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Abstract. Inland waters emit significant quantities of greenhouse gases (GHGs) such as methane (CH4)
and carbon dioxide (CO2) to the atmosphere. On a global scale, these emissions are large enough that their
contribution to climate change is now recognized by the Intergovernmental Panel on Climate Change.
Much of the past focus on GHG emissions from inland waters has focused on lakes, reservoirs, and rivers,
and the role of small, artificial waterbodies such as ponds has been overlooked. To investigate the spatial
variation in GHG fluxes from artificial ponds, we conducted a synoptic survey of forty urban ponds in a
Swedish city. We measured dissolved concentrations of CH4 and CO2, and made complementary measure-
ments of water chemistry. We found that CH4 concentrations were greatest in high-nutrient ponds (mea-
sured as total phosphorus and total organic carbon). For CO2, higher concentrations were associated with
silicon and calcium, suggesting that groundwater inputs lead to elevated CO2. When converted to diffusive
GHG fluxes, mean emissions were 30.3 mg CH4�m�2�d�1 and 752 mg CO2�m�2�d�1. Although these fluxes
are moderately high on an areal basis, upscaling them to all Swedish urban ponds gives an emission of
8336 t CO2eq/yr (�1689) equivalent to 0.1% of Swedish agricultural GHG emissions. Artificial ponds could
be important GHG sources in countries with larger proportions of urban land.
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INTRODUCTION

The global importance of inland waters in the
cycling of carbon and greenhouse gases (GHGs)
is now well recognized (Cole et al. 2007). Lakes,
rivers, streams, reservoirs, and ponds emit large
amounts of carbon dioxide (CO2) and methane
(CH4; Bastviken et al. 2004, Holgerson and Ray-
mond 2016, DelSontro et al. 2018). The emissions
of these GHGs can occur diffusively from the
water surface, and also by ebullition, which is
the pathway by which CH4 is emitted directly to

the atmosphere via the sporadic release of CH4-
containing bubbles from the sediment. Inland
waters also contain dissolved and particulate
organic carbon, which can be degraded to release
GHGs (Tranvik et al. 2009, Evans et al. 2017), or
buried in sediments, thus acting as a carbon (C)
sink (Sobek et al. 2009).
On a global scale, the area of small artificial

ponds is similar to that of large reservoirs, due to
the extremely large number of small ponds
(Downing 2010). Additionally, it has been sug-
gested that C and GHG processing in small
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waterbodies is particularly intense due to the
specific physical properties of ponds, such as
shallow water and frequent mixing (Downing
2010, Holgerson and Raymond 2016). In support
of this, Holgerson and Raymond (2016) esti-
mated that very small waterbodies (with areas
<0.001 km2) contribute 41% of all diffusive CH4

emissions from lakes and ponds, despite com-
prising just 8.6% of total global lake and pond
area. However, an investigation of their data sug-
gests that only one of the sites in their synthesis
is artificial: the Swedish urban pond from Natch-
imuthu et al. (2014) where relatively high sum-
mertime CH4 fluxes were measured. A
comparison of natural and artificial ponds in
India by Singh et al. (2000) noted lower CH4

fluxes in artificial ponds. This was because the
artificial ponds had lower nutrient concentra-
tions, less sediment, and sometimes dried up.
For restored wetlands, Jordan et al. (2016) found
higher CO2 emissions but similar CH4 emissions
from artificial ponds compared to adjacent artifi-
cial shallow lakes. Two recent Australian studies
provided compelling evidence for the impor-
tance of artificial ponds. Grinham et al. (2018)
measured CH4 fluxes from artificial waterbodies
including farm ponds and urban lakes, and
found higher diffusive emissions when com-
pared to larger waterbodies in the same region.
Similarly, Ollivier et al. (2018) found higher CH4

emissions from agricultural ponds compared to
reservoirs. Considering the above, it can there-
fore be expected that artificial ponds release dis-
proportionately large amounts of GHGs,
although at present there is a general lack of data
from these systems, and it is limited to certain
land use types and countries.

