability in the stream networks 
were for example seen in the field inventory where 18
% were recorded as temporarily dried out at the time of
the investigation. A detailed study conducted in the 
Krycklan Catchment, Northern Sweden where the posi-
tion of stream heads were field mapped during different 
times of the year showed that the natural stream heads 
were normally found at a threshold of around 10-15 ha 
during baseflow and expanded to 2 ha in natural streams 
during high-flow conditions and up to as low as 1 ha for 
ditches (Ågren et al. 2015). How large this inter-annual 
variability is largely depend on soils and climate of the 
site. Still, the study in the Krycklan Catchment gives 
conservative estimate that the length of the stream net-
work at high-flow conditions is 2.4 times the length at 
baseflow conditions. Similar results was found by 
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(Jensen et al. 2017) in the Appalachia Mountains. The 
length of the stream network on the property map was 
of the same order as the 30 ha stream network (Table 1), 
which would correspond to the stream network during 
extreme dry conditions. While this constitutes a peren-
nial stream network it’s important to realize that peren-
nial stream networks are extreme cases and not very rep-
resentative of “normal” or “average” stream networks in 
a landscape.

In this study a fixed threshold for the channel heads
were chosen. This will introduce a bias, not only be-
cause of the seasonal variability, but also because the 
upslope areas of channel heads vary between different 
physiographic regions. Avcioglu et al. (2017) report that 
the upslope areas for channel heads range 0.03-7.6 ha in 
3 physiographic regions in Alabama and Jensen et al. 
(2017) report correpsonding numbers of 0.3-3.9 ha in 4 
physiographic regions of the Appalchian Highlands. 
There are other methods to determine position of chan-
nel heads in watersheds, that are based on finding 
thresholds where water has enough energy to start erod-
ing soil and form a channel head, for example the slope-
area method which develop slope-area threshold rela-
tionships from the DEM, (Avcioglu et al. 2017;
Imaizumi et al. 2010; Heine et al. 2004) or logistic 
regression (Heine et al. 2004). Such methods perform 
better in steeper terrain and poorer in flat terrain
(McNamara et al. 2006).  However, such algorithms de-
pend on the natural formation of channel heads. In Swe-
den and other heavily drained countries, such as Finland 
and the Baltic States (Lõhmus et al. 2015) this has been 
offset by human influence and the numerous man-made 
channels draining the landscape. Also, based on the field 
data being point data of stream presence/absence and 
not actual channel heads it’s not possible to use these 
methods. Instead the bias introduced by choosing a fixed 
threshold was investigated via a residual analysis. 

The residual analysis (Figure. 3) show that there is a 
potential to further improve the channel networks by 
considering spatial variability, but the OPLS-DA could 
only explain 15% of overestimation and underestima-
tion of stream channels (FPs and FNs). For example, 
more FNs were found in the south west while FPs were 
found in the eastern and northern regions. While the co-
ordinates themselves are not exerting controls on the 
channel head initiation, they capture many spatial gradi-
ents such as elevation, climate and even land use. South-
ern Sweden is characterized by an agricultural landscape 
while northern Sweden is mostly covered in forest. 
More FNs were found in south-western regions with 
high runoff during winter and on sedimentary soils 
which could be a result of agricultural drainage that con-
tributes to more stream channels. FP on the other hand 
were mostly found in drier regions towards the east 
where summer and spring runoff is lower as well as in 
northern Sweden. It’s difficult to interpret these results 
since it’s likely that both anthropogenic drainage sys-

tems for agriculture and forestry overlaps with quater-
nary deposits and topography. Additionally it’s im-
portant not to read too much into these results since the 
residuals showed extensive overlap and the model had 
low predictive power.

Despite difficulties in modelling something so var-
iable in space and time as small streams, the 2 ha 
stream channel network, while far from perfect, is still 
an improvement compared to the stream network on
the property map (MCC increased from 0.39 to 0.46 
(Table 1)), and therefore has many applications as a 
management tool. The 2 ha stream network can be 
used in forestry (Murphy et al. 2008a, 2008b) land-
scape planning and as best management practice as 
suggested by (Kuglerová et al. 2017). In forestry it can 
be used to, for example, plan off road driving (Ågren 
et al. 2015; Mohtashami et al. 2017) or design ma-
chine free zones on sensitive soils in riparian areas 
along the channels (Kuglerová et al. 2014). Thereby 
preventing increasing loads of sediment or mercury to 
surface waters (Kreutzweiser and Capell 2001). An 
important improvement compared to the property map 
is that it not only captures more headwater streams, 
the channels also follows the inundated channel in the 
DEM (Murphy et al. 2008a), placing the streams more 
correctly while streams on the property maps are lines 
drawn approximately where the streams are. These new 
derived stream channel networks also form an integrated 
drainage network where the amount of water to each 
stream section can be calculated. During road construc-
tion this can be used to correctly place and dimension 
culverts, which can decrease the problem with roads 
washing out during flood events (Prasad et al. 2005).
When such an event happens its costly not only for the 
land/road owner, it also comes at a cost for the down-
stream environments that receives increasing loads of 
sediment transport (Najafi and Bhattachar 2011). An-
other benefit of the connectivity in the newly mapped 
streams, reflecting the connectivity of water, is that ef-
fects can be traced upstream or downstream. For exam-
ple, any effect of a perturbation in the stream network at 
an upstream location (road construction, ditch cleaning, 
soil erosion, clear-cuts, ruts, etc.) can now be traced 
downstream. This can form an important planning tool 
in order to protect streams of high ecological status at a 
downstream site, as the quality there is not only reflect-
ing the management of the downstream site but also the 
sum of all upstream management.  

Another important use for the 2 ha stream network is 
for upscaling from process based studies to large scale 
budgets on any scale. Streams and rivers dominate the 
carbon dioxide emissions of inland waters and low order 
streams are suggested to be disproportional contributors 
emitting more than 70 % of the total stream and river 
CO2 (Raymond et al. 2013). Wallin et al. (2018) calcu-
lated the evasion from streams in Sweden and estimated 
a total loss of CO2 to 2.7 Tg C yr-1 and CH4 to 0.02 Tg 
C yr-1. These numbers were derived from a 400,000 km 



9

stream network based on a 50 m x 50 m DEM. This 
stream length would correspond to >30 ha stream chan-
nel initiation threshold while the 2 ha network had a 
length of 2 639 163 km or 6.6 times longer. Clearly, this 
indicates that the CO2 and CH4 evasion, during most 
part of the year apart from extreme dry situations in 
Sweden is even larger that the suggested numbers from 
Wallin et al. (2018). This illustrates how important ac-
curate stream networks are for both management and 
upscaling aquatic and climate research and constrain C 
emissions. 

5 Conclusions
The majority of the smaller (<6 m width) stream chan-
nels in this study were missing on the Swedish property
map. A more accurate stream network map has many 
uses in landscape planning and best management prac-
tice. Also, incorrect representations of stream networks, 
up to many times over, severely affect upscaling aquatic 
and climate research, a problem that increases with 
scale. This study clearly show that a solution to this is to 
map stream channel networks from high resolution dig-
ital elevation models. For the study region of Sweden, 
which was used as a test bench, a 2 ha flow initiation 
threshold yielded the optimum stream network, increas-
ing MCC from 0.387 on the property map to 0.463.
When applying the same methodology to other biomes 
it’s necessary to adapt the models and find the optimum 
flow initiation threshold for that unique landscape.
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Abstract
Comparisons between field data and available maps of wet areas show that 64 % of wet areas in the 
boreal landscape are missing on current maps. Primarily forested wetlands and wet soils near streams 
and lakes are missing, making them difficult to manage. One solution is to model missing wet areas 
from high resolution digital elevation models, using indices such as topographical wetness index and 
depth to water. However, when studying large areas working across large gradients in topography, 
soils and climate, it is not possible to find one method or one threshold that works everywhere. By 
using soil moisture data from the National Forest Inventory of Sweden as a training dataset, we show 
that it’s possible to combine information from several indices and thresholds, using machine learners, 
thereby improving the mapping of wet soils (kappa=0.65). The new maps can be used to better plan 
roads and generate riparian protection zones near surface waters.

Keywords: Digital elevation model; Machine learning; LiDAR; Random Forest; Soil classification; 
Wet area mapping

1 Introduction
Open peatlands are a recognisable feature in the boreal 
landscape that are commonly mapped from aerial pho-
tographs. However wet soils occur on tree covered peat-
lands (Creed et al. 2003), the riparian zones of forest 
streams and surrounding lakes (Gregory et al. 1991). 
Wet soils have lower bearing capacity than dry soils 
(Cambi et al. 2015) and are more susceptible to soil dis-
turbance from land use management with heavy ma-
chinery (Mohtashami et al. 2017). Off road driving with 
heavy machines can cause wet soils to deform and 
displace resulting in deeper tracks and larger soil 
disturbance than on dry soils where shallower tracks are 
caused by compation. Forestry conducted in close con-
nectivity with streams and lakes, have been shown to in-
crease the export of mercury (Eklöf et al. 2016) and nu-
trients (Kreutzweiser et al. 2008) to downstream envi-
ronments (Kuglerová et al. 2014).  Soil damage in ripar-
ian zones can also lead to erosion from ruts and subse-
quent sediment deposition burying important spawning 
habitats (Kreutzweiser and Capell 2001). Forested 
buffer zones and machine free areas near streams and 
lakes are commonly used to protect surface water during 
forestry activities but implementing these protective 
measures can be complicated due to poor planning tools. 
For example, Ågren et al. (2015) compared manually 
mapped streams to current maps and concluded that 60 
% of the perennial stream network and 80 % of all 
streams are missing from current maps in Sweden. This 

makes it difficult for managers to plan off road driving 
and protective measures, particularly buffer zones 
around streams (Laudon et al. 2016; Kuglerová et al.
2017).

