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A central issue related to climate change and the path to a low carbon society is how we 

can change our attitudes and associated behavioral patterns. This type of decisions is 

concerned with how complex systems can be dealt with, conceptually, psychologically, 

as well as socially. In order to transform our society, we need to consider the relationship 

between brain, mind and behavior. One of the approaches to address this problem is to 

design computational models that can be used for simulations and scenario building.  

This thesis concerns the development and application of a neurocomputational model 

of the decision making process of an individual at experiential and social levels, 

considering both emotional and rational aspects. It is an attempt to bridge the gaps 

between micro (neuronal), meso (brain areas) and macro (cognition/behavior) levels with 

a focus on the mesoscale neurodynamics of cortical structures. The model is intended to 

link neural structures, functions, and includes effects of internal and environmental factors.  

The thesis is divided into two parts, corresponding to the two kinds of decision 

making: 1) experience-based and 2) social-based decision making. At an individual level, 

a final decision is the result of an integration of rational and emotional processes. The 

neural structures involved in cognition valuate the potential options regarding internal 

attitudes and rules, as well as external contexts. Decision values are based on neural 

properties of activity patterns associated with different actions. The option with the 

highest value is selected for in the decision making process. Human behavior is guided 

not only by subjective values and attitudes, but also by the perceived behavior of others. 

Learning from/about others through observation shapes our thoughts and behavioral 

patterns. The second part of the thesis deals with this social adaptive characteristic of an 

individual, where the dynamic changes of her behaviors are connected with trust. Traces 

of social influences on an individual’s decisions and social expectations (e.g. trust) have 

been observed in the rational and emotional brain structures and their functions.  

While the neurocomputational model is based on anatomical and physiological data 

of the modeled brain structures, no real world data have been available for model 

validation. Yet, simulation results mimic EEG and fMRI readouts, which could be 

compared with experimental/clinical data, when available. Future work intends to 

provide such data, but currently the modeling can only provide insights in the 

neurodynamic interactions between brain areas involved in decision making. 
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En central fråga i samband med klimatförändringar och vägen till ett fossilfritt samhälle 

är hur vi kan ändra våra attityder och beteendemönster. Denna fråga är besläktad med 

hur ett komplext system kan hanteras, konceptuellt, psykologiskt och socialt. För att 

omvandla vårt samhälle måste vi bl.a. betrakta förhållandet mellan vår inre och yttre 

värld. En metod för att lösa denna typ av problem är att utveckla datormodeller som kan 

användas för simulering och scenario-generering för beslutsstöd. 

Denna avhandling behandlar utvecklingen och tillämpningen av en neurokognitiv 

datormodell av beslutsprocessen hos en individ på såväl erfarenhetsmässig som social 

nivå, som innefattar både emotionella och rationella aspekter. Det är ett försök att 

överbrygga gapen mellan mikro- (neurala), meso- (hjärnområden) och makro- 

(kognition/beteende) –nivåer, med fokus på mesoskopisk neurodynamik hos vissa 

kortikala strukturer. Vår datormodell bygger på neurala strukturer, dynamik och 

funktioner som är inblandade i beslutsprocessen, och inkluderar effekter av både 

individuella och miljömässiga faktorer. Beslutsprocessen kan betraktas både som en 

individuell och en social process, där vi främst beaktar individens kognitiva funktioner, 

särskilt inlärning, planering, beslutsfattande och handlande. 

Inriktningen i den första delen av denna avhandling ligger på den erfarenhetsbaserade 

beslutsprocessen. På individnivå är ett beslut resultatet av en integration av kognitiva och 

emotionella faktorer, där olika neurala strukturer är involverade i respektive processer. 

De neurala strukturer som är inblandade i kognition beräknar värdet av olika alternativa 

beslut/handlingar, baserat på inre och yttre omständigheter. Beslutsprocessen innefattar 

en värdering av de olika alternativa handlingarna, och alternativet med det högsta värdet 

är i allmänhet beslutsprocessens slutresultat. Mänskligt beteende styrs inte bara av 

subjektiva värderingar och attityder utan också av andras beteende. Att lära av och om 

andra genom att observera deras beteende påverkar våra tankar och beteendemönster och 

beror på graden av förtroende. Den sociala påverkan på en individs beslut har även 

observerats i de emotionella och kognitiva hjärnstrukturerna. Den andra delen av denna 

avhandling fokuserar på dessa sociala adaptiva aspekter hos en individs beslutsfattande.  

Medan vår datormodell baseras på anatomiska och fysiologiska data från relevanta 

hjärnstrukturer, har vi inte haft tillgång till några data för modellvalidering. Dock kan 

modellsimuleringarna, som efterliknar data från EEG och fMRI, jämföras med 

experimentella sådana då dessa finns tillgängliga. Framtida arbete ämnar förse oss med 

sådana resultat, men för närvarande kan modellen endast ge insikter i hur 

neurodynamiken i de olika hjärnstrukturerna samverkar under en beslutsprocess.  

Nyckelord: Beslutsfattande, Orbitofrontal cortex, Lateral prefrontal cortex, Anterior 

cingulate cortex, Amygdala, förtroende, observationslärande, klimatförändringar. 
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1.1 Purpose and aims 

The planet is currently experiencing a climate change, evidently caused by 

human activities of various sorts, primarily our burning of fossil fuels. How can 

we, as humans, change our behavior, in order to mitigate (or adapt to) climate 

change? What determines our behavior and way of living, and what could be the 

main causes for changing this? How do our decisions (in everyday life) affect 

our behaviors, and what are our decisions based on?  

Human behavior is guided not only by subjective values, but also by the 

perceived behavior of others, in particular by social norms. Therefore, the 

decision making process can be regarded as an individual as well as a collective 

process. This is obvious when e.g. observing our neighbors recycle their waste, 

or commuting to work by public transport rather than by their own cars. 

The overall goal of this thesis is to make a connection between the micro 

(neuronal), meso (brain areas) and macro (behavior and social influences) levels. 

However, the main focus is the neurodynamics of some cortical structures 

underlying the decision making process (DM). My sub-goals in support of this 

goal are to elucidate the neural pathways and processes associated with the 

emotional-rational decision making process in an adult individual and how this 

is influenced by others. The aim of my work is to find out the relative importance 

of various internal and external factors influencing our decisions. In this regard, 

the thesis is divided into two parts: 1) experience-based and 2) social-based 

decision making.  

In the first part of the thesis, the main focus is on an individual’s perception 

of the environment and its direct influence on her emotional-rational reasoning 

and decisions. An individual’s attitude, preferences, and mood are some self-

related examples of factors impacting on the individual’s decisions. I present and 

1 Introduction 
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discuss a model of the neural processes associated with experiential DM, applied 

to semi-realistic societal choices with consequences for climate and 

environment. I base the modelling approach on the notion that DM is influenced 

by rational, as well as emotional considerations, as discussed by e.g. Kahneman 

and colleagues(Kahneman, 2011, Kahneman and Tversky, 1979). The aim of 

this part is to elucidate the interaction between the neurodynamics of the brain 

areas involved in rational and emotional aspects of DM and suggest mechanisms 

for how the brain-mind may evaluate influencing factors.   

In spite of the impact of an individual’s experiences on DM, a successful 

decision is also an adaptive process based on social interactions. In the second 

part of this thesis, the focus is on social cognition and its influence on DM. Here, 

the individual decision making is based on what is being learnt by observing the 

behaviors of others.  

 I focus on the behavior change of an individual influenced by the observation 

of an action-outcome association of another individual, whose behavior can be 

seen as more or less trustworthy. This serves as a basis for further developing 

our neurocognitive model to study an adaptive brain mechanism underlying 

social-based decisions. One of the social influences of observational learning is 

trust between the observing and the observed individual.  

In this regard, the central premise of this part is that an individual observes 

the behavior and its subsequent outcome of the other (such as taking public 

transport, rather than car, or eating vegetarian food, rather than meat), and 

eventually may adopt that behavior. The decision of an individual is supposedly 

influenced by observing the action-outcome association of the other, which may 

build trust in the other person(s). A changed behavior could also be a result of 

following the advice of an expert or a politician, or someone else we may trust, 

to various degrees.  

I aim to study an individual behavior following the observation of the action-

outcome association, depending on the observer’s trust in that observed person.  

The attitude change of the observer from an emotional to rational influenced by 

rational trust will be studied in this part. Here, two aspects of rational trust, 

consistency and competence, are taken into account. 

The major goal of this part is to examine the interaction between 

observational learning and trust as well as their influence on decision making. 

To achieve the goal discussed here, I have developed individual-social 

neurocognitive models, which I simulate for a large number of trials, in order to 

test many combinations of influencing factors in the DM. I model and study the 

neural activities of the structures thought to be involved in the emotional and 

rational observation-based decision-making process. To concern the reduction 

of 𝐶𝑂2 emissions with regard to individual behavior, I deal with socially 
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embedded decisions in particular the choice of transport between home and 

work.  In order to attain the objectives of this research, an extensive study has 

been conducted as outlined in the work flow diagram in Figure 1. I have tried to 

address the goals of this project in three papers.  

 Paper I presents the neurocomputational model of the experience-based 

decision making process. In this paper, I investigate the emotional-rational 

oscillatory neural activities in the experiential context.  

Paper II studies the behavior change of an individual who makes a decision 

in the individual context. This study is based on the model developed in the first 

paper concerning the influence of environmental factors (e.g. traffic jam, 

policies, weather, etc.) on an individual’s decisions. 

Paper III studies the behavior change of an individual, in the social context 

by developing a social-based neurocomputational model. This model has been 

developed based on the previously developed model in Paper I. Here, I study the 

impact of others’ behaviors on an individual’s decision.  

 

Figure 1. The work flow of the thesis. 

 

Developing a new 

neurocomputational model of the 

experience-based DM (paper I) 

Evaluating the behaviour change 

of an individual in the 

experience-based DM (paper II) 

Developing a new 

neurocomputational model of 

the social-based DM (paper III) 

Evaluating the behaviour 

change of an individual in the 

social-based DM (paper III) 
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While the neurocomputational model is based on anatomical and 

physiological data of certain brain structures, no real world data have been 

available for model validation, including input and output signals. Yet, 

simulation results mimic EEG and fMRI readouts, which could be compared 

with experimental/clinical data, when available. Future work intends to provide 

such data, but currently the modeling can only provide insights in the 

neurodynamic interactions between brain areas involved in decision making. 

Inputs are randomly generated sensory-like stimuli simulating the neuronal input 

to some cortical structures. 
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1.2 Background 

 The impact of decision making on climate change 

In our everyday life, we make different decisions with various forms of 

consumption patterns, in particular the choice of transport. Transport is one of 

the largest contributors to 𝐶𝑂2 emissions and climate change. In order to reach 

a low carbon society, as has been decided for the EU countries, it is important to 

change our life styles and habits, including how we travel to work and for leisure 

(Liljenström et al., 2016). This is the motivation for the current example, where 

the decision making concerns the choice of transport for an individual who is 

traveling from home to work at a regular basis. (Our approach is at a later stage 

intended to be embedded in a social context, where a distribution of individual 

choices will influence each other and the society/ environment). 

 Cognitive aspect of decision making process 

Learning  

We are constantly subject to a huge amount of information received from the 

environment. Environment is a broad concept encompassing living and non-

living phenomena, including society and natural/built environment. Our 

environment, as well as our biological heritage, are pivotal to sculpt our 

behaviors. Indeed, bidirectional interactions between our genetic heritage and 

environment, the gene-culture interaction(Laland et al., 2010) makes this 

process even more complicated. Culture can be defined as a way of life for a 

certain group of people. This broad concept covers beliefs, morality, norms, 

customs and many other traits of the individuals’ characters. In addition to our 

genetic and cultural heritage, our behaviors depend on our experiences and social 

interactions influencing our neural and mental development. Behavior changes 

caused by environmental influences are the result of our ability to learn. There 

are different types of learning in terms of the contextual information (Lee and 

Harris, 2013, Gariepy et al., 2014) resulting in knowledge development: 

experiential and social learning.   