Artificial ponds can fall under a range of
classes, from those that have been created anew
on previously terrestrial land, to wetlands that
have been modified into ponds (although even
the exact definition of what constitutes a pond
varies between researchers; Hassall 2014). Never-
theless, Clifford and Heffernan (2018) point to a
range of reasons as to why artificial ponds may
function differently when compared to natural
ones. For instance, artificial ponds will generally
be relatively young, giving a reduced time for
ecological and biogeochemical processes to
develop. Additionally, such ponds are purpose-
fully designed, usually with human-orientated,

not ecologically orientated, aims which will
likely result in a different set of ecosystem func-
tions. Artificial ponds may also feature vastly dif-
ferent hydrology; inflows and outflows may be
regulated, thus changing retention times and the
source of water inputs, and the ponds may be
used for water abstraction (Lawrence and Breen
1998). Considering the above, there is reason to
assume that biogeochemical cycling may differ
between natural and artificial ponds.
In order to determine variability in GHG emis-

sions between ponds, we conducted a synoptic
sampling campaign of 40 artificial urban ponds
where concentrations of CH4 and CO2 and com-
plementary water chemistry determinands were
measured. Our aim was to determine the spatial,
rather than temporal, variation in pond GHG
concentrations, because this temporal variation
has previously been shown to be large in artifi-
cial waterbodies, due to differences in surround-
ing land use (Vermaat et al. 2011). Additionally,
we measured a range of nutrient concentrations
and physical pond attributes, in an effort to eluci-
date the mechanisms driving GHGs.

METHODS

Sampling took place in the Swedish city of
Uppsala on 30 May and 1 June 2018. The area
has a humid continental climate, with annual
precipitation of 668 mm and mean annual tem-
perature of 6.6°C in 2017. Total precipitation and
mean temperature for the 30 d preceding sam-
pling were 16.3 mm and 14.6°C (Swedish Meteo-
rological and Hydrological Institute [SMHI]
https://www.smhi.se/klimatdata). Using aerial
photography, we selected 40 ponds for sampling,
all of which fell within a circular area of 78.5 km2

(diameter of ~10 km). Pond sizes were measured
using aerial photography and were grouped into
area classes <0.001 km2 (n = 27) or >0.001 km2

(n = 13). All ponds were artificial and had been
constructed for various purposes: ornamentation
(e.g., parks) n = 13; farm ponds n = 2; quarry/in-
dustry use n = 2; water regulation (e.g., function-
ing as stormwater ponds or reducing nutrient
and metal exports); n = 23. Ponds were either
within the built-up area of the city itself or adja-
cent to major roads and highways, and therefore,
their immediate catchments all had some degree
of urban influence, but agriculture and forestry
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land uses will also have influenced some ponds
to a lesser extent. The natural soil type at the
sampled ponds is glacial and postglacial clay, but
it is highly possible that the ponds soils have
been amended or managed.

For each of the two sampling days, ponds were
sampled between 10:00 and 16:00. Respective sun-
rise and sunset times were 3:43 and 21:51, and
3:40 and 21:55, for both sampling days, thus sam-
pling took place during the middle of the day.
SMHI data show that the air temperature varied
by 1.2°C and 3.7°C during the sampling hours on
days 1 and 2, respectively. No adjustments were
made to account for diel fluctuations. At the edge
of each pond, water temperature and dissolved O2

were measured in situ using a Hanna Instruments
Multiparameter Meter Hi 9829 (Woonsocket,
Rhode Island, USA), and individual samples of
surface water were taken for GHGs and water
chemistry. Samples for dissolved CH4 and CO2

analysis were collected using the headspace
method (Hope et al. 2004); 30 mL of pond water
and 30 mL of ambient air were shaken together in
a 60-mL syringe for 60 s, and the headspace was
transferred to a 12-mL pre-evacuated glass vial.
Water samples were collected for analyses of pH,
EC, and nutrient concentrations in high-density
polyethylene bottles and for analysis of dissolved
organic matter (DOM) quality in glass vials.

