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The palladium (Pd) and ruthenium (Ru) species in several attractive catalysts 

have been probed using X-ray absorption spectroscopy (XAS). The study of 

catalyst evolution in suspension- and solution-based reactions was the primary 

aim. It was achieved by performing in situ XAS experiments on Pd and Ru over 

the course of the reactions. A custom-made reactor was employed which allowed 

the catalysts to be mixed with other reaction components under desired 

conditions.  

The first system investigated was the Heck coupling reaction catalyzed by 

Pd(II) complexes embedded on metal-organic frameworks. Mononuclear Pd 

complexes are the active species at the first stage of the measurement which then 

gradually transform into Pd nanoclusters. At a later stage of the measurement, 

chloride ligands start to bind to surface atoms of the Pd nanoclusters, leading to 

a deactivation of the catalyst. Pd(II) carbene complexes catalyzing undirected 

C–H acetoxylation of benzene in the presence of an oxidant were then explored. 

A gradual ligand substitution occurs, and the mean oxidation state of Pd 

increases at the same time. At a later stage, Pd nanoclusters form, while the mean 

oxidation state of Pd returns to the start value. Deactivation of a heterogeneous 

Pd(II) catalyst during cycloisomerization of acetylenic acids was also 

investigated using in situ XAS. The choice of substrates showed to significantly 

influence the nature of Pd species, and the formation of Pd(0) aggregates causes 

the deactivation. Moreover, strategies of reactivating the catalyst and prevention 

of the deactivation were developed and examined. In the end, the activation 

process of a Ru catalyst was studied and the structure of the intermediate was 

determined by in situ XAS. It was demonstrated that an electron-donating 

substituent on the cyclopentadiene ligand exhibits a promoting effect on the 

activation, while an electron-withdrawing substituent inhibits the activation.  
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1.1 Catalysts 

Catalysis is the process of facilitating a chemical reaction with the aid of a 

substance called catalyst, which is neither consumed nor formed during the 

reaction. A catalyst provides an alternative pathway for the reaction and lowers 

the energy barrier of the process significantly (Figure 1.1).1 Catalysis plays an 

essential role in the modern chemical industry where catalysis-based synthesis 

contributes to around 60% of chemical products and 90% of current chemical 

processes.2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Energy diagram of catalyzed and non-catalyzed reactions. 

Generally, catalysis is classified into two types, homogeneous and 

heterogeneous. In homogeneous catalysis, the catalyst exists in the same phase 

1 Introduction to Catalysts and Their 
Characterizations  
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as the reactants. Typically, both the catalyst and the substrates are dissolved in a 

solvent forming a homogenous solution.1 The efficiency of homogeneous 

catalytic reactions is usually high due to high activity and selectivity of the 

catalysts in comparison to heterogeneous catalysts.3,4 Structure determination 

and mechanistic studies of homogeneous catalysts are relatively easy, as well as 

precise tailoring of the catalysts at the molecular level. However, it can be 

challenging to separate homogeneous catalysts from products, and therefore 

difficult to recover and recycle them. Heterogeneous catalysts, on the other hand, 

operate in a different phase than the reactants. Typical combinations are solid 

catalyst with gas or liquid reactants. Stability and recyclability are the main 

advantages of heterogeneous catalysts, which has led to their dominating 

positions in industrial processes in comparison to homogeneous catalysts.5 The 

main weakness of heterogeneous catalysts is their lack of tunability, which 

hinders them to be adapted effectively to different reaction processes.  

The development of catalysts with desirable properties has been a major 

focus of research in the chemical industry. Transition metals and their complexes 

have been extensively studied and used both as homogeneous and heterogeneous 

catalysts. This can partly be attributed to the various oxidation states that 

transition metals can exist in. Palladium, for instance, can be nucleophilic when 

it is in an oxidation state of 0. Meanwhile, it can also exhibit properties of an 

electrophile when the oxidation state is increased to +II or +IV. This makes it 

possible for palladium to catalyze many reactions via different routes.6  

1.2 Characterization techniques for catalysts 

To a chemist studying catalytic reactions, there are some particularly important 

questions which should be considered when using a catalyst, for example:  

 What is the form of catalytic species in the as-synthesized catalyst?  

 What is the form of catalytic species during the reaction? 

 What is the form of catalytic species in its deactivated state and what is 

the cause of the deactivation? 

 How does the choice of substrates and/or other reaction components and 

conditions affect the catalytic species? 

There are a few widely used techniques for investigating catalysts. For 

instance, transmission electron microscopy (TEM) is suitable to study the 

catalytic species in the form of nanoparticles. Electron-dispersive spectroscopy 

(EDS) can identify the chemical elements and their distribution in a 

heterogeneous catalyst. Both X-ray and electron diffraction techniques can 

determine the structure of a crystalline catalyst. X-ray photoelectron 

spectroscopy (XPS) can determine the oxidation state of catalytic speciation. 
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Table 1.1. summarizes some of the techniques commonly used to study catalysts 

and the main information that they can provide. 

Table 1.1. Typical techniques used to study catalysts 

Techniques Main information 

Electron microscopy Nanoparticle, morphology 

Electron-dispersive spectroscopy Elemental analysis  

X-ray/Electron diffraction Crystalline structure 

X-ray photoelectron spectroscopy Oxidation state 

X-ray absorption spectroscopy Oxidation state, local structures 

Fourier-transform infrared spectroscopy Chemical bonds 

Gas-sorption Porosity, surface area 

 

Each technique has its advantages and limitations and usually multiple 

techniques are applied to gain a comprehensive understanding of a catalyst. The 

more information that is available about the catalysts, the more opportunities 

there are to develop better catalysts or prolong the lifetime of active catalysts. 

For example, palladium nanoparticles have been extensively used to catalyze 

various types of reactions. It is known that the surface atoms of the palladium 

nanoparticles can be oxidized in the presence of oxygen. TEM can be used to 

acquire information about the size and distribution of the nanoparticles, but it 

cannot easily distinguish palladium oxide from the metallic palladium. For this 

reason, XPS measurements are often conducted to identify the co-existence of 

palladium species in different oxidation states.7 Another example is metal 

complex catalysts embedded on crystalline porous materials, for instance, 

zeolites8 and metal-organic frameworks (MOFs)9–11. X-ray and electron 

diffraction techniques are accurate in determining the crystalline structures of 

the supports. However, due to the fact that the spatial distribution of metal 

complexes often lacks long range order, diffraction methods are limited to 

providing insights into the structure of the catalytic metal species. Fortunately, 

element-specific techniques, such as X-ray absorption spectroscopy (XAS), can 

probe the metal complex centers exclusively and elucidate the structures. 

The development of catalysts today is generally moving towards the systems 

that are more complex in order to achieve better performance. This situation 

increases the demand for a more thorough understanding of the catalysts, where 

characterizations by multiple advanced techniques are necessary. 
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1.3 Objectives of this thesis 

The main objective of this thesis is to apply the synchrotron-based in situ X-ray 

absorption spectroscopy as the main approach to provide some insights into the 

catalytic species of several attractive palladium and ruthenium catalysts over the 

course of the reactions. Another objective is to make contributions to the 

relatively challenging area of utilizing in situ XAS in suspension/solution-based 

catalytic systems.    

The thesis starts with briefly introducing some of the important questions in 

the catalysis research and the typical characterization methods used to study the 

catalysts. Chapter 2 dives into the fundamentals of XAS and the application of 

in situ XAS in catalysis. This information aims to help the readers gain an 

overview of the technique and the questions in catalysis it can answer. In Chapter 

3, an example of in situ XAS studies of Pd(II)@MOFs catalysts mediating the 

Heck coupling reaction is illustrated. The work intents to elucidate the entire 

evolution of the Pd species which is then correlated to their catalytic actives. 

Chapter 4 discusses an in situ XAS investigation of a Pd(II) carbene complex 

supported on reduced graphene oxide (rGO) during an undirected C–H 

acetoxylation reaction. The transformation of the Pd species in the presence of 

an oxidant during the reaction is the focus of the study. A deactivation study of 

a heterogeneous Pd(II) catalyst using in situ XAS was followed and discussed in 

Chapter 5. The catalyst is comprised of Pd(II) complexes immobilized on amino-

functionalized siliceous mesocellular foam, Pd(II)-AmP-MCF. The deactivation 

and activity prolongation mechanisms are explored. The synthesis of Pd(0)-

AmP-MCF and a Pd(0) biohybrid catalyst are elucidated in Chapter 6 by ex situ 

XAS measurements. In the last chapter, the chemical element scope is extended 

to ruthenium. The goal is to determine the structures of the homogenous 

ruthenium catalyst and its intermediates during the activation process using in 

situ XAS. 
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2.1 Fundamentals of X-ray absorption spectroscopy 

2.1.1 Processes at X-ray radiation of matter  

X-rays are a type of electromagnetic radiation with wavelengths typically 

ranging from 0.01 to 10 nm. They have been extensively applied in material 

sciences due to their suitable wavelengths for interactions with electrons in 

matters. Figure 2.1 summarizes the common interactions between X-ray 

radiation and matter exposed to it. X-ray scattering is one of the primary effects. 

X-ray diffraction (XRD) is based on this effect and is a widely used approach to 

determine the structure of crystalline matter at the atomic level. 

 
Figure 2.1. Typical effects when a matter is radiated by X-rays. 

2 X-Ray Absorption Spectroscopy and Its 
Application to In Situ Catalysis Studies  
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Another primary effect is the absorption of X-rays by matter. The absorption 

increases sharply at certain energies where the energy of the incident X-ray is 

sufficient to excite the ground state electrons to vacant electron-shells, or to the 

continuum generating photoelectrons and core-holes. The formed core-holes are 

filled through secondary processes resulting in the emission of fluorescent 

photons and Auger electrons. The electron transitions and the corresponding 

species generated are illustrated in Figure 2.2. 

 
Figure 2.2. Electron transitions generating photoelectrons, fluorescent photons and Auger 

electrons. 

2.1.2 X-ray absorption spectrum 

The absorption of X-ray radiation by matter leads to attenuated transmitted 

radiation compared to the incident beam. For a path length of 𝑥, the relation of 

the incident beam 𝐼0 and the transmitted beam 𝐼1 can be expressed by the Beer-

Lambert’s law: 

 

            ln( 𝐼0/𝐼1) =  𝜇𝑥                                                                           (1) 

 

where 𝜇 is the linear absorption coefficient. There is a sharp increase of 𝜇 when 

the incident radiation has sufficient energy to excite the electron from an inner 

electron-shell to a higher vacant electron-shell or to the continuum. This sharp 
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rise in 𝜇 is denoted as an absorption edge and its first inflection point is defined 

as the edge position. The minimum energy required to kick out a core-electron 

is denoted the threshold energy 𝐸0. Due to the characteristic binding energy of 

electrons in different electron shells for each element, the absorption edge 

position is element specific. The difference between the incoming energy and 

the electron binding energy is the kinetic energy 𝐸𝑘 of photoelectrons, which 

then travel in the interatomic space in the form of waves. 

 

            𝐸𝑘 = ℎ𝑣 − 𝐸0                                                                              (2) 

 

Figure 2.3 shows a Pd K-edge X-ray absorption spectrum of palladium foil 

after removal of the pre-edge background, where the correlation of X-ray 

absorbance and energy of the X-ray radiation is displayed. Only a minor part of 

the radiation is absorbed before the energy of the radiation is increased close to 

Pd K-edge. This is followed by a sharp rise in absorbance when the radiation 

starts to excite electrons at the ground states. The absorbance then oscillates as 

the energy further increases.  

 
Figure 2.3. The X-ray absorption spectrum of palladium foil showing the different regions of the 

spectrum. The tabulated electron binding energy of 1s electrons in Pd is 24350 eV.12  

The K-edge position of an XAS spectrum corresponds to the binding energy 

of electrons in the K shell of the absorbing atoms. For increasing atomic number 

there are electrons in the K, L, M, … shells and all the electrons can be excited 

to the continuum when absorbing X-ray radiation with the desired energy. Figure 

2.4 elaborates the excitations of electrons at different electron orbitals and their 
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corresponding absorption edges. For second row transition metals, K-edge (ca. 

17–27 keV) is normally applied as the energy required is sufficient for the X-

rays to penetrate the samples. LIII edge is suitable for elements with high atomic 

numbers, such as third row transition metals. X-rays that can excite electrons in 

2p orbital (j=3/2) LIII have energies higher than 5 keV which can often penetrate 

the samples under normal conditions. Electrons in M orbitals or even higher have 

low electron binding energies. For that reason, they are normally not used in 

XAS experiments. In the X-ray data booklet12 the electron binding and X-ray 

fluorescence energies of all elements are collected. These are of utmost 

importance when planning and perfoming XAS experiments. 

 
Figure 2.4. X-ray absorption edges and their electron transitions. 

2.1.3 XAS experimental set-ups  

Until now, synchrotron radiation sources are the most suitable light sources for 

standard XAS measurements due to the experimental requirements of broad 

energy ranges and high X-ray photon flux. Figure 2.5 describes the basic 

experimental arrangement for XAS measurements. The primary X-ray beam 

from the storage ring and the insertion device, normally a wiggler at XAS 

beamlines, is defined in size and shape by a set of slits and mirrors. XAS 

experiments are performed in the experimental hutch where the samples and 

detectors are located.  



29 

 

XAS experiments can be performed according to two principles, 

transmission and fluorescence. In the transmission mode, ion chambers are the 

detectors. They measure the intensities of the X-ray beam before (I0) and after 

(I1) the sample and also after the reference compound (I2), as displayed in Figure 

2.5. They consist of gas mixtures with controlled compositions. Ideally, ion 

chambers I0 and I1 should absorb respectively about 10–20% of the incident 

beam, while ion chamber I2 can absorb the remaining radiation. A reference 

material containing the same element as the absorbing atom in the sample is 

placed between ion chambers I1 and I2, and is measured simultaneously with the 

sample. The purpose of using a reference is to calibrate the energy of the beam. 

A metal foil or powder of a pure non-metal element, has a well-defined 

absorption energy measured as the first inflection point on the edge. 

 
Figure 2.5. Schematic description of the experimental arrangement for XAS measurements. 

The fluorescence generated by the relaxation of electrons to the core-holes is 

proportional to the X-ray absorption. Therefore, fluorescence signals can also be 

used in XAS measurements. The experimental set-up in fluorescence mode 

requires ion chamber I0 to measure the intensity of the incident beam, and a 

fluorescence detector, such as a Lytle detector (also an ion chamber with a highly 

absorbing gas or gas mixture) or a solid state detector, is placed perpendicular to 

the ion chambers alignment, as illustrated in Figure 2.5. Due to the significant 

noise produced by the elastic and Compton scattering, an X-ray filter is applied 

to diminish the scattered photons before they enter the fluorescence detector. 

The criteria of choosing a suitable filter is that the K or L edge of the element in 

the filter should be at the energy position where it can absorb most of the photons 

from the elastic scattering and Compton scattering. Usually the element in the 

filter should have one or two atomic numbers lower than the absorbing element 

in the sample. For example, when the absorbing element is palladium (Kα1 = 

21.177 keV)12 in the sample, ruthenium (K 1s = 22.117 keV)12 is the ideal filter. 

The sample is preferably positioned 45° to the incoming beam in order to 

maximize the signal to the fluorescence detector. Normally, simultaneous 

measurements in both transmission and fluorescence modes are performed. 
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2.1.4 Samples 

The samples for XAS measurements can be in all physical phases: solid, liquid 

or gas. The data quality of an X-ray absorption spectrum is affected by the 

sample preparation. For the data collection in transmission mode, the optimal 

signal-to-noise (S/N) ratio is achieved when absorbance is between 0.5 and 1.5, 

which is determined by the thickness of the sample and concentration of the 

absorbing element. For solid samples, it is advantageous to grind them into fine 

powders, and, in most cases, it is necessary to dilute samples with boron nitride 

(BN) to achieve suitable absorbance. Samples should be as homogenous as 

possible to ensure they have equal absorption throughout and to therefore avoid 

the so called pin-hole effect. Pressing solid samples into sample holders can help 

to maintain this. Fluorescence measurements are particularly suitable for diluted 

samples, where the applied concentrations can be as low as 1 mM for first row 

transition metals in solution.13 Guest atoms imbedded in a solid matrix with low 

weight percentages (<1 wt%) are also favorable for fluorescence measurements. 

For in situ XAS experiments, it is generally more complicated to prepare the 

samples and the data quality is often worse than the properly prepared ex situ 

samples. Fortunately, due to the development of in situ reactors and increased 

quality of photon sources, decent data can now be collected in situ. In situ XAS 

experiments are further discussed in detail in Section 2.4 of the thesis. 

2.2 X-ray absorption near edge structure (XANES) 

2.2.1 Theory and applications of the main absorption edge 

As shown in Figure 2.3, X-ray absorption spectroscopy (XAS) consists of two 

parts: X-ray absorption near edge structure (XANES), which is also known as 

near-edge X-ray absorption fine structure (NEXAFS), and extended X-ray 

absorption fine structure (EXAFS). The energy range of a XANES spectrum is 

defined relatively loosely and it typically refers to the absorbance of photons 

from around 10 eV below the absorption edge, where the pre-edge shall be 

included, to 50-200 eV above the absorption edge. When the oxidation state of 

an element increases, the binding energy of the electron will increase. Hence, 

the energy required to excite the electron will also increase leading to an edge 

shift towards higher energy. This property makes XANES sensitive to the 

oxidation state of an element, and it is therefore used to estimate the oxidation 
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state of the absorbing atoms in a sample by observing the edge positions. Figure 

2.6 shows the Pd K-edge XANES spectra of Pd(0), Pd(II) and Pd(IV) in Pd foil, 

(CH3CN)2PdCl2, and K2PdCl6, respectively. It clearly shows that the Pd K-edge 

shifts towards higher energies as the oxidation state of Pd increases.  

The edge of a XANES spectrum is followed frequently by a sharp and intense 

peak which is called a “white line”. Its formation is attributed to the high 

probability of electrons being excited to electron orbitals close to the continuum. 

The number of orbitals close to the continuum is larger than orbitals at lower 

energy levels and they have smaller energy differences. This phenomenon can 

also be reflected in Figure 2.4. Therefore, the absorbance becomes more 

significant at the white line. 

 
Figure 2.6. Normalized Pd K-edge XANES spectra of Pd(0), Pd(II) and Pd(IV) in selected Pd 

compounds. The data were collected at BM01 (SNBL), European Synchrotron Radiation Facility 

(ESRF). 

When the energy is higher than the white line position, the near edge region 

is reached where photoelectrons are generated. They are ejected from the 

absorbing atoms, travel in the interatomic space, and “meet” the electrons 

surrounding the absorbing atoms. The photoelectrons will either be 

backscattered directly to the absorbing atoms or scattered to other atoms before 

returning to the absorbing atoms. These two principle paths are known as “single 

backscattering (SS)” and “multiple scattering (MS)”, respectively, and they are 

schematically described in Figure 2.7. Multiple scattering is the dominating 
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process in the XANES region after the absorption edge. It involves more than 

one scattering atom and there are various scattering paths. Scattering atoms 

arranged in different geometries around the absorbing atom, such as square-

planar and tetrahedral, result in different multiple scattering paths with different 

distances for the photoelectrons to travel and return back to the absorbing atoms. 

Therefore, XANES spectra are sensitive to the geometry of scattering atoms. A 

XANES spectrum is a fingerprint for a specific local environment of absorbing 

atoms, as demonstrated in Figure 2.6.    

 
Figure 2.7. Scheme of photoelectron scattering paths among the absorbing atoms and neighboring 

atoms: (a) single backscattering and (b) multiple scattering processes.  

2.2.2 Pre-edge features  

For some elements with vacancies on 3d or 4p orbitals, a relatively weak pre-

edge peak may appear in the region before the main absorption edge in the 

XANES spectrum. Figure 2.8 shows the pre-edge features of titanium and 

vanadium K-edge XANES spectra of anatase (TiO2) and vanadium dioxide 

(VO2). The Ti pre-edge peak at ca. 4974 eV is commonly attributed to the 1s → 

3d electron transition,14 while the V pre-edge peak at ca. 5471 eV is mainly 

attributed to the 1s → 4p transition.15 Pre-edge peaks can provide very useful 

structural information about coordination number and geometry. For instance, 

the higher intensities of pre-edge peak before Ti K-edge indicates lower 

coordination numbers of oxygen to Ti(IV).14,16 In the case of Cu(I), the shape 

and intensity of the pre-edge peak at ca. 8980 eV correspond to different 

coordination numbers and geometries.17 
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Figure 2.8. Ti and V K-edge XANES spectra with their pre-edge peaks marked by green circles. 

Data were collected at beamline I811, Max-Lab II, Lund, Sweden.  

2.3 Extended X-ray absorption fine structure (EXAFS) 

2.3.1 Theory 

The region of the X-ray absorption spectrum after XANES and towards higher 

energies is called extended X-ray absorption fine structure (EXAFS) (Figure 

2.3). This region is defined by X-ray radiations of energies from ca. 50 eV above 

the threshold energy 𝐸0, to more than 1000 eV. Photoelectrons are produced in 

this region and the single backscattering process illustrated in Figure 2.7a is the 

dominant contribution to the EXAFS signal. Multiple scattering processes have 

minor contributions, however, 3-leg MS scattering or 4-leg MS with a linear or 

near linear geometry can generate significant contributions to the EXAFS. 