A large part of human behaviors is goal-directed. The causal relation between 

the action and outcome is the major concern for a goal-directed behavior (de Wit 

and Dickinson, 2009). Choosing reward seeking and punishment avoidance 

behaviors is a principle of a goal-directed behavior. Individual experience 

without any social intervention is the major cause of individual learning 
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(experience-based learning). Experiential learning can be seen as a trial and 

error-based learning to reach a goal (as obtaining reward or avoiding 

punishment) (Cohen et al., 2012). Learning emerges, in this context, from the 

difference between the predicted and actual value of the experience, referred to 

as the experiential prediction error (PE) (Lak et al., 2014, Schultz, 1998, Wise, 

2004).  

As human beings we influence the society we live in, but we are in turn also 

influenced by it. Hence, social interactions play crucial role in our lives.  Our 

brains have to a large extent evolve to deal with various types of social relations 

(Gredebäck and Melinder, 2010, Lieberman, 2013). The behavior of an 

individual is defined in a social context by learning from others, i.e. social 

learning (Gariepy et al., 2014, Bandura, 1977, Campbell-Meiklejohn et al., 

2010). Social learning is the consequence of a wide array of behaviors, such as 

imitation(Heyes, 2001, Iacoboni et al., 1999, Rizzolatti et al., 2001), peer 

influences (Clark and Dumas, 2015, Stallen et al., 2013), and outright teaching 

(Biele et al., 2011).  

One of the common forms of social learning is known as observational 

learning, i.e. learning as a result of observing other people’s behaviors (Bandura, 

1971, Albert Bandura, 1961).  Observational learning occurs through observing 

others experiencing a situation. According to Bandura (Bandura, 1965), there 

are four keystone parameters of observational learning: attention, retention, 

reproduction and motivation. Learning about the consequence of an action is 

crucial for all living creatures. At the experiential level, individuals associate 

their experienced actions with the subsequent outcomes, while at a social level, 

the individual may associate the observed action performed by others with its 

consequence.  

At the experiential level of the DM, the difference between an individual’s 

prediction and the experienced actual value of the action generates a PE. 

Similarly, humans predict the actions and their associated outcomes of other 

individuals. The difference between their predictions and reality leads to 

individual learning about and from the observed person. There are two types of 

observational prediction errors: observational action PE and observational 

outcome PE. The difference between the actual and predicted value of the 

observed action and its subsequent outcome bring about the observational action 

and outcome PEs, respectively (Burke et al., 2010, Jones et al., 2011, Hauser et 

al., 2015, Apps et al., 2015, Monfardini et al., 2013, Chang et al., 2011).   
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Decision-making process 

Decision making is perhaps the most important cognitive ability related to 

behavior and is crucial for the survival of all higher animals. The DM could be 

regarded as the result of five subsequent steps (Doya, 2008, Bedia and Di Paolo, 

2012), as illustrated in figure 2 and described as follows: 

1. Representation: An individual faces decision problems, including the 

identification of the internal state, the external state and the potential 

course of action.  

2. Valuation: The value of the decision alternatives are analyzed and 

valuated based on the individual attitude and experiences. 

3. Action selection: Comparing the valuated alternatives, the one with the 

higher net value is selected. 

4. Outcome evaluation: The desirability of the selected action (the actual 

outcome) is measured. 

5. Learning: Based on the difference between the predicted and actual value 

of the selected alternative (prediction error), the stored information about 

the values and attitudes are updated to improve the quality of future 

decisions. 

 

Figure 2 Decision-making process includes five cognitive processes. An individual predicts the 

values of the decision options based on the received internal and external stimuli. The final decision 

is the result of the comparison between the options. The one with the higher value is considered as 

the final decision. The difference between the perceived actual value of the decision and the 

predicted one results in learning in the individual who makes a decision. 
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The evaluation of the decision options is supposedly based on both emotional 

and rational processes (Mukherjee, 2010, Evans and Stanovich, 2013, Evans, 

2008). Daniel Kahneman propounds the theory of “dual thinking” in his book 

“Thinking, Fast and Slow” (Kahneman, 2011).  Emotion and rationality are two 

major components of reasoning, which correspond to Kahneman’s System 1 and 

2, respectively. System 1, representing the emotional aspect of the mental 

activity, is heuristic and fast. The neural basis of emotion depends upon memory 

retrieval of associative memory, and could be considered as an automatic 

process.   

System 2 deploys the cognitive control process. The procedure covers 

different psychological and neurological aspects ranging from an attentional 

system, mapping stimuli to actions based on the stored rules to the learning 

process. In contrast to the emotional reasoning, rationality is a slow process. The 

activity of working memory and interference control (Zilli and Hasselmo, 2008) 

could be considered a principal part of rational reasoning. Receiving external 

stimuli about the options, the rational expectancy outcome of the options are 

valuated by encoding rules and attitudes. The prominent characteristic of 

working memory is its capability in forming associations. The final decision is 

the result of the integration of the emotional and rational values so that the 

rational system modifies the emotional system.  Regarding the described 

process, the rational reasoning is a more complex and time-consuming mental 

activity than the emotional reasoning (Damasio, 1996, Doya, 2008, Gold and 

Shadlen, 2007). 

Trust 

Societal influences have a direct relation with the level of interpersonal trust 

(Campbell-Meiklejohn et al., 2010). The concept of trust has been studied in 

different fields of science, e.g. sociology, psychology, and neurology. According 

to Lewicki et al.(Lewicki et al., 1998), trust is “an individual's belief in, and 

willingness to act on the basis of, the words, actions, and decisions of another.” 

Trust is apparently a phenomenon linked to and dependent on all forms of time: 

past, present and future.  

In spite of various connotations of trust, the common aspect highlighted 

among all the definitions is the role of an individual’s “expectation” in trust 

related situations (Rotter, 1971). People’s expectancies are rooted in their 

predictions which is a subjective valuation of the probability of an event and its 

subsequent outcome. Hence, trust not only reflects the prediction of an 

individual about the contingency of the actions of others (i.e. consistency) but 

also is about the desirability of their associated outcomes (i.e. competence). The 
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predictions about an individual’s action and its outcome are two cognitive 

variables for assessing the level of trustworthiness (Baker, 1987, Rompf, 2015). 

Regarding the definition, the evaluation of the consistency of an individual in 

taking an action, and the competency in performing a successful action, are the 

results of action and outcome predictions, respectively.  Accordingly, in this 

study, I define trust as an individual’s attribute based on the cognitive valuation 

of others in a specific context with respect to their consistency and competence 

levels.  

With regard to this definition, to build trust, an individual has to learn about 

others in a social context. This learning might be based on the observation of 

their actions and the associated outcome. Hence, the process of trust building 

includes social perception (evaluating the trustworthiness of other persons), 

learning and decision making.  

 Neural basis of decision making 

Experimental results indicate that different neural structures are involved in the 

emotional and rational DM (Kable and Glimcher, 2009). Amygdala, 

orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) appear to be 

major neural structures underlying decision making.  The interaction of the first 

two structures plays a particular role in emotion perception and the emotional 

response, while rational decisions are evolved at the latter structure. 

 Amygdala, as a part of the limbic system, has since long been associated 

with emotional processing. It correlates sensory perception and learning, linking 

the stimulus that provokes the emotional response to its emotional value. 

Amygdala is important to trigger the autonomic nervous system in response to 

emotional stimuli, as reward and punishment (Zhang et al., 2013). The projection 

of internal stimuli to the amygdala makes this structure unique in having access 

to the internal states of mammals.  Internal states such as hunger, anger, and 

happiness are influential parameters of emotional decisions (Gupta et al., 2011, 

Baxter and Murray, 2002). With regard to a hypothesis by Damasio (Damasio, 

1996), experiments seem to show that amygdala plays a significant role in the 

expression of the somatic marker. Damage to the amygdala impairs the somatic 

response to reward and punishment, hindering future decision-making. 

Amygdala has also been found to be active when subjects choose options 

associated with large immediate rewards (Smith et al., 2009). The functionality 

of the amygdala is realized through its connection to OFC, which receives 

extensive neural afferents from different sensory modalities (Jenison, 2014). The 

bidirectional connections between OFC and Amygdala are supposedly 

embodied in an emotional DM, where the perception and evaluation of 
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environmental stimuli constitute the emotional reasoning (Barbas, 2007a, 

Barbas, 2007b, Rich and Wallis, 2013, Wager et al., 2008). 

 OFC has a heterogeneous structure, differentiated in its different areas (John 

et al., 2013): agranular areas with three layers, dysgranular areas with four 

layers, and granular areas with six layers (Barbas, 2007b, Barbas, 2007a). 

Amygdala and OFC receive afferent signals from the late sensory processing 

system. The firing frequency of OFC neurons is interpreted as an expected value 

of the external stimulus termed “expectancy signal” (Balleine et al., 2011, 

Rempel-Clower, 2007). This signal demonstrates the context or the contingency 

of the outcome. The neural basis of emotion is based on the retrieval of 

associative memory. Hence, this process is heuristic and fast.  

On the other hand, rational decisions are evolved at the lateral prefrontal 

cortex (Pribram, 1987). LPFC contributes to the prediction of the expected 

rational values. This structure has a homogenous six-layered structure (Petrides, 

2005, Figner et al., 2010, Dixon and Christoff, 2014, Koechlin and Summerfield, 

2007). Lateral prefrontal cortex is considered as a major neural structure active 

in self-control and modification of short-term emotional 

gratification(Christodoulou et al., 2010).The emotionally assessed stimuli in the 

amygdala-OFC pathway would be modified by LPFC and a final decision would 

be taken(John et al., 2013, Levine, 2009, Gray et al., 2002, Baumgartner et al., 

2011, Sokol-Hessner et al., 2012).  

The schematic illustration of the neural flow of information in the DM taking 

account of the emotional and rational systems is presented in figure 3. 

 

Figure 3 Illustration of the interactions of the three main neural structures in the decision making 

process. Amygdala and orbitofrontal cortex (OFC) are considered as the main organizations in 

emotional decision making and lateral prefrontal cortex (LPFC) plays a crucial role in rational 

analysis. The inputs come from all sensory modalities. 
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The so-called “social brain” is a network of brain regions implicated in the 

processing of social information (Gallese et al., 2004, Lieberman, 2013, 

Lieberman, 2007, Beer and Ochsner, 2006, Adolphs, 2009), including the areas 

OFC and LPFC. In addition to these two “social structures”, the neural activity 

of anterior cingulate cortex (ACC) has been observed in social contexts (Lavin 

et al., 2013).  Regarding the unique position of ACC, this structure is connected 

to the cortico-cortical and cortico-limbic pathways. Hence, ACC is considered 

to be a social hub contributing to the emotional and rational aspects of human 

behavior. Cingulate cortex is part of the limbic cortex and is composed of two 

different histological structures with respect to Brodmann’s classification, as 

areas 24 and 29, anterior and posterior sections, respectively. The bidirectional 

connections of ACC with LPFC, Amygdala, and OFC facilitate the flow of social 

information among these structures (Medalla and Barbas, 2012, Allman et al., 

2001, Apps et al., 2016, Hughes and Beer, 2012, Palomero-Gallagher et al., 

2008, Bush et al., 2000). 