Topographical modelling of wet area indices has 
been suggested as a solution to this problem (Murphy et
al. 2008) and high resolution digital elevation models 
(DEM) derived from Light Detection And Ranging (Li-
DAR) are becoming accessible in many countries, mak-
ing this a popular approach (van Leeuwen and 
Nieuwenhuis 2010; Guo et al. 2017). Topographic wet-
ness index (TWI) (Beven and Kirkby 1979) is often used 
to map wet areas but is sensitive to DEM resolution 
(Ågren et al. 2014) as well as which algorithms is used 
to calculate TWI (Sørensen et al. 2006). Creed and Beall 
(2009) later built on TWI with variable source area 
(VSA) to map cryptic wetlands and predict nitrogen 
transport to streams in Canada. Hjerdt et al. (2004) 
suggested downslope distance or downslope gradient in-
dex but this method requires catchment specific thresh-
olds to define wet areas. Wet area indices based on 
stream networks, such as elevation above stream (EAS) 
(Rennó et al. 2008) and cartographic depth to water 
(DTW) (Murphy et al. 2008), have already proven to be 
useful and DTW maps are used today in for example 
Sweden and Canada to plan forestry operations. How-
ever since they are based on stream networks it is nec-
essary to define a stream initiation threshold. Something 
that has proven to be difficult due to temporal dynamics 
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(Ågren et al. 2015) and spatial distribution of soils types 
(Ågren et al. 2014). An early attempt to include soil 
transmissivity in TWI was done by Beven (1986) and 
more recent attempts include both soil and climate 
(Güntner et al. 2004). Most of these topographical meth-
ods rely on the user to define appropriate threshold val-
ues in order to define wet areas. Ågren et al. (2014)
demonstrated that the optimal flow initiation threshold 
used to extract depth to water maps (DTW) varied 
greatly even on a local scale. Soil textures, topography 
and climatic differences make any application on a large 
scale difficult. To handle these limitations new methods 
are necessary. Such new methods include the use of ma-
chine learning (ML) in digital soil mapping (Maxwell et 
al. 2018). ML is a data mining technique that finds pat-
terns in datasets and uses these patterns to predict new 
data. Several ML algorithms are available (Hastie et al. 
2009) but the optimal method depends on the nature of 
the problem and it’s usually recommended to explore 
several algorithms (Maxwell et al. 2018).

The aim of this study is to evaluate if ML and na-
tional inventories data can be used with wet area indices 
and existing map data to generate more accurate maps 
of wet soils on a high resolution that can be used to plan 
forestry operations.

2 Materials and Methods

2.1 Study Site
Sweden is situated in Northern Europe between latitude 
55° and 70° N and longitude 11° and 25° E, which 
means that most of the country is within the boreal zone. 
Sweden is to 75% covered by glacial till while peat is 
the second most dominant soil type and covers 13 % of 
Sweden (Fransson 2018). According to the Swedish 
Land Cover database (based on satellite imagery) 
(Ansén 2004) the land cover in Sweden is; Forest 
63.0%, lakes 8.9%, open mire 8.7%,  heathlands 7.7%, 
arable land 6.1%, forested mire 2.8%, urban areas 2.3%, 
and other 0.6%. However the NFI estimates that 67 % 
of Sweden is forest land (Fransson 2018).

2.2 Field Data
The Swedish National Forest Inventory (NFI) started in 
1923. It contains both permanent plots with a radius of 
10 m and temporal plots with a radius of 7 m. Permanent 
plots inventoried between 2012 and 2016 were used for 
this study due to better accuracy in GPS positioning than 
temporal plots. The accuracy of these plots was within 
5 - 10 m. The NFI includes a random sampling of both
productive forestland (defined as areas with a potential 
yield capacity of >1 m3 mean annual increment per ha) 
and low-productive forest land (potential yield capacity 
of <1 m3 mean annual increment per ha) for example; 
peatlands, pastures, thin soils, rock outcrops and areas 
close to and above the tree-line. However, crop fields, 

urban areas, roads, railroads, and power lines are ex-
cluded from the random sampling. This means that the 
registrations of soil moisture gives a good representation 
of the distribution of soil moisture in the landscape out-
side of urban and arable areas. Further, only sites cov-
ered by the Swedish National DEM could be included 
in this study resulting in 19 645 plots (Figure 1). These 
plots where used as training data for the machine learn-
ing classification described in the classification section 
below. 

The NFI registers average soil moisture condition in
each plot based on vegetation patterns and the position 
in the landscape in five classes: Dry (6 %), mesic (54 
%), mesic–moist (27 %), moist (10 %) and wet (3 %)
(out of the sample plots on productive and non-produc-
tive forest land). Estimating soil moisture from vegeta-
tion is a way to ignore temporal variations and instead 
determine the general wetness regime. Here follows a 
short description on each soil class: 

Wet soil are soils normally open peatlands classified 
as bogs or fens, trees can occasionally occur but not 
in dense stands. The groundwater table is close to the 
soil surface and permanent ponds are common, soils 
are histosols or gleysols. The thickness of the organic 
layer is often >30 cm. One cannot walk dry footed on 
wet soils and it’s often not possible to cross wet soils 
with heavy machinery unless soils are frozen during 
winter.

Moist soils are areas with a shallow groundwater 
level (<1 m). Pools of standing water are visible in 
local pits. It’s possible to cross these areas dry footed 
in low shoes if you utilise higher lying areas and tus-
socks, however, a pool of water should form around 
the shoe in lower laying areas, even after dryspells. 
Soils are histosols or gleysols, they can also be cate-
gorized as regosols which is a taxonomic rest group.
Vegetation is dominated by wetland mosses (e.g. 
Sphagnum sp., Polytrichum commune, Polytri-
chastrum formosum, Polytrichastrum longisetum)
and (Sphagnum sp.) dominates local depressions. 
Trees show a course root system above ground and 
tussocks are common indicating an adaption to high 
groundwater levels in these areas, The thickness of 
the organic layer is not used to define moist areas but 
it is often >30 cm.

Mesic-moist soils are areas where the groundwater 
table is on average less than 1 m from the soil sur-
face. Normally flat areas on lower laying grounds or 
on lower parts of hillslopes. These soils wet up on a 
seasonal basis following snowmelt or rain. If you can 
cross these areas dry footed or not depend on the sea-
son. Wetland mosses (e.g. Sphagnum sp., Poly-
trichum commune, Polytrichastrum formosum, Poly-
trichastrum longisetum) are common and trees show 
a course root system above ground indicating that 
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high groundwater levels are common in these areas. 
Soils are humo-ferric to humus-podsols. The organic 
soils are thicker than on mesic soils and while pod-
sols are common the O-horizon is still often peaty 
(peaty moor).

Mesic soils consists of ferric podsols with a thin hu-
mus layer covered by mainly dry land mosses (e.g. 
Pleurozium schreberi, Hylocomium splendens, Di-
cranum scoparium). The groundwater table is on av-
erage 1- 2 m below the soil surface. Here you can 

walk dry footed even directly after rain or shortly af-
ter snowmelt. The organic layers are normally 4-10
cm.

Dry soils have the groundwater table at least 2 m be-
low the surface, course textured and found on hills, 
eskers, ridges and marked crowns. Soils are lepto-
sols, arenosols, regosols or podzols (the podzols have 
thin organic and bleached soil horizons).

Figure 1. The 19 645 NFI field plots are marked with black points. The density of field plots are higher in southern Sweden than 
northern Sweden and the white regions in north western Sweden were not yet scanned with LiDAR at the time of this study.
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Here we focus on a forest management perspective, 
where the main aim is to generate a map for forest soil 
trafficking. Wet soils are too wet to drive on unless fro-
zen or using technical aids. While it is possible to cross 
moist soils and mesic-moist soils with heavy machinery, 
it’s best to avoid them since they have a relatively low 
bearing capacity. The high wetness and high organic 
content of moist soils and mesic-moist soils makes them 
deform and displace easily, causing more soil disturb-
ance and deeper rut formation compared to the dryer 
more minerogenic dry and mesic soils where the tracks 
are shallower and normally only formed due to compac-
tion of soils (Williamson et al. 2000). Consequently, we 
divided the NFI dataset into two categories, “wet” and 
“dry”. Dry and mesic plots were classified in the “dry”
category (60 % of the NFI plots) while mesic-moist, 
moist and wet plots were classified in the “wet” category
(40% of the NFI plots). This means that the “wet” cate-
gory contains more mesic-moist plots than actual wet 
plots. Mesic-moist soils is not normally associated with 
open peatlands or wetlands but  the definition of soils <
1 m depth to the groundwater table as unsuitable for traf-
ficking also agrees with previous wet area mapping to 
define wet soils (Murphy et al. 2008; Ågren et al.,
2014). We argue that “wet” soils are more sensitive to 
runt formation and it’s better to traffic “dry” soils. To 
avoid confusion we write wet when we mean a more 
general description of wet conditions, and “wet” when 
we refer to new binary “wet”/”dry” grouping described 

above, this agrees with the terminology used in previous 
studies on wet area mapping (Murphy et al. 2008; Ågren 
et al. 2014), however “wet” soils are not necessarily wet, 
per se.