Dissolved organic matter composition was
measured as absorbance using an Avantes Ava-
Light DH-S-BAL (Apeldoorn, The Netherlands)
connected to a cuvette holder. Samples were fil-
tered through pre-rinsed 0.45-lm cellulose acet-
ate filters and analyzed 3/5 d after collection.
Spectral scans were performed between 180 and
1100 nm, at increments of ~0.3 nm. We calculated
the specific ultraviolet absorbance (SUVA) at
254 nm (SUVA254) and 280 nm (SUVA280) as a
measure of DOM aromaticity (Weishaar et al.
2003). We also calculated the spectral slope at
275–295 nm (S275–295) as an indicator of molecular
weight by taking the slope of the log-transformed
spectra, as in Helms et al. (2008). For many of the
samples, absorbance was zero in the 350- to 400-
nm region; therefore, we did not calculate S350–
400. Finally, we calculated E2:E3 as the absorbance
ratio 250:365 nm, as a measure of aromaticity and
molecular weight (Peuravuori and Pihlaja 1997).
Headspace CH4 and CO2 concentrations were
measured on a Picarro GasScouter equipped with

a sampling loop (Baird et al. 2010) and converted
to dissolved concentrations according to Henry’s
law (Weiss 1974, Wiesenburg and Guinasso
1979). The following analyses of water samples
were performed by the SWEDAC-accredited
Geochemical Laboratory at the Swedish Univer-
sity of Agricultural Sciences (for detailed informa-
tion, refer to SLU 2018, F€olster et al. 2014): pH,
EC, alkalinity, ammonium (NH4), calcium (Ca),
chloride, fluoride, magnesium, nitrite + nitrate,
phosphate, potassium, silicon (Si), sodium, sul-
fate, total nitrogen, total organic carbon (TOC),
and total phosphorus (TP).
We used two approaches to explore the rela-

tionships between dissolved GHGs and other
variables. Firstly, we used Spearman’s rank corre-
lation coefficients (rS) to test for monotonic rela-
tionships between dissolved GHGs and other
variables (n = 24) which comprised pond area,
water temperature, dissolved O2, pH, EC, DOM
composition, and nutrient/metal concentrations.
For this, we used the false discovery rate (FDR) to
adjust for multiple comparisons which reduces
the chance of type I errors while retaining greater
power when compared to a Bonferroni adjust-
ment (Benjamini and Hochberg 1995, Pike 2010).
Secondly, we conducted partial least squares
regression (PLS) to explore how dissolved GHGs
were related to the other biogeochemical vari-
ables. This approach has shown to be useful in
exploring dissolved carbon dynamics elsewhere
(Wallin et al. 2010). We used Mann–Whitney tests
to check for differences in GHGs between very
small ponds (areas <0.001 km2) and larger ponds,
and to test for differences between pond use. Par-
tial least squares regression was conducted using
SIMCA 14, and all other statistical analyses were
performed in SPSS Statistics 24 (IBM, Armonk,
New York, USA). For all tests, results were signifi-
cant when P or FDR-adjusted Pwas <0.05.
To provide an estimate of pond GHG emis-

sions, we calculated fluxes of CH4 and CO2 using
the method of Holgerson and Raymond (2016).
This uses aquatic GHG concentration, water tem-
perature, and a gas exchange velocity (k600),
which is assigned as 0.36 m/d for ponds
<0.001 km2 and 0.48 m/d for ponds >0.001 km2.
Gas saturation is factored into the calculation
using atmospheric concentrations of 410 ppm for
CO2 and 1.86 ppm for CH4; thus, pond fluxes
can be negative if ponds are under-saturated in
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GHGs. Fluxes for each pond were then multi-
plied by pond area to give a flux for the total area
of each pond. We then assumed an ice-free sea-
son of 275 d and multiplied the flux per pond by
this value to give an annual flux. This assumes
that the concentrations measured during our
campaign represent an annual average, which is
unlikely to be true. Nevertheless, pond GHG
concentrations will be higher in summer and
lower in winter, thus our spring time sampling is
useful as a first approximation of potential
fluxes. CH4 fluxes were converted to CO2 equiva-
lents using a 100-yr global warming potential of
34 (IPCC 2013).

RESULTS

Concentrations of CH4 and CO2
Dissolved CH4–C ranged 1.73–325 lg/L with a

median of 26.0 lg/L. Significant (FDR-corrected)
correlations were found with TOC (rS = 0.53,
P = 0.009) and TP (rS = 0.46, P = 0.033; Fig. 1).