During the scattering events of photoelectron waves, the outgoing photoelectron 

waves are backscattered by atoms around absorbing atoms, so called 

“backscattering atoms”. Due to the wave nature of the photoelectrons, the 

outgoing photoelectrons and backscattered photoelectrons interfere with each 

other. During an EXAFS measurement, the kinetic energy of the photoelectrons 

keeps increasing as the energy of the incident beam increases. This means that 

wavelengths of outgoing and backscattered photoelectrons become increasingly 

shorter with increasing excitation energy. During this process, constructive and 

destructive interference between the outgoing and the backscattered 

photoelectron waves occurs, which alternate as the energy of incident beam 

increases. Figure 2.9 schematically visualizes this phenomenon. 
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Figure 2.9. Schematic illustration of (a) constructive and (b) destructive interferences between 

outgoing (solid orange rings) and backscattered (broken purple rings) photoelectron waves. The 

orange circles indicate absorbing atoms, and the purple ones are as backscattering atoms.   

The electron density of absorbing atoms varies according to the interference 

of the photoelectrons, which creates systematic changes in absorbance. 

Constructive interference increases the electron density, leading to a higher 

probability of absorbing photons, while destructive interference has the opposite 

effect. This variation in absorption with increasing energy is the fundament of 

EXAFS.       

In order to deduce the EXAFS equation, the energy of X-ray radiation is 

converted to the wave vector, 𝑘, with a unit of Å−1. It is obtained from: 

𝑘 =  √
2𝑚𝑒(𝐸 − 𝐸0)

ħ2
 

where 𝑚𝑒 is the mass of electron, 𝐸 − 𝐸0 is the kinetic energy of the 

photoelectron, and ħ is the Dirac constant. 

A factor 𝜒(𝑘) is introduced which represents the fractional variation in the 

absorption coefficient as a function of the wave vector, 𝑘. 𝜒(𝑘) is commonly 

referred as “the EXAFS function”, and it has oscillatory features which decay 

considerably with increasing 𝑘. To magnify the oscillations, 𝜒(𝑘) is usually 

multiplied by 𝑘2 or 𝑘3. Some structural information can be directly extracted 

from the appearance of 𝜒(𝑘), and Figure 2.10 shows some examples of this. The 

position of the maximum amplitude of the envelope (the overall shape of the 

EXAFS function) shifts towards higher k values when the atomic number of 

backscattering atoms increases. This phenomenon is demonstrated in Figure 

2.10a–c when the atomic number of the backscattering atoms increases from 

(3) 
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7(N) to 46 (Pd). Another useful observation is that the increase in frequency of 

the EXAFS spectrum indicates a longer distance between the absorbing atom 

and backscattering atom in a single scattering as shown in Figure 2.10, or a 

longer path length in the multiple scattering.  

 
Figure 2.10. Theoretical Pd k3-weighted EXAFS spectra of various single scattering: (a) Pd–N, (b) 

Pd–Cl, and (c,d) Pd–Pd with different scattering path lengths. The figure demonstrates the 

correlations between the features of EXAFS spectra (frequency and envelop) and the nature of the 

backscattering atoms and the scattering path lengths.  

Through a series of deductions, the EXAFS equation is expressed as: 

 

𝜒(𝑘) = ∑
𝑁𝑗𝑆0

2(𝑘)

𝑘𝑅𝑗
2

𝑗

|𝑓𝑒𝑓𝑓(𝑘)|
𝑗

exp(−2𝑘2𝜎𝑗
2) exp (

−2𝑅𝑗

𝜆𝑘
) sin[2𝑘𝑅𝑗 + ф𝑖𝑗(𝑘)] 

 

 

i: Absorbing atom  

j: A specific coordination shell of the absorbing atoms where the scattering 

atoms are identical and have about the same scattering path.  

N: Coordination number  

R: Distance between the absorbing atom i and backscattering atom in the j shell 

in single scattering, or half of the total path length in multiple scattering 

(4) 
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𝑆0
2: Many-body amplitude reduction factor 

feff: Photoelectron scattering amplitude 

σ2: Mean-square disorder in the distance of R 

λ: Photoelectron inelastic mean free path 

ф: Phase shift induced by the coulomb potential of the absorbing atom i and 

backscattering atom in the j shell 

2.3.2 Data treatment and analysis 

 

EXAFS data provide local structure information of the absorbing atoms, and 

require data processing. Several computer programs have been developed to 

treat EXAFS data, such as Demeter,18 Larch,19 VIPER,20 and EXAFSPAK.21 

Figure 2.11 describes the general procedures of the data treatment.  

Raw Data Background Subtraction EXAFS Extraction

Fourier TransformEXAFS RefinementLocal Structure
 

Figure 2.11. General procedure of EXAFS data treatment. 

In this thesis, all the EXAFS spectra were processed by the EXAFSPAK 

package. The background subtraction is the first step of the data treatment. This 

step corrects the effects of the undesirable atoms and their electrons (total 

absorption), including the absorbance of the sample cell windows. It consists of 

pre-edge subtraction and spline removal. The first process is fairly straight 

forward, while the spline removal process plays a crucial role in extracting a 

reliable EXAFS spectrum. The 𝜇𝑠𝑝𝑙𝑖𝑛𝑒(k) function is approximated 𝜇0(k) and it 

corresponds to the X-ray absorption of the “isolated” absorbing atom. EXAFS 

equation can therefore be expressed as:  

 

           𝜒(𝑘) =  
[ 𝜇𝑑𝑎𝑡𝑎(𝑘) − 𝜇𝑠𝑝𝑙𝑖𝑛𝑒(𝑘)] 

𝜇𝑠𝑝𝑙𝑖𝑛𝑒(𝑘)
                                                   (5) 

Parameters, such as the region for spline subtraction, the order of the spline 

and the number of data points, significantly influence the resulting spline. After 

the background subtraction, the EXAFS data can be extracted which is in 

reciprocal space. Fourier transformation of the EXAFS data is then performed 

to convert the data into real space. In order to extract useful structural 

information, the experimental k3-weighted EXAFS oscillations are analyzed by 
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non-linear least-squares refinements of the data to the EXAFS equation. 

Refinement of model parameters is then performed, including number of 

backscattering atoms or specific scattering paths (N), mean interatomic distances 

or half of the total path length in multiple scattering (R or d), Debye-Waller 

factor coefficients (σ2) and threshold energy (Eo). The standard deviations of the 

refined parameters are obtained from the refinement. The ab initio program 

package FEFF7 is used to calculate the theoretical phases and amplitudes.22 A 

reasonable fit between the experimental data and the EXAFS function with the 

refined structure parameters can provide reliable local structure information of 

the absorbing atom. It should be noted that the distances read in Fourier 

transformed EXAFS spectra are not phase corrected (ф in Equation 4). The true 

distances are determined from the EXAFS refinements. For a well-defined 

interaction, the accuracy of the distances given for an individual complex is 

between ±0.005 and ±0.02 Å. The EXAFS spectrum of solid palladium acetate 

and its Fourier transformed spectrum are displayed in Figure 2.12 as an example.  

  
Figure 2.12. Pd K-edge k3-weighted (left) EXAFS spectrum of Pd(OAc)2, and (right) its Fourier 

transformed spectrum without phase correction, black curve – experimental, red curve – model. 

Data were collected at BM01 (SNBL), European Synchrotron Radiation Facility (ESRF).  

2.4 In situ XAS and its application in catalysis 

2.4.1 The interest of in situ XAS  

During a chemical reaction, the species of interest often go through one or more 

transformations. The standard ex situ characterizations are limited in providing 

insights into such transformations leading to insufficient understandings or 

sometimes inaccurate interpretations of reaction mechanisms, which has raised 
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the demand for in situ characterizations. Thanks to the development of 

synchrotron facilities, in situ XAS measurements have become more feasible. 

Experiments can be performed in various reaction environments following 

changes in the valence state and local structure of the absorbing atoms. In theory, 

the time for acquiring one full XAS spectrum in a state of the art beamline can 

be reduced to only a few seconds using the quick scan or energy dispersive 

technique. Certain compromise on time resolution is often necessary to acquire 

data with reasonable S/N ratio. The reaction system itself has a significant 

impact on data collection, and a good understanding of both the chemistry of the 

reaction and the XAS measurement always play a key role in a successful 

experiment.    

 
Figure 2.13. Schematic illustration of possible catalyst transformation over the course of a catalytic 

reaction and the corresponding characterization methods. The distinctive shapes represent different 

forms of the catalyst at different stages of the reaction.  

Catalysis is one of the areas in chemistry where in situ XAS is particularly 

useful.23–28 Knowledge of speciation and structure of the active catalyst during a 

reaction is crucial in understanding their behavior and acquiring information 

about the reaction mechanism. This information can not only shed light on 

reaction mechanism, but also provide opportunities to develop new catalysts 

with higher activities and longer lifetimes. Figure 2.13 schematically describes 

the possible transformations of a catalyst from its as-synthesized form until the 

end of the reaction. The “starting” and “ending” points are fairly easy to 

characterize by ex situ approaches, yet the forms of the catalyst during the 

reaction remain hidden in a “black box”, here in situ methods are desired.  

2.4.2 In situ XAS in solid-gas based catalytic reactions 

The great demand for understanding catalysts under certain reaction conditions 

has promoted the design and fabrication of various in situ cells based on the 

specific reaction conditions required. In recent years, a lot of work has been 

focused on solid-gas heterogeneous catalytic systems, such as the Fischer-

Tropsch process.29–33 This is mostly because the design and construction of in 
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situ cells for solid-gas heterogeneous systems are relatively simple. Another 

reason is that such cells are suitable for a wide range of elements. Their design 

is typically based on the gas-flow setup,34 and is schematically illustrated in 

Figure 2.14. The solid catalyst is packed tightly in the middle part of the 

capillary. The inlet of the reactor is connected to one or several gas sources 

which allows reactants to flow into the capillary, make contact with the catalyst 

and react. Usually, a capillary reactor can retain a higher pressure, for example 

20 bar (1 bar = 100 000 Pa), with finely controlled working temperature of up to 

a few hundred degrees Celsius.35  

 
Figure 2.14. Typical design of a capillary cell for in situ XAS measurements of solid catalysts 

during solid-gas heterogeneous catalytic reactions.25 

2.4.3 In situ XAS in suspension/solution based catalytic reactions 

Solid-liquid heterogeneous reactions and liquid homogeneous reactions are also 

important types of catalytic systems, such as palladium catalyzed carbon-carbon 

coupling reactions. However, the status of the catalyst during these reactions has 

been explored considerably less in comparison to solid-gas systems. This is 

mainly due to the generally complex design and manufacture of suitable in situ 

reactors, as the reaction conditions are more demanding. Usually a mixture of 

several components are involved, for instance, substrate, solvent, acid/base, and 

the catalyst, which either dissolves or remains as a separate phase. In addition, 

proper stirring and a volume of several mLs, as well as the ability to withstand 

hydrothermal conditions, are key requirements for a reactor. Therefore, it has 

been fairly challenging to construct a reactor which meets these requirements 

and collects in situ XAS data with reasonable S/N ratio. Despite these demands, 

a few well-working in situ reactors have been reported based on sophisticated 

design and good control of the chemical conditions. Generally, they can be 

classified into flow reactors,36–38 and batch reactors39,40 using either the 

transmission mode38,40 or the fluorescence mode of the XAS measurement36,37 
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The main focus in this thesis is the solid-liquid heterogeneous and liquid 

homogeneous catalytic systems using in situ XAS as the main approach to probe 

the catalytic species over the course of the measurements.  

2.4.4 In situ reactor used in the thesis 

A custom-made reactor shown in Figure 2.15 was utilized for all the in situ XAS 

and PXRD measurements discussed in this thesis.40 The reactor was developed 

at the Christian-Albrechts University (Kiel, Germany) in collaboration with the 

beamline staff at the P08 beamline, PETRA III, DESY (Hamburg, Germany). 

The reactor was originally designed to study the synthesis of metal-organic 

frameworks (MOFs) under solvothermal conditions by PXRD. It was realized 

later that the rector could also be used as a batch reactor for XAS measurements 

of the catalytic reactions, which evoked much interest and opened up many 

opportunities.41  

The reaction vessel is a 6 mL Duran glass vial with a 10 mm inner diameter 

and 1.0 mm wall thickness. The vial is held in an aluminum casing, which is 

wrapped by a heating mantle made by copper wires. The targeted working 

temperature can be achieved within one minute, and then stabilized by a 

combination of resistive heating and cooling with compressed air. A PTFE-

coated thermocouple is used to monitor the temperature of the reaction mixture 

continuously. The temperature is remotely controlled by a computer program. 

The reaction mixture is homogenized by stirring a magnetic bar placed at the 

bottom of the vial and the magnetic field is generated under the base of the 

aluminum casing. In order to start a chemical reaction or alter the chemical 

conditions during the measurement, there are two tubes embedded into the cap 

of the reactor. They are connected to two 5 mL glass syringes operated by a 

NEMESYS syringe pump. This setup allows the remote controlled introduction 

of reagent or another chemical at suitable timing to study the catalyzed reaction. 

The windows on the protective cage, the heating mantle and the aluminum 

casing allow standard transmission XAS experiments. X-ray beams with 

relatively high energies are preferred in order to effectively penetrate the glass 

walls of the vial and the reaction mixture. Up to the preparation of this thesis, 

the K-edge XAS spectra of several elements in the second row of the transition 

metals have been collected using this reactor, such as zirconium (Zr), 

molybdenum (Mo), ruthenium (Ru) and palladium (Pd). In situ XAS data with 

sufficient quality for analysis were acquired. 
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Figure 2.15. Exploded-view illustration of a custom-made reactor for in situ XAS. (Reprint with 

permission from Rev. Sci. Instrum. 2017, 88 (10), 104102. Copyright 2017, AIP Publishing.)  

2.4.5 Combinations of in situ XAS and other techniques   

In many recent in situ studies of catalytic processes, XAS is also often combined 

with other techniques and measured simultaneously to gain a more thorough 

understanding of the catalyst and the reaction.27 Each technique has certain 

advantages when studying specific aspects of catalysis, as well as limitations. 

Figure 2.16 shows some of the in situ techniques that can be coupled with XAS. 
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Figure 2.16. Examples of the in situ techniques that can be combined with XAS. (PXRD, Powder 

X-ray diffraction; FTIR, Fourier transform infrared spectroscopy; MS, mass spectrometry; XES, 

X-ray emission spectroscopy; UV-Vis, Ultraviolet-visible spectroscopy; RS, Raman spectroscopy)   

Powder X-ray diffraction (PXRD) is a useful co-technique to XAS in the case 

of crystalline heterogeneous catalysts. It can monitor the crystallinity of 

catalysts, catalyst supports, or formation of new crystalline species during 

reactions.33,41–43 The harsh reaction conditions may trigger changes in 

crystallinity and crystalline phase. This information is important for 

understanding the activity and recyclability of catalysts. The reactor in Figure 

2.15 can be used for such purposes if experimental set-ups for both XAS and 

PXRD are available, and exchange between the detectors is quick, for example, 

as at beamlines BM01, at the ESRF, Grenoble, France,35 and beamline P64 at 

the Petra III Extension, DESY, Hamburg, Germany.44 

Fourier transform infrared spectroscopy (FTIR) is another spectroscopic 

method that can be operated in an in situ manner and is often coupled with XAS 

in catalysis research. It is an important analytical method to identify chemical 

bonds. For example, it is used to probe the adsorbed gas reactant species, such 

as carbon monoxide, on the metal catalyst or the catalyst support during a gas-

solid heterogeneous reaction.45–51 

To detect the product of a catalytic reaction in real time, mass spectrometry 

(MS) can be attached to an XAS experiment. Normally, it is applied in the solid-

gas catalytic systems where the generated products flow out through the outlet 

of the reactor and are quantitatively examined directly.50,52–55 The conversion 

rate of the reactants to products can be correlated to the activity of the catalyst 

species at a specific stage of the reaction.   
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X-ray emission spectroscopy (XES) is a so-called photon-in - photon-out 

element-specific technique. The energy dependence of emitted photons is the 

base of XES analysis. XES provides important information about the electronic 

structure of the element studied and the nature of the bound ligands, for instance, 

XES can distinguish carbon, nitrogen and oxygen ligands bound to a metal 

center of interest, which can be difficult by XAS as the bond distances are small 

and their backscattering abilities are almost the same. These properties make 

XES very useful in catalysis investigations.23 Many of the state of the art XAS 

beamlines, such as beamline Balder at MAX IV, Lund, Sweden,56 will be 

equipped with XES detectors, which makes it possible to measure XAS and XES 

simultaneously.  

Furthermore, in situ techniques like Raman spectroscopy (RS) and 

ultraviolet-visible spectroscopy (UV-Vis) are also helpful in the study of 

catalysis due to their high sensitivity to molecules and transition metal 

ions.31,48,57,58   

2.5 Strategies of the XAS data collection, treatment and 
evaluation in this thesis   

2.5.1 In situ data collection  

As discussed above, data quality can be an issue when conducting in situ XAS 

measurements on suspension based catalytic reactions. To be able to conduct 

successful experiments, modification of the experiment conditions and 

compromise on different measurement parameters become necessary.  

The concentration of the absorbing element was typically increased to 

improve S/N ratio in comparison to standard laboratory experiments. However, 

the capacity of loading metal species onto catalyst support is often limited and a 

large amount of solid catalysts can also cause a stirring problem. Therefore, a 

balance of different measurement parameters was normally necessary, such as 

the integration time at each energy step, the time resolution and the reaction time. 

As both XANES and EXAFS data were utilized in our studies, one full EXAFS 

scan was recorded before starting the next one. Considering that the reactions 

studied in this thesis take one hour or more and the influence of the integration 

time for the counting statistics, a full XAS scan (800-1000 eV) was normally 

collected in 3.5–6 min.  

The constantly upgrading beamline facilities will allow us to conduct in situ 

measurements that are applicable to reaction systems requiring higher time 

resolution.  



44 

 

2.5.2 In situ data treatment 

For an entire in situ measurement, it was relatively rare that all EXAFS spectra 

were of sufficient quality to be treated. XANES spectra, on the other hand, could 

be used to fill the “gap”. One example is Pd@MOF catalyzed Heck reaction 

which is elaborated in Chapter 3. During the heating ramp, several of the EXAFS 

spectra became too noisy to be treated. However, their XANES spectra could be 

compared during this “noisy” stage and they overlapped well on top of each 

other. This means that local structures of the absorbing atoms were comparable 

and the treated EXAFS spectra should be able to reflect the untreatable ones.  

Another strategy dealing with noisy data is averaging a few in situ scans to 

improve the S/N ratio. This can be applied to reactions where the local structures 

of the absorbing atoms alter slowly enough for a set of scans to be considered as 

the same. One example is supported Pd complexes catalyzed undirected C–H 

acetoxylation reaction in Chapter 4. The loading of the Pd is low with regard to 

in situ measurement. However, since the change of Pd species was sufficiently 

slow, a set of EXAFS spectra were averaged and the resulting data were then 

treated.  

2.5.3 A “true or false” question in data evaluation  

Satellite peaks are known as a feature in the Fourier transformed data of the 

EXAFS spectra, and they appear at shoulder positions of the main peaks of  

single scatterings. Satellite peaks become disturbing if there are multiple distinct 

ligands bound to absorbing atoms. For example, the peak corresponding to Pd–

Cl happens to be at the position of the satellite peak of Pd–Pd. In such case, it 

becomes necessary to be able to identify if the peak is a pure satellite peak or if 

it contains information about the Pd–Cl bond. To understand this question, the 

factor that determines the shape and intensity of the satellite peaks needs to be 

explored. Figure 2.17 shows Fourier transformed EXAFS data of palladium foil. 

The k ranges chosen for the Fourier transform are (a) 2–13, (b) 2–11 and (c) 2–

9 Å–1. The prominent peak in each figure corresponds to Pd–Pd single scattering, 

and the “shoulder” on the left side is the satellite peak. It can be clearly seen that 

as the applied k range decreases, this satellite peak becomes more pronounced.  
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Figure 2.17. Fourier transformed k3-weighted EXAFS spectra of palladium foil using different 

EXAFS ranges (a) 2–13, (b) 2–11 and (c) 2–9 Å–1. The Fourier transformed EXAFS data are not 

phase corrected. (Reprinted with permission from J. Am. Chem. Soc. 2018, 140 (26), 8206–8217. 

Copyright (2018) American Chemical Society.) 

With this knowledge, one can estimate if a peak is a pure satellite peak of a 

strong single scattering or if it is comprised of another contribution. In Chapter 

3 Pd@MOFs were used to catalyze the Heck reaction. At a later stage of the in 

situ measurement, a distinct peak at ca. 1.9 Å was detected. The first impression 

was that it consists of Pd–Cl in addition to the satellite peak of Pd–Pd. To further 

confirm if there were Pd–Cl bonds, the experimental data were fit with and 

without a single scattering between Pd and Cl. The EXAFS range used to 

perform Fourier transform was varied as well. Figure 2.18a-b compares the fit 

of Fourier transformed data when the EXAFS range is set at 2.5–12.0 Å–1. 

Obviously, the introduction of Pd–Cl single scattering leads to a noticeable 

improvement in the fit and the differences are marked by green circles. The 

EXAFS range was then decreased to 2.5–10.0 Å–1. Besides the more prominent 

peak at ca. 1.8 Å, the fit was also improved when including Pd–Cl single 

scattering as can be seen in Figure 2.18c-d. To make our conclusion from 

EXAFS analysis more reliable, inductively coupled plasma atomic-emission 

spectroscopy (ICP-OES) was used. Not only was the presence of Cl confirmed, 

the calculated molar ratio of Pd/Cl was also consistent with the refinement result 

of EXAFS. At this point, it was concluded that it is TRUE that there are Pd–Cl 

bonds in the catalyst.  
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Figure 2.18. Fitting results of Pd K-edge EXAFS spectra and the corresponding Fourier transform 

at 85 min of the in situ measurement, (a-b) using an EXAFS range of 2.5–12.0 Å–1 with (a) and 

without (b) Pd–Cl single scattering in the refinements, (c-d) using an EXAFS range of 2.5–10.0 Å–

1 with (c) and without (d) Pd–Cl single scattering in the refinements. The Fourier transformed 

EXAFS data are not phase corrected. (Reprinted with permission from J. Am. Chem. Soc. 2018, 

140 (26), 8206–8217. Copyright (2018) American Chemical Society.) 