2.3 Variables Derived from the Digital Elevation 
Model
To locate “wet” soils several terrain indices were calcu-
lated that predict the location of “wet” soils based on the 
assumption that topography controls the groundwater 
flow. This study used the Swedish National DEM gen-
erated by the Swedish Mapping, Cadastral and Land 
Registration Authority using LiDAR data. This DEM 
has a cell resolution of 2 m * 2 m and was generated 
from a point cloud with a point-density of 0.5 - 1 points 
m-2 with a horizontal and vertical error of 0.1 m and 0.3 
m, respectively. The DEM was split into 2 818 sub 
catchments where each catchment had 2 km overlap 
with surrounding catchments to avoid edge effects when 
extracting streams. These sub catchments were pro-
cessed separately for topography (section 2.3.1), eleva-
tion above stream (section 2.3.3) and depth to water 
(section 2.3.4) and the outputs were mosaicked back to-
gether before the values were extracted to the field plots. 
All input layers and their utilized scales, thresholds and 
periods are summarized in table 1.

Table 1. The table summarizes the GIS layers used to model the distribution of “wet” and “dry” soils with machine learners.  Pre-
vious wet area maps used in forest management often consisted of just one method and threshold (DTW 1 or 2 ha stream initiation
threshold has been a common approach, but other methods have also existed). By combining several terrain indices, thresholds and 
variability in runoff and using a training data set (NFI) that captures the distribution of “wet” soils on productive and non-produc-
tive forest lands all over the country, it’s possible to generate an optimal “wet” area map across gradients in soil textures, topogra-
phy and climate. This is necessary when scaling up from a catchment scale to a national scale.

In-data map layers used to classify “wet” and 
“dry” area with machine learners

Utilized scales, thresholds and periods Source

Local topography Moving window with 5*5, 10*10, 20*20, 40*40 
and 80*80 grid cells

Calculated from the national 2 m DEM

Elevation Above Stream Stream initiation thresholds of 0.5 ha, 1 ha, 2 ha, 
5 ha, 10 ha, 15 ha and 30 ha

Calculated from the national 2 m DEM

Depth to Water Stream initiation thresholds of 0.5 ha, 1 ha, 2 ha, 
5 ha, 10 ha, 15 ha and 30 ha

Calculated from the national 2 m DEM

Topographic Wetness Index Resampled to a 24 m DEM and a 48 m DEM Calculated from 24 & 48 m DEM

Quaternary deposits From Swedish Geological Survey

Wetlands from the 1:12 500 scale property map From Swedish Mapping, Cadastral and 
Land Registration Authority

Runoff Spring, summer, autumn, winter and annual av-
erage runoff

Calculated with S-HYPE (Arheimer et
al. 2011)
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2.3.1 Local Topography
Local topography is recognized as an important factor 
for controlling soil moisture (Moeslund et al. 2013) and 
one way to extract values of local topography is to use 
the standard deviation elevation from a DEM. Here a 
moving window with 5*5, 10*10, 20*20, 40*40 and 
80*80 grid cells was used to calculate the standard de-
viation of elevation at each field plot. High values indi-
cates steep terrain while low values indicates flat terrain. 

2.3.2 Topographical Modelling to Extract Wet Soils
The DEM was pre-processed using a three step breach-
ing approach developed in Lidberg et al. (2017) in order 
to become hydrologically correct before it was used for 
hydrological modelling. Lidbergs approach was devel-
oped to be a reliable approach to correct the 2 m * 2 m 
Swedish DEM. 

A flow pointer grid and a flow accumulation grid 
were extracted from the hydrologically correct DEM us-
ing Deterministic-8 (D8) (O'Callaghan and Mark 1984).
D8 was chosen since it is computationally effective and 
the difference to more complex flow routing algorithm 
have been shown to be limited on high resolution DEMs 
(Leach et al. 2017). Streams were then extracted from 
the flow accumulation grid using stream initiation 
thresholds of 0.5 ha, 1 ha, 2 ha, 5 ha, 10 ha, 15 ha and 
30 ha. Lake and river polygons from the property map 
were converted to raster and merged with the previously 
extracted raster streams in order to create source layers 
with cells that represent surface water.   

2.3.3 Elevation Above Stream 
Elevation above stream (EAS) is calculated using the 
source layer containing surface water described above, 
the same D8 pointer grid as used to extract streams, and 
the original DEM. The elevation above stream is calcu-
lated as the difference in elevation between a grid cell in 
the landscape and its nearest source cell that represent 
surface water, measured along the downslope flow path 
determined by the D8 pointer grid (Rennó et al. 2008).
This was done for each of the source layers with the 
same stream initiation thresholds as mentioned above.

2.3.4 Depth to Water 
Depth to water (DTW) is similar to previously described 
elevation above stream since both calculates an eleva-
tion difference from a source grid to surrounding land-
scape. The difference is that depth to water calculates 
the elevation along the least-cost-path instead of the 
downslope flow path determined by the D8 grid. The 
cost is the slope of the DEM calculated by the equation 
(1) described by (Murphy et al. 2008).

(Equation 1)

 ( ) = [ ]  
Where dz/dx is the slope of a cell along the least-eleva-
tion path, i is a cell along the path, a equals 1 when the 
path crosses the cell parallel to cell boundaries and 2
when it crosses diagonally; xc represents the grid cell 
size (m).

2.3.4 Topographic Wetness Index 
Topographic wetness index (TWI) describes how likely 
an area is to be wet based on its specific catchment area 
and local slope as described in equation (2). Where As
is the specific catchment area and slope is the slope of 
the grid cells in degrees (Beven and Kirkby 1979).

(Equation 2)

= ln tan( )     
In this study it was calculated using the D-infinity flow 
routing algorithm (Tarboton 1997) which is better than 
D8 on coarser grids, and the wetness tool in Whitebox 
GAT 3.4. Since TWI is scale dependent we resampled 
the 2 m DEM to a 24 m DEM and a 48 m DEM as these 
has been found to be suitable resolutions for TWI calcu-
lations in the forested Krycklan catchment in northern 
Sweden (Ågren et al. 2014).

2.4 Other Factors Affecting the Hydrological 
Modelling
The quaternary deposit is an important factor for soil 
moisture since it determine permeability and drainage 
capacity of soils. Quaternary deposits were extracted 
from maps created by the Swedish Geological Survey. 
There are several maps of quaternary deposits in Swe-
den and the scale and coverage of these maps ranges 
from 1:25 000 (1.7 %), 1:50 000 (2.7 %) 1:100 000 (47 
%), 1:200 000 (1.4 %), 1:250 000 (21.2 %), 1:750 000 
(33.6 %) and 1:1 000 000 (100 %) (GET 2018). Some 
of these maps have significant overlap but the highest 
resolution map was always chosen in the overlapping 
areas. The quaternary deposits were merged by hydro-
logical function into five main categories: till soils, peat 
soils, course sediments, fine sediments, and rock out-
crops. Additionally open wetlands are more accurately 
mapped on the 1:12 500 scale property map so these 
were used in addition to the peat layer from the quater-
nary deposits map. There is considerable variability in 
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runoff between different regions in Sweden and across 
seasons (Figure. 2). A high runoff should reflect higher 
groundwater levels which in turn could affect the distri-
bution of wet soils. S-HYPE (Arheimer et al. 2011) was 
used to model seasonal and annual runoff in 33 605 sub-
catchments between 1982 and 2015. These variables 
will be referred to as “Spring”, “Summer”, “Autumn”, 
“Winter” and “Average”.  

Figure 2. An example of the variability of the landscape and climate in Sweden that could affect the hydrological modelling (section 
2.4) Here exemplified by; A) The Swedish national DEM B) Average winter runoff from the last 30 years. C) Average spring runoff 
from the last 30 years. 