 ACC plays an important role in modulating the oscillatory activity of OFC 

and LPFC, with a mechanism based on a reinforcement learning process (Apps 

et al., 2013). The sign and magnitude of the prediction error make an impact on 

the properties of the correlated cell assembly, such as the neural weight strengths 

and excitabilities. Positive/negative PE signals strengthen/weaken the 

oscillatory properties of the corresponding neural patterns. The interactions 

between the ACC, LPFC and OFC constitute an important basis for social 

learning, as illustrated in Figure 4.   

 

Figure 4 Illustration of the schematic flow of information among neural structures in observational 

learning. LPFC and OFC are, respectively, subject to early rational and late emotional sensory 

stimuli projecting the processed to ACC. The difference between the actual and anticipated 

observed action and outcome signal result in updating the neural oscillatory properties of LPFC and 

OFC. 
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1.3 Boundaries of the project  

  

In order to model any system, it is necessary to consider the system boundary 

and the components relevant to the study purpose. In our case, a comprehensive 

knowledge about the experience-based and social-based DM is crucial to model 

these two related systems.  

As mentioned above, the DM depends on the interaction between the 

individual and the environment. “Environment” is a broad concept, 

encompassing living and non-living systems, including society and the 

natural/built environment.  

For the experience-based decision making, the interaction between an 

individual and the environment is at the center of my attention. Therefore, at an 

individual level, the decision making system includes the individual person, 

her/his attitude and individual experiences, while the natural/built environment 

(e.g. climate condition, traffic condition) is outside the system boundary.  

In a larger contextual frame, our own decisions and actions are in turn 

influenced by other individuals we interact with in the society. The social 

influences can be measured based on the distance between individuals for 

example, geographical distance, a psycho-social distance, and strength of 

interpersonal ties. Hence, in addition to the components included in the first 

system, for the experiential DM, the society surrounding an individual is an 

influential component when defining the system for a social-based DM.  

Our model can be analyzed temporally on two time scales. The neural 

activities of the structures underlying the DM take place at temporal scales of 

seconds or less, while the social interaction and attitude change can be 

considered at a scale of hours, months or longer. The spatial modeling of this 

process can be scaled in the same matter, at a micro and macro scale, 

respectively. The micro scale here corresponds to the neural networks of the 

brain structures involved in the DM, while transport behaviors are studied at a 

macroscopic scale of landscapes. 
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In order for us to change our society with regard to climate change and associated 

challenges, it is important to understand how humans make decisions and how 

the following actions impact on climate. Every day, we make many different 

decisions concerning various forms of consumption patterns, such as eating 

habits and the choice of transport from home to work. This thesis aims at an 

increased understanding of the decision making process (DM) at both individual 

and societal levels, by means of neuro-computational modelling taking the 

example of transport. In the following, I describe the behavioral assumptions of 

the developed neural models. Then I will present the scenarios under which the 

experience-based and social-based DM are studied. 

2.1 Decision making in choice of transport 
Our actions are influenced by changes in our external environment, but it is also 

based on a change of perception in our internal environment. We explore our 

world in a perception-action cycle (Freeman, 2000). This thesis scrutinizes the 

perception-action cycle at the individual and social levels from the behavioral 

and neural perspectives. This adaptive process in the social and individual 

contexts are biased by information. Different inputs might be developed in 

respect of perceptional, attentional and motivational biases. Considering the 

sources of information, two different perspectives are defined explaining the 

experience-based and social-based decision making. The developed 

neurocomputational models in the first and second parts are applied to semi-

realistic societal choices with consequences for climate and environment.  

The focus here is on certain external and internal factors that influence our 

choices and form the basis of our DM. As an example of DM at an individual 

level, which also has implications at a societal level, we take the choice of 

transport at an everyday basis. Given a set of options, this has relevance for 

2 Methods 
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reaching a climate neutral society (see Liljenström et al., 2014). The impact of 

individual's attitudes on climate change to fit with the three pillars of sustainable 

development (SD): Ecological (eco), social (soc), and economic/monetary 

(mon). The various options are also associated with these three categories of 

attitudes and values. The choice of action, i.e. which optional means of transport 

we will take, depends on various environmental (distance, traffic situations, cost 

etc.), social (others’ behaviors) and internal (motivation, attitude, mood etc.) 

factors. Here, I suggest the different options are to take either bike, car, or public, 

(where the public transportation could be e.g. bus, train, or metro), which all are 

considered to be available, albeit with different levels of convenience.  

The designed networks of pathways for the mentioned modes of transport are 

different considering their densities. The road intensity of bike, car and public 

transport are respectively, high, medium and low.  Different colours in the maps 

illustrated in figure 5 determine the shortest pathways between the starting and 

final points of travel in terms of time, cost, distance, and 𝐶𝑂2 emission. 

According to the randomly generated values of coordinated time, cost, distance, 

and CO2 emission matrices, some of these lines might overlap in some of the 

maps. 

               (a)                   (b)             (c) 

Figure 5 Roadmaps of three modes of transport; Public transport (a), Car (b) and cycle (c). Four 

coloured lines illustrate different shortest pathways regarding distance (red), time (blue), price 

(green) and carbon dioxide emission (black). As is shown, lines determine the shortest distance and 

lowest amount of 𝐶𝑂2 emission overlap 

I also assume that individuals have different preferences, depending on their 

living conditions and general attitudes with regard to environmental, social, and 

economic concerns. Accordingly, each option has an ecological/ climate value, 

a social/temporal value, as well as an economic/ monetary value, but these are 

considered to be different for different individuals. I consider the emotional and 

rational priority as based on the individual’s personality.  



27 

 

2.2 Experience-based decision making 

In this part of the thesis, I highlight the DM from the first-person perspective 

considering the fact that the environmental contexts (e.g., natural environment 

and social infrastructures) play pivotal roles in the outcomes of decisions. The 

context-based decision making process is the spotlight of the experiential DM 

process. In following, different scenarios are presented from the behavioral and 

neural perspectives.  

 Behavioral aspect of experience-based DM 

The first step is to estimate the outcomes of different options. In our case 

example, time, cost and 𝐶𝑂2 emission, are considered as outputs of the options. 

Considering the “personality” of an individual who makes decision, the order of 

emotional and rational priorities is defined based on their salience, i.e. one of the 

three sustainability categories. There is a one-to-one correspondence between 

the “pro-social” personality and the importance of time, the “pro-economy” and 

cost, and the “pro-environment” and level of 𝐶𝑂2 emission. Three different 

scenarios are considered at the experience-based decision making process. The 

individuals in each scenario has different personalities described below.  

Scenario I. In the first scenario, I study the decision making process by 

developing a neurocognitive model. Here, the individual is exposed to the 

environmental and the internal stimuli when traveling between home and work.  

I assume that the individual has an equal tendency to decide emotionally and 

rationally.  

The developed neurocognitive model in this scenario is applied for the next 

two scenarios to study the behavior change of the individual influenced by 

different external stimuli.  

Scenario II. The individual, in this scenario, has a different personality and 

is subject to unpredicted events such as accidents, traffic jams, delays, bad 

weather, etc. The individual is a pro-social person gives, rationally, higher 

priority to time over the other outputs, whereas she may have different emotional 

priorities. Therefore, her first priority is to choose car as a means of transport.  

The model is simulated for 250 trials (e.g. days), divided into five intervals of 

50 trials each.  

Scenario III. Similar to the second scenario, here, the behavior change of the 

individual is at the center of my attention. In this scenario, I study the influence 

of implementing temporary policies on the change in priority order, while there 

is no unpredictable event. The policies are implemented for a fixed period of 

time, after which return to initial situation. We ran the simulation for different 



28 

 

lengths of time, to study the effect on trust and behavior. At five time intervals, 

temporary changes are imposed which might influence the DM.  

A trial corresponds to an occasion when a relevant decision (of means of 

transport) is made. For simplicity, we can assume that one such decision/trial is 

made by the individual once a day, for example when going from home to work.  

In addition, the choice of personalities in the aforementioned scenarios 

contributes to better understanding of the behavior change. However, any other 

personalities can be applied. 

 Neural aspect of experience-based DM 

The process illustrated in figure 2 is the conceptual basis of the developed 

neurocomputational model of the experience-based decision making process. 

The conceptual model is framed by modelling the functionalities of the three 

neural structures, LPFC, OFC, and Amygdala as the most important constituents 

of the DM. The first structure underlies the rational reasoning of DM while the 

last two are the representatives of the emotional decision-making process. 

Amygdala is stimulated by internal and external stimuli while the other two are 

subject to external inputs.  With regard to different functionalities of structures, 

the model analyses the impact of different internal and external contexts on the 

individual’s decision.  

The DM is modeled at a level of mesoscopic neurodynamics, using attractor 

neural networks based on the developed cortical neural network model of 

Liljenström (Liljenström, 1991). Oscillatory rhythms encode information related 

to perception, rational and emotional associations in this model. The emerged 

oscillatory activities are the result of interactions between neural populations. 

The developed model generates the oscillatory neural activity as the local field 

potentials (LFP) or electroencephalogram (EEG) readouts.  

The neural units in the model represents a group of neurons firing in 

synchrony. At the mesosocopic level, oscillations and irregular chaotic-like 

behavior of neural units can be generated by the interplay of neural excitatory 

and inhibitory activity at the network level. Hence, in this model, the network is 

composed of three layers, two inhibitory and one excitatory layers. The 

excitatory layer in all the three neural parts is innervated by external stimuli, 

and the inhibitory effects of GABAergic neurons modulate the activities of 

the excitatory neurons. This suggests a lumping of the upper layers (I, II&III) 

as a feedforward inhibitory layer, and the two lower layers (V &VI) as a 

feedback inhibitory layer, on either side of the excitatory middle layer. 
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Figure 6 The simplified layered neural structure of three neural organization. The upper and lower 

layers are composed of 25 inhibitory neurons and the network in the middle is composed of 100 

excitatory neurons. The external inputs stimulate (subset of) excitatory neural network. The 

stimulation of excitatory neurons is the start of activity of the system. Stimulated excitatory neurons 

excite inhibitory neurons which result in the excitation-inhibition balance. 

The excitatory neurons excite the two inhibitory layers. The feedforward and 

feedback inhibitory layers inhibit the excitatory neurons locally. The excitatory 

sub-layer of each structure is a network of 100 neural units (populations), while 

each of the two inhibitory networks is composed of 25 inhibitory units. The 

excitatory network nodes are connected recurrently, while there is no internal 

connections among inhibitory units. An excitatory-inhibitory balance results 

from the bidirectional connectivity of excitatory units with the two inhibitory 

networks on either side (Fig. 6). The network structure allows for a complex 

neurodynamics, in particular, oscillations with varying amplitudes and 

frequencies. The activity of each neural unit can be regarded as the mean 

membrane potential of the population resulting in a graded, rather than spiking, 

neuronal output (Liljenstrom and Wu, 1995, Liljenström, 1991).    

The external stimuli are driven by afferent neurons (not explicitly modeled) 

to a subset of the network of excitatory units. The various magnitude of 

emotional and rational external inputs distinguish different stimuli. The 

stimulated neural units transmit signals to their excitatory neighbors, as well as 

to the neighboring inhibitory units, which inhibit all excitatory units.  

The formation and update of cell assemblies are the bases of the 

functionalities of the three neural structures. The oscillatory activity of the cell 

assemblies in different structures could demonstrate information related to either 

the stored experiences, attitudes or the associated feelings towards the 

consequence of the selected action. The excitability of neural units and strength 

of neural connections represent the value of the above cognitive information. To 
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compute the cell assembly properties, the characteristic magnitude of the neural 

units should be taken into account.    