2.5.4 The importance of chemical insights in EXAFS data evaluation  

The structural information from EXAFS data is in one dimension and is an 

average of the irradiated part of the sample. When extracting structures in three 

dimensions, there is a risk that multiple models can fit the spectra. The in situ 

measurement of Pd@MOF catalyzed Heck reaction in Chapter 3 is a good 

example of this risk. When the Pd nanoclusters were formed from the 

mononuclear Pd complexes, there were two scenarios that could be derived from 

the fit of the EXAFS spectra. The first scenario being that all the complexes 

transformed into clusters instantly, and the enhancing signal of Pd–Pd was 

explained by a gradual growth of the average particle size. The scenario is a 

continuous transformation of the complexes into clusters, and the average size 

of the clusters was relatively stable. The chemical understanding of the 
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reasonable behaviors of the Pd atoms was considered in order to deduce the 

correct outcome. First, there was no obvious driving force in the reaction system 

that could trigger an instant altering of the Pd complex into metallic clusters 

within one XAS scan (ca. 3.5 min). It would also be difficult for the Pd atoms to 

retain as a dimer (or trimer) during the data collection as these species were 

expected to be unstable in air, due to their small size and lack of ligands that can 

enhance stability, such as phosphine ligands.59–61 These reasons help to exclude 

the first scenario. A continuous transformation from one species to the other, 

therefore, is more reasonable.  

Another risk occurs when identifying ligands with similar atoms bound to the 

absorbing atoms. For example, a typical EXAFS spectrum cannot distinguish if 

a single scattering is between Pd and O or Pd and N. However, the same work 

used in Chapter 3 was used to elucidate the bonding situation. At the beginning 

of the in situ measurement, the two Cl– ligands bound to Pd were replaced by 

other ligands. The bond distances suggested that substituted ligands should be N 

or O, and they both were available in the reaction mixture. The solvent of the 

reaction is comprised of H2O and dimethoxyethane (DME). The existence of 

H2O made it possible to take advantage of the stability constants of Pd–Cl, Pd–

N and Pd–O to provide insights into the changes in the binding ligands to Pd. It 

was found that ligands binding through nitrogen atoms to Pd(II) were 

significantly more stable than chloride complexes, which in turn were more 

stable than complexes with ligands binding through oxygen. This relationship 

explains why Pd–Cl was replaced in the first place, and why Pd would prefer N– 

ligands instead of O– ligands.  

There are more discussions in the following chapters where the chemical 

knowledge of catalysis was used when interpreting the EXAFS data to gain a 

more accurate understanding of the catalytic species.    
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3.1 Palladium supported in metal-organic frameworks 

Metal-organic frameworks (MOFs), also referred to porous coordination 

polymers (PCP), are a large class of crystalline porous materials that are 

constructed from metal ions/clusters and organic linkers.62–67 The high porosity, 

enormous internal surface area, together with the exceptionally wide choices of 

both the inorganic and organic building components, have imparted great 

potentials of MOFs in applications including gas storage/separation, catalysis 

and sensing.68–70  

 
Figure 3.1. Schematic illustrations of MOF synthesis, and an example of functionalization. 

The merits of MOFs make them applicable as catalyst supports. Numerous 

palladium catalysts embedded on different MOFs (Pd@MOFs) have been 

developed through either direct synthesis or post-synthetic immobilization 

approaches. MIL-10171 and MIL-88B72 are used as the MOF supports for Pd(II) 

and Pd(0) catalysts in this work (here labeled Pd(II)@MIL-101-NH2, 

3 Probing the Evolution of Palladium 
Species in Pd@MOF Catalysts Mediated 
C–C Coupling Reactions by In Situ XAS 
(Paper I) 
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Pd(0)@MIL-101-NH2, Pd(II)@MIL-88B-NH2 and Pd(0)@MIL-88B-NH2). 

These two MOFs are constructed from terephthalic acid and a trivalent metal 

salt, but under different reaction conditions. Chromium(III) compounds are the 

most common metal precursor due to the high stability of the synthesized MOFs, 

and it is applied in all the MOF materials used in this thesis. The synthesis routes 

of MIL-101 and MIL-88B are described in Figure 3.2. 

 
Figure 3.2. Synthesis conditions of MIL-101 and MIL-88B. 

In the case of catalysis, MIL-101 allows the transportation of relatively large 

substrates into the framework, while MIL-88B is more robust, making them 

attractive candidates as catalyst supports. The strategy of anchoring Pd(II) 

complexes on the MOFs involves the use of amino-functionalized terephthalic 

acid as the linker in the frameworks which forms coordination bonds to the Pd 

complexes. The Pd(II) pre-catalysts can be further reduced by NaBH4 generating 

Pd nanoparticles as catalysts.73 These supported Pd nanoparticle catalysts have 

been developed in our groups and exhibited good catalytic activity and 

recyclability in several reactions, including Suzuki-Miyaura reaction,73–75 C–H 

activation/halogenation reactions,76 and aerobic oxidation of alcohols.10  

3.2 XAS characterization of the synthesis of 
Pd(II/0)@MIL-101-NH2 and Pd(II/0)@MIL-88B-NH2 

Since loading of Pd is limited and distribution is irregular throughout the 

frameworks, it becomes challenging to characterize the structure of the Pd 

catalytic centers by regular in-house instruments. XAS, on the other hand, can 

probe directly Pd in both complex and aggregate forms on MOFs.10,11,77–80 All 

the Pd@MOFs used in this thesis contain ca. 7–8 wt% of Pd which was 

optimized in the reactivity studies.73 During the synthesis of Pd(II/0)@MIL-101-

NH2, the Pd species are studied from the Pd(II) precursors to the as-synthesized 

catalysts, and further compared with the Pd foil. Their XANES spectra are 

presented in Figure 3.3. Figures 3.3a and b show the XANES spectra of the 

overall synthesis procedure of the Pd(0)@MOFs. The features of the spectra 

after the absorption edges are distinct for each sample revealing different 



50 

 

coordination environments of the Pd atoms and the edge positions reflect their 

oxidation states. In the case of Pd@MIL-101-NH2 (Figure 3.3a), the spectrum 

of Pd(CH3CN)2Cl2 consists of two small peaks (red), while the spectrum of 

Pd(II)@MIL-101-NH2 displays one broad peak (blue). Pd species clearly 

transformed when the Pd precursor was mixed with MIL-101-NH2. It is also 

noted that the Pd K-edge positions of Pd(CH3CN)2Cl2 and Pd(II)@MIL-101-

NH2 are almost on top of each other and are ca. 4 eV above the edge position of 

the Pd foil (black) which has an oxidation state of 0. Pd(II)@MIL-101-NH2 is 

then reduced by NaBH4 aiming to generate Pd(0)@ MIL-101-NH2. 

Transmission electron microscopy confirms the formation of Pd nanoparticles 

in the previous studies.73,75 Interestingly, features of the XANES spectrum of the 

reduced sample (green) still has distinguishable differences compared to the Pd 

foil, and its edge position is below Pd(II) samples, but still well above the Pd 

foil. These signs hint that Pd(II) species and Pd nanoparticles co-exist in the 

reduced sample. The observations from XANES spectra of Pd(II/0)@MIL-101-

NH2 synthesis correlate well with the results from Pd(II/0)@MIL-88B-NH2 as 

shown in Figure 3.3b, indicating that Pd in Na2PdCl4 goes through a similar 

transformation over the curse of the synthesis. Moreover, as-synthesized 

Pd(II)@MIL-101-NH2 and Pd(II)@MIL-88B-NH2 are selected and compared in 

Figure 3.3c. The edges of these two samples indicate that they have exactly the 

same oxidation state, +II. The features after the edges show small but observable 

differences, suggesting a similar coordination environment of Pd in these two 

samples with only slight variations. This is reasonable when considering the 

difference in precursors as well as MOFs. On the other hand, XANES spectra of 

Pd(0)@MIL-101-NH2 and Pd(0)@MIL-88B-NH2 exhibit almost identical 

features and edge positions implying the comparable compositions of Pd.  



51 

 

 
Figure 3.3. Normalized Pd K-edge XANES spectra of Pd precursors, as-synthesized 

Pd(II/0)@MOFs and Pd foil. (a) Synthesis of Pd@MIL-101-NH2. (b) Synthesis of Pd@MIL-88B-

NH2. (c) Comparison of as-synthesized Pd(II)@MIL-101-NH2 and Pd(II)@MIL-88B-NH2. (d) 

Comparison of as-synthesized Pd(0)@MOFs and Pd(0)@MIL-88B-NH2. 

The samples discussed in Figure 3.3 are further explored by EXAFS spectra 

as shown in Figures 3.4 and 3.5 to determine the specific coordination 

environments of Pd. The refinement results are summarized in Tables 3.1 and 

3.2. Figure 3.4 and Table 1 refer to the synthesis of Pd(II/0)@MIL-101-NH2. 

The k range is fixed at 2.0–13.0 Å-1 for all the EXAFS spectra to ease the 

comparison. In both Pd(CH3CN)2Cl2 and Pd(II)@MIL-101-NH2, one Pd atom 

on average is bound to two N– and two Cl–ligands. However, their EXAFS 

spectra show significant differences. The bond distance of Pd–N and its mean-

square disorder (σ2) in Pd(II)@MIL-101-NH2 have larger values than in 

Pd(CH3CN)2Cl2 suggesting different types of N–ligands in the pre-catalyst. This 

indicates a successful synthesis of Pd(II) complexes onto the MOF from its 

precursor. After Pd(II)@MIL-101-NH2 was mixed with NaBH4, the Pd–Cl peak 

disappeared, meanwhile, a prominent peak corresponding to Pd–Pd bond was 

observed. This proves the formation of metallic Pd species, which is supported 

by the EXAFS of Pd foil reference in Figure 3.4d. Considering the lower 
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coordination number and shorter bond distance of the Pd–Pd in the catalyst in 

comparison with Pd foil, the metallic Pd species were estimated in the form of 

nanoparticles, which was also proved by TEM characterizations in previous 

works.73,75,76 Surprisingly, another peak with pronounced magnitude at the 

position of Pd–N or Pd–O was also observed. Due to the absence of the signal 

from Pd—Pd in PdO,81–83 this peak is probably attributed to Pd–N. The 

observations from EXAFS spectra agree with the XANES spectra, and they lead 

to a scenario where both Pd nanoparticles and unreduced complexes coexist in 

Pd(0)@MIL-101-NH2. 

Table 3.1. Refined coordination number (N), distance (d/Å), mean square disorder (σ2/Å2), and 

amplitude reduction factor (𝑆0
2) in the synthesis of Pd(II/0)@MIL-101-NH2. Underscored 

parameters were optimized from several trials and were fixed in the individual refinements. 

Samples 1st shell N d  σ2 𝑺𝟎
𝟐 

Pd(CH3CN)2Cl2 Pd–N 2.0 1.966(2) 0.0013(2) 0.88(3) 

 Pd–Cl 2.0 3.292(2) 0.0026(2)  

      

Pd(II)@MIL-101-NH2 Pd–N 2.0 2.114(8) 0.012(2) 1.17(4) 

 Pd–Cl 2.0 2.298(1) 0.0032(2)  

      

Pd(0)@MIL-101-NH2 Pd–N/O 2.0 2.030(1) 0.0044(1) 0.90(2) 

 Pd–Pd 3.0 2.732(1) 0.0102(1)  

      

Pd foil Pd–Pd 12.0 2.741(1) 0.0054(1) 0.83(2) 
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Figure 3.4.  Fourier transformed k3-weighted EXAFS spectra of (a) Pd(CH3CN)2Cl2, (b) 

Pd(II)@MIL-101-NH2, (c) Pd(0)@MIL-101-NH2, and (d) Pd foil. The spectra are not phase 

corrected and the corresponding EXAFS spectra are displayed as an inset with a range fixed at 2.0 

– 13.0 Å-1.  

The EXAFS spectra and the refinement results of the synthesis of 

Pd(II/0)@MIL-88B-NH2 are shown in Figure 3.5 and Table 3.2, respectively. 

The Fourier transformed EXAFS spectrum of Na2PdCl4 only consists of one 

dominant peak corresponding to Pd–Cl bond with a coordination number of four. 

After the precursor was mixed with MIL-88B-NH2, Pd–N bond appeared, and 

both Pd–N and Pd–Cl have a coordination of two in Pd(II)@MIL-88B-NH2. This 

confirms that two of the Cl- ligands bound to Pd in the precursor were replaced 

by N– ligands, and Pd(II) complexes were embedded onto the framework. 

Pd(0)@MIL-88B-NH2 have a similar feature as  Pd(0)@MIL-101-NH2 which is 

also the case for their XANES spectra in Figure 3.3d. It implies that both 

Pd(0)@MOFs consist of comparable Pd species. 
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Table 3.2. Refined coordination number (N), distance (d/Å), mean square disorder (σ2/Å2), and 

amplitude reduction factor (𝑆0
2) in the synthesis of Pd(II/0)@MIL-101-NH2. Underscored 

parameters were optimized from several trials and were fixed in the individual refinements. 

 

Samples 1st shell N d  σ2 𝑺𝟎
𝟐 

Na2PdCl4 Pd–Cl 4.0 2.305(1) 0.0029(1) 0.73(1) 

      

Pd(II)@MIL-88B-NH2 Pd–N 2.0 2.051(2) 0.0031(2) 0.90(2) 

 Pd–Cl 2.0 2.287(1) 0.0035(1)  

      

Pd(0)@MIL-88B-NH2 Pd–N/O 2.5 2.033(1) 0.0058(2) 0.85(2) 

 Pd–Pd 2.5 2.734(1) 0.0102(1)  

 

 

 
Figure 3.5.  Fourier transformed k3-weighted EXAFS spectra of (a) Na2PdCl4, (b) 

Pd(II)@MIL-88B-NH2, (c) Pd(0)@MIL-88B-NH2, and (d) Pd foil. The spectra are not phase 

corrected and the corresponding EXAFS spectra are displayed as an inset with a range fixed at 2.0 

– 13.0 Å-1. *The peak at ca. 1.4 Å in (a) is a satellite peak of Pd–Cl single scattering.  
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It is noted that although in both Pd(II)@MIL-101-NH2 and Pd(II)@MIL-

88B-NH2 the coordination number of N– ligands to Pd is two, the magnitude of 

the peak corresponding to Pd–N bond in Pd(II)@MIL-101-NH2 is lower than in 

Pd(II)@MIL-88B-NH2. This is caused by the bigger mean square disorder value 

of the first catalyst sample, implying different types of N– ligands. Based on the 

EXAFS analysis of the Pd(II)@MOF catalysts, the Pd precursors and the 

chemical environment during the synthesis of the catalyst, we proposed that each 

Pd atom in Pd(II)@MIL-101-NH2 is bound to one –NH2 on the linker, and one 

nitrile ligand from the original precursor, while both of the N-ligands bound to 

Pd in Pd(II)@MIL-88B-NH2 are –NH2. Figure 3.6 depicts the coordination 

structures of the two Pd(II)@MOF catalysts.  

 

 
Figure 3.6. Coordination structures of (a) Pd(II)@MIL-101-NH2 and (b) Pd(II)@MIL-88B-NH2. 

(Figure adapted from Paper I.) 

3.3 Nature of the active Pd species and catalyst 
deactivation during Pd(II)@MOFs catalyzed Heck 
coupling reaction 

3.3.1 The Heck coupling reaction 

The Heck coupling reaction (also called Mizoroki-Heck reaction) is an important 

chemical approach for synthesizing substituted alkenes from unsaturated halides 

and alkenes catalyzed by palladium.84 The catalysis is via a Pd(0)/Pd(II) process 

where the Pd(0) is firstly oxidized to Pd(II) by oxidative addition of C–X (X: 

halide ions), which is followed by migratory insertion and beta-hydride 

elimination steps. The catalytic cycle terminates with a reductive elimination 

where the Pd(0) compound is regenerated.  
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3.3.2 Catalytic reaction condition designed for in situ measurements  

Due to the beam interferences from the reactor and the reaction mixture, the 

catalyst loading was increased to ca. 18 mol%, together with the doubled 

concentration of reagents in comparison to the standard conditions. As described 

in scheme 3.1, p-iodobenzonitrile (0.04 mmol, 92 mg), tert-butyl acrylate (1.5 

equiv), sodium acetate (2 equiv, base, 66 mg), and Pd@MOF catalyst (0.075 

mmol, ca. 100 mg for 8 wt% Pd loading) were mixed in H2O (1 mL) and 

Dimethoxyethane (DME) (3 mL) in the vial. The reaction temperature was raised 

from 60 to 90 °C. Although the reaction conditions were modified from the 

standard conditions, control experiments affirmed that no differences, other than 

an increased reaction rate, were observed. Hence, the knowledge derived from 

the in situ experiment can be used to explain a general catalytic reaction.  

 

 
Scheme 3.1. The Heck coupling reaction for in situ measurements. (Scheme adapted from Paper 

I.) 

To maximize the understanding of the catalytic active species under the 

specific reaction conditions, the in situ experiment was designed in a sequence 

of operations illustrated in Figure 3.7. Step one (t = -20–0 min): p-

iodobenzonitrile, NaOAc, Pd(II)@MIL-101-NH2, together with 1 mL H2O and 

2 mL DME were added into the vial. The mixture was homogenized by stirring 

and maintained at room temperature. Meanwhile, tert-butyl acrylate was 

deliberately dissolved in 1 mL DME and loaded in the syringe attached to the 

reactor (see Figure 2.15, Section 2.4.4). Data collection was then started to check 

the behavior of the pre-catalyst when the olefin had not been added and there 

was no catalytic reaction initiated. Step two (t = 0 min): the 1 mL tert-butyl 

acrylate solution was injected into the vial, and 1 mL headspace air in the vial 

was extracted accordingly to prevent overpressure. Step three (t = 0–10 min): 

The temperature of the reaction was raised to 60 °C instantly in less than 1 min, 

and kept for 10 min. Step four (t = 10–30 min): The temperature was increased 

stepwise by 10 °C every 10 min until it reached 90 °C. Step five (t = 30–90 min): 

The temperature was held at 90 °C for 1 hour to assure the reaction was 

completed. Step six (t = 90–115 min): The reaction mixture was cooled down to 

room temperature in a rate of 3 °C/min while the data acquisition was continued. 
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Figure 3.7. Timeline of the in situ XAS and PXRD measurements. (Reprinted with permission 

from J. Am. Chem. Soc. 2018, 140 (26), 8206–8217. Copyright (2018) American Chemical 

Society.) 

3.3.3 Kinetics of the Pd(II)@MOF precatalysts catalyzed Heck reaction 

The kinetic profile of the Heck reaction catalyzed by Pd(II)@MIL-101-NH2 was 

first studied and presented in Figure 3.8 (blue curve). The experiment was 

performed under the conditions designed for in situ XAS and PXRD described 

above. To our surprise, an efficient conversion was already initiated since the 

beginning of the reaction using either of the catalysts when the temperature was 

60 °C. Moreover, an unexpected plateau followed after the fast conversion in the 

case of Pd(II)@MIL-101-NH2 at ca. 70–80 °C, reflecting a sudden diminished 

activity of the catalyst. The conversion restored when the temperature was 

increased to 90 °C and continued in a regular kinetic profile where the activity 

decreased as the reagents were consumed. This unusual stepwise feature of the 

kinetic profile provided the first hint of different mechanisms being dominant 

during each step of the reaction. To support our speculation here, the kinetic 

profile of Pd(II)@MIL-88B-NH2 catalyzed reaction was also examined (Figure 

3.8, green curve). During the initial stage of the reaction at 60 °C, the catalyst 

exibited a similar profile compared to Pd(II)@MIL-101-NH2 with a subtly 

higher reaction rate. This observation suggests a similar catalytic mechanism. 

Nevertheless, when the reaction proceeded to ca. 70–80 °C, the reaction rate 

slowed down to some extent instead of being almost completely suppressed with 

the activity as in the previous case, implying a slightly different mechanism. The 

reaction rate also recovered at 90 °C as for Pd(II)@MIL-101-NH2 which 

indicates a comparable behavior of the catalysts at this stage. The unexpected 

observations from both of the Pd(II)@MOF catalysts intrigued the interests of 

identifying the Pd species over the course of the reaction to gain more insights 

into the reaction mechanisms. It should also be noted that both of the 
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Pd(II)@MOF pre-catalysts suffered from deactivations after the first run of the 

Heck reaction.  

 
Figure 3.8. Kinetic profiles for Pd(II)@MIL-101-NH2 and Pd(II)@MIL-88B-NH2 catalyzed Heck 

reaction under the in situ measurement conditions. The curves were generated based on the marked 

data points. (Reprinted with permission from J. Am. Chem. Soc. 2018, 140 (26), 8206–8217. 

Copyright (2018) American Chemical Society.) 

3.3.4 Simultaneous in situ XAS and PXRD measurements 

The customized reactor described in section 2.4.4 was used for both in situ XAS 

and PXRD measurements. The XAS measurements were conducted at Pd K-

edge (24.35 keV)12 in transmission mode. A Pd foil was measured 

simultaneously and its first inflection point was used to individually calibrate the 

energy for all the spectra. In situ XAS and PXRD data were collected 

alternatively by switching measurement modes. Each XAS spectrum took ca. 