2.5 Machine Learning Classification of Wet 
Areas
There are many different ML algorithms available (Has-
tie et al. 2009) and their use for soil classification has 
already been evaluated (Maxwell et al. 2018). Four 
commonly used ML algorithms were tested to generate 
predictions of “wet” and “dry” soils: artificial neural 
network (Ripley 1996), random forest (Breiman 2001), 
support vector machine (Chang and Lin 2011) and naïve 
Bayes classification (Bhargavi and Jyothi 2009). The R
package “Caret” (Kuhn et al. 2012) was used to evaluate 
all machine learners. Multicollinearity among variables 
was tested and variables with a correlation over 0.9 were 
excluded prior to analysis. The NFI dataset was split, 
randomly, into 75 % training data and 25 % test data and 

all ML algorithms where parameterized and tuned using 
a grid-search approach in combination with 10 fold 
cross validation to find the best fitting model. The tuned 
models were applied on the test dataset and evaluated 
using Cohen’s kappa index of agreement. 

Visual examination of maps has proved to be essen-
tial for assessing spatial ML predictions (Maxwell 
2018). Therefore, as a compliment to the statistical re-
sults that were based on the NFI test plots, we also ap-
plied the trained models to classify soil moisture in the 
Krycklan catchment (Laudon et al. 2013). This catch-
ment was chosen because the authors are familiar with 
the area and have conducted research there for over a 
decade. Wet areas and riparian zones have been mapped 
(Ågren et al. 2014), groundwater hot spots have been 
investigated (Leach et al. 2017), and culverts (Lidberg 



7

et al. 2017) have been mapped as well as temporal dy-
namics in the stream network (Ågren et al. 2015). The 
maps were used for visual inspection and compared to 
first-hand knowledge of the area.

2.6 Comparison with currently available maps
To be able to compare the performance of the ML wet 
area maps with today’s wet area maps, their perfor-
mance was also calculated (Table 2). We present data 
on the wet areas on the highest resolution map covering 
all of Sweden, the Swedish Property map (1:12 500) 
from Swedish Mapping, Cadastral and Land Registra-
tion Authority. In 2015, the Swedish Forest Agency 
(SFA) introduced a DTW map that is accessible online 
to private Swedish forest owners. The DTW map used 
by the SFA was calculated by setting two thresholds. 
The stream network initiation threshold which was set 
to 1 ha and the wet soil threshold defined as the depth to 
the modelled groundwater surface which was set to 1
m. These maps are presented in table 1 and Fig. 3 as ref-
erence.

3 Results

The wet area map from the property map (Figure 3A)
only correctly classified 36 % of all “wet” field plots 
(Table 2). In total it classified 74 % of “dry”/”wet” areas 
correctly (Table 2). The introduction of the SFA DTW 
map (Figure 3B) meant that the accuracy of the wet area 
maps improved and correctly classified 73 % of all 
“wet” field plots but it to also classified 17 % of all “dry”
field plots as “wet” (Table 2), indicating that the SFA 
DTW map is too wet. The ML maps (Figure 3C-F) per-
formed even better, where random forest (Figure 3C) 
and artificial neural networks (Fig. 3E) produced the 
best maps and classified 84 % of the “dry”/”wet” soils 
correctly (Table 2). Some ML models also have the abil-
ity to map probability of their classifications. Figure 4
show the probability (%) of an area being classified as 
“wet”.

Table 2. Summary of accuracy of currently available maps and performance of the ML models when predicting the test dataset. 
Overall accuracy is the percentage of field plots that were correctly classified. Accuracy “wet” is the percentage of all “wet” field 
plots that were correctly classified as “wet” and accuracy “dry” is the percentage of all “dry” field plots that were correctly clas-
sified as “dry”. The kappa value represents the level of agreement of two dataset corrected by chance.

Wet area map Overall accuracy Accuracy “wet” Accuracy “dry” Kappa value

Wetlands  from property map 74 % 36 % 99 % 0.39

SFA DTW map 79 % 73 % 82 % 0.55

ML Random forest 84 % 75 % 89 % 0.65

ML Support vector machine 82 % 68 % 90 % 0.60

ML Artificial neural network 84 % 74 % 90 % 0.65

ML Naïve Bayes 80 % 66 % 89 % 0.57
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Figure 3. Wet areas are superimposed on a hillshade of a DEM in the Krycklan catchment. A) The wetlands from the property map,
this map misses many of the wet areas. B) Swedish Forest Agency DTW map, this map has tendency to be too wet. Panel C-F
shows the “wet” class using different machine learners; C) random forest D) naïve Bayes E) artificial neural network F) support 
vector machine. Even the worst ML map (naïve Bayes) performed better than the SFA DTW map, but random forest and artificial 
neural networks had the best results. The kappa values stated in the panels represents the maps performance for the entire forest 
landscape, even though the panels show a very small subsection of the Krycklan catchment.

Figure 4. Example of probability (%) of predicted “wet” areas for one of the most accurate learner and the least accurate learner; A) 
random forest and B) Naïve Bayes. Areas with high probability of being classified as “wet” are red while areas with low probability 
of being classified as “wet” are green. The yellow areas in between is where the models are uncertain whether they should be classi-
fied as “wet” or “dry”.
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The importance of each variable varies and the contri-
bution to learner’s accuracy is estimated by excluding a
variable and examine that effect on the overall learner 
behaviour. The learner will have lower accuracy if an
important variable is missing. For example and in the 
case of random forest the three most important variables 
were standard deviation from elevation using a 5 cell 
moving window, a DTW map with 0.5 ha stream initia-
tion threshold, and topographic wetness index from a 24 
m DEM while the least important variables were the 
quaternary deposits (Figure 5). 

Figure 5. Important variables for the RF learner. Importance 
is measured as decrease in accuracy of the RF learner if the 
variable is excluded. Higher values indicate important varia-
bles. “DTW X” and “EAS X” refers to Depth to water and el-
evation above stream where X is the stream initiation thresh-
old they are based on. “TWI 24” is topographical wetness in-
dex from a 24 m DEM while “TWI 48” is TWI from a 48 m 
DEM. ”STDV” stands for standard deviation of elevation and 
the number specifies how many cells in the DEM that were 
used in the moving window. “Spring”, “Summer”, “Autumn”, 
“Winter” is average seasonal runoff while “Average” is aver-
age annual runoff. “Wetlands” refers to the wetland layer 
from the property map while the quaternary deposits are la-
belled “Till”, “Rock”, “Peat”, “C_Sed” (Course sediment), “F 
Sed” (Fine sediment). Finally “X_Coord”, “Y_Coord” and 
“Elevation” are the coordinates and elevation. Variables that 
were described in the method section but not listed in Figure 
5 were removed from the dataset due to multicollinearity.

4 Discussion
Several studies pointed that current maps of wet areas 
(Murphy et al. 2008) and stream networks (Benstead 
and Liegh 2012) are lacking in accuracy and has sug-
gested modelling from DEMs to enhance performance. 
Here we found that only 36 % of all “wet” field plots 
were mapped as wetlands on the property map (Table 
2) and since open wetlands and mires are easy to distin-
guish from aerial photos it’s likely that the remaining 64 
% of the “wet” plots are located on tree covered wet-
lands and in riparian zones. DTW maps have been intro-
duced in Sweden and Canada as forest management
planning tool (Ågren et al. 2014, 2015; Murphy, et al.
2008). The SFA DTW map performed better, but had a 
tendency towards being too wet since it had the lowest 
accuracy for “dry” field plots (Table 2). The major im-
provement with the SFA DTW map was that it also in-
cluded wet areas near streams, the riparian soils (Figure
3B). However, there is regional and local variability in 
stream networks and extent of riparian soils depending 
on climate, soil permeability and terrain topography
(Figure 2) (Ågren et al. 2014). This complex landscape 
variability can be captured by utilizing machine learners 
that uses automated data mining methods to discover 
patterns in large data sets (Heung et al. 2016). In our 
case 19 645 field plots on soil moisture were used to 
train learners to predict “wet” soils, pixel by pixel, 
throughout many different landscapes by combining the 
information in all input layers (Table 1). 

Figure 5 showed that the three most important varia-
bles for the random forest learner were DTW, standard 
deviation from elevation using a 5 cell window (which 
reflects local topography), and topographic wetness in-
dex from a 24 m DEM. Average summer runoff also 
ranked high, indicating that both very small scale varia-
tions in local topography and large scale variations in 
climate needs to be considered when mapping wet areas.
This agrees with other studies highlighting the complex 
controls of the distribution of wet soils on both local 
(Ågren et al. 2014) and regional scales (Jackson 1999). 
Using ML improved performance of the wet area maps 
and the two best maps; random forest (Figure 3C) and 
artificial neural networks (Figure 3E) classified 84 % of 
the “dry”/”wet” soils correctly (Table 2), with a kappa 
of 0.65. It should be noted and because the training da-
taset do not contain data from arable areas and urban ar-
eas, the models are only valid for two-thirds of the land 
area in Sweden. In other words, productive forestland 
and low-productive forestland (peatlands, pastures, thin
soils and rock outcrops, areas close to and above the 
tree-line). Here we used the Swedish productive/non-
productive forests landscape as a test bench to develop 
a methodology of using several digital terrain indices 
and many thresholds together with machine learning to 
develop more accurate maps of wet areas. The same 
methodology can be used in other countries that have a 
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high resolution DEM and soil moisture data. Including 
additional terrain indices, satellite imagery and vegeta-
tion cover (Were 2015; Maxwell et al. 2017) could po-
tentially also improve the accuracy of these maps in the 
future. 