The time evolution for a network of N nodes (neural populations) is given by 

a set of coupled nonlinear first order differential delay equations for all the N 

internal states, ui. With external input, I(t), time constant, τi, and connection 

weight wij between nodes i and j, separated with a time delay δij,  the neural 

activity of each unit, ui, would be measured (Eqn. 1). 

𝑑𝑢𝑖/𝑑𝑡 =  −𝑢𝑖/𝜏𝑖 + ∑  𝑤𝑖𝑗𝑔𝑗(𝑢𝑗  (𝑡 − 𝛿𝑖𝑗)) + 𝐼𝑖(𝑡) +  𝜉 (𝑡)𝑁
𝑗≠𝑖               (1) 

The input-output function, gi(ui), a continuous sigmoid function, is 

determined by Freeman (Freeman, 1979) as follows. 

𝑔𝑖(𝑢𝑖) = 𝐶𝑄𝑖(1 − 𝑒𝑥𝑝[−𝑒𝑥𝑝(𝑢𝑖) /𝑄𝑖])                                                    (2) 

Where Q is an intrinsic motivation taking different values in the emotional 

(𝑄𝑒𝑚𝑜.) and rational (𝑄𝑟𝑎𝑡.) structures. The larger value of Q indicates the higher 

motivation and neural arousal for choosing a particular option. An individual’s 

motivation to make a decision is a function of her experiences and environmental 

factors. The changes in the environmental/societal and individual conditions 

make an impact on the value of Q. 

It is noteworthy to mention that the developed neurocomputational model 

focuses more on the functionalities of the three neural areas than their structures. 

Hence, in spite of the different observed neuroanatomical structures of OFC, 

LPFC and amygdala, the three-layered network of neural units is applied for all 

of them. Despite the variation observed in their structures, the laminar structure 

of the two cortical structures (i.e. OFC and LPFC) and the cytological 

arrangement of Amygdala supposedly make this model an appropriate 

approximation of the real structures. Among the different nuclei in amygdala, 

we model the functionality of the three most prominent nuclei: basolateral 

(excitatory) amygdala, intercalated cells and the central nucleus (both inhibitory) 

(Zhang et al., 2013).  

Formation of cell assemblies 

In our model, an individual’s preferences/priorities are determined by the neural 

activity of cell assemblies in the three brain structures, which represent the 

individual’s attitude and the expectancy value of the decision. To show the 

function of the three neural structures, the activation of cell assemblies are 

required.  The formation of and updating cell assembly are based on the Hebbian 

learning rule (Liljenström, 1995). 
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∆𝑤𝑖𝑗 =  ƞ𝑔𝑖[𝑢𝑖(𝑡)]𝑔𝑗[𝑢𝑗(𝑡 − 𝛿𝑖𝑗)](𝑤𝑚𝑎𝑥 − 𝑤𝑖𝑗)                                     (3) 

Where ƞ is the learning rate.  The oscillatory activities encoded in Amygdala 

and OFC determine the emotional value of the decision options, 𝑉𝑒𝑚𝑜.(𝑂𝑝𝑡) 

and the recorded oscillation in LPFC determine the rational value, 

𝑉𝑟𝑎𝑡.(𝑂𝑝𝑡). This value is a function of the size of cell assemblies, mean 

frequency and signal’s amplitude.  

𝑉(𝑂𝑝𝑡) =  |𝑠𝑜𝑝𝑡| ∙  〈𝒇𝑜𝑝𝑡
̅̅ ̅̅ ̅̅ , 𝑨𝑜𝑝𝑡

̅̅ ̅̅ ̅̅ 〉 = |𝑠𝑜𝑝𝑡| ∙  〈𝑓𝑜𝑝𝑡
⃗⃗ ⃗⃗ ⃗⃗  ⃗ ,   𝐴𝑜𝑝𝑡

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  〉,    ∀ 𝑜𝑝𝑡 = 1,… , 𝑛                                                                                                                            

(4) 

Where |s| indicates the number of active neural units in the cell assembly, 𝑓 

and  𝐴  are the averaged frequency and amplitude of neural oscillation, 

respectively.   

The final decision is the result of the emotional and rational integration. The 

Eq.5 shows a simple arithmetic calculation on the emotional and rational values 

considering the attitude of the individual.    

�⃗� 𝑓𝑖𝑛 =  𝛼 × �⃗� 1 + (𝛼 − 1) �⃗� 2                                                                       (5) 

The coefficient 𝛼 determines the weight of emotion in the DM. The higher 

the 𝛼 is, the more emotionally the individual would behave. 

The formation of emotional and rational cell assemblies serves as the bases 

for measuring the emotional and rational values of options.  

As was discussed in the previous section, the interaction between OFC and 

amygdala plays a pivotal role in the emotional system. The oscillatory properties 

of the signals recorded in OFC delineate the expectancy values of the options. 

The integration of the signals generated in the OFC and amygdala leads to an 

emotional response. The emotional value is the result of a regulation by OFC of 

amygdala activity. As mentioned before, in the case of similarity between the 

output from OFC and amygdala, OFC may either excite amygdala to release an 

emotional response, or otherwise inhibit it. The similarity between the values of 

amygdala and OFC is a measure using cosine similarity in our model. We let 

similarities greater than a threshold value 𝜃 result in an excitation, and if less 

than𝜃, it will result in inhibition. For example, if we let  𝜃 = 0.9, the values, V1 

and V2 of Systems 1 and 2, respectively, can be expressed as  

𝑠𝑖𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦 =
〈𝑉𝑂𝐹𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ,   𝑉𝐴𝑚𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  〉

‖𝑉𝑂𝐹𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖·‖𝑉𝐴𝑚𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖
≥ 𝜃 → 𝑉1 = 𝑉𝐴𝑚𝑦                                    (6.1) 
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 𝑠𝑖𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦 =
〈𝑉𝑂𝐹𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ,   𝑉𝐴𝑚𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  〉

‖𝑉𝑂𝐹𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖·‖𝑉𝐴𝑚𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖
< 𝜃 → 𝑉1 = 𝑉𝑂𝐹𝐶                                    (6.2)                         

Amygdala is driving emotional response if the similarity is higher than 90% 

(Eq. 6.1) otherwise, OFC’s neural activity determines the emotional response 

(Eq. 6.2).   

The neural activity of LPFC has been recorded during the temporarily 

maintenance and manipulation of data from working memory (WM) (Zilli and 

Hasselmo, 2008, Collins et al., 2017). To model the involvement of LPFC in 

WM, I have adopted the cognitive theory of Adaptive Control of Thought—

Rational (ACT-R)(Anderson and Matessa, 1997) . According to the ACT-R, 

declarative and procedural memories are the main building blocks of the 

cognitive analysis in WM. (In this model, declarative memory is modelled based 

on the semantic memory disregarding the episodic memory).  

Declarative memory establishes facts and experiences while procedural 

memory involves in the collection of if-then rules. Attitudes, social norms and 

rational values are portrayed and maintained as a set of rules in this memory. 

The association between the concepts/contexts and the outcome can be stored as 

if-then rules in procedural memory.  

The reciprocal interaction between these two memory systems (declarative 

and procedural) provides the basis for the cognitive analysis. The oscillatory 

activity of the neural pattern in LPFC rational predicted values of the options is 

regarded as the result of the interaction between the procedural and declarative 

memories. The option with the highest rational value is the final rational decision 

of the individual.  

Final decision and system update 

As mentioned before, the final decision is the result of the integration of the 

emotional and rational value. The individual is subject to the actual outcome 

of the selected action. The difference between predicted and actual action 

generates prediction error signal in the OFC and LPFC. The schematic 

illustration of the developed experience-based DM model is presented in 

figure 7.  
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Figure 7 Schematic flow chart of the subsystems and information flow in the modelled decision 

making process. System 1 is an automatic and emotional system. In this system, OFC and amygdala 

involved in encoding emotional expectancy signals. System 2 is a controlled and rational system 

represented by the activity of LPFC. 

The properties of the cell assemblies determine the significance of the 

options. To update the stored emotional and rational attitude, these properties 

are modified according to the sign and magnitude of the prediction error. A 

positive/negative prediction error strengthens/weakens the properties of the cell 

assembly, i.e. here, the strength of neural connections and Q value, associated 

with the selected option.  

2.3 Social-based Decision Making 

In this part of the thesis, I highlight the decision making process from the third-

person perspective considering the fact that the social contexts (e.g., others’ 

behaviors) play pivotal roles in an individual’s decisions. In following, the 

behavioral scenario and the neural representation of the social-based model is 

presented.  

 Behavioral aspect of social-based DM 

Human beings are part of a society which would affect their decisions. Social 

impact on an individual’s decisions is an inseparable part of the DM. The 

probability of being influenced by others through observing their behaviors or 
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hearing their advice is associated with some parameters: interpersonal trust 

between the individual who makes a decision and the others, the personality 

similarities between the individual and the others, as well as the history of the 

observed individual in providing useful advice or being consistent/competent in 

their actions/outcomes.  

In continuation of the previous scenarios in the experiential context, here, I 

want to study the impact of society on the behavior of an individual. In this 

thesis, the social influences are confined to what the individual learns from and 

about the others through observing their actions and the subsequent outcomes.  

Scenario. Among the various categories of people we interact with every 

day, our friends influence our decisions, depending on the psycho-social 

distance (trust). This influence may be informational, by adopting the 

decisions/behaviors of our trusted friends through observing their daily 

decisions. As mentioned in the previous section, considering the case of 

traveling, the options have three different outcomes, in terms of time, cost and 

the amount of 𝐶𝑂2 emission. The outcome of the friends’ actions in this case 

example can be observed by the individual. The individual (observer) might 

associate the social, economic or health condition of the observed person 

(friends) with their choice of action (travelling). Observing friends who are on 

time, wealthy or looking healthy might lead the individual to make a deduction 

about the association between their decisions (i.e. car, public transport and bike, 

respectively) and the mentioned outcomes. The impact of taking bike on climate 

is not immediate and cannot be recognized at the personal scale. Hence, here, I 

consider that an individual’s health is the outcome of choosing bike for traveling 

between work and home. 

To have a better understanding of an individual observer’s behavior change 

in a social context, the scenario is defined based on a specific personality of the 

observer. However, different scenarios with different individual personalities 

can be applied in this model. In this part, I intend to show how an emotional 

decision changes into a rational one. In this regard, the individual is considered 

to be an emotional person who puts a high emotional value on car. However, she 

is rationally a pro-economy person. Her rational priority is public transport but 

still has a lower value than the emotional value of car.  

The observed individual (i.e. the individual’s friend) is expert in climate. 

Therefore, it is generally assumed that an expert in this field rationally 

prefers to take public transport to travel between home and work. The degree 

of predictability (action and outcome) of the expert is chosen to be high 

(80%). The individual observers the action and the subsequent outcome of 

the expert for 80 days while she is traveling between work and home. In the 
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same day, she also makes a decision which might be influenced by her 

attitude and social influence.  

 Neural aspect of social-based DM 

The conceptual framework of this part is based on the notion of the interplay 

between observational action-outcome learning and decision making. In 

addition, as mentioned before, trust has an undeniable impact on an 

individual’s decisions. The prediction of an action-outcome of the observer 

makes an impact on the observer’s trust in the expert.  In this regard,  the 

neurocomputational model investigates and predicts the behavioral pattern 

of the observer following the observation of the action-outcome association 

of the alleged expert.  