Dissolved CO2–C ranged 0.10–8.13 mg/L with
a median of 1.35 mg/L. Significant (FDR-cor-
rected) correlations were found with pH
(rS = �0.85, P < 0.001), alkalinity (rS = 0.64,
P < 0.001), Ca (rS = 0.68, P < 0.001), Si (rS = 0.46,
P = 0.012), NH4 (rS = 0.49, P = 0.009), SUVA254

(rS = 0.42, P = 0.022), and SUVA280 (rS = 0.43,
P = 0.022; Fig. 2). We discounted pH and alka-
linity from further analysis as these variables will

be influenced by, rather than influence, CO2. We
also discounted SUVA254 as this was highly cor-
related with SUVA280 (rS = 0.98, P < 0.001).
After removing pH and alkalinity as predic-

tors, the PLS analysis found that the 22 measures
of pond biogeochemistry could explain 41% of
the variation in dissolved CH4 and CO2,
although the predictive power of the model was
poor (Fig. 3). The PLS shows that dissolved CH4

and CO2 are generally unrelated and reinforces
the importance of the significantly correlated
variables (Figs. 1, 2) for each GHG: that TOC
and TP group near CH4, and Ca, SI, NH4, and
SUVA group near CO2.
When grouped according to pond area, we

found no difference in dissolved GHGs between
very small (<0.001 km2) ponds and larger ponds
(Fig. 4). We also grouped ponds according to the
two dominant functions, ornamental ponds and
water regulation ponds, and found no significant
difference between pond groupings for both CH4

and CO2 (Fig. 4; note that quarry/industry ponds
and farm ponds were excluded entirely from this
comparison).

Fluxes of CH4 and CO2
For CO2, 28 ponds were net emitters and 12

ponds consumed CO2, whereas all ponds were
net emitters of CH4 (Appendix S1: Fig. S2). Esti-
mated daily mean fluxes were 30.3 mg CH4�m�2

�d�1 (ranging from 0.4 to 174 mg CH4�m�2�d�1)

Fig. 1. Scatter plots showing significant correlations for all ponds (n = 40) between log-scaled dissolved CH4 and
(A) log-scaled total phosphorus (TP), rS = 0.46, P = 0.033, and (B) total organic carbon (TOC), rS = 0.53, P = 0.009.
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and 752 mg CO2�m�2�d�1 (ranging from �187 to
3449 mg CO2�m�2�d�1). These translate into
mean annual fluxes of 8.33 g CH4�m�2�yr�1 and
206 g CO2�m�2�yr�1.

DISCUSSION

Concentrations and fluxes of CH4
We found considerable variation in concentra-

tions of dissolved CH4 and CO2 in 40 urban
ponds. Our median of CH4–C of 26.0 lg/L is sim-
ilar to the mean reported for a Swedish urban
pond (of 20.8 lg/L, Natchimuthu et al. 2014).
When compared to other aquatic systems,

dissolved CH4 is an order of magnitude higher
than the global median for CH4 concentrations in
streams and rivers of 3.0 lg/L (Stanley et al.
2016) and higher than the median of 6.7 lg/L for
Swedish streams (Wallin et al. 2018). Similar to
findings from lakes (Bastviken et al. 2004, Juuti-
nen et al. 2009), we report significant positive
correlations between dissolved CH4 and both TP
and TOC, suggesting that nutrient status is an
important driver of CH4 emissions.
Our calculated mean daily flux of 30.3 mg

CH4�m�2�d�1 is of the same magnitude as other
literature values from temperate artificial ponds:
for instance, ~80 mg CH4�m�2�d�1 for Swedish

Fig. 2. Scatter plots showing significant correlations for all ponds (n = 40) between dissolved CO2 and (A) cal-
cium (Ca), rS = 0.68, P < 0.001, (B) log-scaled ammonium (NH4–N), rS = 0.49, P = 0.009, (C) silicon (Si), rS = 0.46,
P = 0.012, and (D) SUVA280, rS = 0.43, P = 0.022.
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agricultural ponds (Stadmark and Leonardson
2005), and 88 mg CH4�m�2�d�1 for wet stormwa-
ter basins in the United States (McPhillips and
Walter 2015), as well as 80 mg CH4�m�2�d�1 for
urban streams draining U.S. stormwater ponds
(Smith et al. 2017). Higher average fluxes have
been recorded in tropical and sub-tropical ponds,
for example, 287 mg CH4�m�2�d�1 in India (Sel-
vam et al. 2014) and 115–453 mg CH4�m�2�d�1

in Australia (Grinham et al. 2018, Ollivier et al.
2018). It is important to note that we did not
measure ebullition which could be a major path-
way for CH4 release in small, artificial waterbod-
ies (Vermaat et al. 2011, Aben et al. 2017,
Grinham et al. 2018), and thus, our fluxes are
likely to be an underestimate.