The developed maps have a high applicability and 
can be used to plan forest management in a way that re-
duces the effects on surface waters (Ågren et al. 2014). 
In Sweden, where cut-to-length forestry is the norm, for-
est soil trafficking is conducted by a harvester that cut 
trees to length and a forwarder that extracts timber, but 
also during thinning, fertilization, site preparation and 
harvest of logging residues for energy production
(Ågren et al. 2015). This is also where the probability 
maps (Figure 4A show one of the maps with the best 
performance) can be used to plan off-road driving, es-
pecially the placement of extraction roads which suffer 
repeated heavy loads (a large laden forwarder can weigh 
40 metric tons) during clear-cut. These extraction roads 
should not be placed in the red areas of Figure 4A to 
avoid soil damage. Yellow areas in Figure 4A are where 
the map is most likely to be inaccurate and extra care 
should be taken by the user while green areas are more 
suitable for driving.

The maps can also be used to balance the green en-
ergy targets (EU Renewable Energy Directive) and sur-
face water protection (EU Water Framework Directive) 
by planning extraction of logging residues for energy 
production. On “wet” soils we recommend leaving the 
logging residues to reinforce the soils, by building slash 
mats to decrease the loads of the heavy machinery
(Cambi et al. 2015) and thereby reduce the negative 
effects on surface waters. In “dry” areas, where soils 
have a higher bearing capacity, we suggest that the log-
ging residues are harvested for bioenergy. The maps can 
be used in a first step of site planning but should be field 
validated during operations. There is also significant 
temporal variability in distributions of wet soils (Figure
2B&C), that are not taken into account in these maps 
(Figure 3). During winter when soils are frozen or dur-
ing very dry conditions, it will be possible to traffic parts 
of the area marked as “wet”. This is something practi-
tioners are well aware of and utilize. However, the plan-
ning can be simplified by this maps that indicate the traf-
ficability during periods of above average run off due to 
snow melt and rain. During extremely wet conditions al-
most all soils become wet or moist and are more suscep-
tible to rut formation (Mohtashami et al. 2017). There-
fore, it’s common to find ruts outside the areas marked 
as “wet” in the maps (Figure 3B) (Mohtashami et al. 
2017). However, forestry operations in the “dry” areas 
on the map (Figure 3) pose a smaller risk for increased 
sediment transport and nutrient/mercury leaching than 
operations in the “wet” areas where the connectivity to 
surface waters are higher (Ågren et al. 2015). The maps 
can also be used to plan hydrologically adapted protec-
tion zones near streams. Hydrologically adapted protec-
tion zones are better than using a fixed-width approach 

and offers an optimized site-specific riparian buffer 
when it comes to protection of ecological values (Greg-
ory 1991) of riparian zones (Kuglerová et al. 2014). Hy-
drologically adapted riparian protection zones have also 
been found to be more cost-effective than fixed-widths 
zones (Tiwari et al. 2016). Hence, implementing the 
maps developed in this study (Figure 3&4) are a strate-
gic option to meet both protection and production goals. 
Future research entails investigating if the maps can be 
used to further improve forest growth models used on a 
stand level or for national estimates,  and whether they 
can be used in for example biogeochemical or ecologi-
cal research.

5 Conclusions 
Here we demonstrated that machine learning can be 
used to create new and more accurate high resolution 
maps of wet soils. These maps are better than previously 
used fixed threshold DTW maps. The new maps can for 
example be used to suggest machine free zones near 
streams and lakes in order to prevent rutting from for-
estry machines in order to reduce sediment, mercury and 
nutrient loads to downstream streams, lakes and sea.
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Abstract
Forested riparian protection zones and machine-free areas near streams and lakes are commonly used 
to protect surface water during forestry activities. Fixed width protection zones are easy to plan and 
implement for managers but such tree-covered strips with uniform width do not take small scale vari-
ations into account. Here 36.8 km of field mapped riparian zones around headwater streams were used 
to evaluate the performance of topographically-delineated riparian protection zones (i.e., variable-
width protection zones, a.k.a. hydrologically adapted protection zones). The best combinations of
stream net-work and vertical thresholds for the topographically-delineated riparian zones were more 
accurate than any fixed width buffer at capturing the small-scale variations within the riparian zone.

However, since hydrologically-adapted buffers are based on modelled stream networks and rely on 
user set thresholds for stream initiation, it is necessary to adjust these maps for differences in subsur-
face geology, soil type and climate when working across physiographical regions. Machine learning 
could be successfully used to make these adjustments, but field data across larger spatial scales are 
required in order to train a machine learner.

Keywords: Wet area mapping; LiDAR; Riparian buffer; Soil classification; Digital elevation model; 
Random Forest

1 Introduction
Riparian zones constitutes the interface between terres-
trial and aquatic environments and they provide numer-
ous ecosystem services such as reduce export of nutri-
ents (Gundersen et al. 2010) and suspended sediments 
from forestry operations (Kreutzweiser and Capell 
2001). Riparian zones also regulate pH of streams (Cole 
et al. 2007), shading, temperature (Luke et al. 2007) and 
water quality (Kreutzweiser et al. 2013). Therefore, the 
utilization of protection zones (also known as riparian 
buffers) near streams are an important practice to protect 
surface waters in the boreal zone during forestry opera-
tions. Current management practices varies between 
countries due to different legislation (Ring et al. 2017)
but fixed width buffers of 1-30 meter are commonly 
used along fluvial systems (Kuglerová et al. 2017).
Fixed width buffers are easy to plan and implement for 
managers. Despite that  they offer some protection they 
are often  criticized since they are normally tree-covered 
strips with uniform age structure and width that do not 
take into account small scale variations (Richardson et 
al. 2012; Laudon et al. 2016). There are many reasons 
why a hydrologically-adapted, variable width buffer 

would give a better environmental protection. For exam-
ple, some ecosystems are reliant on some periodic dis-
turbance (Kreutzweiser et al. 2012) and some of this nat-
ural disturbance can be emulated by taking small-scale 
hydrological features into account during harvesting. 
Groundwater generally follows surface topography of
compacted glacial till soils (Bishop et al. 2011) and con-
verge in valleys. As these valleys leads towards the ri-
parian zone they create discrete riparian inflow points
(DRIPs) (Ploum et al. 2018). Leach et al. (2017) com-
bined distributed temperature-sensing instrumentation 
with water isotope composition along a 1500 m head-
water stream in boreal Sweden and showed that topog-
raphy-based predictions of DRIPs were generally accu-
rate. Furthermore, Kuglerová et al. (2014a) showed that 
that this local groundwater input increased vascular 
plant species richness between 15% and 20%, possibly 
due to an increase in soil pH and nitrogen availability in 
wet soils. This relationship between groundwater dis-
charge and elevated plant species richness was observed 
from zero-order basins to a seventh-order river 
(Kuglerová et al. 2014a). Finally the hydrological con-
nection between riparian zones and biogeochemical 
sources in upland soils means that riparian zones have 
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an important role in regulating water quality across 
small spatial scales (Laudon et al. 2016). Implementing 
hydrologically adapted forest buffers can also increase
tree production. Tiwari et al. (2016) compared the cost 
of fixed width and Hydrologically-Adapted Buffers
(HAB) and concluded that protecting forest in HABs is 
cheaper per unit area compared to fixed-width buffers. 
This is because HABs contain more wetlands and low 
productive forest areas with more non-commercial tree 
species (e.g., birch). Small-scale hydrological variations 
need to be included into forest management but they are 
difficult to implement in practice due to the poor quality 
of current maps in forested landscapes. Maps are tradi-
tionally derived from aerial imagery where small 
streams (Bishop et al. 2008) and wetlands (Creed et al. 
2003) are hard to detect due to dense forest canopy 
cover. As a result, many small hydrological features in 
forested areas are missing from current maps. Ågren et 
al. (2015) showed that, depending on season, 58% to 76 
% of all streams were missing in a study catchment in 
northern Sweden. Additionally, Lidberg et al. (article 3 
in this thesis) showed that current maps (the Swedish 
Property map) only captured 36% of the wet areas in the 
forest landscape. These unmapped streams and associ-
ated wet soils are a challenge for forest managers who 
are tasked with planning forestry operations such as pro-
tective zones near water. 

Recent developments in remote sensing including 
Light Detection and Ranging (LiDAR) presented new 
possibilities to map small streams and associated wet 
soils using high resolution digital elevation models 
(DEMs) and topographical modelling. For example, 
Murphy et al. (2007) introduced a method to map ripar-
ian zones named Depth To Water (DTW) and Rennó et 
al. (2008) suggested another approach based on the El-
evation Above nearest Stream cell (EAS). These meth-
ods have already proven to be useful and DTW maps are 
used today in for example Sweden and Canada to plan 
forestry operations such as driving near streams and 
lakes. DTW maps are based on stream networks so it is
necessary to define the minimum catchment area re-
quired to form a stream head, also known as stream ini-
tiation threshold. Defining stream initiation thresholds 
has been difficult due to temporal hydrological dynam-
ics (Ågren et al. 2015) and spatial distribution of soils 
(Ågren et al. 2014). This is especially prominent when 
working over larger scales and multiple physiographic 
regions.  