In spite of the differences between the individual and social neural structures,  

the cognitive processes behind individual and social learnings are the same and 

can be explained by ‘associative learning’ theory (Heyes, 2012). With regard to 

the recently developed knowledge around the neural mechanism of social 

learning(Behrens et al., 2008), illustrated that social reward-learning mechanism 

is also based on associative learning. Nevertheless, different input mechanisms 

are the divergence point of these two systems. Different input mechanisms might 

be developed in respect of perceptional, attentional, and motivational biases 

phylogenetically, ontogenetically or due to some other experiment-dependent 

neural development. In the social learning, the observer not only predicts the 

values of the environmental contexts but also the valuation of the observed 

individual's behaviors is principal.  

Similar to experiential learning, reinforcement learning and associative 

learning are critical in the observational learning process. These two processes 

are vicariously involved while the observer observes the behavior of another 

individual. Social learning, likewise the experiential learning, is the corollary of 

Hebbian Learning. Hebbian learning can explain the adaptive process of social-

based DM. Hence, the Eq. 3, describing the formation of cell assembly based on 

Hebbian theory, can be applied in the social context, as well. However, the 

impact of social variables, e.g. trust, on individual learning shouldn’t be 

disregarded. The effect of trust on behavior change, in this model, is considered 

by adding a variable to the Eq. 3 (i.e., Tr) proportional to the level of trust.  

∆𝑊𝑖𝑗 =  𝛼𝑔𝑖𝑔𝑗(𝑊𝑚𝑎𝑥 − 𝑇𝑟.𝑊𝑖𝑗)                                                               (7) 

Allowing for the action and outcome predictions, two crucial determining 

factor of trust, Tr variable is contingent on the level of trust. The initial value of 

Tr is equal to 1 follwoing the general Hebbian learning rule. 
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As described in the experiential-based DM, OFC and LPFC are involved in 

goal-direct behaviors. These structures mainly participate in the emotional and 

rational valuation of the external stimuli, respectively.  These two structures are 

also categorized as “social structures”, even though their oscillatory activities 

have also been observed in the individual contexts. In addition, the oscillatory 

activity of the LPFC’s neural units during the observation of others’ behaviors 

indicate the activities of mirror-like neurons in this neural part.  

 

 

 

 

 

 

(a)                                                  (b) 

 
                                                                 (c) 

Figure 8 illustrates the schematic flow of information between neural structures involved in the 

observation-based DM. The oscillatory activities of neural units in OFC and LPFC represent the 

emotional and rational values of the observed action and outcome. ACC is a social hub in this model 

and receives the encoded predicted and actual (observed) values of the action/outcome projected 

by OFC and LPFC. The observed neural activities in ACC is the result of the difference between 

these values (i.e. action and outcome PE). These PE signals are projected to OFC and LPFC and 

update the emotional and rational cell assemblies corresponding to the observed action.  
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The described model in the first part is a basis for the DM in the social 

context. To simulate the impact of observational learning on the DM, the ACC 

and the mirror neuron system as the complementary social components have 

been added to the previous developed model. In this model, for the sake of 

simplicity, the amygdala is also excluded from the previous model. 

ACC, as a social hub, plays a pivotal role in processing the social-based PE 

signals and updating the social values of OFC and LPFC. ACC receives the 

predicted and actual values of observed action-outcome from OFC and LPFC, 

integrates them and generates the prediction error signals, and projects them into 

OFC and LPFC to update the emotional and rational values of the observed 

action. This process makes it possible for the observer to learn from/about others 

through observing their actions and outcomes. Figure 8 illustrates the interaction 

between neural structures underlying observation-based decision making 

process. The action and outcome prediction process are illustrated in the figure 

(8. a) and (8. b), respectively.  The emotional and rational updating processes 

based on the received PE signals from ACC is shown in figure (8. c). 

The acquired knowledge from/about the alleged expert through observational 

learning influences the oscillatory properties of the neural patterns associated 

with the observed action as well as the trust level. The updated value of the trust 

level influences how the observer evaluates the decision options in the next 

decisions/day. Although interpersonal trust can be analyzed emotionally and 

rationally, here, this model only studies rational trust. Therefore, in this model, 

LPFC is the sole structure that contributes to trust formation. 

 The cell assembly presenting the observed individual (here, considered an 

expert to be followed) is associated with the cell assemblies representing the 

action-outcome association. Therefore, updating the action-outcome association 

leads to a change in the properties of the expert’s associated cell assembly.  Here, 

ACC plays an important role to update this system. Therefore, the projected 

signal from ACC to LPFC updates the cell assembly representing the action-

outcome association which subsequently updates the oscillatory properties of the 

expert’s associated cell assembly. In this regard, trust will change.    

The way that probability is encoded in the brain, the neural representation of 

probability, is a key issue in neuroscience. It is generally assumed that the neural 

activities in an uncertain environment can appropriately be modeled by Bayesian 

theory (Doya, 2007, Knill and Pouget, 2004, Schultz and Dickinson, 2000, Rich 

et al., 2015).  

Regarding the importance of the history of the action/outcome of the expert 

in the decision making process, the observational action and outcome predictions 

not only depend on the frequency of actions’ selection but also the conditional 

probability of action-outcome association should be considered. In contrast to 



38 

 

Markov chain properties (Eq. 8.1), considering the recent state, Dynamic 

Bayesian Probability (DBP) takes the advantages of history of the actions and 

outcomes (Eq. 8.2). The equation (8.2) represents the probability of occurrence 

of an action at time n+1,𝑋𝑛+1, given the past actions based on DBP  

𝑃𝑟(𝑋𝑛+1 = 𝑥|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛) = Pr(𝑋𝑛+1 = 𝑥| 𝑋𝑛 = 𝑥𝑛)                                                                                                                   

(8.1)  

𝑃𝑟(𝑋𝑛+1 = 𝑥|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛) = 𝑃𝑟(𝑋𝑛+1 = 𝑥| 𝑋𝑛 = 𝑥𝑛) ×

Pr(𝑋𝑛 = 𝑥| 𝑋𝑛−1 = 𝑥𝑛−1) × …× Pr(𝑋2 = 𝑥| 𝑋1 = 𝑥1)                             (8.2) 

 In this thesis, the neural excitability, strength of neural units’ connections 

and strength of associative connections are central variables indicating the 

probability and likelihood of action/outcome happening. 

The approach and attitude of the expert can be modeled by a sequential 

dependent probability distribution.  Hence, here, DBP is deployed to adjust the 

neural oscillatory activities during observations. The predictive signals 

properties (i.e. mean peak value and frequency) is measured considering the 

observed actions/outcomes probabilities.  

𝐷𝐵𝑃 = 𝑃𝑟(𝐴𝑂𝑛+1 = 𝑟|𝐴𝑂1 = 𝑟1, 𝐴𝑂2 = 𝑟2, … , 𝐴𝑂𝑛 = 𝑟𝑛)                       (9) 

where AO represents the action-outcome association and 𝑟𝑛 indicates the 

desired rewarding outcome at time n. In this regard, the degree of consistency 

and competence of the observed expert can be measured with the help of DBP 

in the DM. The expert’s consistency and competence determines the likelihood 

that the observer follows the expert.  

Considering the uncertainties about the expert’s actions and the subsequent 

outcomes, the oscillatory properties of the cell assemblies associated with the 

expert are measured based on the signal energy, 𝐸𝑠, dynamic probability, 𝐷𝐵𝑃 

and motivation to follow the observed individual 𝑄𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 , (i.e. trust to the 

observed  individual )   

𝑆𝑖𝑔𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 =  𝐸𝑠 × 𝑄𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 × 𝐷𝐵𝑃                                        (10) 

The measured signal value is the magnitude of the prediction signal 

indicating what an observer has learned about the expert. 
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As described in the previous section, under different scenarios, I intend to 

scrutinize the individual the DM at the experiential and social levels. In the 

following, the neural and behavioral results of the developed models will be 

presented in the order of the described scenarios.  

It is important to mention that the presented results are not based on real-

world behavioral data. However, the external inputs are defined in a reasonable 

range of visual stimuli. Therefore, the results illustrating the oscillatory neural 

activity are sensible within a realistic neural range, but the absolute numbers do 

not transfer any message. Undoubtedly, presenting exact numbers showing the 

required time to form an attitude or a habit depends on real behavioral data. The 

major message of the following results are the relative changes of behavioral 

pattern with regard to the neural changes. 

3.1  Experience-based decision making results 

Decision making is a value-based process influenced by internal and external 

circumstances (context). Therefore, measuring the values of the options is 

arguably the first step in studying the value-based DM. 

 Results from Paper I 

Considering the role of the underlying neural activities in action selection, the 

intensity and excitability of the cell assemblies indicate the salience of the 

corresponding options. The number of cell assemblies associating the different 

responses to external stimuli corresponds to the number of options. In addition, 

as mentioned in Section 2, the Q value represents the level of neural arousal and 

motivation of the individual. Therefore, the larger Q value brings about the more 

excitable neural structure. 

3 Simulation and results 
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The emotional and rational values of the options (e.g. car/public/bike) are 

taken as the normalized magnitude of the product of the size, the (mean) 

amplitude and (dominant) frequency of the corresponding cell assembly, based 

on Eqn. (4). The detailed information about the measured values and the final 

decision based on the integration of the emotional and rational values in a sample 

situation can be found in Paper I.   

𝑉𝐴𝑀𝑌= [|𝑠𝑐𝑎𝑟| ∙  〈𝒇𝑐𝑎𝑟
̅̅ ̅̅ ̅̅ , 𝑨𝑐𝑎𝑟

̅̅ ̅̅ ̅̅ 〉,|𝑠𝑝𝑢𝑏𝑙𝑖𝑐| ∙  〈𝒇𝑝𝑢𝑏𝑙𝑖𝑐
̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑨𝑝𝑢𝑏𝑙𝑖𝑐

̅̅ ̅̅ ̅̅ ̅̅ ̅〉, 

|𝑠𝑏𝑖𝑘𝑒| ∙  〈𝒇𝑏𝑖𝑘𝑒
̅̅ ̅̅ ̅̅ ̅, 𝑨𝑏𝑖𝑘𝑒

̅̅ ̅̅ ̅̅ ̅〉] 

Similarly, the expectancy signal generated in OFC is measured. Following 

Eq. (6), the degree of similarity between the value of OFC and amygdala 

determines the final emotional value.  

𝑠𝑖𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦 =
〈𝑉𝑂𝐹𝐶

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ,   𝑉𝐴𝑚𝑦
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗〉

‖𝑉𝑂𝐹𝐶
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ · ‖𝑉𝐴𝑚𝑦

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
 

The final value of the options are the result of emotional and cognitive signal 

integration computed mathematically as follows. Taking account of the initial 

assumption, the individual has the same emotional and rational tendencies. 

Hence, the coefficient, is equal to 0.5. 

�⃗� 𝑓𝑖𝑛 = 0.5�⃗� 1 + 0.5�⃗� 2 

The measured values (more details in Paper I) determine the strength of the 

correlating cell assemblies, for one simulation with a specific set of parameter 

values. The recorded EEG-like oscillatory activities of the neural patterns (i.e., 

car, bike, and public transport) are in the gamma range, i.e. around 40-90 Hz. 

Figure (9.a) shows the emotional and rational oscillatory activities of one of the 

options (i.e. car) in one frame. The simulated neural activity demonstrates the 

balance between excitation and inhibition in the network structure. The activity 

of excitatory neural units is shown with blue and the inhibitory activities at the 

feedforward and feedback layers are shown with green and red, respectively. 

The first 3000 ms illustrates the oscillatory activity of the cell assembly in 

system 1, and the following period, 3000-10000 ms, displays the activity of 

system 2. Different frequencies (Figs 9.b and 9.c) correspond to different 

preferences given to any of the options. The dominant frequency of a signal 

demonstrates the highest signal energy level. Therefore, a pattern with a higher 

dominant frequency has a higher excitability. The emotional and rational neural 

patterns oscillate with different excitabilities (figures 9.b and 9.c). The dominant 

frequencies of the emotional and rational oscillations in this particular example 
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simulation are 67 Hz (fig 8.b) and 50 Hz (fig 8.c), respectively.  The higher 

dominant frequency shows that the “emotional” excitability of cell assembly 

corresponding to car is higher than its rational value, in this particular case.  