Concentrations and fluxes of CO2
Median dissolved CO2–C concentration was

1.35 mg/L, a value that is similar to the averages
of 1.7 mg/L from Swedish streams (Wallin et al.
2018) and of 1.61 mg/L from small natural ponds
(Holgerson and Raymond 2016). Significant posi-
tive correlations were found between dissolved
CO2 and, in order of correlation strength, Ca,
NH4, Si, and SUVA (both SUVA254 and
SUVA280). We suggest that the Ca and Si are both
signatures of groundwater (Maxe 2001) and that
groundwater inputs are, at least for some ponds,
partly driving CO2 saturation; such effects have

been observed for small lakes (Perkins et al.
2015). Positive correlations between dissolved
CO2 and SUVA have been observed for small
peatland pools and ditches (Turner et al. 2016,
Peacock et al. 2017), and could suggest that
DOM with higher molecular weight or increas-
ing aromaticity is more bioavailable to aquatic
microbial communities (Tranvik 1990). In sup-
port of this, recent work at the molecular level
has highlighted that not all aromatic DOM is
resistant to degradation (Mostovaya et al. 2017).
Finally, positive relationships between aquatic
CO2 and NH4 have been reported elsewhere
(Schrier-Uijl et al. 2011, Yu et al. 2017). Dai et al.
(2008) hypothesize that higher concentrations of
NH4 stimulate nitrification, thus leading to con-
sumption of dissolved O2, with resulting
increases in CO2 production (the authors suggest
that by combining the two oxidation processes
that constitute nitrification, one mole of NH4

would yield 1.9 moles of free CO2).
The calculated mean daily flux of CO2 was

752 mg CO2�m�2�d�1. This is larger than the flux
from a Swedish urban pond (48.4 mg CO2�
m�2�d�1, Natchimuthu et al. 2014) but consider-
ably lower than that from tropical and sub-tropical
ponds, for example, ~3000 mg CO2�m�2�d�1 in
India (Selvam et al. 2014) and ~1100 mg CO2�
m�2�d�1 in Australia (Ollivier et al. 2018). It is
important to consider that our daily CO2 flux

Fig. 3. Partial least squares regression score plot using CH4–C and CO2–C as response variables (Y), and pond
biogeochemistry and area as predicting variables (X) for all 40 ponds. R2 = 0.41, Q2 = 0.11.
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calculation may be biased by our daytime-only
sampling; 12 of the ponds were found to be sinks
for CO2, presumably due to eutrophication driving
high rates of primary production and thus a high
photosynthetic CO2 uptake (Pacheco et al. 2014).
CO2 concentrations will likely follow a diel cycle
(Maberly 1996), and it is possible that night time
emissions may offset the uptake that occurs during
the day.

Implications
Our synoptic sampling campaign demon-

strates that GHG emissions from artificial, urban
ponds are driven, in part, by nutrient status and
hydrology, namely the input of CO2-rich ground-
water. However, all statistical fits were relatively

modest, suggesting that untangling the controls
on pond GHGs is not straightforward and that
further drivers remain to be identified. Unidenti-
fied drivers could relate to pond sediment prop-
erties and associated microbial communities
(Duc et al. 2010), water depth which could affect
water column methanotrophy (McEnroe et al.
2009), and eutrophication status (Balmer and
Downing 2011).
We found no effect of pond size on dissolved

GHGs, in contrast to Holgerson and Raymond
(2016) who found that very small (natural) ponds
had the highest concentrations. Additionally, and
in contrast to the results of Grinham et al. (2018),
we found no differences in GHGs between
pond category/function (ornamental or water