In this study we aim to answer a number of research 
questions: Which modelling method - Depth to water 
(DTW) or Elevation above nearest stream cell (EAS) -
is better for capturing the small scale variability in wet 
soils near stream channels? Is one method consistently 
better than the other or do they perform differently in 
different physiographic regions? Is it possible to model 
the variability of the riparian soils throughout the boreal 
zone using only one method and one threshold for the 
stream networks and lateral expansion of riparian soils, 
or do the models need to be adjusted to local conditions?  
To answer these questions, we field-mapped riparian 
soils in three different areas in the boreal zone and used 
this data to ground-truth available maps, using a range 
thresholds for both methods. A second aim of this study 
is to focus on DEM derived wet area map that are used
in forest management today. As field mapping the ripar-
ian soils is very time consuming it’s impossible to use 
field mapping as a method for generating riparian maps 
on a regional or national scale. When conducting forest 
management, forest companies need to manage the ri-
parian buffers, and as a hydrologically adapted zone has 
many benefits, some forest companies have imple-
mented wet area maps such as DTW or similar in their 
daily practice. However, how well do these maps per-
form? Do they capture the variability of the riparian 
zone? Can they be improved using the answers from our 
research questions? 

2 Materials and Methods

2.1 Study sites and field data
To constrain the thresholds for the stream networks and 
lateral expansion of riparian soils along the stream net-
works, three study areas with different properties were 
selected for this study. Field data of riparian zones were 
collected in three catchments; Norralaån in central Swe-
den, Krycklan in northern Sweden and Black Brook in 
north-western New Brunswick, Canada (Figure 1). All 
study catchments lie in the boreal zone and have a his-
tory of forest management, however, the central part of 
the Krycklan catchment is not currently managed for 
forestry. Below follows a brief description of each study 
area and a summary of the topographical characteristics 
can be found in Table 1. 
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Table 1: Topographical characteristics of the study areas and climate characteristics. Elevation and slope are derived from a 2 m
DEM and stream order were based on a 0.5 ha stream initiation threshold.

Elevation (m) Slope (°) Climate Stream order

Min Max Mean SD Min Max mean SD Precipita-
tion 
mm/year

Mean an-
nual tem-
perature 
(°C)

Min Max Mean

Krycklan 176 296 234 29 0 56 6 5 614 1.8 1 6 3.3

Norralaån 22 279 138 61 0 74 7 6 600 3 1 8 3.7

Black 
Brook

234 392 315 29 0 75 10 7 1104 3.5 1 6 3.2

2.1.1 Krycklan
Krycklan is the northernmost study catchment situated 
in northern Sweden, and is a tributary to the Vindeln 
River. Krycklan is a 68 km2 research catchment (Laudon 
et al. 2013) but in this study we only focus on the sub-
section of the catchment that was field-mapped. The 
bedrock is mainly metasediments/metagraywacke and 
the catchment was glaciated around 10 000 years ago. 
Quaternary deposits are dominated by till. Well-devel-
oped iron podzols dominate the forest floor while peat 
has developed in peatlands and near streams in the ri-
parian zone. The topography is gentle compared to the 
other catchments as indicated by the low slope and 
standard deviation of the elevation (Table 1). The forests 
are dominated by Scots pine and Norway spruce and the 
land use is a mix of forestry and a protected research
area.

2.1.2 Norralaån
Norrlanån is the largest catchment and has its outlet in 
the Baltic Sea. The bedrock is mainly metamorphic 
granitoid and the catchment was glaciated around 9 000 

years ago. Quaternary deposits are dominated by till on 
hillsides while sorted glacial and post glacial sediments 
can be found in the valleys. Since the area has risen from 
the sea due to isostatic rebound wave washing has 
moved soil from hilltops and deposited finer sediment 
in lower areas of the catchment. The forests are domi-
nated by Scots pine and Norway spruce and the main 
land-use is forestry followed by agriculture. Streams 
mapped in Norralaån were on average slightly larger 
than the other catchments based on stream order (Table 
1).

2.1.3 Black Brook
The quaternary deposits in Black Brook is composed 
mainly of till with Ordovician–Devonian sedimentary 
rocks along generally undulating to rolling terrain, and 
deep, loamy soils in areas of low relief and shallow, 
stony soils in higher terrain (Erdozain et al. 2018). The 
dominating vegetation cover is sugar Maple, Yellow 
Birch and Balsam Fir (Furze et al. 2017). Black Brook 
was also glaciated like the other catchments until around 
10 000 to 12 000 years ago.
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Figure 1: The three study catchments are marked by black points. Black Brook is located in north western New Brunswick, Canada 
while Norralaån and Krycklan are located in central and northern Sweden, respectively.

2.1.4 Field mapping of riparian zones
Field data of wet riparian zones were mapped along 36.8 
km of streams (25 km in Norralaån, 6.3 km in Krycklan 
and 5.5 km in Black Brook) using high precision GPS 
and estimated soil moisture. There is significant tem-
poral variability in the distributions of wet soils (Ågren 
et al. 2015) so vegetation communities were used as a 
proxy for average soil moisture conditions instead of di-
rect measurements. The riparian zones were mapped by 
walking along the outer edge of wet areas and continu-
ously logging GPS coordinates. This resulted in poly-
gons encompassing wet riparian zones on both sides of
the streams (Figure 2 and 3).

2.2 Digital mapping of riparian zones

2.2.1 Generating stream networks from a digital 
elevation model.
A 2 m DEM was created for Black Brook from a LiDAR 
point cloud using the tool “bare earth DEM” in 
Whitebox GAT (Lindsay 2014). The 2 m Swedish na-
tional DEM from the Swedish Mapping, Cadastral and 
Land Registration Authority, was used for both Swedish 
catchments. DEMs need to be pre-processed in order to 
become hydrologically correct before they can be used 
for hydrological modelling (Marks et al. 1984) and 

breaching has proven to be a reliable approach in Swe-
den (Lidberg et al. 2017). Therefore the DEMs were cor-
rected by a two-step breaching approach: 

1. Stream lines from the property map were burned 
across road lines from the property map using the 
tool “burn streams at roads” in Whitebox GAT 3.4 as 
described by (Lidberg et al. 2017).

2. Remaining sinks were resolved by the complete 
breaching algorithm developed by (Lindsay 2015)
using Whitebox tools (Lindsay 2018).

A flow pointer grid and a flow accumulation grid were 
extracted from the hydrologically-corrected DEMs us-
ing a Deterministic-8 (D8) algorithm (O'Callaghan and 
Mark 1984). D8 was chosen since it is computationally-
effective and the difference to more complex flow rout-
ing algorithm has been shown to be limited on high res-
olution DEMs (Leach et al. 2017). Streams were then 
extracted from the flow accumulation grid using stream 
initiation thresholds of 0.5 ha, 1 ha, 2 ha, 4 ha, 8 ha, 16 
ha. 

2.2.2 Generating hydrologically adapted buffer zones

2.2.2.1 Elevation Above Stream 
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Elevation above stream (EAS) generates a hydrologi-
cally adapted variable width riparian zone, with a wider 
wet zone in flat terrain and narrower in steep terrain
(Figure 2). EAS was calculated using the source layer 
containing the extracted streams described above, the 
same D8 pointer grid as used to extract streams, and the 
original DEM. The elevation above stream was calcu-
lated as the difference in elevation between a grid cell in 
the landscape and its nearest source cell that represent 
surface water, measured along the downslope flow path
determined by the D8 pointer grid (Rennó et al. 2008; 
Jencso et al. 2009; Nobre et al. 2011). This was done for 
each of the source layers described above with stream 
initiation thresholds of 0.5 ha to 16 ha, a low threshold 
means more stream channels and hence more wet areas. 
The expansion of the wet areas around the stream net-
works was also modelled using different vertical thresh-
olds (0.5, 1 m, 1.5 m and 2 m), where a small threshold 
generates a narrower riparian zone and a high threshold 
generates a wider riparian zone.

2.2.2.2 Depth To Water 
Depth to water (DTW) also generates a hydrologically 
adapted variable width riparian zone, with a wider wet 
riparian zone in flat terrain and narrower riparian zone 
in steep terrain (Figure 2b and Figure 2c). However, it 
is calculated in a different way. While both methods cal-
culates an elevation difference from a source grid 
(stream grid) to surrounding landscape, depth to water 
calculates the elevation along the least-cost-path instead 
of the downslope flow path determined by a D8 grid. 
The cost is the slope of the DEM calculated by the equa-
tion (1) described by (Murphy et al. 2009; Murphy et al. 
2011).