 

(a) 

  

(b) (c) 

Figure 9 The balanced inhibitory and excitatory oscillatory activities of the OFC and LPFC 

structures representing the emotional and rational values of car. The value of the emotional 

dominant frequency (67 Hz) is higher than the rational dominant frequency (50 Hz), which shows 

that the emotional priority of this option is higher than its rational value.  

The neural activity of the cell assemblies associated with public transport and 

bike are shown in Figures 10 and 11, respectively. These two figures show the 

corresponding emotional and rational activities of the mentioned options, 

respectively. 
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                                                   (a) 

 

 

 

                   (b)                        (c) 

Figure 10 The balanced inhibitory and excitatory oscillatory activities of the OFC and LPFC 

structures representing the emotional and rational values of public transport (a). The higher value 

of (b) the emotional dominant frequency (54 Hz) than (c) the rational dominant frequency (52 Hz) 

depicts that the emotional priority of this option is higher than its rational value.  
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                            (a)                      (b) 

 

                                                        (c) 

Figure 11 Cell assembly activity in System2, representing the rule-based goal in procedural 

memory. In the upper left frame (a), the activity of ten randomly chosen network nodes are depicted. 

The upper right frame, (b), shows the FFT frequency distribution of the network activity with the 

highest peak around 78Hz. The “mean membrane potential” of the feedforward and feedback 

inhibitory nodes, Uff and Ufb , are illustrated in the lower frame by green and red traces, 

respectively (c). The red traces represent the mean membrane potential, Uex, of the stimulated 

excitatory nodes and the blue ones are non-stimulated excitatory nodes.  

The dominant frequencies of the above three neural assemblies show the 

rational priority orders of the three available means of transport. The illustrated 

rational dominant frequencies of car, public transport and bike are 50 Hz, 52 Hz 

and 78 Hz, respectively. On comparison, car has the lowest rational priority and 

bike has the highest rational value. Accordingly, the individual is (rationally) 
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more prone to choose bike as a means of transport to travel between work and 

home. The above results illustrate the direct relationship between the value of 

the options and the excitability of the corresponding neural patterns. The neural 

pattern with the highest excitability and strength would be considered to be a 

final decision.  Then, the individual experience the actual value of the decision. 

The difference between the predicted and actual value is a ground for the 

generation of the PE signal. The sign and the magnitude of the PE updates the 

stored emotional and rational attitude and its correlating neural excitabilities. A 

negative PE results in a decline of motivation in taking that option again in the 

future, while a positive PE increases the probability that the previous final 

decision will be selected once again in the next DM.  

 

Figure 12. The illustration of fluctuations in the values of car resulting from the signaled prediction 

errors. The values of the y-axis denote the final values of the decision made in any trial. The 

difference between actual and predicted values yields a prediction error, which updates of the 

corresponding neural patterns in the OFC and LPFC. The sign of the prediction error affects the 

learning process in these two structures. A positive PE results in an increase in the neural 

excitability of associated patterns, while a negative sign makes the cell assembly weaker. The 

updated neural structures signal new prediction values of the options.  

Figure 12 shows the changes of the final decision value in a particular 

example during 1000 trials/days. The variation of the value demonstrates the 

impact of the sign of PE on the increase/decrease of the value. As described 

above, the increased/decreased values show the increase/decrease in the neural 

excitability of the cell assembly associated with the made decision. 
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 Results from Paper II 

The developed neurocomputational model in the Paper I, serves as a ground for 

further studies about the behavior change of the decision maker influenced by 

the environmental contexts. The behavior/decision is based on the personal 

attitude, but can be modified depending on environmental conditions and 

internal state.  

Based on the assumptions and underlying factors in our model, I could 

formulate a hypothesis concerning the role of negative PE:  

As long as there is no negative prediction error, there is no behavior change, 

at least not in a short time. 

To test this propositions, the following two scenarios are designed and 

simulated. 

Scenario II. I study the influence of unpredicted events on the behavior of 

the individual who makes decision behavior. In continuation of Scenario I, the 

decision maker is considered to have a rational character, implying that the 

motivation to satisfy the rational attitudes is higher than for the emotional ones.  

Throughout the simulation, the number of unpredicted events such as 

accidents, traffic jams increases, and accordingly the number of times that 

the individual experiences this, the negative PE increases. There is a relation 

between the number of negative PEs and the sign and magnitude of the slope 

of the motivational change. A lower frequency of unpredicted events, e.g. 

accident, results in a steeper slope of motivational change. An increase or 

decrease of motivation in selecting an option might lead to a change in 

priority order and subsequently in the decision. 

The simulations show that a lack of sufficient negative external feedback 

(environmental) is the main cause of increasing the motivation for taking the 

car, instead of any other option. The higher frequency of unpredicted events 

reduce (the slope of) rational/emotional motivation for taking the car, while 

the motivation for taking public transport increases with a steeper slope. 

Increase of rational motivation for taking the bike is here due to the advice 

of those who are pro-environment, with a high trust level. The process of 

emotional motivation changes is the same as the rational one, except that 

motivation for taking the bike is constant. Emotional and rational motivation 

changes might result in a change in priority order. Generating sufficient 

negative prediction error causes priority order to be changed. 
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Figure 13 Priority order change while an individual is exposed to different levels of unpredicted 

events. The bars in blue represent the situation where the selected option is car, and the bars in red 

are the representation of public transport. The final decision changes during the third time interval 

while the probability of unpredicted events increased to 50 percent. 

In the example of Fig. 13, the individual is in 5 different decision conditions. 

The probability of unpredicted events changes in different conditions.  The 

probabilities are 10, 30, 50, 70 and 90 percent, here specified with the numbers 

1, 2, 3, 4, and 5 frames respectively.  As the figure shows the priority of the 

individual changes from car to public transport in the third condition after some 

days (here, 31 days) when the probability of unpredicted events is 50%. The 

number of days for behavior change depends on the importance of the event. 

Therefore, this value (31 days) does not necessarily simulate any real situation. 

What is   important here is that the time required for the individual to change 

her priority order shortens with increase in frequency of unpredicted events. This 

is an example of a “system flip” of individual behavior that can result in a system 

flip at a societal level, if a large enough set of individuals are involved. 

Another impact of unpredicted events is on the emotional and rational 

motivation of the individual for choosing a means of transport. The difference 

between the emotional and rational motivation is the result of a difference 

between the OFC’s and LPFC’s neural excitability. Therefore, the Q values in 

the emotional and rational structures, 𝑄𝑒𝑚𝑜. and 𝑄𝑟𝑎𝑡 respectively, are different. 

For example, the motivation to take the car is subject to negative influence of 

unpredicted events. During the first two frames, while the probability of 

unpredicted events is 10 and 30 percent, respectively, the level of motivation to 

take the car is greater than the motivation to choose public transport. In this case, 

an increase of the unpredicted event probability to 50% would provide a suitable 

base for changing the priority order.  
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(b) 

  

(c) 

  

(d) 
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(e) 

Figure 14 Rational and emotional motivation changes during five time intervals. The probability 

of the occurrence of the unpredicted events varies from 10, 30, 50 to 90 percent shown in figures 

(a), (b), (c), (d), and (e), respectively. Blue lines are for car, red for public transport, and green for 

bike. The emotional and rational motivation, Qemo.  and Qrat. varies in different decision conditions. 

The increase in the probability of the occurrence of the unpredicted events leads to an increase in 

the emotional and rational motivation to choose public transport. 

It is important to mention that changes in priority order should not be 

interpreted as a change of personality or attitude. Due to negative external 

feedback, the decision maker decides to change her behavior but not necessarily 

his attitude. As is illustrated in Fig. 14, after some trials the decision maker 

decides to change the means of transport, but not his attitude. The shortest line 

depicts the shortest path, with respect to required time to reach the goal.  

Scenario III. In the second scenario, as in the first one, generating negative 

PE is the basis for changing the behavior and attitude of an individual. I study 

the impact of temporary policies on the behavior of the decision maker. An 

example of a temporary policy is an experiment made in Uppsala municipality, 

where car drivers could get a free bus ticket for one month, if taking the bus 

rather than their car to work. The policies lasts temporarily for 10, 30, 50, 70, or 

90 days, respectively. The number of days a policy lasts has an impact on the 

emotional motivation of the individual for choosing a means of transport. As 

figure 15 shows the individual has a higher emotional motivation, 𝑄𝑒𝑚𝑜., to 

choose public transport while the number of days the temporary policy 

implemented is higher. 
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Figure 15. Emotional motivation changes during five time intervals. The length of implementing 

policies varies from 10, 30, 50 to 90 days, respectively. Blue lines are for car, red for public 

transport, and green for bike. The emotional motivation is based on the levels of Qemo. of the OFC’s 

cell assemblies representing different means of transport. Increasing the length of temporary 

changes will increase the emotional motivation of the individual for choosing public transport to 

travel between work and home.  

3.2 Social-based decision-making results 

The idea behind the neurocomputational modeling of social-based decision 

making has been developed in continuation of the first two papers in this thesis, 

with transport as the same case example.  
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 Results from Paper III 

Social value is likewise considered a core aspect of the DM. In addition to the 

importance of the option to an individual, she should also decide about the value 

of other determinants (e.g. trust).  

The scenario described has been simulated many times for one observer with 

different initial levels of emotional and rational neural properties. The illustrated 

results in this section represents one of the obtained results. 

Influence of observational learning on trust in expert 

The observation of the action and the subsequent outcome of an “expert” (e.g. 

friend/neighbor) might make an impact on the observer’s trust in the observed 

person. Here, I assume trust to others is based on rationality. The presented 

definition of trust indicates that the rational trust would be raised in the wake of 

(action and outcome) consistency and competence of an observed person in 

Based on the scenario, the observer observes her friend who is considered 

more of an “expert”, taking public transport almost every day. She is almost 

always on time, and of course wealthy.  The observer is supposedly pro-social. 

Hence, time, i.e. the outcome of choosing a means of transport, is important to 

her.  

As mentioned, the concept of associative learning is strongly connected with 

the concept of goal-directed behavior. The observer makes an association 

between frequently observed action and the desirable outcome. In addition, the 

associative learning is a part of the social learning so that the observation of the 

expert who frequently makes one specific decision brings about an association 

between the expert and the observed action.  

The neural oscillatory activity representing trust depends on the level of the 

arousal, which is determined by the quantity Q in Eq. 3.  The observation of the 

desirable goal-directed behavior results in a change of the trust level. The 

changes in trust level corresponds to the changes in the neural excitability and 

strength of neural connection caused by augmented motivation (i.e., Q value). 

The neural oscillation representation of trust is analyzed the same as the neural 

activities of options. The dominant frequencies of the neural oscillations during 

a period of time that the observer observes the expert’s action/outcome 

demonstrate different levels of trust.  The more plausible the action-outcome 

association is, the more trustworthy the demonstrator and the higher neural 

excitability would be. To study the impact of trust on the neural arousal, a small 

Q =6 value is set as an initial level of neural arousal of the LPFC’s cell assembly 

associated with the observed individual. The oscillatory activity representing 
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initial trust is shown in Figure 16. a. As Figure 16.b shows, the dominant 

frequency of neural pattern of trust equals to 50Hz. 