3.4 min and five successive XAS scans were collected in a set. Acquisition of 

five PXRD patterns was followed which took ca. 1 min. Together with the time 

spent on swapping the measurement modes, about 2.4 min in total was the time 

gap between two XAS measurement sets. All the XAS and PXRD data in this 

project were collected at beamline BM01B at ESRF, Grenoble, France.  
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3.3.5 In situ XAS measurement and data analysis 

To probe the active Pd species during the Heck reaction, in situ XAS was used 

as the main investigation method. Due to the more distinct behavior of 

Pd(II)@MIL-101-NH2, as presented in the previous section, it was chosen as the 

main catalyst to be explored in this work. Firstly, XAS spectra of the as-

synthesized catalyst and the first in situ scan (t = -20 min in Figure 3.7) were 

selected and compared in Figure 3.9 to understand the behavior of the as-

synthesized catalyst in the initial stage of the in situ measurement. It can be seen 

that both the XANES and Fourier transformed (FT) EXAFS spectra show visible 

changes as soon as the as-synthesized catalyst was added to the reaction mixture 

at room temperature, before the catalytic reaction was started. The peak in the 

XANES spectrum after the edge becomes broader relative to the as-synthesized 

catalyst. However, the edge positions of both spectra are almost identical, 

indicating that Pd at the beginning of the measurement remained in the form of 

Pd(II) complex, but in a different coordination environment.  

 
Figure 3.9. Pd K-edge XANES spectra (a) and Fourier transformed k3-weighted EXAFS spectra 

(b) of as-synthesized Pd(II)@MIL-101-NH2 and its first in situ scan at room temperature. 

The FT EXAFS spectra (Figure 3.9, right) revealed that Cl– ligands in the as-

synthesized catalyst were replaced by two N– ligands presumably from p-

iodobenzonitrile after it was added to the reaction mixture. This is because N– 

ligands form more stable Pd complexes by several orders of magnitude than Cl– 

and O– ligands in aqueous media.85–89 During the first in situ scan, each Pd atom 

on average was bound to four N– ligands with a bond distance of 2.083(6) Å 

which is shorter than the Pd–N bond in the as-synthesized catalyst (Table 3.1), 

implying the substitution of another type of N– ligand.  

An overview of the XANES spectra during the entire in situ measurement is 

presented in Figure 3.10. The first couple of XANES spectra have the same edge 

features, appearing as one smooth peak, indicating an unchanged coordination 
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environment of Pd. At a later stage, the smooth peak starts to gradually split into 

two smaller peaks showing a change in the Pd speciation.  

 
Figure 3.10. Normalized Pd K-edge XANES spectra of Pd(II)@MIL-101-NH2 catalyzed Heck 

reaction as a function of measurement time. (Reprinted with permission from J. Am. Chem. Soc. 

2018, 140 (26), 8206–8217. Copyright (2018) American Chemical Society.) 

To follow the changes more accurately and clearly, representative XANES 

spectra were selected and displayed in Figure 3.11, including the as-synthesized 

catalyst and Pd foil as references. After the transformation of the catalyst when 

added to the reaction mixture at RT, the XANES spectra overlap and are 

comprised of almost identical features until 27 min when the reaction was at 80 

°C (Figure 3.11a). This observation reveals that the Pd atoms retained as 

mononuclear Pd complexes with a similar coordination environment during this 

measurement period. The edge positions of the in situ spectra are almost 

identical and locate close to the edge of the as-synthesized Pd(II) catalyst. These 

observations indicate that the Pd complexes have an oxidation state of +II. As 

the reaction was heated to 90 °C from 31 min, changes of the XANES spectra  

occurred (Figure 3.11b). The peak after the edge of the in situ XANES spectra 

in Figure 3.11a gradually broadened and split into two smaller peaks, which 
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resembles the features of the Pd foil. This is an indication that the mononuclear 

Pd(II) complexes were reduced and transformed into metallic Pd aggregates. 

Meanwhile, the edge position was slowly and constantly shifting towards lower 

energy, which is direct evidence of decreased mean oxidation state of Pd during 

this period of measurement. It is noted that the Pd K-edge of the recycled catalyst 

positions roughly right in the middle of the Pd foil and mononuclear Pd(II) 

complexes. This denotes that the Pd in the recycled catalyst has an average 

oxidation state of ca. +I.  

 
Figure 3.11. Selected in situ Pd K-edge XANES spectra of a) Pd(II)@MIL-101-NH2 catalyst 

showing the as-synthesized catalyst, the heating steps and Pd metal reference, b) first in situ scan, 

90 °C, cooling back to RT, recycled catalyst and Pd metal. (Reprinted with permission from J. Am. 

Chem. Soc. 2018, 140 (26), 8206–8217. Copyright (2018) American Chemical Society.) 

The corresponding in situ EXAFS spectra were further analyzed and refined 

to probe the specific coordination environments of Pd in Pd(II)@MIL-101-NH2 

during the reaction. Figure 3.12 shows the in situ FT-EXAFS spectra as a 

function of measurement time. EXAFS spectra collected at 24 min and 34–38 

min were excluded due to the untreatable data quality. The FT-EXAFS spectrum 

of the as-synthesized catalyst is shown frontmost as the starting point, and the 

spectrum of the recycled catalyst is the last one along the time line representing 

the ending point. It has been discussed in Figure 3.9b that the Cl– ligands bound 

to Pd in the as-synthesized catalyst were substituted immediately by another two 

N– ligands when the catalyst was added to the reaction mixture at RT. This was 

derived from the disappearance of the peak in FT-EXAFS spectrum 

corresponding to Pd–Cl single scattering. The FT-EXAFS spectrum of the re-

formed mononuclear Pd(II) complexes consists of one main peak at ca. 1.5 Å 

(without phase correction) representing the four coordinated N– ligands. This 

main peak remains unchanged while no significant peaks at positions outside 1.5 

Å are observed, suggesting that Pd is only in the form of mononuclear 

complexes. Considering that the Heck reaction was already initiated since t = 0, 
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Pd–C bonds were expected when the reagents reacted with Pd, and the peak at 

ca. 1.5 Å can be interpreted as Pd–N/C bonds, which cannot be resolved by 

EXAFS due to their similar bond lengths. These FT-EXAFS spectra with similar 

peaks are in good agreement with the same part of the XANES spectra. Together, 

they indicate that mononuclear Pd(II) complexes with on aveage four 

coordinated N/C– ligands were the dominating Pd species when the reaction was 

at RT (t = 0) until 80 °C (t = 27 min).  

When the temperature reached 90 °C (t = 31 min), a peak at ca. 2.3 Å (without 

phase correction) appeared, corresponding to Pd–Pd bonds. This peak then grew 

in intensity progressively during the measurement showing an increasing 

amount of metallic Pd. Interestingly, while the Pd–Pd peak became more 

prominent, another peak at ca. 1.9 Å emerged which can be attributed to Pd–Cl 

distances or a satellite peak from Pd–Pd. The detailed discussion can be found 

in Section 2.5.3 and it proves the existence of Pd–Cl bonds. In addition, 

inductively coupled plasma atomic-emission spectroscopy (ICP-OES) was also 

used to determine the element composition of the recycled catalyst. A significant 

amount of Cl (1.05 wt%) was detected and the molar ratio of Pd/Cl is ca. 1.2 

according to the ICP-OES results. As the peaks for Pd–Pd grew, the peak for 

Pd–N/C shrinked. At the end of the measurement and in the recycled catalyst, 

the Pd–Pd peak became dominant with the Pd–Cl peak at the shoulder position. 

The changes of the EXAFS spectra after the reaction was heated to 90 °C are 

consistent as well with the XANES spectra in Figure 3.11b. The formation of 

metallic Pd caused the shift of the edge towards lower energies. The formation 

of the Pd–Cl bonds indicates the presence of Pd(II) in the system which could 

be induced by the oxidation of the Pd atoms on the surface of small Pd 

aggregates. This explains the average oxidation state (+I) of the recycled 

catalyst, reflected by its edge position, as a result of a mixture of Pd(0) and Pd(II) 

species. 

Following the direct observations of the in situ FT-EXAFS spectra, detailed 

coordination parameters of the Pd catalysts were obtained by fitting their 

EXAFS spectra. A maximum of three coordination shells of Pd···Pd, one shell 

of Pd–N/C and Pd–Cl were used to optimize the refinement. The model used to 

fit Pd···Pd was the crystalline structure of Pd metal in face-centered cubic 

packing. The experimental EXAFS spectra and their best fit can be found in the 

supporting information of Paper I. Table 3.3. summarizes the key fitting 

parameters of the first coordination shell including the bond distances and the 

number of bonds. One of the complexities of EXAFS data is its average nature. 

When two Pd species co-exist, the fraction of a certain species should be 

considered when calculating the real number of a bond. In Table 3.3, the number 

of Pd–Pd was calculated by dividing the refined number of Pd–Pd by the fraction 
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of Pd nanoclusters. The result was then utilized to deduce the average size of the 

Pd aggregates fromed in situ. Surprisingly, the calculated size was smaller than 

1 nm in diameter in a spherical model. Each aggregate on average is made of ca. 

13 Pd atoms and they can be caterogrized as Pd nanoclusters. The size of the Pd 

nanoclusters was found significantly smaller than the nanoparticles in 

commercial catalysts, such as Pd@C,90,91 Pd@Al2O3
91,92 and Pd@polymers.37 

Furthermore, the mean bond distances of Pd–Pd were refined to 2.65–2.67 Å, 

which is noticeably shorter than the distances in bulk Pd metal (2.74 Å) and even 

Pd nanoparticles with a size of ca. 2 nm (≥ 2.71 Å). This is attributed to the 

relatively small size of the Pd nanoclusters transformed. It is known that the Pd–

Pd bond shrinks if it involves surface atoms of a particle compared to the interior 

atoms, due to the lower CN in the first case.93 The relationship between the bond 

distance and coordination number has also been studied by all-electron density 

function94 and EXAFS refinements95, which also supports our conclusions here. 

The Pd–Cl bond was detected for the first time after 57 min when the conversion 

reached 95%. It is noted that the bond distances of the re-formed Pd–Cl bonds 

were determined to 2.35–2.42 Å, which was significantly longer than a typical 

Pd–Cl bond, such as in the as-synthesized Pd(II)@MIL-101-NH2. This implied 

that the Pd bound to Cl could be the surface atoms of the Pd nanoclusters where 

the Pd atoms had a higher coordination number which resulted in the prolonged 

bond distance. Furthermore, there were no EXAFS signals corresponding to 

PdCl2 observed, such as Pd–Cl–Cl or Pd–Cl–Pd–Cl scatterings.  
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Figure 3.12. Fourier transformed k3-weighted EXAFS spectra as a function of measurement time 

probing the local structure of Pd atoms. Pd bonds are marked and correlated to the FT signals. *The 

peak at ca. 1.9 Å consists of the signal of Pd–Cl single scattering and the satellite peak of Pd–Pd 

single scattering. The spectra are not phase corrected. (Reprinted with permission from J. Am. 

Chem. Soc. 2018, 140 (26), 8206–8217. Copyright (2018) American Chemical Society.) 

Table 3.3. Refined distances (d/Å), and mean number of distances (N) in selected scans using 

Pd(II)@MIL-101-NH2 catalyst. (Table adapted from Paper I) 

a Values were optimized from several trials and were fixed in each single refinement. b The N values in 

parentheses are the true numbers of Pd–Pd in the 1st shell calculated by taking into account the fractions of Pd 

nanoclusters. cThe values of bond distance and N of Pd–Pd in the 1st shell at 31 min contain relatively big errors 

in addition to the standard deviation due to the limited EXAFS signal of Pd–Pd. 

Catalyst 
d(Pd-N/C) 

(Å) 
Na 

d(Pd-Cl) 

(Å) 
Na 

d(Pd···Pd) 1st 

shell (Å) 
Na,b 

As synth. 2.114(8) 2.0 2.298(1) 2.0 - - 

First scan 2.083(6) 4.0 - - - - 

31 min 2.056(4) 3.8 - - 2.710(7)c 0.4(8.0)c 

44 min 2.037(6) 3.4 - - 2.674(5) 0.8(4.0) 

47 min 1.993(9) 2.9 - - 2.666(7) 1.8(4.5) 

50 min 2.026(8) 2.8 - - 2.655(4) 2.7(6.0) 

57 min 1.980(6) 1.3 2.37(1) 0.4 2.654(4) 2.8(5.6) 

63 min 1.956(5) 1.0 2.35(1) 0.7 2.653(4) 3.1(5.6) 

73 min 1.979(7) 0.8 2.38(2) 1.0 2.662(3) 3.2(4.9) 

85 min 1.959(7) 0.9 2.38(1) 1.0 2.662(3) 3.7(4.9) 

115 min 1.978(7) 0.8 2.384(7) 1.0 2.662(2) 4.2(5.3) 

Recycled - - 2.415(3) 1.0 2.689(1) 6.5 

Pd foil - - - - 2.741(1) 12.0 
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The fractions of the mononuclear Pd(II) complexes and Pd nanoclusters over the 

course of the transformation were estimated by linear combination fit (LCF) of 

the XANES spectra, and the results are presented in Figure 3.13. The XANES 

spectra of the first in situ scan and the recycled catalyst were used as references 

for mononuclear Pd complex and Pd nanoclusters, respectively. The results 

show that Pd remained in the mononuclear complex form at the beginning of the 

measurement and started to transform into nanoclusters from 31 min untill 115 

min. Generally, the transformation proceeded faster when it was initiated, 

appearing as a steep slope in Figure 3.13. It then gradually slowed down towards 

the end of the in situ measurement. The full transformation was completed in the 

recycled catalyst as discussed above. The LCF fit of the XANES spectra can be 

found in the supporting information of Paper I.  

 
Figure 3.13. Fractions of mononuclear Pd(II) complexes and Pd nanoclusters in the catalyst derived 

from linear combination fit of XANES spectra over the course of the measurement time. (Reprinted 

with permission from J. Am. Chem. Soc. 2018, 140 (26), 8206–8217. Copyright (2018) American 

Chemical Society.) 
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3.3.6 Insights into the catalytic active species in the first stage of the 

measurement 

3.3.6.1. In situ formation of Pd(0) and a competition between catalytic reaction 

and aggregation 

After achieving an understanding of the Pd species over the course of the entire 

measurement, there are a few mysteries that haven’t been illustrated. The first 

one is the formation of Pd(0) from the pre-catalyst which is the initial status of 

Pd when it entered the catalytic reaction cycle. It was found that a combination 

of H2O and olefin can reduce Pd(II) in the pre-catalyst rapidly while olefin itself 

becomes oxidized in a Wacker-type process.96 This happened when olefin was 

added to the reaction mixture at t = 0 min. To prove this process, additional in 

house experiments were performed. Pd(II)@MIL-101-NH2 was used in the same 

reaction conditions as those of the XAS measurement except a higher Pd loading 

(30 mol %). Proton nuclear magnetic resonance (1H NMR) captured the signals 

of aldehyde from α-formylacetate derivative at 9.9 – 9.6 ppm when olefin was 

oxidized. The necessity of H2O for reducing Pd(II) was also examined by control 

experiments. Pd(II)@MIL-101-NH2 was stirred for 10 min at room temperature 

with the olefin using only DME, and then a mixture of DME and H2O as the 

solvents. The resulting catalysts were characterized by transmission electron 

microscopy (TEM). No Pd nanoparticles were detected in the first experiment 

even when the reaction mixture was heated to 60 °C, as shown in Figure 3.14a, 

while Pd nanoparticles were clearly visible in the second experiment, as shown 

in Figure 3.14b. A representative color change from light green to dark green-

black was also noticed in the second experiment suggesting the reduction. The 

observations here confirmed how Pd(0) was derived from the Pd(II) pre-catalyst.  

Interestingly, only mononuclear Pd(II) complexes were recognized during 

the in situ XAS measurement as we concluded previously. All these observations 

indicate a scenario that the in situ formed atomic Pd(0) triggered the Heck 

reaction and was re-oxidized directly by the aryl iodide substrate in an oxidative 

addition step of the catalytic cycle. The key point here is that the atomic Pd(0) 

was so active that it entered the catalytic cycled before they aggregated. 

Furthermore, the resting state of Pd intermediate in the catalytic cycle of the 

Heck reaction has an oxidation state of +II, which explains the absorption edge 

position in Figure 3.11a.  
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Figure 3.14. TEM images of Pd(II)@MIL-101-NH2 exposed to olefin and DME with (a) and 

without H2O. (Reprinted with permission from J. Am. Chem. Soc. 2018, 140 (26), 8206–8217. 

Copyright (2018) American Chemical Society.) 

3.3.6.2. The secrecy of the plateau in the kinetic profile 

Another question concerns the plateau region in the kinetic profile of 

Pd(II)@MIL-101-NH2 (Figure 3.15, solid blue line). It is now known that this 

sudden diminishing of the reaction rate happened before mononuclear Pd 

complexes started to transform into Pd nanoclusters. The plateau feature should 

be attributed to possible changes in the coordination environment of the 

mononuclear Pd complexes. To gain a better understanding here, a control 

experiment was performed where the kinetic profile of Pd(II)@MIL-101-NH2 

catalyzed Heck reaction at 60 °C was investigated (Figure 3.15 dashed blue line). 

To our surprise, the reaction ceased after one turnover. Based on this 

information, it was assumed that the Pd complexes in the pre-catalyst lost their 

coordination to the MOF linkers. XAS data provided a hint to support this 

assumption, where the Pd–N mean distance in the pre-catalyst was 2.114(8) Å 

and this distance decreased to 2.056(4) Å at 31 min. The loss of nitrogen donor 

(Ar–NH2 in the MOF) led to insufficient electron density on Pd to participate in 

the second catalytic cycle. It can be imagined that the mobile mononuclear Pd 

complexes tended to aggregate when the temperature was maintained at 60 °C. 

Thus, the plateau in the stepwise heating condition was likely due to the 

decreased amount of mononuclear Pd complexes bound to the MOF linker. In 

this case, an electron rich ligand, such as aniline, Ar–NH2, seems to be crucial 

to retain the activity of Pd at 60 °C. We then designed another experiment where 

aniline, a homogeneous model for the MOF linker, was added in stoichiometric 

amounts to the reaction mixture and the reaction temperature was again kept at 
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60 °C. Interestingly, full conversion was reached with the addition of aniline 

(Figure 3.15 dotted blue line), and the shape of its kinetic profile suggested a 

homogeneous reaction. This was examined by TEM and energy dispersive X-

ray spectroscopy (EDS) where the catalyst at different stages of the catalytic 

reaction was characterized. Pd was presented while no Pd nanoparticles were 

detected before the catalytic reaction was completed. This information confirms 

that oxidative addition is faster than aggregation when a nitrogen donor ligand 

(Ar–NH2) was bound to Pd. 

The mobile mononuclear Pd complexes were inactive at 60 °C, their activity at 

90 °C was explored by adding a second load of reagents at 70 min when the Pd 

nanoclusters already had their surface covered by Cl– ligands. A full conversion 

was achieved in 70 min demonstrating that the mobile mononuclear Pd 

complexes recovered their activity at a higher temperature. Their activity should 

also be higher than the Pd nanoclusters considering their size and available 

coordination sites.  

 
Figure 3.15. Kinetic profiles for Pd(II)@MIL-101-NH2 catalyzed Heck reaction under various 

reaction conditions. The curves were generated based on the marked data points. (Reprinted with 

permission from J. Am. Chem. Soc. 2018, 140 (26), 8206–8217. Copyright (2018) American 

Chemical Society.) 
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3.3.7 The stability of the framework and the catalyst distribution 

In situ PXRD was used to monitor the crystallinity of the frameworks. It revealed 

that both MIL-101-NH2 and MIL-88B-NH2 retained their crystallinity through 

the entire measurement showing that the MOFs were stable under the conditions 

used in the catalysis reactions. This excludes the possibility of MOF degradation 

causing the changes of Pd species. 

3.3.8 Schematic evolution of Pd species and their activities 

Based on all the discussions above, we were able to unveil the whole evolution 

of the Pd species and it is schematically visualized in Figure 3.16. In summary, 

mononuclear Pd(II) complexes were bound to the linkers of the MOF in the as-

synthesized catalyst. The two Cl– ligands were then replaced instantly by N– 

ligands when the as-synthesized catalyst was added to the reaction mixture at 

room temperature. Pd(II) was in situ reduced to atomic Pd(0) upon the addition 

of olefin when the reaction temperature was raised to 60 °C. These Pd species 

were active at 60–80 °C and entered the catalytic cycle directly. Pd(0) was then 

oxidized during the oxidative addition step before it had the chance to aggregate. 

These mononuclear Pd complexes detached from the linker after one turnover 

and became mobile in the reaction mixture. The temperature was further 

increased to 90 °C. At this stage, the mobile mononuclear Pd complexes started 

to gradually transform into Pd nanoclusters. At 57 min when the conversion was 

close to 100%, the free Cl– ligands in the reaction mixture began to bind to Pd 

again on the surface of the Pd nanoclusters. At the end of the in situ 

measurement, Pd nanoclusters with Cl– ligands on the surfaces became the 

dominating species and a complete transformation was achieved in the recycled 

catalyst.  
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Figure 3.16. Proposed evolution of Pd species during the Heck coupling reaction catalyzed by 

Pd(II)@MIL-101-NH2. (Reprinted with permission from J. Am. Chem. Soc. 2018, 140 (26), 8206–

8217. Copyright (2018) American Chemical Society.) 

3.3.9 Prolongation of the catalyst lifetime  

By understanding the evolution of the Pd species and their activities, it became 

possible to improve the usage of the current catalyst. In this work, it had been 

realized that the recycled catalyst lost its activity dramatically. It was proposed 

that the deactivation results from the coverage of Cl– ligands on Pd nanoclusters. 