(Equation 1)  ( ) = [ ]
Where dz/dx is the slope of a cell along the least-eleva-
tion path, i is a cell along the path, a equals 1 when the 
path crosses the cell parallel to cell boundaries and 2
when it crosses diagonally; xc represents the grid cell 
size (m). This was done for each of the source layers 
described above with stream initiation thresholds of 0.5 
ha, 1 ha, 2 ha, 4 ha, 8 ha, and 16 ha. The expansion of 
the wet areas around the stream networks was mod-
elled using different vertical thresholds (0.5, 1 m, 1.5 
m and 2 m).

2.3 Maps currently used in management 
In this section we compare different map sources avail-
able for forest companies in Sweden and Canada today. 
First we evaluate the performance of the topographical 
maps (the scale of the Swedish map was 1:12 500) and 
the scale of the Canadian map was 1:5 500). Fixed-
width buffers of 5 m, 10 m, 20 m, 30 m and 40 m were 

applied to stream lines from the topographical maps. 
These were used as a baseline reference. 

The Swedish Forest Agency (SFA) introduced a 
DTW map in 2015 that is accessible to private Swedish 
forest owners (SFA DTW). The DTW map used by the 
SFA was calculated by setting two thresholds, a stream
initiation threshold which was set to 1 ha, and a height 
above stream threshold which was set to 1 m. A similar 
DTW map is available in New Brunswick, Canada, and 
is in use by the forest company J.D. Irving in Black 
Brook (NB DTW). This DTW map has a stream initia-
tion threshold of 4 ha and height above stream threshold 

1 m. 
Finally, we evaluated a version of the machine learn-

ing (ML) wet area map (WAM) suggested by Lidberg 
(article 3 in this thesis) in the two Swedish catchments. 
It could not be applied in Canada as the model has not 
been trained on the Canadian landscape. This machine 
learning wet area map (MLWAM) was predicted by a 
machine learner trained on field plots from the Swedish 
national forest inventory and is designed to capture all 
wet areas in the productive and non-productive forest 
landscape. This means that the map show both large 
open wetlands and riparian soils along stream networks 
and lakes, but here we only analyse how well it captures 
the riparian zone. In article 3 several machine learners 
were evaluated, here we only evaluate the machine 
learner Random Forest since it was one of the most ac-
curate in article 3.

2.4 Statistical evaluation of the riparian maps 
500 points were randomly generated for each hectare of 
field mapped riparian zone. Then an equal amount of 
points were randomly generated outside the riparian 
zone, but no further than 50 m from the outer edge of 
the field mapped riparian zone. This limit of 50 m was 
somewhat arbitrary but the idea was to avoid points on 
wetlands or other wet areas further away from the ripar-
ian zone, and also focus on the small scale variability 
near streams. All the maps described above were then 
extracted to each point. Points inside the field-mapped 
riparian zone were labelled as wet and the points outside 
were labelled as dry. Cohen’s kappa index of agreement 
was used to evaluate the performance of each method 
compared to the field mapped riparian zones. Kappa is 
a more robust way to assess accuracy than simple per-
cent agreements. All further mentions of accuracy is re-
ferring to the kappa value. 
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3 Results

3.1 Hydrologically adapted buffer zones

There was not one method that worked well across all 
catchments, rather each catchment required specific 
thresholds (Table 2). Most methods were more accu-
rate in Black Brook compared to the Swedish catch-
ments. 

3.1.1 Krycklan
The best methods had a moderate agreement with the 
field data but the most accurate method was EAS from 
a 2 ha stream network and 2 m vertical threshold with a 
kappa value of 0.53. DTW from a 1 ha or a 2 ha stream 
network also performed well with marginally lower 
kappa values of 0.52. Fixed-width buffers were less ac-
curate than DTW < 1 m and EAS < 2 m regardless of 
stream initiation threshold (Table 2).  

3.1.2 Norralaån
All methods were most accurate when applied to the 2 
ha stream network and DTW < 0.5 m was the most ac-
curate method with a kappa value of 0.48. Most methods 
had a lower accuracy in Norralaån than the other catch-
ments with only fair to moderate agreements with the 
field data. Note that a 10 m fixed-width buffer was more 
accurate than the most accurate EAS method.

3.1.3 Black Brook
All methods had a substantial agreement with the field 
data in Black Brook and the most accurate method was 
DTW < 1.5 m based on an 8 ha stream network with the 
kappa value 0.75. In fact all methods, including fixed 
width buffer, performed well using the 8 ha stream net-
work in Black Brook. 

Table 2. Kappa values of the topographically derived ripar-
ian zones. Depth To Water (DTW), Elevation Above Stream 
(EAS) and Fixed-Width buffer (FW). The top row refers to the 
flow initiation threshold and the first column refers to the 
vertical threshold used. The best threshold for each method is 
highlighted in bold. 

Krycklan 0,5 ha 1 ha 2 ha 4 ha 8 ha 16 ha

DTW 0.5 m 0.5 0.48 0.43 0.4 0.38 0.36

DTW 1 m 0.49 0.52 0.52 0.5 0.48 0.46

DTW 1.5 m 0.41 0.46 0.50 0.50 0.5 0.48

DTW 2 m 0.31 0.38 0.45 0.46 0.45 0.45

EAS 0.5 m 0.33 0.30 0.27 0.24 0.23 0.22

EAS 1 m 0.49 0.46 0.44 0.41 0.39 0.39

EAS 1.5 m 0.52 0.51 0.51 0.48 0.46 0.46

EAS 2 m 0.50 0.51 0.53 0.5 0.49 0.49

FW 5 m 0.34 0.32 0.28 0.26 0.24 0.23

FW 10 m 0.44 0.42 0.39 0.36 0.34 0.33

FW 20 m 0.38 0.42 0.42 0.4 0.38 0.39

FW 40 m 0.14 0.21 0.26 0.28 0.27 0.3

Norrarlaån 0.5 ha 1 ha 2 ha 4 ha 8 ha 16 ha

DTW 0.5 m 0.44 0.47 0.48 0.47 0.45 0.42

DTW 1 m 0.35 0.4 0.44 0.44 0.43 0.41

DTW 1.5 m 0.26 0.31 0.35 0.36 0.37 0.37

DTW 2 m 0.19 0.23 0.27 0.29 0.3 0.31

EAS 0.5 m 0.25 0.3 0.25 0.24 0.22 0.20

EAS 1 m 0.29 0.31 0.32 0.31 0.29 0.27

EAS 1.5 m 0.27 0.29 0.31 0.31 0.29 0.28

EAS 2 m 0.23 0.26 0.28 0.28 0.27 0.27

FW 5 m 0.34 0.34 0.34 0.32 0.31 0.29

FW 10 m 0.40 0.42 0.43 0.41 0.41 0.38

FW 20 m 0.32 0.37 0.41 0.4 0.39 0.37

FW 40 m 0.10 0.15 0.19 0.20 0.21 0.21

Black Brook 0.5 ha 1 ha 2 ha 4 ha 8 ha 16 ha

DTW 0.5 m 0.59 0.58 0.57 0.56 0.56 0.54

DTW 1 m 0.63 0.67 0.7 0.72 0.72 0.71

DTW 1.5 m 0.58 0.65 0.71 0.73 0.75 0.74

DTW 2 m 0.52 0.6 0.67 0.70 0.73 0.73

EAS 0.5 m 0.4 0.37 0.36 0.34 0.33 0.32

EAS 1 m 0.59 0.57 0.56 0.53 0.53 0.52

EAS 1.5 m 0.66 0.7 0.66 0.65 0.64 0.63

EAS 2 m 0.66 0.69 0.7 0.69 0.7 0.7

FW 5 m 0.37 0.37 0.37 0.36 0.35 0.34

FW 10 m 0.49 0.53 0.57 0.56 0.57 0.55

FW 20 m 0.36 0.47 0.55 0.58 0.6 0.59

FW 40 m 0.08 0.17 0.26 0.3 0.33 0.33
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Figure 2: The most accurate combinations of stream initiation threshold and vertical threshold in all catchments. White shaded areas 
are more than 50 meter away from the field mapped riparian zone and were excluded from the statistical analysis in order to avoid 
wetlands or other wet areas further away from the riparian zone. The most accurate method in Krycklan was EAS 2ha with vertical 
threshold 2 m. The 2 ha stream network was also the most accurate in Norrarlaån but using DTW with a vertical threshold of 0.5 m. 
DTW was also the most accurate method in Black Brook but with a 8 ha stream network and 1.5 m vertical threshold. Note that the 
figure only show small subsections for each site, however, the kappa values stated on the map are evaluated on the entire areas.

3.2 Implications for management

Fixed-width buffers around streamlines from topo-
graphical maps only had a slight to fair agreement in the 
two Swedish catchments but performed better with fair 
to moderate agreement in Black Brook. However the 
DTW maps that are used in practice today performed 
better and both the SFA DTW map with national cover-
age of Sweden and the NB DTW map were more accu-
rate than fixed width buffers from corresponding topo-
graphical map. The MLWAM suggested in article 3 was 
trained to map wet areas in general, and not riparian 
zones in particular, but still had a moderate agreement 
with field mapped riparian zones from both Krycklan 
and Norralaån and was slightly more accurate than the 
SFA DTW map (Table 3).