 

        (a)     (b) 

 

 
 

 

    (c) 

 

  (d) 

(e) 

 

 

 

 

      (e) 

 

 

 

 

 

 

 

 

   (f) 

Figure 16 Oscillatory representation of trust. Different levels of trust are illustrated based on 

different levels of 𝑄𝑟𝑎𝑡. values. The higher value of Q leads to the higher level of dominant 

frequency. Therefore, the neural oscillations representing the higher level of trust have higher 

energy and are more excitable.  
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The observation of the expert’s action/outcome with high level of consistency 

and competence increases the Q value and subsequently the excitability of neural 

pattern corresponding trust in the expert (Figs. 16.c and 16.e).  The increased 

dominant frequencies in figures 16.d and 16.f show the increased level of 

observer’s trust and motivation to follow the observed action. The illustrated 

EEG-like data in figure 16 is simulated for the first, 20th and 40th observations 

of the expert’s action and outcome.  

The increase in the neural excitability reflects the changes in the 

neural connections weight. The figure 17 illustrates the changes of 

the neural weight connections of the pattern associated with trust.  

 

Figure 17 Illustration of changes in the trust level during observing the action-outcome of an expert. 

The high level of predictability of the expert (predictable rewarding action-outcome association) 

increases the strength of neural assembly representing the expert. 

Figure 17 shows that the rate of changes in the neural connection weights 

decreases during the observation of the expert and connection will be saturated 

which determines the stability of the observer’s trust in the expert. The increase 

in the strength of neural connections demonstrates an increase in the excitability 

of the cell assembly associated with the observed individual.  

Influence of trust in expert on observational learning  

Trust might have emotional and rational impacts on what an observer learns from 

others and can be manifested in the observer’s prioritization in the decision 

making process. Here, I study the influence of the augmented trust on the 

observer’s emotional and rational valuations.  
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Regarding the mentioned expert-action association, the increased excitability 

of neural patterns corresponding to the trusted expert results in an increase in the 

oscillatory activity of the associated action (i.e. public transport). The changes 

in the rational trust directly influences the rational value of the observed action 

(public transport) to the observer. Taking into account the modified Hebbian 

learning rule (Eq. 7), the rate of learning about the observed action changes. The 

learning process, is here based on the changes in the value of Tr. The variable 

Tr linearly changes when the trust level changes. The increase in the value of Tr 

results in the decreases in the learning rate.  

In addition, regardless of the direct impact of rational trust on rational 

learning, the generated positive observational PEs have increased the excitability 

of the emotional and rational cell assemblies corresponding to public transport. 

Given the contextual information, with the help of the dynamic Bayesian 

probability, the observer estimates the contingencies of the expert’s action and 

its outcome. According to the assumption, the expert has a high level of action 

and outcome predictability.  

The predicted/observed actual emotional and rational signals are projected 

from OFC and LPFC into ACC. The result of the integration of the predictions 

and observed actual values is projected by ACC to OFC and LPFC. The 

projected positive/negative PE from ACC to LPFC and OFC, 

increases/decreases the emotional and rational neural arousal, 𝑄𝑒𝑚𝑜.and 𝑄𝑟𝑎𝑡. 

respectively.  Therefore, the OFC’s and LPFC’s oscillatory activity of the neural 

patterns corresponding to the selected option by the expert (here, public 

transport) increases.  

Figure 18 shows emotional and rational learning curves. The orange curve in 

this figure illustrates the sigmoid-shaped rational learning rate of the cell 

assembly associated with the public transport. The illustrated increase in the 

level of rational trust in figures 16 and 17 positively changes the rational 

learning.  

Considering the relationship between LPFC and OFC, LPFC is able to 

modify the activity of OFC. As a result of the LPFC’s modification, the 

oscillatory activity of orbitofrontal cortex increases gradually but with lower 

learning rate.   

During the illustrated process, the rational and emotional motivations of the 

individual to take public transport take different values. The OFC’s and LPFC’s 

neural oscillatory activities change during the observational learning process 

illustrated in figure 18.b, 18.c, and 18.d. The rate of increase in the rational 

connection weights (Fig 18.a, orange curve) is higher than the rate of increase in 

the strength of emotional pattern (Fig 18.a, blue curve).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 18 The illustration of the changes in the strength of neural connections in OFC and LPFC 

structures. The changes of the neural weights follow the sigmoid curve. The rational neural weight 

connections increases with a higher rate than the rate of emotional changes. The observation of the 

action and outcome of the expert makes an impact on the emotional preference of the observer. Her 

preference changes from car to public transport. 
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Thus, the rational neural connections become saturated (Fig. 18 orange dotted 

line) before the emotional neural pattern. In addition, the saturation level of 

LPFC’s neural pattern is greater than the maximum strength of the OFC’s 

corresponding pattern. In following, the properties of the emotional and rational 

cell assemblies associated with public transport during the observation of the 

expert’s actions and outcomes are measured.  

The excitabilities of the OFC’s and LPFC’s cell assemblies before the 

decision maker start observing the action and outcome of the expert is: 

�⃗� 𝐸𝑚𝑜.,𝑡=1  = [ 𝐶𝑎𝑟, 𝑃𝑢𝑏𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, 𝐵𝑖𝑘𝑒] =  [0.2 ,0.1, 0.08] 

�⃗� 𝑅𝑎𝑡.,𝑡=1 = [ 0.1, 0.2 , 0.05] 

�⃗� 𝑓𝑖𝑛𝑎𝑙.,𝑡=1 = [0.4, 0.3, 0.1] 

 

Based on my initial assumption, the decision maker is an emotional person. 

She is initially more prone to choose car. However, her rational preference is to 

take public transport. With regard to initial assumption, the initial emotional 

value of the public transport is less than its rational value. Hence, the mean 

neural weight of the emotional pattern of the public transport is less than the 

rational neural weight of this option. The strength of the cell assembly 

corresponding to public transport after observing the action-outcome association 

of the expert for 32 times is measured: 

�⃗� 𝐸𝑚𝑜.,𝑡=30  = [ 𝐶𝑎𝑟, 𝑃𝑢𝑏𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, 𝐵𝑖𝑘𝑒] = [0.223 ,0.256, 0.089]  

�⃗� 𝑅𝑎𝑡.,𝑡=30 = [ 0.15, 0.332 , 0.051] 

�⃗� 𝑡𝑜𝑡.,𝑡=30 = [ 0.373, 0.588 , 0.19] 

The result shows that the increase in the excitability of rational neural pattern 

make a positive impact on the increase of emotional neural activities, but with 

lower changing rate.  

3.3 Sensitivity analysis 

The parameters in our system have been chosen based on what is known from 

the literature. Within reasonable ranges, they have been tuned to give plausible 

results. As with any biological system, the functioning depends on variables and 

parameters that have been tuned by evolution, perhaps to result in some kind of 

optimal solutions. Regardless, we have explored the sensitivity of our model 

system by changing the parameter values chosen, and tested the effect on system 
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behavior. Typically, we changed the parameters by 10%, but in some cases even 

more, trying to push the system out of stability. The system is shown to be quite 

stable to variations in these (“natural”) ranges.  
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In this thesis, I have pursued the aims of broadening our knowledge about the 

decision making process in individual and social contexts, as well as studying 

the impact of social and environmental variables on an individual’s decision. I 

have done so by modelling parts of the neural systems playing major roles in the 

experiential and social-based DM. The results of my three papers can be 

discussed from the behavioral and neural perspectives. As mentioned in the 

previous sections, the obtained results demonstrate the relative correlation 

between the mesoscale neurodynamics of some neural structures and the 

subsequent macroscale cognitive process (i.e. decision making process). Given 

that the environmental and social inputs to the neural structures are not based on 

real-world data, specific conclusions about the detailed behavioral approach 

(e.g. required time to form an attitude or change a decision) cannot be inferred 

from the measured values shown in the figures.    

In Paper I, I have modeled three neural parts involved in the experiential DM: 

Amygdala, orbitofrontal cortex and lateral prefrontal cortex. This model 

encompasses an input-procedure-action-feedback process from the first-person 

perspective. With the developed neuro-cognitive model, the main finding of the 

first paper is describing the emotional and rational structures involved in this 

flexible process. With the help of these two systems, the first model may predict 

the experience-based decision of an individual based on the external and internal 

context. The importance of considering the emotional and rational neural 

structures can be easily noticed based on the measured activities of OFC, 

amygdala and LPFC.  

The significance of the emotional system has been highlighted with the 

modeling of Amygdala, which in contrast to LPFC and OFC, is exposed to the 

internal stimuli. Hence, the final decision in this model is a result of the influence 

of external as well as internal contexts.  In fact, context could be considered as 

the combination of internal and external context.  

4 Discussion  
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In addition, taking OFC-amygdala interactions into consideration, modeling 

of OFC seems to be necessary for controlling final emotional values and 

responses. The difference between the projected emotional signals by OFC and 

amygdala illustrated in the first paper, clearly demonstrates this necessity.  

The importance of modeling LPFC is not limited to its involvement in the 

rational valuation. The result of combining emotional and rational values draws 

special attention to the LPFC-OFC interaction as a major determinant for the 

final decision. This is the highlight of the contribution of LPFC in the DM by its 

role in modulating the OFC’s activity. Accordingly, the final values for different 

options (e.g. car, public, and bike) show the attitude of the decision maker in 

specific contexts.   

The discussion above describes the first three steps of the input-procedure-

action-feedback process. The last step can be discussed with regard to the neural 

activity underlying the DM.  

Taking the neural scale into account, this paper shows how differently cell 

assemblies, representing different optional choices available to an individual, 

may compete depending on their activity levels. This level, or intensity, of the 

activity was suggested to be a combined measure of the size of the cell assembly 

(number of network nodes), and the frequency and amplitude of the oscillatory 

activity of the nodes. The “winning” assembly is simply the one with the 

strongest neural activity, measured as the product of the three assembly 

characteristics (number, frequency, amplitude) and it determines the option that 

will be taken. The different options get different values, depending on internal 

and external factors. Internal factors could be attitudes, values, mood, while the 

external factors include traffic situations, availability, distance, etc.  The neural 

connectivity and the excitability of the patterns determine the probability of 

selecting an option as the final decision. The more excitable a neural pattern is, 

the more valuable the corresponding option will be, hence increasing the 

probability of that option selection. The excitability of neural patterns not only 

depends on the external/internal states but also the actual value of the decision 

and its difference with the predicted ones. The excitability and strength of cell 

assemblies associated with the options change based on the feedback the 

decision maker receives from the environment. As a conclusion, the activity of 

cell assemblies associated with the options comprehensively reflect all the steps 

of the decision making.  

The findings in this paper provide a basis for deeper studies about the 

influence of environmental variables on an individual’s decisions. 

Based on the first paper, the negative PE results in changing the value of the 

options. Considering this experience-based neural activities, in paper II, I have 

applied a broader environmental situation to scrutinize the changes in behavior. 
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The results show that there is an inverse relation between the number of 

unpredicted events and the time required to change the priority order. The higher 

probability of unpredicted events causes the decision maker to step across the 

threshold of behavior change faster. The higher probability of unpredicted events 

increases the magnitude of the negative prediction error, hence, the probability 

of behavior change is higher and the required time for this change is shorter.  

In the second scenario, I have studied the direct relationship between the 

policy framework and an individual’s decision. In this scenario, as in the first 

one, generating negative prediction error is the basis for changing the behavior 

and attitude of the individual. The results demonstrate that the mere 

implementation of policies is not enough, but the required time for implementing 

the policy is equally crucial to influence change of behaviors. Based on the 

results, a minimum length of implementation is required to change attitudes, and 

longer time does not make any difference.  