The lifetime of the catalyst could be extended by adding new loads of reagents 

before the positioned Pd nanoclusters became the dominating species. The 

catalyst mixture continued to convert new reagents to products effectively for at 

least 3 cycles. The experiment also suggested that the catalyst was suitable for a 

continuous flow mode where the deactivation of Pd species could be prevented 

or postponed.  

3.3.10 In situ XAS measurement of Pd(II)@MIL-88B-NH2 catalyzed 

Heck reaction.  

The XANES and Fourier transformed EXAFS spectra of Pd(II)@MIL-88B-NH2 

catalyzed Heck reaction exibit similar features and changes in comparison to 
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Pd(II)@MIL-101-NH2 (Figures 3.10–3.12). This indicates that the Pd species in 

MIL-88B-NH2 and MIL-101-NH2 went through a comparable evolution during 

the in situ measurements, which supports the conclusions drawn in MIL-101-

NH2. One thing that needs to be pointed out is that the kinetic profile of 

Pd(II)@MIL-88B-NH2 catalyzed Heck reaction didn’t show an obvious plateau 

as observed in Pd(II)@MIL-101-NH2 (Figure 3.8). Previously, we have 

investigated the coordination environment of Pd in Pd(II)@MIL-88B-NH2. The 

result showed that each Pd atom was bound to two amino ligands in a chelating 

fashion (Figure 3.6b).10 This configuration could bind the Pd complexes better 

onto the MOF linker and there was a higher probability that the Pd complexes 

remained partially bound to the linker after the first turnover in comparison to 

the case of Pd(II)@MIL-101-NH2. A control experiment where the experiment 

was maintained at 60 °C, was also performed and the reaction rate slowed down 

after one turnover but was not completely suppressed, in comparison to the case 

of Pd(II)@MIL-101-NH2. The result agreed well with our understanding of the 

activity of the mononuclear Pd complexes at temperatures lower than 90 °C.  

 
Figure 3.17. (a) Normalized Pd K-edge XANES spectra and (b) Fourier transformed k3-weighted 

EXAFS spectra of Pd(II)@MIL-88B-NH2 catalyzed Heck reaction as a function of measurement 

time. *The peak at ca. 1.9 Å consists of the signal of Pd–Cl single scattering and the satellite peak 

of Pd–Pd single scattering. The spectra are not phase corrected. (Reprinted with permission from J. 

Am. Chem. Soc. 2018, 140 (26), 8206–8217. Copyright (2018) American Chemical Society.) 
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3.4 Conclusion  

 

The evolution of Pd species in the Pd(II)@MOFs during the Heck coupling 

reaction was elucidated using in situ XAS as the main approach. Different active 

Pd species were identified at different stages of the measurement. The 

deactivation mechanism of the catalyst was also revealed, and it was caused by 

the coverage of Cl– ions on the surface of the transformed Pd nanoclusters. 

Lifetime prolongation of the catalyst was then achieved by the improved design 

of reaction process. More importantly, this work demonstrated the opportunities 

of using in situ XAS to study similar catalytic systems using our customized in 

situ reactor. 
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4.1 Introduction 

N–Heterocyclic carbene palladium complexes (Pd–NHC) are a family of 

organopalladium compounds that have been widely used in homogenous 

catalysis, such as cross-coupling reactions.97–99 Great efforts have been put on 

developing heterogeneous catalysts based on Pd-NHC complexes due to the 

demand for recyclability and novel chemical reactivity.100–102 Recently, reduced 

graphene oxide (here labeled rGO) was successfully used as a catalyst support 

on which an anthracene-tagged Pd(II)-NHC complex (here labeled 1) was 

immobilized through π-interactions.103 Figure 4.1. schematically describes the 

immobilization of 1 onto rGO, forming 1@rGO. The benefit of this non-covalent 

approach is that the need to modify the homogenous Pd complex and the support 

is minimized.103–105 In previous works, 1@rGO was used as an active and 

recyclable catalyst in undirected C–H oxygenation of benzene.103 However, the 

experimental evidence of the reaction mechanism was still missing, which 

motivated us to apply in situ XAS to gain insights into the Pd species during the 

reaction.  

 

4 In Situ XAS Study of the Pd Species in a 
Supported Pd(II) Carbene Complex 
Catalyst and its Homogeneous Analog 
during an Undirected C–H Acetoxylation 
Reaction (Paper II) 
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Figure 4.1. Immobilization of 1 on rGO. (Reprinted with permission from Catal. Sci. Technol. 

2019, 9 (8), 2025–2031. Copyright (2019) The Royal Society of Chemistry.) 

4.2 XAS characterizations of the synthesis of 1@rGO 

The structure of 1 had been confirmed by 1H- and 13C-NMR. Pd atoms in 1 had 

an oxidation state of +II. Each Pd atom was bound to two Cl– ligands, an 

anthracene-tagged NHC complex, and one pyridine.103 When 1 was immobilized 

onto rGO, the characterization of the catalyst became difficult. Pd- and Cl-XPS 

were previously used to determine the valence state of these elements, which 

then helped to predict the local structures of Pd in 1@rGO.  

In this project, XAS was chosen as it probed the local structure of the Pd 

atoms directly. The XANES spectra of the as-synthesized catalysts are shown in 

Figure 4.2 together with the Pd foil reference. The edges of these two spectra 

overlap well, indicating an oxidation state of +II for the Pd in 1@rGO. The edge 

positions of the catalysts are at higher energies than the Pd foil, but the edge shift 

is not as big as in the cases of Pd(II)@MOFs (Figure 3.3a–b). It is known that 

the edge position of an element is determined by its electron density. Not only 

the oxidation state can influence the edge position, but also the type of 

coordinated ligands. In the current catalysts, anthracene-tagged NHC ligand has 

a strong electron donating effect to the Pd(II) atoms, which then increases the 

electron density of Pd and further presses the edge position to lower energy. 

While in the case of Pd(II)@MOF, such an effect from ligands is not obvious. 

This is a good example of demonstrating the sensitivity of edge position to the 

ligand types. The features of the XANES spectra after the edges are also similar 

between as-synthesized 1 and 1@rGO suggesting comparable Pd local structures 

in these two catalysts.  
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Figure 4.2. Pd K-edge XANES spectra of as-synthesized 1 and 1@rGO catalysts and Pd foil. 

(Figure adapted from Paper II) 

The specific coordination environments of the catalysts were explored by 

EXAFS analysis. Figure 4.3 shows the EXAFS spectra and their FTs, as well as 

the best fits. The EXAFS spectra of the catalysts also appeared to be similar. 

Both FTs contained a pronounced peak at the position matching Pd–Cl bond. 

The bond lengths were refined to 2.29–2.30 Å and the number of bonds to each 

Pd atom was determined to be 2. Another peak at ca. 1.25 Å, without phase 

correction, was observed in both FT spectra. It was known that in 1 each Pd was 

bound to one NHC– ligand and one pyridine ligand (Figure 4.1). The low 

intensity of this peak reflected a large bond distance distribution. This indicates 

that there are two types of C– or N– ligands as well in 1@rGO. It is also noted 

that the peak position is at a shorter distance than in the typical case. This was 

attributed to the average of the single scattering signals of Pd–N/C and the 

satellite peak of Pd–Cl. In 1@rGO, one Pd–C/N bond was determined at 1.95 Å 

which agrees well with the distance from Pd to NHC ligand.101,103 Another Pd–

C/N bond distance was determined to 2.18 Å with a relatively large error, 0.08 

Å. Cl–XPS, in an earlier study, showed that the pyridine ligand dissociated from 

Pd when 1 was embedded on rGO. One possibility was that the Pd atoms were 

π-bonded to a C=C bond of the rGO support as shown in Figure 4.1. Importantly, 

it can be concluded that the heterogeneous Pd(II)–NHC complex was 

successfully prepared. 
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Figure 4.3. Fit of Pd K-edge EXAFS spectra and the corresponding Fourier transformed spectra of 

(a) as-synthesized 1 and (b) 1@rGO, black curve – experimental, red curve – model. *The peak at 

ca. 1.25 Å consists of the signal of Pd–C/N single scatterings and the satellite peak of Pd–Cl single 

scattering. The spectra are not phase corrected. (Reprinted with permission from Catal. Sci. 

Technol. 2019, 9 (8), 2025–2031. Copyright (2019) The Royal Society of Chemistry.) 

4.3 In situ XAS measurements of Pd(II)-NHC catalyzed 
undirected acetoxylation reaction 

4.3.1 Catalytic reaction and in situ XAS measurement condition 

After the characterization of the catalysts, an in situ XAS study was performed 

to follow the change in the Pd speciation during an undirected C–H acetoxylation 

reaction. Scheme 4.1 illustrates the reaction, and the reactor described in Figure 

2.15 was used in the experiment. Benzene (1.75 g, 22.44 mmol, 21.77 equiv.) 

was the substrate, and (diacetoxyiodo)benzene (0.33 g, 1.03 mmol, 1 equiv.) 

was used as oxidant. Both 1@rGO (0.10 g, 2.5 wt% Pd loading, 2.3 mol% with 

respect to the oxidant) and its analog 1 (0.07 g, 9.2 mol% with respect to the 

oxidant) were used respectively and compared. Together with glacial acetic acid 
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(1.50 mL) and acetic anhydride (0.17 mL), all the compounds were added into 

the vessel of the reactor in the preparation lab and moved to the experiment 

hutch. The in situ XAS measurement was then started while the reaction mixture 

was stirred and heated instantly to 92 °C.  

 
Scheme 4.1. Undirected C–H acetoxylation reaction of benzene over 1@rGO catalyst using 

PhI(OAc)2 as an oxidant. (Reprinted with permission from Catal. Sci. Technol. 2019, 9 (8), 2025–

2031. Copyright (2019) The Royal Society of Chemistry.) 

The data collection was performed in transmission mode at the Pd K-edge. 

An energy range from 24.00 to 25.00 keV was typically applied. The time 

resolution was set at ca. 6 min with the consideration of data quality. A Pd foil 

was also measured simultaneously and its first inflection point was used to 

individually calibrate the energy of all spectra. All XAS data were collected at 

beamline P64 at Petra III Extension, DESY, Hamburg, Germany.  

4.3.2 In situ XANES spectra and analysis 

The 1@rGO catalyzed reaction was measured first. One of the challenges in this 

measurement was the low concentration of Pd (ca. 7 mM) leading to a relatively 

low S/N ratio. The changes in the recorded data were generally slow which made 

it possible to average groups of seemingly identical XAS spectra to improve the 

statistics. This strategy was discussed in Section 2.5.2. Representative XANES 

spectra were selected and divided into two stages based on the trend in the 

changes. Figure 4.4a shows the XANES spectra of the as-synthesized 1@rGO 

and in situ spectra from the beginning of the reaction until ca. 80 min of the 

measurement. The interesting observation here was that the edge of the catalyst 

shifted towards higher energies, accompanied by an increase of the white line 

intensity. It had been reported that the increase in oxidation state of Pd in 

molecular complexes could lead to the rise of the white line.106,107 An edge shift 

towards a higher energy is a strong indication of an increase in the oxidation 

state, yet it could also be caused by replacement of the ligands. However, the 

only strong electron-pair donor to Pd in 1@rGO was the NHC ligand, which 

formed a fairly strong bond to Pd with a calculated bond energy of 45–50 

kcal·mol-1.108 In addition, 1@rGO showed good recyclability and the NHC 

ligand was regarded as the key factor which maintained the activity of the 
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catalyst. This chemical information suggested that NHC is retained during the 

reaction. Moreover, the introduction of the oxidant also aimed to oxidize Pd(II). 

Therefore, the edge shift in Figure 4.4a could be concluded as a result of partial 

oxidation of Pd(II). Although the edge shift was not significant, ca. 1 eV, it was 

clearly visible. Due to the average nature of XAS, a shift of 1 eV corresponded 

to ca. 25% of the expected edge shift from Pd(II) to Pd(IV). This scenario was 

reasonable as the lifetime of Pd(IV) intermediate in a catalytic cycle was 

expected to be relatively short. This shows that Pd(II) is the dominating 

oxidation state in the reaction mixture for this specific period of time. Pd(II) 

could also be oxidized to Pd(III) which tended to form dimers.109,110 However, 

no Pd---Pd distance from possible dimers were observed in the Fourier 

transforms.  

 
Figure 4.4. In situ Pd-K edge XANES spectra of 1@rGO catalyzed C–H acetoxylation of benzene. 

(a) The first stage of the measurement when the edge shifted towards higher energy. (b) The second 

stage of the measurement when the edge shifted towards lower energy. (Reprinted with permission 

from Catal. Sci. Technol. 2019, 9 (8), 2025–2031. Copyright (2019) The Royal Society of 

Chemistry.) 

In the second stage, the absorption edge started to shift backwards to lower 

energy from 80 min until the end of the measurement, 24 hours, with a generally 

decreasing trend of the white line intensity. The XANES spectrum of the 

recycled catalyst had almost identical features in comparison to the spectrum of 

the catalyst after 24 h. This means that the changes in XANES spectra ceased 

after 24 h. Through the discussion in the first stage, it could be deduced that the 

changes in the second stage were connected to a decreasing average oxidation 

state. The pronounced round peak right after the edge gradually decreased in 

intensity and split into two small peaks. As discussed in the previous project, 

this splitting indicates the formation of metallic Pd.  
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Considering the relatively delicate changes of the in situ XANES spectra 

when studying 1@rGO catalyst, its analog 1 was also studied under similar 

reaction conditions to support the analysis and conclusion. The advantage of 

running in situ XAS measurement on 1 was that it was a homogeneous system, 

which means a better control of the Pd concentration and homogeneity of Pd in 

the reaction mixture. The in situ data had a significantly increased S/N ratio as 

it was possible to raise the concentration of Pd complex to ca. 35 mM. Although 

the reaction rate of 1 catalyzed reaction was expected to be faster than 1@rGO 

catalyzed reaction due to the higher Pd concentration, the reaction mechanism 

should not be affected and the results should be comparable.  

The changes of the XANES spectra displayed in Figure 4.4 basically had the 

same trend as in Figure 4.3. From the as-synthesized 1 to ca. 78 min (Figure 

4.4a), the white line intensity raised constantly and the major change in the 

spectra occurred between the as-synthesized catalyst and the first in situ scan. 

Meanwhile, an increase in the edge position was observed indicating an increase 

in the average oxidation state of Pd. Figure 4.4b shows the XANES spectra from 

78 min to 33 h of the in situ measurement. Here the edge position gradually 

shifted to lower energies. The white line intensity dropped and the peak after the 

edge disappeared with a subtle feature of splitting. These observations imply a 

decrease in the average oxidation state of Pd and formation of metallic Pd 

species.  

 
Figure 4.4. In situ Pd-K edge XANES spectra of 1 catalyzed C–H acetoxylation of benzene. (a) 

The first stage of the measurement when the edge shifted towards higher energy. (b) The second 

stage of the measurement when the edge shifted towards lower energy. (Reprinted with permission 

from Catal. Sci. Technol. 2019, 9 (8), 2025–2031. Copyright (2019) The Royal Society of 

Chemistry.) 

It was also noted that the edges of the last XANES spectra of both 1@rGO 

and 1 catalyzed reactions returned to positions close to that of the as-synthesized 

catalysts. The XANES features after the edge, however, exhibited significant 
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differences. This reveals that the Pd at the end of the measurement had an 

average oxidation state of ca. +II, the same as the as-synthesized catalysts, but 

with a different composition. The XANES spectra are given in Figure 4.5.  

 
Figure 4.5. Pd K-edge XANES spectra of (a) as-synthesized 1@rGO and the recycled 1@rGO, and 

(b) as-synthesized 1 and 1 at 33 h of the in situ measurement. (Reprinted with permission from 

Catal. Sci. Technol. 2019, 9 (8), 2025–2031. Copyright (2019) The Royal Society of Chemistry.) 

4.3.3 In situ EXAFS spectra and analysis 

The specific coordination environments of the Pd in 1@rGO and 1 during the 

reaction were explored by in situ EXAFS spectra, and their corresponding FTs 

are shown in Figure 4.6. To ease the comparison of the FTs at different times, 

the range of all the EXAFS spectra was unified to 2–9 Å-1. The fit of the selected 

EXAFS spectra can be found in Section S4 of the supporting information of 

Paper II. Table 4.1 summarizes the refinement results of the first coordination 

shell of Pd. It should be noted that with the current EXAFS range, the peaks 

corresponding to Pd–N and Pd–Cl in FTs merge into one broad peak. In Figure 

4.6a it can be seen that the main peak has an obvious shift towards a shorter 

distance from the as-synthesized 1@rGO to 6 min, indicating an instant local 

structure change at the beginning of the reaction. Refinement of the catalyst at 6 

min showed that each Pd on average was bound to three L ligands (L ligands: C, 

N and/or O ligands) with a mean bond length of 2.01 Å, and one Cl– ligand with 

a mean bond length 2.32 Å. From 6 min onwards, the changes of EXAFS spectra 

progressively slowed down until 80 min. Another shift occurred after 3.5 h 

where the main peak shifted further towards to shorter mean distance. 
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Refinement of the EXAFS data revealed that the remaining Cl– ligand bound to 

Pd was replaced by another L ligand resulting into a four coordinated PdL4 

complex. Meanwhile, a subtle but distinct signal on the right side of the main 

peak emerged which could be fitted by introducing a Pd–Pd bond with a mean 

number of 0.8. This signal gradually grew in intensity at 8 h and further at 24 h, 

with a mean number of Pd–Pd distances of 3.5. The catalyst after 24 h and the 

recycled catalyst contain the same XANES profile and were regarded to be 

comprised of similar Pd species. Their FTs, however, do not appear to be 

identical and this is due to the different S/N ratios of EXAFS causing artificial 

noise signals. The presence of Pd–Pd bonds was the evidence of the formation 

of metallic Pd, and its mean bond distance was refined at ≤2.70 Å, which proves 

the formation of Pd nanoclusters in the second stage of the experiment. 

As the homogeneous analog of 1@rGO, in situ EXAFS spectra of 1 catalyzed 

reaction were also analyzed. Figure 4.6b displays the FTs and the k range applied 

was also deliberately fixed to 2–9 Å-1 for comparison purposes. Generally, the 

FTs exhibited the same trend of changes in comparison to the 1@rGO system. 

The main peak shifted towards shorter distance stepwise because of the 

dissociation of Cl– ligands. A peak in the FTs corresponding to the Pd–Pd single 

scattering also emerged and grew in the later stage of the experiment, indicating 

a continuous formation of metallic Pd species. The rate of changes between 

1@rGO and 1 were not exactly the same, for example, a mean number of 1.5 

Pd–Cl distances gave the best fit at 6 min in the case of 1. This can be explained 

by the higher concentration of Pd in the 1 catalyzed reaction. This slight 

mismatch can also relate to the relatively higher catalytic efficiency of 1@rGO 

under the same reaction conditions reported earlier.103 The slower substitution 

of Pd–Cl in 1 might imply a slower activation of the catalyst. To gain a better 

understanding of the activation phenomenon, an XAS spectrum of 1 was 

collected at room temperature and was found to be identical to the spectrum of 

as-synthesized 1. This result demonstrates that the heating was necessary to 

trigger the activation of catalyst and initiate the reaction.  

Importantly, the consistency in the observed XAS spectra in both the 

heterogeneous 1@rGO and its homogenous analog 1 consolidate the reliability 

of the conclusions of the Pd species evolution over the course of the undirected 

C–H acetoxylation reaction.  
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Figure 4.6. In situ Fourier transformed k3-weighted EXAFS spectra as a function of measurement 

time of (a) 1@rGO and (b) 1 catalyzed reactions. The spectra are not phase corrected and the 

EXAFS range applied were fixed at 2–9 Å-1 to facilitate comparison. (Reprinted with permission 

from Catal. Sci. Technol. 2019, 9 (8), 2025–2031. Copyright (2019) The Royal Society of 

Chemistry.) 
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Table 4.1. Refined distances (d/Å), mean number of distances (N) and Debye-Waller factor (σ2/Å2) 

in selected scans using 1@rGO and 1 as catalysts. Single scattering at outer shells and multiple 

scatterings are not included in the table. Underscored parameters were optimized from several 

trials and were fixed in the individual refinements. (Table adapted from Paper II.) 

Catalyst d 

(Pd-L)a 

Nb σ2 d 

(Pd-Cl) 

N σ2 d 

(Pd-Pd) 

N σ2 

As synth. 