Fig. 4. Dissolved concentrations of CH4 (A) and CO2 (B) grouped by pond area. n = 27 for ponds <0.001 km2

and n = 13 for ponds >0.001 km2. Dissolved concentrations of CH4 (C) and CO2 (D) grouped by the two domi-
nant pond categories: water regulation (n = 23) and ornamental (n = 13). For each panel, the difference in green-
house gas concentration between treatments (pond area or pond type) is not significant (Mann–Whitney).
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regulation). These differences can perhaps be
attributed to the wider landscape beyond the
ponds; Holgerson and Raymond (2016) focused
on ponds in natural ecosystems, while Grinham
et al. examined farm ponds and urban waterbod-
ies. Because our ponds were all within an urban
environment, we hypothesize that anthropogenic
influences local to each pond (e.g., point sources
of nutrients) override any effect of pond physical-
ity (i.e., area) or function. This hypothesis is sup-
ported by sediment data from 64 urban
stormwater ponds in the United States, where nei-
ther nutrient nor pollutant concentrations varied
according to the proportion of urban land cover
(Blaszczak et al. 2018). The authors suggested
that factors such as pond age, the presence of
legacy pollutants, retention time, groundwater
exchange, and management regime (e.g., use of
fertilizers nearby and use of algaecide) could
instead control the biogeochemistry of individual
ponds.

When expressed as annual fluxes, we find that
urban ponds are important sources of CH4, with
annual emissions of 8.3 g CH4�m�2�yr�1, similar
to that reported from a eutrophic stormwater
pond (7.3 g CH4�m�2�yr�1; Martinez-Cruz et al.
2017). This equates to approximately half the
mean emissions from northern peatlands (95%
confidence level: 10–21 g CH4�m�2�yr�1, Abdalla
et al. 2016) which are key components of the glo-
bal CH4 cycle. Similarly, our (potentially under-
estimated) CO2 fluxes (752 mg CO2�m�2�d�1) are
only slightly lower than mean global areal emis-
sions from lakes (791 mg CO2�m�2�d�1) and
reservoirs (1209 mg CO2�m�2�d�1), which are
important GHG sources (Deemer et al. 2016). We
therefore echo other recent sentiments that small,
artificial waterbodies may have been overlooked
as significant sources of GHGs (Grinham et al.
2018, Ollivier et al. 2018). There are numerous
uncertainties surrounding the detection and
mapping of artificial ponds on a global scale, but
when their total number and cumulative area are
summed, the area they occupy is similar to that
occupied by large lakes (Downing 2010). Further-
more, when considering small vs. large water-
bodies, it is vital to recognize the proportionally
larger littoral zone and aquatic–terrestrial inter-
face for ponds and small lakes, and their associ-
ated high rates of biogeochemical processing
(Winslow et al. 2014).

To elucidate the importance of urban ponds on
a national scale, we further upscaled our mea-
surements as follows. We summed the total area
of ponds (0.07 km2) in the Uppsala urban area
(49 km2) to calculate the proportion of urban
area occupied by ponds (0.14%). The total area of
urban land in Sweden is 11,822 km2 (Statistics
Sweden 2018) which, assuming a constant pro-
portion of ponds, gives an estimated total pond
area of 17 km2. Applying our annual fluxes to
this area gives a total emission of 8336 t CO2eq/
yr (with a standard error of 1689 t CO2eq/yr).
For context, this is equivalent to 0.1% of Swedish
agricultural GHG emissions (Statistics Sweden
2017). Our data therefore suggest that artificial
urban ponds are important sources of GHGs on
a local scale, but not on a national scale, due to
the fact that urban areas in Sweden occupy a
small proportion of the entire country. The caveat
also remains that our calculations exclude CH4

ebullition and include only diffusive fluxes.
Due to the continued global expansion of

urban areas (Seto et al. 2011), the number of
small ponds such as those studied here (water
regulation, ornamental) will continue to increase.
Understanding their climatic impacts and inves-
tigating ways to mitigate their GHG emissions is
therefore an emerging requirement for future
research. For example, Moore and Hunt (2012)
noted that the presence of emergent macrophytes
was a signifier of pond sediment carbon accumu-
lation. Simple changes, such as stocking urban
ponds with appropriate vegetation species, could
therefore lead to meaningful changes in aquatic
biogeochemistry. Ideally, any future pond man-
agement for GHG mitigation will aim to deliver
ecosystem service co-benefits such as increased
biodiversity and opportunities for recreation
(McGuckin and Brown 1995), thus enhancing the
role that these blue–green infrastructures play in
the urban environment.
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