Simulation results confirm the mentioned hypothesis related to the role of 

negative prediction error. The main finding of the scenario II and III is that a 

negative PE results in a decline of motivation in taking the associated option. In 

cases with low probability of negative prediction error, a changed behavior does 

not happen or will take a long time to occur. In the third scenario, I have found 

that there is a direct relationship between policy framework on higher 

costs/longer time and negative PE of taking car as a decision. Therefore, when 

implementing policies for, in this case, everyday traveling the outcomes of the 

various options (time and cost) should be a special target. 

I have continued studying the behavior change of the individual making 

decision in a larger frame of context while the society is the influential variable.  

In paper III, the social influences are confined to what an individual learns 

through observing an expert. Therefore, the mentioned input-procedure-action-

feedback process has been studied from the third-person perspective. The 

decision maker observes the contingencies of the action-outcome of the expert. 

As the results show, the high degree of consistency of an expert’s action and his 

competence considering the likelihood of the occurrence of the rewarding 

outcome make the observed expert trustworthy and the observed action worthy 

of following. The first result achieved in this paper shows that the more an 

individual observes a person with high level of predictability, the higher the level 

of trust in that person will grow.   

An increase in level of trust in the expert is an evidence of the increase of the 

excitability of the neural pattern corresponding the expert. It was shown that the 

increased excitability of the neural units can be explained with respect to the 

increased neural weight connections and the Q variable.   The higher the level 

of Q, the more excitable the neural units will oscillate. Hence, the changes in 
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level of trust is proportional to the changes of Q value, and in addition, the higher 

level of trust is the result of more regular and less chaotic neural activity. The 

results also show that increased rational trust in an individual has a direct impact 

on how decision options are evaluated. The increased rational trust level has a 

positive impact on the rational and emotional preferences of the observer for the 

expert’s action. As the trust level in the expert grow higher, the observer will 

become more motivated to change their action according to the expert’s decision.  

The rational excitability of the correlating neural structure of the expert’s 

decision (i.e. public transport) also increases but with the lower learning rate 

than the trust formation rate. Concurrently, the emotional excitability of OFC’s 

neural pattern correlating to public transport will increase. 
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Improving knowledge about the decision-making process has a positive impact 

on the quality of life at the individual and social level. Our bottom-up approach, 

from the neural oscillatory activities to the behavioral pattern, assists us to 

predict and generalize the individuals’ behavioral patterns considering the 

internal and social states. 

If we consider a human as an isolated person, the environmental and internal 

states, prior experiences, and their attitude sculpt their behavior. At the 

individual level, the levels of contribution of emotions and rationality to decision 

making, determine how an individual exploits the potentialities effectively. 

Climate change is one of the most critical issues that people around the world is 

struggling to control. Controlling our emotional and short gratified decisions 

influences our consumption style and climate. The more emotionally an 

individual reasons, the more their decisions will negatively impact climate 

change. 

In addition, social learning plays a significant role in shaping human 

attitudes. A host of behaviors, from simple avoidance to complex skills, are 

acquired through social processes.  The development of our cognitive and 

conscious abilities is largely influenced by our social interactions and also 

depends on trust in various forms. From this study, based on the described 

assumptions, the following conclusions can be drawn: 

 The function of OFC and LPFC not only determines the emotional and 

rational individual's attitude in an isolated environment but also these 

structures are the essence of the decision-making process, enacting in a more 

complicated social context.  

 The individual preferences and the probability of making a decision reflects 

the level of neural excitability and strength of emotional and rational neural 

patterns corresponding with the environmental and social variables. 

5 Conclusion and future work 
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 The experiential and observational reinforcement learning are the bases for 

individual learning either in the experiential or in the social contexts. The 

negative experiential/observational prediction errors give rise to the 

behavior change, while the positive prediction errors boost the value of an 

action.  

 The changes in the level of trust in the observed person make an impact on 

the observer’s valuation of the observed person’s action emotionally and 

rationally. 

 The changes in the rational valuation of options have a direct relation with 

the emotional value changes, based on the modulating role of LPFC. 

 The rational process changes with the higher rate than the changes in the 

emotional processing. In this regard, the long gratified decisions as 

decisions on climate change would not be permanent as long as the changes 

in the emotional attitude have not been internalized. 

 The observation of an expert with high level of consistency and competence 

engender trust in the observer. The increased trust in the observed expert 

increases the rational and emotional values of the selected option by the 

expert. These changes prompt the observer to change their decision.  

There are many simplifications and assumptions made in our modeling. 

Given the proposed models and assumptions, and based on computer 

simulations, the preliminary conclusions need to be confirmed by empirical data 

to be fully appreciated. In a future development of our decision making model, 

I would like to include more biological, psychological, and social facts that to 

make the results even more realistic.  Regarding the specific focus of the second 

part of this thesis, my intent for future research is to scrutinize the behavior of 

an individual in a social context, where the behavior and the subsequent outcome 

of an alleged expert/non-expert are evaluated by an observer. I have already 

designed a psychological experiment based on the described premise at the 

Emotion Lab at Karolinska Institutet. The preliminary results obtained from a 

pilot study seems promising. In a near future, this experiment will be run for a 

larger group of participants, and the obtained empirical data will be used for 

validation of our developed neurocomputational model.  
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Every day, we are bombarded with various types of information received 

from our surroundings. This information forms our mind-sets and attitudes as a 

guiding light for our decisions. We should not forget that we are a social creature 

and a part of the information that we receive comes from our society. It plays an 

undeniable role in forming our perspective on life. Social advice and social 

attachments are inseparable variables influencing the opinions and life styles of 

individuals. The outcomes of our decisions, primarily actions, make an impact 

on the environment.  This perpetual interaction is a major concern in today’s 

world. Decision making is one of the examples that underlies this interaction and 

climate change is its inevitable consequence. We deal with socially embedded 

decisions concerning various forms of consumption patterns, in particular the 

choice of transport between home and work. Making decisions about travel 

options is one of the most influential variables on the climate. 

To tackle the issue of climate change, we need to investigate if and how 

people can change their decisions, and hence their behaviors, based on changed 

attitudes, beliefs and social information. In this regard, we have to address some 

questions, for example: How are individual decisions influenced by others and 

by various environmental conditions? How is it possible to enhance rational 

decisions in our daily life? How would emotion and cognition contribute to 

making decisions? Which kind of information processing affects our long and 

short term decisions?  

In order to answer these questions, in this thesis, I’ve focused on the decision 

making process (DM) in the light of neuropsychology and cognitive 

neuroscience, taking the case example of every day travel decisions. The main 

goal is to explore the relationship between the micro (neuron), meso (brain 

structures), and macro (cognition/behavior) scales in the DM in the experiential 

and social context. I am using neural network modeling as the main tool in 

realizing my goals. The developed neural network model maneuvers on two 
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different approaches of individual and social aspects of decision making.  

Mainly, I focus on the neural structures of brain areas involved in DM.  

The modelling of orbitofrontal cortex, lateral prefrontal cortex, and amygdala 

and their interactions, satisfy the first aim of this thesis at the individual level of 

DM.  Adaptive decision making process is realized under the interactions of 

individuals, where trust as a social capital is a crucial aspect of social cognition. 

Social learning, perception, and decision making are strongly linked to the 

concept of trust. In the second part of this thesis, I’ve studied the impact of social 

variables, i.e. trust, on the individual decision making process. Considering the 

transport case example, I’ve developed further the original model by adding the 

anterior cingulate cortex to scrutinize the individual decisions, i.e. ways of 

traveling to work, influenced by social variables.  

Understanding DM is helpful, not only for individuals, but also for 

organizations, authorities or other policy makers and businesses, who wish to 

influence the behavior of people. Given the proposed models and assumptions, 

and based on the computer simulations, we can still make some preliminary 

conclusions. However, it is important to consider that changes in climate based 

on the alternative strategies emerge after a long period of time. Therefore, by 

modifying our behaviors that align our lifestyles with the interests of the 

environment, we can bequeath a healthy environment to the next generation.   
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Varje dag bombarderas vi med olika typer av information som tas emot från 

vår omgivning. Denna information påverkar våra tankesätt och attityder som är 

grunden för våra beslut. Vi får inte glömma att vi är sociala varelser och en stor 

del av den information vi får kommer från vårt samhälle, vilket spelar en viktig 

roll för våra perspektiv på livet. Sociala råd och sociala band påverkar våra 

åsikter och livsstilar och resultatet av våra beslut och handlingar har en inverkan 

på miljön. Denna ständiga interaktion mellan människa och miljö skapar ofta 

problem i dagens värld, inte minst klimatförändring. Människors beslut i 

vardagssituationer, t.ex. vad gäller konsumtions- och resvanor, har stora 

konsekvenser för miljö och klimat.  

För att ta itu med klimatfrågan måste vi undersöka om och hur människor 

kan ändra sina beslut, och därmed deras beteende, baserat på förändrade 

attityder, övertygelser och social information. I det avseendet måste vi ta upp 

några frågor, till exempel: Hur påverkas enskilda beslut av andra och av olika 

miljöförhållanden? Hur är det möjligt att ta mer rationella beslut i vårt dagliga 

liv? Hur skulle känslor och kognition kunna bidra till att fatta klimat- och 

miljövänliga beslut? Hur behandlar vi (våra hjärnor) inre och yttre information, 

och hur påverkar denna informationsbehandling våra kort- och långsiktiga 

beslut? 

För att kunna svara på dessa frågor har jag i denna avhandling fokuserat på 

den individuella beslutsprocessen (DM) i ljuset av neuropsykologi och kognitiv 

neurovetenskap, och tar som exempel vardagliga resebeslut. Huvudmålet är att 

undersöka förhållandet mellan mikro- (neuronala), meso- (hjärnstrukturer) och 

makro- (kognition/beteende)-nivåer i DM, för såväl individuella som sociala 

sammanhang. Jag använder neuronnätsmodellering som huvudverktyg för detta 

ändamål. Den neuronnätsmodell som jag utvecklat tar hänsyn till både 

individuella och sociala aspekter av beslutsfattandet. I huvudsak fokuserar jag 

på neurala strukturer i de hjärnområden som anses vara involverade i DM.  
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Modelleringen av orbitofrontala barken, laterala prefrontala barken, samt 

amygdala och deras interaktioner uppfyller det första syftet med denna 

avhandling på den individuella nivån av DM. En adaptiv beslutsprocess uppnås 

genom individens sociala interaktioner, där förtroende (tillit) är en viktig aspekt 

av den sociala kognitionen. Social inlärning, uppfattning och beslutsfattande är 

starkt kopplade till begreppet förtroende. I den andra delen av denna avhandling 

har jag studerat konsekvenserna av sådana sociala variabler, dvs förtroende, på 

den enskilda beslutsprocessen. Med tanke på exemplet med resevanor har jag 

vidareutvecklat originalmodellen genom att lägga till den främre cingulära 

barken för att studera hur de enskilda besluten, dvs hur vi väljer att resa från 

hemmet till arbetet, påverkas av den sociala interaktionen. 

Att förstå hur vi fattar beslut är till stor hjälp, inte bara för individer, utan 

även för organisationer, myndigheter eller andra beslutsfattare och företag som 

vill påverka människors beteende. Även om det för närvarande saknas relevanta 

data för att testa våra modeller, kan dessa ändå ge vissa insikter i hur våra beslut 

påverkas av såväl individuella som sociala faktorer, och några preliminära 

slutsatser kan göras. Bland annat visar de på att attityd- och 

beteendeförändringar normalt tar lång tid, och kräver att såväl det rationella som 

det emotionella tänkandet får påverka våra beslut. Det gäller då att vi ändrar vår 

livsstil och tänker mer långsiktigt och mindre själviskt för att kommande 

generationer ska kunna leva i en hälsosam miljö och i ett drägligt klimat.  
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