1@rGO 

1.953(6) 

2.18(8) 

1.0 

1.0 

0.0017(7) 

0.007(8) 

2.293(9) 2.0 0.0045(9) ̶ ̶ ̶ 

6 min  

(22, 80min) 

2.013(6) 3.0 0.009(1) 2.320(6) 1.0 0.007(2) ̶ ̶ ̶ 

3.5 h  2.020(4) 4.0 0.006(1) ̶ ̶ ̶ 2.68(2) 0.8 0.007(2) 

8 h (6 h) 2.015(7) 3.5 0.005(2) ̶ ̶ ̶ 2.70(4) 1.0 0.005(4) 

Recycled  

(24 h) 

1.966(4) 2.0 0.004(2) ̶ ̶ ̶ 2.652(4) 3.5 0.010(4) 

          

As synth. 1 

 

1.95(1) 

2.17(8) 

1.0 

1.0 

0.003(2) 

0.005(9) 

2.301(6) 2.0 0.0015(9) ̶ ̶ ̶ 

6 min 2.00(1) 2.5 0.009(1) 2.293(8) 1.5 0.0023(7) ̶ ̶ ̶ 

40 min 2.017(7) 3.0 0.003(1) 2.29(3) 1.0 0.003(1) ̶ ̶ ̶ 

78 min 2.034(3) 4.0 0.0036(2) ̶ ̶ ̶ 2.65(2) 0.5 0.005(1) 

5.5 h 2.032(2) 3.5 0.0043(4) ̶ ̶ ̶ 2.709(7) 1.0 0.010(1) 

33 h 2.025(9) 3.0 0.007(2) ̶ ̶ ̶ 2.69(1) 3.0 0.012(2) 

4.3.4 Additional discussion of metallic Pd aggregates 

TEM, as a more visual approach, also proved the presence of Pd nanoparticles 

in the recycled 1@rGO. Meanwhile, the Pd signal was detected over the entire 

observable sample area and it confirms the existence of Pd species other than Pd 

nanoparticles, such as small nanoclusters and mononuclear complexes. The 

TEM and EDS images can be found at the supporting information of Paper II.   

 

It has been realized in the catalysis study that the oxidant PdI(OAc)2 were 

thermally degraded over time under the current reaction condition.101 This could 

be the trigger of the formation of metallic Pd aggregates.  

4.3.5 Recyclability  

Recyclability study showed that 1@rGO mostly retained its activity for at least 

four runs in the undirected acetoxylation of benzene. This could be explained by 

the Pd complexes retained after the reaction. Interestingly, the GC result showed 

that the yield of acetoxybenzene slowly decreased from 50% (first cycle) to 46% 
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(fourth cycle) under lab conditions. By eliminating the possibility of Pd leaching, 

it is proposed that the formation of metallic Pd species could cause the decrease 

in efficiency of the recycled catalyst. Meanwhile, it is expected that the amount 

of metallic Pd species formed in the in situ measurement is larger than under lab 

conditions due to the relative lower amount of oxidant used in the in situ 

measurement.  

4.4 Conclusion  

By using in situ XAS as the major tool, the changes in the mean oxidation state 

and local structures of Pd atoms in 1@rGO and its homogeneous analog 1 were 

revealed over the course of undirected C–H acetoxylation of benzene. Both 

catalysts basically followed the same transformation route. Cl– ligands were 

replaced by L ligands stepwise in the first stage of the reaction while a small 

fraction of Pd(II) in the as-synthesized catalysts were oxidized to Pd(IV). At a 

later stage, metallic Pd species gradually formed as the oxidant was consumed 

and decomposed. The mean oxidation state of Pd decreased simultaneously and 

ended at a mean value of +II. A mixture of several Pd species including Pd(II) 

complexes as the major component and small amounts of Pd aggregates and 

Pd(IV) complexes were proposed. Moreover, these observations provided 

experimental evidence for a Pd(II)-Pd(IV)-Pd(II) catalytic mechanism which 

was reported in computation studies.111 
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5.1 Introduction 

The beauty of catalysts is their ability to facilitate reactions with desired products 

fast and in high yields. The catalytic species of many catalysts transform in the 

reaction environments. The catalysts can suffer from deactivation if the 

transformed species are not active, which leads to unwanted efficiency loss of 

the catalysts. Therefore, the understanding of the deactivation mechanism of the 

catalysts is important, as it opens up measures to avoid the deactivation or 

reactivate the catalysts through modifications of the reaction conditions. Pd(II) 

complex immobilized on amino-functionalized siliceous mesocellular foam 

(Pd(II)-AmP-MCF) has been used as a Pd(II) heterogeneous catalyst for 

cycloisomerization of acetylenic acids.112 Despite the fact that Pd(II)-AmP-MCF 

showed high efficiency for this transformation, the catalyst was found to lose 

activity when pent-4-ynoic acid was transformed over repeated reactions. It was 

also realized that the leaching was negligible in this process. These observations 

indicated that the Pd(II) complexes likely transformed into another form to some 

extent, and this new form was expected to be inactive as catalyst. Intriguingly, 

the activity of the catalyst was possible to restore effectively by treating it with 

an oxidant, benzoquinone (BQ). The preliminary explanation in the previous 

work was that the deactivation was caused by the formation of Pd(0) species 

which was inactive and can be reactivated by the process of oxidation.112  

5 In Situ XAS Investigation of the 
Deactivation and Reactivation 
Mechanisms of a Heterogeneous 
Palladium(II) Catalyst during the 
Cycloisomerization of Acetylenic Acids 
(Paper III) 
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After realizing this phenomenon, it became interesting to gain more insights 

into the deactivation as well as the reactivation mechanisms. In this work, XAS 

was used to elucidate the Pd species during the cycloisomerizations of two 

different acetylenic acids, 5-hexynoic acid (here labeled substrate 1) and 5-

phenylpent-4-ynoic acid (here labeled substrate 2) to probe the active and 

inactive catalytic species. With these understandings, a control experiment was 

designed with the purpose to prevent the deactivation to occur, and this process 

was monitored by in situ XAS as well. Importantly, the knowledge acquired 

from this work is valuable for prolonging the usage of the catalyst, and provide 

guidelines in customizing the reaction process to circumvent the deactivation of 

the catalyst. 

5.2 In situ XAS measurements of Pd(II)-AmP-MCF 
catalyzed cycloismoerization of acetylenic acids 

5.2.1 Catalytic reaction and in situ XAS measurement conditions 

The Pd species in the unused Pd(II)-AmP-MCF has been studied by EXAFS. 

Each Pd in the catalyst was bound to two nitrogen donor ligands from the amino 

groups on the catalyst support, and two chloride ligands from the Pd precursor 

Li2PdCl4.113 Detailed analysis of the EXAFS spectrum can be found in Section 

6.2, Chapter 6. The reactor described in Figure 2.15 was used to perform the 

reactions. The reaction mixtures for in situ XAS measurements consisted of 

Pd(II)-AmP-MCF (120 mg, 7–8 wt% Pd loading, 7.7 mol%), substrate 1 (2.85 

mmol) or substrate 2 (1.44 mmol), toluene (2 mL), trimethylamine (TEA, 0.7 

mmol). The reaction mixtures were stirred during the measurement and the 

reaction temperature was kept at 50 °C. Scheme 5.1 describes the reaction 

conditions.  

 
Scheme 5.1. Cycloisomerization of acetylenic acids to lactones catalyzed by Pd(II)-AmP-MCF. 
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The catalyst during the reactions was followed by in situ XAS 

measurements, and the recycled catalysts were measured using standard 

sample holders for powders. The XAS data were collected in transmission 

mode at Pd K-edge with a typical energy range from 24.00 to 25.00 keV. A 

Pd foil was measured simultaneously and its first inflection point was used 

to calibrate the energy of the spectra. The time resolution of XAS scans was 

ca. 6 min with a consideration of the reaction rate and the data quality. All 

XAS data were collected at beamline P64 at the Petra III Extension, DESY, 

Hamburg, Germany.  

5.2.2 XAS spectra and analysis 

Before the in situ XAS measurements, the recycled catalysts after catalyzing 

substrate 1 (here labeled recycled 1) and 2 (here labeled recycled 2) were 

measured and compared with the unused catalyst to quickly recognize if any 

changes occurred to Pd. The comparison of their XANES spectra are shown in 

Figure 5.1 including a spectrum of Pd foil. Between the unused catalyst and the 

recycled 1, a minor change was observed in the region after the absorption edge, 

and the edge position shifted towards a lower energy. These observations 

suggest that the Pd species in the unused catalyst changed slightly during the 

reaction and the change might be caused by reduction of Pd(II) of a minor 

fraction of the catalyst. Interestingly, the XANES spectrum of the recycled 2 

exhibited obvious changes and the features after the edge are similar to those 

observed in the spectrum of the Pd foil. Its edge position was also close to the 

Pd foil. The XANES spectrum of recycled 2 strongly indicates that metallic Pd 

aggregates were formed and being the dominating Pd species. 

 
Figure 5.1. Pd K-edge XANES spectra of unused Pd(II)-AmP-MCF, recycled catalyst 1 and 2, and 

Pd foil reference.  
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The EXAFS spectra of the unused and recycled catalysts were also analyzed 

to probe the local structure of Pd. The Fourier transformed EXAFS data are 

displayed in Figure 5.2, and the refinement parameters of the first coordination 

shell are summarized in Table 5.1. The number of major peaks in the Fourier 

transformed EXAFS spectra and their positions are different. In the unused 

Pd(II)-AmP-MCF (Figure 5.2a), two main peaks are present in the first 

coordination shell which correspond to Pd–N and Pd–Pd bonds, respectively.113 

Only one dominating peak appeared in Figure 5.2b and it is at the position 

matching Pd–N or Pd–O bonds. The bond length was refined at 2.03 Å and the 

average number bound to each Pd atom was about 2. The values of the bond 

length and its Debye-Waller coefficient are close to those in the unused catalyst. 

This hints that the N– ligands bound to Pd in the unused catalyst likely remained 

in the recycled 1. Meanwhile, the average number of Pd–Cl bonds decreased to 

ca. 0.8 meaning that a substantial amount of the Cl– ligands detached from Pd. 

A small signal corresponding to Pd–Pd was detected as well indicating the 

formation of metallic Pd species which agrees with the edge shift observed in 

Figure 5.1. In recycled 2, the Pd–Pd signal is dominating (Figure 5.2c) meaning 

that recycled 2 consists of mostly metallic Pd aggregates. A minor peak at the 

position of Pd–O/N was also observed which could be due to the oxidized 

surface of the Pd aggregates or the remained N– ligands bound to Pd.   

 
Figure 5.2. Fourier transformed k3-weighted EXAFS spectra of (a) unused Pd(II)-AmP-MCF and 

the recycled (b) 1 and (c) 2. The spectra are not phase corrected. The k ranges used to perform 

Fourier transform are 2–13, 2–10 and 2–12 Å-1, respectively. 

From the measurement above, it can be concluded that the Pd species in the 

unused Pd(II)-AmP-MCF altered during the cycloisomerization of the acetylenic 

acids and the recycled catalysts had different compositions. In order to further 

understand the process of the changes, in situ XAS measurements were 

performed individually using these two substrates. In situ XANES spectra are 

shown in Figure 5.3, and it can be seen that the change of Pd occurred instantly 

when catalyzing substrate 1 and almost ceased after 6 min. This means that the 
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Pd in the unused catalyst evolved to a similar state as in the recycled catalyst at 

the beginning of the reaction and retained a comparable structure afterwards. 

Therefore, the analysis of Pd species in recycled 1 can be used to understand the 

Pd speciation during the measurement. On the other hand, the Pd species went 

through a gradual transformation when catalyzing substrate 2 based on the 

observation in Figure 5.3b. Over the course of the measurement, the peak after 

the edge in the unused catalyst became broader and split into two smaller peaks, 

meanwhile the edge position shifted towards lower energies continuously, and 

the feature resembling metallic Pd became more pronounced. It is worth 

mentioning that a spectrum at 31 min was also collected and shown in the 

supporting information of Paper III. This spectrum is not displayed here because 

of the noisy data, yet its features after the edge can still be identified showing 

similarities to that of recycled 2. This indicates that the change was almost 

complete at 31 min of the in situ measurement. 

 
Figure 5.3. Representative in situ Pd K-edge XANES spectra of Pd(II)-AmP-MCF catalyzed 

cycloisomerization of substrate (a) 1 and (b) 2 as a function of the measurement time.  

Following these results, a component in the reaction mixture acting as the 

reducing agent was expected. Due to the deactivation being much more 

significant in the case of recycled 2, the following control experiments were 

focused on substrate 2. The effect of the solvent was first investigated. An 

XANES spectrum of Pd(II)-AmP-MCF in toluene at 50 °C was collected and 

shown in Figure 5.4a. The spectrum contained identical features in comparison 

to the unused dry catalyst meaning that the catalyst was stable in toluene. 

Substrate 2 was then added and the XANES spectra are shown in Figure 5.4b. 

Only very minor changes of the spectra were captured indicating a fairly stable 

status of Pd. TEA was then added to the reaction mixture. During the experiment 

TEA was intended to be stored in the syringe attached to the reaction vessel. 

However, it was found that the vapor of TEA leaked into the vessel through the 

tubes even before the injection. Figure 5.4c shows the signals of metallic Pd 
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when the TEA vapor was in contact with the catalyst, and this experiment 

confirmed that TEA was acting as the reducing agent.  

 
Figure 5.4. Pd K-edge XANES spectra of Pd(II)-AmP-MCF (a) in dry form and in toluene, (b) 

after the addition of substrate 2, and (c) after the addition of TEA. 

Following the experiment discussed in Figure 5.4, BQ was added to the 

reaction mixture at the end. Figure 5.5a exhibits the XANES spectra of the 

catalyst before and after the addition of BQ. It was found that the peaks after the 

absorption edge were damped upon the addition of BQ, meaning that the features 

resembling metallic Pd became less pronounced. The corresponding Fourier 

transformed EXAFS data are shown in Figure 5.5b-c. The spectrum in Figure 

5.5b was fitted by including mainly Pd–Pd bonds and a small fraction of Pd–O 

bonds. The peak at ca. 1.9 Å (not phase corrected) in the experimental data can 

be fitted by the satellite peak of the Pd–Pd single scattering. Nevertheless, the 

peak at ca. 1.9 Å became more significant in Figure 5.5c and it cannot be fitted 

properly by solely the Pd–Pd single scattering. A signal corresponding to Pd–Cl 

was therefore necessary to achieve a good fit. The refinement details are 

summarized in Table 5.1. Although the difference between these two spectra is 

relatively small, it is crucial as it confirmed that a fraction of Pd transformed into 

the form of Pd(II) complex with Cl– ligands bound to the Pd centres. Although 

the amount of Pd(II) complexes seems limited, they were the active species 

formed by the introduction of BQ and were sufficient to catalyze additional 

reactions.  
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Figure 5.5. Representative in situ Pd K-edge (a) XANES and Fourier transformed k3-weighted 

EXAFS spectra of Pd(II)-AmP-MCF (b) before and (c) after addition of BQ to the Pd aggregates. 

The spectra in Figure b-c are not phase corrected and converted from the same k range, 2–10.5 Å-

1.  

By unveiling the deactivation and reactivation mechanisms, it was possible 

to design a strategy with the aim to prevent the deactivation process. In the 

following experiment, BQ was added before the addition of TEA to compete 

with the reduction. In situ XAS was used to monitor the status of Pd during this 

process and the results are shown in Figure 5.6. As discussed in Figure 5.4b, the 

addition of substrate 2 led to a slight change of the XANES spectrum, which was 

also detected in Figure 5.6a. Moreover, Figure 5.6a also includes XANES 

spectra of the catalyst after adding BQ, and this operation further caused a slight 

change in the region after the edge. TEA was then added to the mixture. 

Interestingly, the XANES spectra at this stage exhibited no changes meaning 

that the presence of BQ effectively prevented the extensive reduction of Pd. 

 
Figure 5.6. Representative in situ Pd K-edge XANES spectra of Pd(II)-AmP-MCF mixing with (a) 

the substrate and BQ, and (b) after the addition of TEA. (c) Fourier transformed k3-weighted 

EXAFS spectra of Pd(II)-AmP-MCF after the addition of BQ. The spectrum in Figure 5.6c is not 

phase corrected and is Fourier transformed on the k range of 2–10 Å-1. 
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Table 5.1.  Number of distances, N, mean distances, d/Å, and Debye-Waller coefficients, σ2/Å2, in 

the EXAFS refinements. The standard deviations in parentheses were obtained from k3-weighted 

least square refinement of the EXAFS function χ(k) and do not include systematic errors of the 

measurement. Underscored parameters were optimized from several trials and were fixed in the 

individual refinements. (Table adapted from Paper III.) 

Samples Signal N d  σ2 𝑺𝟎
𝟐 

Pd(II)-AmP-MCF Pd–N 2.0 2.023(2) 0.0035(3) 0.93(2) 

 Pd–Cl 2.0 2.294(2) 0.0058(2)  

      

Recycled catalyst 1 Pd–N/O 2.0 2.034(4) 0.0032(7) 0.93(5) 

 Pd–Cl 0.8 2.337(5) 0.0035(9)  

 Pd–Pd 0.5 2.72(1) 0.011(2)  

      

Recycled catalyst 2 Pd–O 0.5 2.07(3) 0.004(3) 0.92(4) 

 Pd–Pd 8.0 2.741(2) 0.0062(2)  

      

Catalyst before addition of  Pd–O 1.0 2.05(1) 0.003(2) 0.92(8) 

BQ (substrate 2) Pd–Pd 7.0 2.734(3) 0.0042(6)  

      

Catalyst after addition of  Pd–O 0.6 2.05(4) 0.002(6) 0.9(1) 

BQ (re-activation) Pd–Cl 0.6 2.35(3) 0.004(4)  

 Pd–Pd 7.0 2.726(5) 0.0064(8)  

      

Catalyst after addition of  Pd–N/O 1.5 2.011(8) 0.002(2) 0.84(7) 

BQ Pd–Cl 1.5 2.303(6) 0.003(1)  

(prevention of deactivation) Pd–Pd 1.5 2.731(6) 0.0075(7)  

5.3 Recycling results and discussion 

Recycling experiments were conducted to confirm the activity of the catalyst at 

different conditions. The catalyst was first examined by catalyzing substrate 1 

for a few cycles and the result is summarized in Table 5.2. The activity of the 

catalyst retained until the fourth cycles, which agrees well with the conclusion 

from XAS analysis, showing that recycled 1 contained a significant amount of 

Pd(II) complexes.  
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Table 5.2. Recycling of the catalyst with substrate 1. 

 
Cycle NMR Yield (%) 

1 78 

2 74 

3 75 

4 25 

5 34 

On the other hand, the catalyst was not able to efficiently catalyze substrate 2 for 

the first cycle and became completely inactive in the second cycle, as shown in 

Table 5.3. The XAS analysis revealed that a large amount of metallic Pd 

aggregates were formed from the Pd(II) complexes when catalyzing substrate 2. 

This transformation could be confirmed as the cause of the deactivation. 

Table 5.3. Recycling of the catalyst with substrate 2. 

 

Cycle NMR Yield (%) 

1 42 

2 <5 

Recycled 1 and 2 were then used to catalyze 4-pentynoic acid, substrate 3, which 

had a faster conversion rate, and the reactions were performed in the standard 

cycloisomerization condition reported.112 The results showed that recycled 2 had 

lower activity than recycled 1 (Table 5.4, entries 1–2). Recycled 1 and 2 were 

then treated with 1 mol% of BQ which exhibited enhanced activities when 

catalyzing substrate 3 (Table 5.4, entries 3–4). Moreover, recycled 1 and 2 were 

also examined under the condition where 1 mol% of BQ was added to both 

substrates at the beginning. The results showed that the catalyst retained a high 

activity in the presence of BQ. The information here is consistent with the XAS 

analysis above where no obvious reduction occurred when BQ was present from 

the start.  
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Table 5.4. Cycloisomerization of substrate 3 using recycled catalysts 1 and 2. 

 
Entry Catalyst NMR Yield (%) 

1 1 90 

2 2 77 

3a 1 99 

4a 2 95 

5b 1 99 

6b 2 99 

a 1 mol% of BQ used to reactivate the catalyst before the reaction. 
b 1 mol% of BQ added in the beginning of the reaction. 

5.4 Conclusion 

In this work, the deactivation and reactivation of the Pd(II)-AmP-MCF catalyzed 

cycloisomerization of acetylenic acids were investigated by using mainly in situ 

XAS. It was found that the choice of the substrate significantly determined the 

change in the Pd species and further the activities of the recycled catalysts. 

Metallic Pd aggregates were proven to be the inactive catalytic species and TEA 

was found to be the reducing agent. Treatment of the deactivated catalyst with 

BQ was able to reactivate the catalyst by recovering a fraction of the Pd to active 

Pd complexes. Furthermore, a strategy for preventing the deactivation was 

designed by adding BQ to the catalyst and substrate 2 at the beginning of the 

reaction. Under this condition, the reduction of Pd was effectively prevented, 

and Pd was mainly retained in the form of complexes which exhibited high 

activities.   
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6.1 Introduction  

In this chapter, two types of attractive heterogeneous Pd catalysts are discussed: 

Pd nanoparticles supported on siliceous mesocellullar foam, Pd(0)-AmP-MCF, 

and Pd nanoparticles supported on cross-linked CalB enzyme aggregates, 

Pd(0)@CalB CLEA. Both catalysts have been extensively studied in Bäckvall’s 

group at Stockholm University. The procedures to synthesize the catalysts are 

described in Figure 6.1. Essentially, the catalyst supports were prepared first, 

following by impregnations of Pd(II) precursors. The Pd(II) pre-catalysts were 

then reduced by reducing agents generating supported Pd nanoparticles 

heterogeneous catalysts.  

6 XAS Studies of Pd-AmP-MCF and Pd-
CalB CLEA Heterogeneous Catalysts 
(Papers IV–V) 



96 

 

 
Figure 6.1. Synthesis of (a) Pd(0)-AmP-MCF (Reprinted with permission from Chem. Eur. 2017, 

23 (52), 12886–12891. Copyright (2017) John Wiley and Sons.) and (b) Pd(0)@CalB CLEA 

heterogeneous catalysts. (Reprinted with permission from ACS Catal. 2017, 7 (3), 1601–1605. 

Copyright (2017) American Chemical Society.) 