The currently used methods were applied in each 
catchment for visual evaluation since the statistical 
numbers alone do not tell the whole story (Figure 3). 
The baseline was the most accurate fixed-width buffer 
from current topographical maps. The SFA DTW map 

was used in the two Swedish catchments and the NB 
DTW map was used in the Black Brook catchments. 

Table 3: Kappa values of currently used maps of riparian 
zones in the study catchments. Topo X m, means fixed width 
buffers along the stream networks on topographical maps. 
SFA DTW and NB DTP are the depth to water maps in use by 
the Swedish Forest Agency and in New Brunswick, respec-
tively. MLMAW is the machine learning wet area map devel-
oped by Lidberg et al. (article 3)

Krycklan Norrarlaån Black Brook

TOPO 5 m 0.13 0.20 0.29

TOPO 10 m 0.24 0.27 0.51

TOPO 20 m 0.33 0.27 0.59

TOPO 30 m 0.34 0.21 0.51

TOPO 40 m 0.29 0.14 0.36

SFA DTW 0.52 0.40

NB DTW 0.72

MLWAM 0.54 0.41
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Figure 3. The top row is the most accurate fixed width-buffer from topographical maps in the respective catchment: 30 m in Kryck-
lan, 10 m in Norrarlaån and 20 m in Black Brook. The second row is the DTW map used in practice today in respective area, light 
blue is the 1 m threshold and dark blue is DTW close to 0 m (depth to the modelled groundwater level). MLWAM is a wet area map 
suggested in article 3 of this thesis. The MLWAM is coloured by probability of a cell being classified as wet, light blue > 50 % 
probability and dark blue is close to 100 % probability. White shaded areas are more than 50 meter away from the field mapped 
riparian zone and were excluded from the statistical analysis in order to avoid wetlands or other wet areas further away from the 
riparian zone.

4 Discussion
Stream networks from current topographical maps are 
often missing small headwater streams in forested areas 
(Ågren et al. 2015) and mapping riparian zones around 
headwater streams using fixed width-buffers from these 
stream networks resulted in inaccurate maps (Table 5). 
This highlights the importance of a new approach to aid 
practitioners in planning riparian protection zones
around these small streams (Murphy et al. 2008; Ågren 
et al. 2015; Ågren and Lidberg (article 2 in this thesis)).
These headwaters make out the majority of any given 
stream network and are the capillaries of the stream net-
works and the associated riparian soils hence form an 
important contact area between land and surface waters. 
However, we know little about them and they are known 
as Aqua Incognita (Bishop et al. 2008; Kuglerová et al. 

2017). It is of high interest both to scientist and to prac-
titioners to be able to map these areas correctly. Chignell 
et al. (2018) recently used an integrative modelling ap-
proach to model riparian zones in the Cache la Poudre 
River watershed, Colorado, USA with the rather impres-
sive under the curve values of 0.98. However most stud-
ies uses course resolution data (Baker et al. 2006) or fo-
cuses on riparian zones around large streams or rivers 
(Johansen et al. 2010; Jeong et al. 2016).

In this study we focused on relatively narrow riparian 
zones around headwater streams. We manually mapped 
wet riparian zones in three catchments in order to eval-
uate potential riparian protection zones derived from 
high resolution DEMs. The results from Black Brook 
were encouraging with kappa values of NB DTW of 
0.72 while the results from Krycklan and Norralaån 
were less satisfying with SFA DTW kappa values of 
0.52 and 0.40, respectively (Figure 3). Selecting the op-
timal method/threshold improved the maps slightly with 
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kappa values of 0.75 in Black Brook, 0.53 in Krycklan 
and 0.48 in Norralaån (Figure 3). However, the variabil-
ity in kappa values between regions highlights a need 
for more research in order to properly capture the small 
scale variability of the riparian zones around headwa-
ters.

There are two ways of adjusting the DTW and EAS
maps, the first is to alternate the length of the stream 
network. The position of stream channel heads have 
been shown to vary across physiographic regions
(Elmore et al. 2013; Russell et al. 2015; Avcioglu et al. 
2017; Jensen et al. 2017) but also across the relatively 
small (68 km2) Krycklan catchment (Ågren et al. 2015).
Several modelling studies have linked this control on 
channel head formation due to variability in slope 
(Elmore et al. 2013), soils (Ågren et al. 2014) and un-
derlying geology (González-Ferreras and Barquín 2017; 
Jensen et al. 2017). However, there is also a seasonal 
and interanual variability in the location of stream heads
(Ågren et al. 2015; Jensen et al. 2017). The recent 
PROSPER model use annual or monthly climate data, 
such as precipitation and temperature, and physio-
graphic characteristics, such as soil types to model the  
probability of year-round flow in the Pacific North-west 
(with errors in the order of 20%) (Jaeger et al. 2019). 
Such studies have advanced understanding of the con-
trols on stream networks, however, we identify two re-
search gaps. First, more field inventories of stream 
heads in the northern boreal zone is needed to define the 
empirical relationships at higher latitudes, as most of 
this research has been conducted in the US. Second, we 
have to consider the scale of the DEMs used for model-
ling stream networks. Most of the studies mentioned 
above worked in a resolution of 10 to 30 m. As the num-
ber of high resolution DEMs increase with resolutions 
of 0.5 – 2 m, we may need to revisit the previous models 
to see if the result will still hold on a higher resolution. 
For example, Topographical Wetness Index (TWI)
(Beven and Kirkby 1979), a hydrological mapping tool 
that have been used frequently during the past 40 years 
to model wet areas have been shown to only work at 
lower resolutions (Ågren et al. 2014).

In addition to adjust the stream initiation to local con-
ditions the DTW and EAS maps can be adjusted by con-
trolling the width away from the stream that is defined 
as a riparian area. In this modelling study, this was done 
by adjusting the vertical threshold to the modelled 
groundwater level. The DTW maps that are used in 
practice today use a threshold of 1 m. Ironically, that 
threshold was not the optimal threshold in any of the 
study areas, where 0.5, 1.5 and 2 m gave better results. 
In order to find empirical relationships on the controls 
on the distribution of riparian soils around stream net-
works, more research is needed. Another way forward 
can be to combine our understanding from different 
lower resolution DEMs (Jaeger et al. 2019) and satellite 
images (Chignell et al. 2017), with info from high (0.5-
2 m) resolution DEMs. But, in order to create and test 

such empirical models more field datasets of riparian 
soils are needed. It’s also necessary that the field data 
matches the resolution of the computer models. Hence, 
the use of a normal GPS which often have an accuracy 
of 15 m needs to be changed to a differential global po-
sitioning systems (DGPS) which provide sub meter ac-
curacy.

Implementing HAB would benefit both environmen-
tal protection (Kuglerová et al. 2014b) and forest pro-
duction (Tiwari et al. 2016). Designing buffer zones is 
mainly done in the field during snow-free seasons
mostly by visual evaluation. If there were trustworthy 
maps delineating wet soils around stream networks they 
would facilitate planning of forest buffers and optimise 
off road driving with heavy forestry machines. Extrac-
tion roads could be planned in advanced to avoid deep 
rut formations in sensitive areas and stream crossings 
could be done in more suitable dry areas, where the ri-
parian zone is relatively narrow, using technical aids. 
The use of logging residues can also be optimized and 
planed in advance to reduce negative impact on nearby 
surface water. Logging residues can be used to build 
slash mats in the most sensitive parts of the riparian zone 
to reduce rutting from heavy machines. Even small scale 
planning such as fertilization or seedling selection can 
be optimized within sites by soil moisture and seasonal 
water availability.

Ågren et al. (2015) showed that the stream network 
expands from 140 km during baseflow to 630 km during 
snowmelt and spring flood. During these expansive 
phases the ground water levels are elevated and almost 
all soils become wet or moist, and are more susceptible 
to rut formation (Mohtashami et al. 2017). Rutting is 
never desirable but ruts that’s not connected to the ripar-
ian zone have a smaller risk for increased sediment 
transport and nutrient/mercury leaching than ruts in the
riparian zone where the connectivity to surface waters 
are higher (Ågren et al. 2015). However, field mapped 
riparian zones used in this study was based on vegeta-
tion composition which reflects more average condi-
tions.

4 Conclusions
We can draw two major conclusions from this study. 
First, the SFA/NB DTW maps and MLWAM maps do 
provide a clear improvement compared to the topo-
graphical maps (Table 3 and Figure 3). Secondly, our 
study show that there is still a need for further improve-
ments of the mapping of small scale variability of the 
riparian zones around headwaters. LiDAR is still scarce
in most of the boreal zone but there is a steady increase 
of national LiDAR campaigns. LiDAR based high reso-
lution DEMs are becoming accessible in many countries 
(van Leeuwen and Nieuwenhuis 2010; Guo et al. 2017).
Digital mapping of riparian zones could be a cost effec-
tive way to optimize management of riparian zones
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around headwater streams. Countries with intensive for-
estry often have extensive national forest inventories 
that could be used to train a machine learner to further 
increase the accuracy digital mapped riparian zones.
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