Pd0-AmP-MCF has been used as an effective catalyst in a wide range of 

reactions, such as water and alcohol oxidation, and the catalyst exhibited good 

recyclability with low metal leaching.114–119 Pd(0)-CalB CLEA was successfully 

applied in a cascade reaction. The immobilized Pd catalyzed 4-pentynoic acid 

forming exo-cyclic vinyl lactone which was then utilized in a CalB-catalyzed 

kinetic resolution of sec-alcohols.120 

TEM has been used as the standarded characterization technique to 

investigate the Pd nanoparticles in the Pd(0) catalysts. To gain a better 

understanding of the synthesis process, XAS was used to characterize both the 

Pd(II) pre-catalysts and the reduced Pd(0) catalysts. Moreover, the influence of 

different reaction conditions on the Pd species in the catalysts was also unveiled 

by XAS.  

6.2 EXAFS study of Pd(II/0)-AmP-MCF 

The specific coordination environments of Pd atoms in Pd(II/0)-AmP-MCF were 

probed by EXAFS. The EXAFS spectra and corresponding FTs are shown in 

Figure 6.2, and the refinement results are summarized in Table 6.1. Obviously, 
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the main envelope positions of Pd(II) and Pd(0)-AmP-MCF are different 

indicating a significant difference of the backscattering atoms in these two 

catalysts. FTs of Pd(II)-AmP-MCF consists of two main peaks at the positions 

typical for Pd–N and Pd–Cl single scattering. The N donor ligands are the 

functionalized amino groups on the support, and Cl– ions originate from the 

catalyst precursor, Li2PdCl4. Each Pd atom was on average bound to two N– 

ligands and two Cl– ions at mean distances of 2.02 Å and 2.29 Å, respectively. 

A square-planar complex in trans geometry was preferred in the model fitting. 

Meanwhile, a peak at ca. 3.0 Å (without phase correction) was observed, and the 

refinement suggested Pd---Pd single scatterings at 3.07 Å and 3.42 Å. These 

results depicted a scenario of mononuclear Pd(R–NH2)2Cl2 complexes 

embedded on the MCF support. The complexes were likely stacked on top of 

each resulting in Pd---Pd distances of 3.07 Å and 3.42 Å.  

FTs of Pd(0)-AmP-MCF changed significantly in comparison to Pd(II)-

AmP-MCF after the reduction, and displayed only one dominating peak 

corresponding to Pd–Pd single scattering in metallic palladium. Refinement 

revealed that each Pd atom on average was bound to ca. 6 Pd atoms, and the 

bond length was determined at 2.78 Å. The Pd–Cl contribution disappeared 

completely and the peak at ca. 2.0 Å (without phase correction) was actually 

attributed to the satellite peak of Pd–Pd single scattering. The signal of Pd–N 

became much less pronounced in the reduced catalyst, and a coordination 

number of ca. 0.7 with a distance of 2.00 Å gave the best fit. Considering the 

sample was exposed to air, the Pd nanoparticles could be partially oxidized or 

hydrolyzed. The bond at 2.00 Å could also be Pd–O or a mixture of Pd–N and 

Pd–O, which are not possible to resolve by EXAFS. Due to the presence of 

multiple species and the averaging nature of the EXAFS data, the real 

coordination number of Pd in the nanoparticles should be larger than 6. This was 

also reflected by the fairly long bond distance in comparison to the Pd 

nanoclusters as discussed in Chapter 3. The same principle was also applicable 

for estimating the real coordination number of Pd–O/N. TEM imaging 

confirmed the formation of Pd nanoparticles with a typical size of 2.5 nm in 

diameter. The nanoparticles were well distributed and covering the entire 

observing sample area. Importantly, it was proven that the reduction of the Pd(II) 

catalyst was effective, and Pd nanoparticles were the dominating species in this 

catalyst with a small fraction of PdO and even some Pd complexes. 
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Figure 6.2. Pd K-edge EXAFS spectra (left) and Fourier transform data (right) of (a) Pd(II)-AmP-

MCF and (b) Pd(0)-AmP-MCF. The single scatterings in the first coordination shell are assigned. 

Black curve – experimental, red curve – model. The spectra are not phase corrected. (Reprinted 

with permission from Chem. Eur. 2017, 23, 12886–12891. Copyright (2017) John Wiley and Sons.) 

Table 6.1.  Number of distances, N, mean distances, d/Å, and Debye-Waller coefficients, σ2/Å2, in 

the EXAFS studies of solid PdII-AmP-MCF and Pd0-AmP-MCF at room temperature. The standard 

deviations in parentheses were obtained from k3-weighted least square refinement of the EXAFS 

function χ(k) and do not include systematic errors of the measurement. Underscored parameters 

were optimized from several trials and were fixed in the individual refinements. (Table adapted 

from Paper IV.)  

Samples Signal N d  σ2 𝑺𝟎
𝟐 

Pd(II)-AmP-MCF Pd–N 2.0 2.023(2) 0.0035(3) 0.93(2) 

 Pd–Cl 2.0 2.294(2) 0.0058(2)  

 Pd---Pd 0.5 3.065(5) 0.0083(4)  

 Pd---Pd 1.0 3.415(6) 0.0094(4)  

 MS (PdCl2) 2.0 4.59(2) 0.007(2)  

      

Pd(0)-AmP-MCF Pd–O/N 0.7 1.995(4) 0.0048(4) 0.84(2) 

 Pd–Pd 5.5 2.779(1) 0.0093(1)  

 Pd---Pd 2.0 3.85(1) 0.016(1)  
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6.3 XAS study of Pd(II/0)-CalB CLEA and influence of 
the solvents in catalytic reactions 

Using a similar approach, we also studied the synthesis of Pd(0)-CalB CLEA. 

Pd(II)-CalB CLEA pre-catalyst was prepared first which then was reduced to 

form Pd(0)-CalB CLEA. To study the effect of the reducing agents on the 

resulting Pd species, NaBH3CN and NaBH4 were utilized, respectively, and the 

reduced catalysts were studied by XAS. The XANES spectra of these samples, 

together with a Pd foil as the metallic Pd reference, are shown in Figure 6.3. The 

Pd K-edge position of Pd(II)-CalB CLEA is ca. 4 eV above the Pd foil, which is 

the typical edge position for a Pd(II) compound. This means that the Pd in the 

pre-catalyst is retained as Pd(II) after the immobilization of the Pd(II) precursor. 

The edge positions of the catalysts after the reduction exibit an obvious shift 

towards lower energy, but still above the Pd reference foil. The reduction 

occurred without that any other strong electron donors were present in the 

reaction systems. Meanwhile, it seems that a relatively small amount of Pd was 

not effectively reduced, which was observed in both reduced catalysts. As the 

main profile feature of the XANES spectrum of the pre-catalyst, the smooth peak 

after the absorption edge became flatten after the reductions and empirically 

represented by the formation of metallic Pd species. The features were, however, 

not as pronounced as the Pd foil or the Pd nanoparticles, indicating multiform 

coordination environments of the Pd atoms in the reduced catalysts. The Pd 

species in these two catalysts are expected to be similar based on the minor 

differences of their XANES spectra.  

 
Figure 6.3. Pd K-edge XANES spectra of the pre-catalyst and the reduced catalysts using different 

reducing agents, as well as the Pd foil.  
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The EXAFS data of these samples were then analyzed and their FTs with the 

best fit are presented in Figure 6.4. The refinement of the pre-catalyst suggests 

that each Pd atom on average binds four ligands at a mean bond length at  2.034 

Å. The bond length agrees well with oxygen, nitrogen and carbon donor ligands 

from the enzyme support. Distances between the Pd atoms and the enzyme 

support were also found at distances longer than 3.0 Å. Their back FTs imply 

that the backscattering atoms are lighter than Pd, which indicates the successful 

impregnation of Pd(OAc)2 onto the support. For the catalysts after the reduction 

treatments, two pronounced peaks are presented in their FTs as shown in Figure 

6.4b-c and they correspond to Pd–C/N/O and Pd–Pd bonds, respectively. Pd–Pd 

bonds with a mean distance of 2.72 Å in these two catalysts confirmed the 

formation of metallic Pd species and they were in the form of nanoparticles as 

further characterized by TEM. The contribution from Pd–C/N/O distances to the 

EXAFS function is more significant in the enzyme supported catalyst than in the 

one supported on MCF as shown in Figures 5.2b and 6.4b-c. One explanation is 

that the Pd(II) species in the pre-catalyst was not completely reduced. Re-

oxidation of the Pd nanoparticles is another possible scenario as the catalyst was 

stored and measured in air. The average number of Pd–Pd distances in the 

catalyst reduced by NaBH4 was refined to a slightly higher value than the 

catalyst reduced by NaBH3CN, while their σ2 values are comparable. XPS 

measurement on these two catalysts also showed the same difference as the 

analysis of XAS. However, these two reduced catalysts had comparable 

compositions in general.   

 
Figure 6.4. Fourier transformed k3-weighted EXAFS data and the best fit of (a) the pre-catalyst, 

(b) the catalyst reduced by NaBH3CN, and (c) the catalyst reduced by NaBH4. The single scatterings 

in the first coordination shell are assigned. Black curve – experimental, red curve – model. The 

spectra are not phase corrected.  

Pd(0)-CalB CLEA reduced by NaBH4 was then used in the DKR of 1-

phenylethylamine. This catalyst was found to have a higher activity which might 
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be due to the slightly larger fraction of Pd(0) species. Deactivation occurred 

when 1,4-dioxane was used as the solvent and the recycled catalyst was studied 

by XAS. Tetrahydrofuran (THF) was another solvent used during the solvent 

optimization experiments although recyclability of the catalyst was not 

specifically studied. The XANES spectra of the recycled catalyst in these two 

solvents are shown in Figure 6.5, together with the catalyst before the reaction 

and the Pd foil. The peak shape after the edge altered from the unused catalyst 

to the recycled catalyst from 1,4-dioxane. Interestingly, the spectrum of the 

catalyst recycled from THF exhibited split peaks resembling the Pd foil. This 

observation suggests metallic Pd species became dominating. Meanwhile, the 

edge positions of the recycled catalysts moved closer to the Pd foil indicating a 

further decrease of the average oxidation state of the Pd atoms.   

EXAFS analysis was employed on these two recycled catalysts and the FTs 

are shown in Figure 6.6. The relative intensities of Pd–C/N/O became lower in 

comparison to the fresh catalyst suggesting a decreased fraction of such 

component. For the recycled catalyst from dioxane, the bond distance of Pd–Pd 

was determined to be 2.75 Å, which obviously is longer than in the fresh catalyst 

and in the range of a bulk metal, which implies relatively large average particle 

size of Pd. TEM also detected larger aggregates. To our surprise, a pronounced 

peak at ca. 1.8 Å (without phase correction) emerged as shown in Figure 6.6a. 

The distance was refined to 2.29 Å and the average number of this distance is 

1.0. The distance agrees with a Pd–Cl or Pd–S bond. S-XPS measurement 

showed no significant change between the fresh catalyst and the recycled 

catalyst. Therefore, this peak could be attributed to the Cl– from impurity. 

Meanwhile, Pd leaching was found to be a minor issue. The overall large particle 

size and maybe also the chloride contamination should be the source of the 

dramatic decrease of the catalytic activity.  
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Figure 6.5. Pd K-edge XANES spectra of the catalyst reduced by NaBH4, recycled catalysts from 

1,4-dioxane and THF, and the Pd foil.  

When using THF as the solvent, the FTs of the recycled catalyst exhibits a 

dominating peak corresponding to Pd–Pd bonds, and a relatively small peak is 

related to Pd–C/N/O bonds. The Pd–Pd bond distance was refined to 2.77 Å, 

which is considerably longer than the fresh catalyst and even the Pd foil. Two 

different Pd–C/N/O single scattering paths with distances of 1.89 Å and 2.04 Å 

were introduced to refine the first two minor peaks in Figure 6.6b. Although the 

recyclability experiment and TEM characterization were not conducted, one can 

predict that the activity of the catalyst using THF could diminish substantially 

based our estimated large Pd particle size. 

 
Figure 6.6. Fourier transformed k3-weighted EXAFS data and the fit of the recycled catalysts from 

(a) 1,4-dioxane and (b) THF. The single scatterings in the first coordination shell are assigned. 

Black curve – experimental, red curve – model. The spectra are not phase corrected.  
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Table 6.2.  Number of distances, N, mean distances, d/Å, and Debye-Waller coefficients, σ2/Å2, in 

the EXAFS studies of the catalyst. The standard deviations in parentheses were obtained from k3-

weighted least square refinement of the EXAFS function χ(k) and do not include systematic errors 

of the measurement. Underscored parameters were optimized from several trials and were fixed in 

the individual refinements. (Table adapted from Paper V.)  

Samples Signal N d  σ2 𝑺𝟎
𝟐 

Pd(II)-CalB CLEA Pd–N/C 4.0 2.034(2) 0.0038(2) 1.03(3) 

 Pd---N/C 4.0 3.331(7) 0.0093(8)  

 Pd---N/C 4.0 3.92(2) 0.012(2)  

      

Pd(0)-CalB CLEA Pd–N/O 2.5 2.032(2) 0.0053(3) 0.99(3) 

(reduced by NaBH3CN) Pd–Pd 3.0 2.719(3) 0.0122(3)  

 Pd---C/N/O 2.0 3.97(3) 0.010(1)  

 Pd---Pd 1.5 3.87(4) 0.019(6)  

 Pd---Pd 5 4.73(3) 0.031(7)  

      

Pd(0)-CalB CLEA Pd–N/O 2.5 2.050(3) 0.0055(5) 0.94(4) 

(reduced by NaBH4) Pd–Pd 3.5 2.715(3) 0.0118(4)  

 Pd---Pd 2.0 3.81(1) 0.016(1)  

 Pd---Pd 5.0 4.77(1) 0.018(1)  

      

Recycled Pd–N/C 1.0 2.04(2) 0.007(4) 0.89(9) 

Pd(0)-CalB CLEA Pd–Cl*  1.0 2.292(8) 0.003(1)  

(Reaction in dioxane) Pd–Pd 3.0 2.748(5) 0.0092(8)  

 Pd---Pd 1.5 3.79(1) 0.006(2)  

 Pd---Pd 5.0 4.72(2) 0.015(3)  

 Pd---N/C/O 3.0 4.21(2) 0.002(3)  

      

Recycled  Pd–N/C 0.6 1.892(6) 0.0018(6) 0.82(2) 

Pd(0)-CalB CLEA Pd–N/C 1.0 2.044(4) 0.0017(4)  

(Reaction in THF) Pd–Pd 7.0 2.766(1) 0.0102(2)  

 Pd---Pd 3.0 3.836(4) 0.0113(4)  

 Pd---Pd 10.0 4.53(2) 0.025(2)  

*Backscattering atom could be Cl and/or atoms with similar size as Cl.  
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6.4 Conclusion  

In this chapter, two types of heterogeneous Pd catalysts were explored, Pd-AmP-

MCF and Pd-CalB CLEA. They are good examples to demonstrate the 

application of XAS to investigate the preparation of catalysts. Another 

conclusion of this XAS study is that it provides experimental evidence at atomic 

level that the choice of the solvent has a significant influence on the catalytic 

species, which further affects the recyclability. These observations can provide 

a guide for optimization strategy of a catalytic system.  
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7.1 Introduction  

Catalyst activation is an important process in many catalytic reactions and 

understanding the activation mechanism is beneficial to the development of new 

catalysts. However, explorations of the catalyst activation have been limited to 

computational121,122 or experimental approaches, such as FT-IR and NMR,123,124 

which cannot probe the catalytic metal center directly. Meanwhile, the reaction 

intermediates are often transient and time-resolved techniques are necessary to 

capture these species. With proper manipulation of the reaction system, it has 

become possible to accumulate these intermediates and extend their lifetime for 

detection. Traditional methods, such as single-crystal X-ray diffraction, are 

powerful to determine the structures of the pre-catalysts. This technique, on the 

other hand, is limited when studying the structure of intermediates due to the 

difficulties to isolate and recrystallize pure intermediates. In situ XAS provides 

opportunities to probe the local structures of catalytic metal centers directly in 

real activation processes and in a time-resolved manner.  

Metal-carbonyls are a type of common complexes in organometallic 

chemistry. They are widely used as reagents or catalysts in organic synthesis.125 

Dicarbonyl pentaphenylcyclopentadienylruthenium chloride (1a) is a transfer 

hydrogenation catalyst which was used as an effective racemization catalyst in 

DKR of a wide range of alcohols.126–129 There have been many discussions of 

the mechanism for the hydride transfer of alcohols with 1a and its related 

complexes.121,122,124,130,131 Currently, the accepted mechanism proposes an 

7 In Situ Structure Determination of a 
Homogeneous Ruthenium Catalyst and 
its Activated Intermediates using XAS 
(Paper VI) 
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activation step and it is described in Scheme 7.1.125,127,132 First, potassium tert-

butoxide is added to 1a to produce an activated complex 3. A sec-alcohol is then 

introduced to initiate an alcohol-alkoxide exchange forming the alkoxide 

complex 4. 4 is an 18-electron complex which means a vacant site on Ru is 

required for the subsequent β-hydride elimination step. It has been proposed that 

a CO dissociation leads to a vacant site on Ru and β-hydride elimination 

generates a complex Int-1. The final Ru alkoxide complex rac-4 is formed 

through hydride re-addition to the ketone and a CO coordination.   

 
Scheme 7.1. Proposed mechanism of catalyst 1a for racemization of sec-alcohols. 

In earlier studies of the catalyst activation, computation suggested an acyl 

intermediate 2a as depicted in Scheme 7.1. This intermediate was then detected 

experimentally by using in situ FT-IR under cryogenic condition. 13C-NMR at 

low temperature also showed signals matching the acyl intermediate.124  

7.2 In situ characterizations of the catalyst activation 

7.2.1 The choices of the solvent and the Ar- group for optimal in situ 

measurements   

Previously, in situ IR measurement of acyl intermediate 2a had only been 

performed in toluene.124 Based on an improved understanding of the reaction 

conditions, THF was used in the present study as it allows more catalysts to be 

dissolved resulting in a higher S/N ratio. This is particularly beneficial when it 

comes to XAS measurement using the in situ batch reactor in Figure 2.15. 
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Another merit of using THF is that it prolongs significantly the lifetime of 2a 

without changing the reaction pathways. It was found that full conversion of 3a 

can be achieved in less than 5 min in toluene, which is a limited amount of time 

for data collection. It also becomes more difficult to collect a sufficient amount 

of data to gain a full picture of the structural transformation. THF, on the other 

hand, slows the transformation of 1a properly down to ca. 1 h giving us sufficient 

time to collect sufficient amount of data of good quality and quantity.  

Besides the influence of the solvent, the Ar- group also plays an important 

role in the activation rate. 4-MeOC6H4 in b has a stronger electron donating 

ability to Ru than C6H5 in a leading to a higher electron density of Ru, while 4-

CF3-C6H4 in c has an electron withdrawing effect and lowers the electron density 

of Ru. Hence, a promoted reaction rate is expected in the case of b, and the 

reaction should be suppressed using c. a, as a compromised substitute, was 

chosen as the model for the in situ measurement due to the adequate XAS data 

collection time. The effect of the substitute Ar-groups was investigated by in situ 

XAS and are elaborated in the XAS discussion.     

7.2.2 In situ IR measurements  

In situ IR measurements were performed, and the results were compared with 

the previous studies in toluene.124 The activation process followed the same 

mechanism when different solvents were used. The observed bands are assigned 

to the complexes in Scheme 7.1. Figure 7.1 shows the in situ IR spectra of the 

activation process. It can be seen that 1a disappeared instantly when tert-BuOK 

(tBuOK) was added, meanwhile 2a emerged. This was followed by a gradual 

growth of 3a. When the substrate, 1-phenylethanol, was added, the signals of the 

carbonyls in 3a blueshifted rapidly to positions matching 4a as shown in the 

supporting information of Paper VI.  
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Figure 7.1. (a) In situ IR spectra of the activation of 1a in THF through the addition of tert-BuOK. 

7.2.3 In situ XAS measurements 

The catalysts (0.1 mmol) were dissolved in 1.8 mL of dry THF and tert-BuOK 

(0.1 mmol) was then mixed after acquiring the first XAS spectrum. The XAS 

data were collected in transmission model at Ru K-edge which was assigned at 

22117 eV.12 A typical energy range from 200 eV below the K-edge up to 800 

eV above the K-edge was used for the measurements. A time resolution of 5 min 

was chosen considering the S/N ratio and the reaction rate. Each XAS scan was 

internally calibrated with a Ru foil which was measured simultaneously with the 

catalyst. All the XAS spectra were collected at beamline P64, Petra III 

Extension, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany. 

More details of the XAS experiments can be found in the supporting information 

of Paper VI. 

Before the XAS measurements were performed on the catalysts under 

reaction conditions, the role of the solvent in triggering the activation was 

examined. 1a was dissolved in both toluene and THF and their Ru K-edge 

XANES spectra were in principle identical to the dry 1a. This indicates that 1a 

retained the same structure in the solvents. Moreover, 1a, 1b and 1c were all 

dissolved in THF and they all displayed very similar XANES spectra. It suggests 

that the local environment of Ru in these complexes were the same and the 

spectra could not probe the differently substituted cyclopentadienyl (Cp) 

ligands. The edge position of the dissolved catalyst was determined to 22125 eV 

verifying that the oxidation state of Ru was +II.  
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After gaining an understanding of the catalysts under static conditions, in situ 

XAS measurements were performed on the catalysts and XAS spectra in full 

range were collected every 5 min. Figure 7.2 shows the in situ Ru K-edge 

XANES spectra of 1a (a) and 1b (b) during the activation process. tert-BuOK, 

which was expected to trigger the activation, was added remotely after collecting 

the first spectrum. The spectra in bright colors were collected when the pre-

catalyst was under the activation conditions. One additional spectrum after the 

addition of 1-phenylethanol to 1a and 1b was also recorded; these spectra are 

displayed in purple. An instant change occurred upon the addition of tert-BuOK. 

The prominent peak at ca. 22158 eV in 1a (black line) almost disappeared 5 min 

into the measurement, which is a strong indication of a structural alternation 

around Ru. This “vanished” peak, however, gradually returned and increased in 

intensity in the following XAS scans. It stabilized in ca. 45 min with a slight 

shift to ca. 22160 eV and a lower intensity compared with the dry catalyst. 

Meanwhile, the first peak after the absorption edge also had a minor loss in 

intensity after the addition of tert-BuOK with a modest shift towards higher 

energy. These observations confirmed that Ru in 1a underwent a sudden and 

significant change in the local structure when tert-BuOK was added. The altered 

structure slowly reverted to a configuration similar to the dry 1a, yet not 

identical. Over the course of the activation, only minor changes in the edge 

positions were observed, which indicates that Ru retained the oxidation state +II.  

Comparable changes were observed in the activation process of 1b as shown 

in Figure 7.2b, which supported the generality of the structural evolution in this 

type of catalysts. Interestingly, it took only ca. 25 min for the “vanished” peak 

in 1b to regain the intensity, and the reaction rate is obviously faster than the 

case of 1a. This clearly shows the effect of the electron-rich substitute on the 

reactivity of the Ru center. In the case of 1c, the addition of tert-BuOK still 

triggered the sudden disappearance of the peak at ca. 22158 eV. Nevertheless, 

the recovery of peak intensity was greatly suppressed and no obvious progress 

was observed even after one day. This is certainly caused by the electron-poor 

substitute as discussed above. It can be concluded that the first step of the 

activation process as shown in Scheme 7.1 occurred immediately and the same 

mechanism can be applied to all three catalysts as their spectra at 5 min are very 

similar. On the other hand, the reaction rate of the latter step of the activation 

was found to be highly dependent on the electron properties of the ligands, but 

it has no influence on the reaction path.  
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Figure 7.2. Normalized in situ Ru K-edge XANES spectra of (a) 1a and (b) 1b during the activation 

processes. The first spectra in black are catalysts before the reaction, and the last spectra in purple 

are spectra of the catalysts after the addition of 1-phenylethanol.  

The pronounced changes of the characteristic peak at ca. 22160 eV in Figure 

7.2 were further utilized to extract the reaction rates and to determine the half-

life time, t1/2, for the catalysts during the activation reaction. The normalized 

intensities of this peak as a function of the measurement time are shown in Figure 

7.3 for both 1a and 1b. t1/2 of the intermediate 2 in Scheme 7.1 was calculated at 

28 min for 1a and 6 min for 1b under the current condition, while it was 

impossible to conduct calculation for 1c with the acquired data.  

 
Figure 7.3. Normalized intensities of the peak at 22160 eV in Figure 7.2 as a function of 

measurement time during the activation reaction of 1a and 1b.  
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Moreover, a marginal change in the pre-edge feature was noticed. Upon the 

addition of tert-BuOK after 5 min, the pre-edge feature of 1a became slightly 

more distinct as pointed out by the upward arrow in Figure 7.4a. This feature 

then decreased over the time of the experiment. This pre-edge feature can be 

correlated to the symmetry of ligands around Ru, and it decreased from the 

symmetrical 1a to 2a, and recovered to some extent when proceeding to 3a.133 

Similar changes were also observed in 1b as shown in Figure 7.4b. Basically, 

the minor changes of the pre-edge showed good consistency with the observation 

after the absorption edge and strengthened the conclusions discussed above.   

 
Figure 7.4. Normalized in situ Ru K-edge XANES spectra of (a) 1a and (b) 1b with a focus on the 

pre-edge area. 

The specific coordination environments of Ru during the activation process 

were elucidated by analysis of the EXAFS data. Using the same strategy as in 

the discussion of the XANES spectra, FTs of the dissolved 1a in both toluene 

and THF were compared as a starting point with the catalyst in the solid state 

showing similar features. This means that the structure of Ru was intact when it 

was dissolved in the solvents. The refinement of their EXAFS spectra revealed 

that the overall bond lengths between Ru to the ligands in the solvents were 

slightly longer than the dry state. This could be attributed to the solvation effect 

of the dissolved 1a. 
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Figure 7.5. Fourier transformed k3-weighted EXAFS data of the activation process of 1a. (a) All 

FTs displayed in three dimensions. (b) Selected FTs focusing on 1a at 0 min (1a), 5 min (2a) and 

55 min (3a). (c) FTs of 1a at 55 min (3a) and the catalyst upon the addition of the 1-phenylethanol. 

The k range applied is 2–10 Å–1, and the FTs are not phase corrected.  

Activation of 1a in THF was then chosen as the model reaction and the main 

results of the EXAFS refinements are summarized in Table 7.1. FT of 1a in THF 

can be basically described with two peaks as shown in Figure 7.5. The peak at 

ca. 1.8 Å (without phase correction) was actually a result of three different single 

scattering events: Ru to C in CO ligand, Ru to C in Cp ring, and Ru to Cl (see 

Scheme 7.1). Their bond lengths were refined to 1.906(5), 2.240(8) and 2.436(8) 

Å, respectively, which are consistent with the bond lengths determined from the 

single crystal data of 1a.126 The other distinct peak appeared at ca. 2.5 Å (without 

phase correction) and it corresponds to the Ru---O (CO ligand) single scattering 

and Ru–C–O multiple scatterings (CO ligand). The intensity of the multiple 

scatterings was enhanced due to the focusing effect when the atoms involved are 

in a linear or close to a linear configuration. The distance was refined to 3.045(6) 

Å. Figure 7.5a shows the FTs of 1a during the activation process and they 

correspond to the XANES spectra in Figure 7.2a. A prominent change was 

captured as well in FTs at 5 min as shown in Figure 5a-b. Firstly, the overall 

intensity decreased and this could be explained by the increased Debye-Waller 

coefficients from 0 to 5 min. Another change is that the second distinct peak 

diminished substantially in intensity at 5 min, and this indicates the loss or 

replacement of a CO ligand. The Cp ring, Cl– ligands were retained according to 

the refinement as well as the Ru to C single scatterings. However, the number of 

multiple scattering among Ru and CO was refined to 1. This difference suggests 

that one of the CO ligands was likely replaced by another ligand, which didn’t 

have the linear configuration, such as the acylester depicted in 2a (Scheme 7.1). 
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The observation here is a direct experimental proof of the immediate 

replacement of CO ligand at atomic level. From 5 min and onwards, the intensity 

of the peak at ca. 1.8 Å (without phase correction) corresponding to the CO 

ligand gradually increased and became more and more distinct. This is an 

indication of that the substituted CO ligand re-bind to Ru. At the same time, the 

refinement showed that the Cl– ligand dissociated from Ru. At the end of the 

experiment, the best fit of the EXAFS spectrum suggested that on average each 

Ru atom was bound to one Cp ring, two CO ligands, and an additional ligand 

likely to be O– from tert-BuO. The structure agreed well with the active 3a 

proposed in Scheme 7.1. Based on the refinements and the knowledge of the 

reaction, structure models of 1a before the activation, the intermediate 2a, and 

the active state 3a as shown in Figure 7.6. 

Table 7.1. Refined distances (d/Å), mean number of distances (N) and Debye-Waller factor (σ2/Å2) 

in selected scans of the activation of 1a. The letters in bold indicate the backscattering atoms 

specifically. Underscored parameters were optimized from several trials and were fixed in the 

individual refinements. 

Samples Signal N d  σ2 

1a – 0 min Ru–Cp 5.0 2.240(8) 0.0016(9) 

(in the form of 1a) Ru–C≡O 2.0 1.906(5) 0.0018(6) 

 Ru–C≡O 2.0 3.045(6) 0.0062(5) 

 Ru–Cl 1.0 2.436(8) 0.0044(5) 

     

1a – 5 min Ru–Cp 5.0 2.27(1) 0.0089(9) 

(in the form of 2a) Ru–C≡O 2.0 1.86(1) 0.013(2) 

 Ru–C≡O 1.0 3.01(2) 0.0093(9) 

 Ru–C–OAcyl 2.0 2.697(8) 0.00361(8) 

 Ru–Cl 1.0 2.346(6) 0.0062(9) 

     

1a – 55 min Ru–Cp 2.0 2.697(8) 0.00361(8) 

(in the form of 3a) Ru–C≡O 1.0 2.346(6) 0.0062(9) 

 Ru–C≡O 5.0 2.28(2) 0.004(1) 

 Ru–O–tBu 2.0 1.894(5) 0.0057(7) 
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Figure 7.6. Structure models of 1a at 0 min, 5 min (2a) and 55 min (3a) derived from the EXAFS 

refinement.  

The EXAFS spectra of 1b during the activation process exhibited similar 

patterns and trend of changes as shown in Figure 7.7a. The rate of the changes 

was faster for 1b. The spectrum at 5 min shows the signals from 2b. The possible 

coordination moieties were introduced to achieve good fit resulting in broken 

numbers of distances on average. The Debye-Waller factors generally were 

refined at large values, which could be caused by faster reaction and mixed 

species. The details can be found in the supporting information of Paper VI. The 

activation of 1c, however, didn’t proceed to the activated state. Figure 7.7b 

displays that 1c went through a quick transformation into the intermediate 2c at 

5 min, but was thereafter inhibited. All these observations of EXAFS spectra 

were consistent with the corresponding XANES data.  

 
Figure 7.7. Selected Fourier transformed k3-weighted EXAFS data of the activation processes of 

(a) 1b and (b) 1c. The inlet of (a) is the FTs of activated 1b and catalyst upon the addition of the 1-

phenylethanol. The k-range applied is 2–10 Å-1, and the FTs are not phase corrected.  
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After characterizing the activation process of the pre-catalysts, the interaction 

of the activated catalysts and the substrate, 1-phenylethanol, was studied. The 

XANES spectra of the activated a and b mixed with the substrate are shown in 

Figure 7.2 (Purple color). The spectra resembled each other suggesting a similar 

structure. The refinement of their EXAFS spectra (Figure 7.5c and inlet of Figure 

7.7a) further revealed that the hexa-coordination structure was retained after the 

catalytic reaction. Cp and two CO ligands were bound to Ru in both catalysts, 

while the last coordination site couldn’t be confirmed. The uncertainty of the 

alkoxide ligand in the proposed 4a-b seems an evidence of the dynamic 

equilibria with fast interconversions of the substrate molecules.  

7.3 Conclusion 

In summary, the present work demonstrated that in situ XAS is a suitable 

approach to elucidate the structures of a group of homogenous Ru catalysts 

during their activation stages. The intermediates were identified together with 

their oxidation state and changes to the structure around the Ru(II) ion. The 

effect of the substituted groups on Cp ligands on the activation process was 

studied. The results unraveled the promoting effect of the electron donating 

substitutes as in 2a and the inhibitive effect of the electron withdrawing 

substitutes as in 2c. In the racemization of 1-phenylethanol, a quick dynamic 

equilibrium was expected to be achieved leading to the averaged EXAFS data.  
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This thesis illustrates the application of in situ X-ray absorption spectroscopy to 

probe the palladium and ruthenium species in several suspension and solution-

based catalytic reactions.  

 

The evolutions of catalytic species are discussed in Chapter 3 and 4. Pd(II) 

complexes immobilized on metal organic frameworks, Pd(II)@MOFs, and 

reduced graphene oxide, 1@rGO, were used as heterogeneous catalysts to 

catalyze the Heck coupling reaction and undirected C–H acetoxylation reaction 

of benzene, respectively. Ligand substitutions occurred in both cases where Cl– 

ligands bound to Pd in the as-synthesized catalysts were replaced by other 

ligands in the reaction mixture, but with different rates. At a later stage of the 

measurements, all the mononuclear Pd complexes in Pd(II)@MOFs are 

transformed into Pd nanoclusters. It turned out that Cl– ions start to bind to the 

surface atoms of the Pd nanoclusters causing the deactivation of the catalyst. 

This transformation of Pd(II) to Pd nanoclusters takes also place in the rGO 

system, but in addition also Pd(IV) is formed in this system. The understanding 

of the deactivation mechanism of Pd(II)@MOF in the Heck coupling reaction 

allows the prolonging of the lifetime of the catalyst by adding new reagents 

before the Cl– ligands start to bind to Pd.  

The study of deactivation of the catalysts became interesting. Pd(II) 

complexes supported on amino-functionalized siliceous mesocellular, Pd(II)-

AmP-MCF, catalyzed cycloisomerization of acetylenic acids is presented in 

Chapter 6. It was realized that the choice of substrate had a significant influence 

on the Pd species in the reaction. The Pd(II) complexes are reduced by 

trimethylamine forming Pd nanoparticles, and this process causes the 

deactivation of the catalyst. The activity is restored by adding benzoquinone to 

the deactivated catalyst which leads to a transformation of the surface atoms of 

the Pd nanoparticles. Pre-addition of benzoquinone to the reaction mixture is 

8 Concluding Remarks 
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able to prevent the extensive formation of Pd nanoparticles and retain the activity 

of the catalyst.  

An activation process of a homogeneous Ru catalyst was explored. The 

structure of the intermediate was elucidated by in situ XAS. The substituents on 

the cyclopentadiene ligands can significantly influence the activation rate. The 

substituents with electron-donating properties can promote the activation 

process, while the electron-withdrawing substituents have an inhibiting effect.   

In addition to the in situ XAS studies of the catalytic reactions, ex situ XAS 

was applied to study the synthesis of heterogeneous Pd catalysts, such as 

Pd(II/0)@MOFs in Chapter 3, as well as Pd(0)-AmP-MCF and Pd(0)-CalB 

CLEA in Chapter 5. Successful immobilizations of Pd(II) precursors onto MOF 

supports were confirmed by XAS. The reduction of Pd(II) pre-catalysts to Pd(0) 

catalysts showed relatively complicated scenarios. Pd nanoparticles were the 

dominating species in Pd(0)-AmP-MCF. However, significant amounts of Pd(II) 

species were found in Pd(0)-CalB CLEA and Pd(0)@MOFs other than the Pd 

nanoparticles. 

The results of these projects have shown the strength of using XAS to 

investigate the speciation and local structure of the metal species of interest in 

the catalytic procedures. The technique can be adapted to various types of 

catalysts and reaction systems to provide insights into the nature of the catalytic 

species.  
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In addition to the work presented in this thesis, several aspects concerning in 

situ XAS-based research can be considered.  

 

First, X-ray emission spectroscopy (XES) can be used to distinguish C–, N– 

or O– ligands bound to Pd. Combination of XES and XAS can provide more 

precis understanding of the coordination environment of the absorbing 

atoms, particularly when the bond lengths are similar.  

 

Second, one can continue to explore in the same direction as the work in this 

thesis. There are many other attractive catalysts and catalytic reactions that 

can be studied using the reactor presented in the thesis, such as molybdenum, 

ruthenium, rhodium and palladium-based systems.  

 

Third, I would like to increase my knowledge of XANES to be able to 

analyze the local structure of the absorbing atoms through modelling 

XANES spectra. This can further improve the efficiency of in situ XAS 

measurements. The EXAFS region can then be excluded in the measurement 

while only focusing on XANES region. This process is helpful to either 

increase the time resolution of measurement or improve the S/N ratio of the 

data.  

 

Fourth, it will be very exciting to apply in situ XAS to first row transition 

metals, such as manganese, iron, cobalt, nickel and copper, and their 

suspension/solution-based reactions. Chemists working on catalysis have 

been putting great efforts to replace the precious metals, such as ruthenium 

and palladium, by these more abundant and cheap metals. It would be of 

great value if in situ XAS can shed light on reaction mechanisms involving 

these elements. To achieve this goal, proper reactors are desired. 

 

9 Future Perspectives 
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Last but not least, the quick XAS techniques have been more and more used 

during the recent years. It can greatly benefit measurements of fast chemical 

reactions. With higher time-resolution (at the levels of second or subsecond), 

the hidden intermediates might be able to be detected, which can provide 

important information of the reaction mechanism.   
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Development of catalysts and catalytic processes are essential for the chemical 

industry. Therefore, it is important to acquire detailed knowledge about catalytic 

species and processes. Previously, research focused on characterizations of 

unused catalysts. However, it has been realized that, in many cases, catalysts 

undergo changes during the reaction processes, which raises the demand of 

unveiling the evolution of catalytic species. In this thesis, palladium (Pd) and 

ruthenium (Ru) catalytic species over the course of various reaction processes 

were studied using in situ X-ray absorption spectroscopy (XAS) as the major 

approach.   

XAS is an element-specific technique. It can probe the coordination 

environment of absorbing atoms and estimate their oxidation states, regardless 

of the sample state. These properties make XAS suitable for the study of 

catalysts. Several attractive Pd and Ru catalysts were examined by both in situ 

and ex situ XAS measurements. Pd(II) complexes immobilized on various 

catalyst supports, including metal-organic frameworks (Pd(II)@MOFs), 

reduced graphene oxide (Pd(II)@rGO), and amino-functionalized siliceous 

mesocellular foam (Pd(II)@AmP-MCF), are some of the examples. It has been 

shown that the Pd and Ru species changed at different stages of the catalytic 

reactions. For example, Pd(II)@MOFs were used to catalyze the Heck coupling 

reaction. Ligand exchange occurs firstly and the reaction is catalyzed by 

mononuclear Pd complexes bound to the MOF support. At a later stage, the 

complexes detach from the support and gradually transform into nanoclusters. 

The mixture of Pd complexes and nanoclusters act as the active species. When 

the reaction is close to the end, chloride ions existing in the reaction mixture start 

binding to the surface of the Pd nanoclusters causing deactivation of the catalyst. 

Based on these insights into the reaction process, a method to prolong the 

lifetime of the catalyst was developed. By introducing new reagents before the 

chloride ions bind to palladium clusters, the poisoning of the catalyst can be 

avoided. Changes in the structure and oxidation state of Pd were also discovered 
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in Pd(II)@rGO and Pd(II)@AmP-MCF during the reactions. Besides the studies 

of Pd catalysts, the activation process of a Ru catalyst was also explored. The 

structure of an important intermediate was unveiled by in situ XAS 

measurements.    

The main goal of this thesis is to show that in situ XAS is an effective 

approach to probe the catalytic species and their changes during reactions. The 

information acquired is of great value for the development of new catalysts with 

better performance, and prolonging the lifetime of catalysts in use.   
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Utveckling av katalysatorer och katalysprocesser är essentiellt för den 

kemiska industrin. Därför är det viktigt att få detaljerad kunskap om hur 

katalytiska ämnen och processer fungerar. Tidigare har forskningen fokuserat på 

att karakterisera katalysatorer innan reaktion, men i många fall sker en kemisk 

förändring av själva katalysatorn under reaktionsprocessen. Det finns därför en 

stor efterfrågan att studera reaktioner i realtid för att karakterisera katalysatorers 

förändringar. I den här avhandlingen undersöktes förändringar av palladium- 

(Pd) och ruteniumämnen (Ru) i olika reaktionsprocesser. Huvudverktyget var 

röntgenabsorptionsspektroskopi (XAS) in situ. 

XAS är en grundämnesspecifik teknik som kan analysera atomers 

koordination och oxidationstal oavsett provtillstånd. Denna egenskap gör XAS 

lämplig för att studera katalysatorer. Flera lovande Pd- och Ru-katalysatorer 

undersöktes både in situ och ex situ med XAS. Några exempel är Pd(II)-komplex 

bundet till metallorganiska ramverk (Pd(II)@MOFs), till reducerad grafenoxid 

(Pd(II)@rGO), eller till aminofunktionaliserat kiselhaltigt mesocellulärt skum 

(Pd(II)@AmP-MCF). Det visade sig att bindning och struktur kring Pd förändrar 

sig under de katalytiska reaktionernas olika faser. I fallet med Pd(II)@MOF som 

katalyserar Hecks kopplingsreaktion, sker en ligandutbytesprocess och 

reaktionen katalyseras genom Pd-komplex som är bundna till MOF-strukturen. 

Sedan lossnar komplexet från MOF-strukturen och omvandlas till kluster av 

nanostorlek, vilka också katalyserar reaktionen. När reaktionen är nära slutet 

börjar kloridjoner som finns i systemet att binda till ytan av klusterstrukturen, 

vilket leder till deaktivering av katalystorn. Baserat på denna fördjupade 

förståelse av processen utvecklades en ny metod. Genom att tillsätta nytt reagens 

innan kloridjonerna binder till Pd-klustren kan deaktivering undvikas. 

Strukturella och kemiska förändringar upptäcktes också i fallet med 

Pd(II)@rGO och Pd(II)@AmP-MCF. Observationerna diskuteras i detalj i 

avhandlingen. Förutom studier av Pd-katalystorer, undersöktes också 
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aktiveringsprocessen för en Ru-katalysator där strukturella förändringar av en 

viktig Ru-intermediär belystes genom XAS experiment in situ. 

Det huvudsakliga syftet med avhandlingen är att visa att XAS-mätning in situ 

är en effektiv metod för att utforska katalytiska ämnen och hur de förändras 

under kemiska processer. Informationen är betydelsefull för att utveckla nya 

katalysatorer med hög aktivitet, och för att undvika deaktivering som leder till 

förkortad livslängd för katalysatorer. 
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