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The final objective of tree improvement programs is to increase the frequency of 

favourable alleles in a population, for the traits of interest within the breeding programs. 

To achieve this, it is crucial to decompose the phenotypic variance accurately into its 

genetic and environmental components in order to obtain a precise estimation of genetic 

parameters and to increase genetic gains. The overall aim of this thesis was to increase 

the accuracy of genetic parameter estimation by incorporating new quantitative genetics 

models to the analysis of multiple traits in multiple trials of Scots pine, and to develop a 

genomic selection protocol to accelerate genetic gain. 

Factor analysis was incorporated to multivariate multi-environment analyses and it 

allowed to evaluate up to 19 traits simultaneously. As a result, precise patterns of 

genotype-by-environment interactions (G  E) were observed for tree vitality and height; 

moreover, it was possible to detect the main driver of the G  E: differences in 

temperature sum among sites. 

Traditional quantitative trait loci (QTL) analysis of phenotypic data was compared 

with the detection of QTL with estimated breeding values (EBV) for the first time in a 

three generation pedigree and, as outcome, it was noticed that if a QTL was associated 

to a EBV and to a phenotypic trait, the proportion of variance explained by the QTL-

EBV was higher than the QTL-phenotype. Additionally, several QTL were detected 

across several ages, which may make them suitable as candidates for early selection. 

Genomic selection (GS) could aid to reduce the breeding cycle by shortening the 

periods of progeny field testing, and consequently increasing genetic gains per year. 

Genomic predictions, including additive and non-additive effects through different 

prediction models were compared with traditional pedigree-based models; it was seen an 

overestimation of genetic parameters for pedigree-based models, even larger when non-

additive effects could not be discerned from additive and residual effects.  

Prediction accuracies and abilities of the genomic models were sufficient to achieve 

higher selection efficiencies and responses per year varying between 50-90% by 

shortening 50% the breeding cycle. For the selection of the top 50 individuals, higher 

gains were estimated if non-additive effects are incorporated to the models (7 – 117%). 
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The objective of tree improvement programs is to increase the frequency of 

favourable alleles for traits of interest (that are generally quantitative traits) 

within the breeding programs. A breeding program involves different steps, 

including selection of elite trees, inter-mating or genetic testing of progenies 

derived from the inter-mating. Methodology of selection has advanced from 

phenotype to genotype of breeding values, and mating designs have also evolved 

from open-pollinated (OP) to control-pollinated with co-ancestry control. All 

these progresses are used in combination with quantitative genetics, among other 

things, to decompose the phenotypic variance into its components (additive, 

non-additive and environmental effects). The accuracy and reliability of such 

estimates depend on many factors, like, spatial variation, correlations among 

traits, different expressions of the traits in diverse environments, pedigree 

information and mating design, among others.  The studies underlying this thesis 

used the traditional quantitative genetics and the more recent quantitative 

genomics methods, to improve the accuracy and estimations of genetic 

parameters of complex traits of interest within the Swedish Scots pine breeding 

program.  

1.1 The species: Scots pine (Pinus sylvestris L.) 

Scots pine (Pinus sylvestris L.) is one of the conifers most widely distributed 

throughout the whole Eurasia, ranging between latitudes 37°N – 70°N, i.e., from 

southern Spain to northern Scandinavia (Figure 1); with a longitudinal range that 

varies from 8°W (Portugal) to 141°E (east of Russia). The species can grow in 

very diverse soil conditions and at different elevations from the sea level up to 

2700m (Boratyński, 1991).  

The temperature sum (Tsum) or temperature climate, i.e., the summation of 

all daily mean values exceeding the threshold value of +5°C (Bärring et al., 

1 Introduction 
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2017), is crucial for the flowering to begin, as well as, for shoot elongation, 

requiring lower Tsum in colder regions than in southern regions (Mátyás et al., 

2004).  

From the commercial point of view it is a particularly important species in 

the Nordic countries, where its major uses are, among others, construction wood, 

furniture, fibre- and chip-boards, wood pulp and paper (Krakau et al., 2013). In 

Sweden, it is the second foremost species, representing the 39% of stand volume 

production (The Swedish National Forest Inventory, 2015). According to 

Krakau et al. (2013) only 1–2% of stands in Sweden are set by direct seeding, 

20–25% of stands are established by natural regenerations whereas the majority 

of them are planted; besides, the 80% of those plants have their origin in seeds 

from improved seed orchards.  

 
Figure 1. Distribution map of Scots pine (Caudullo et al., 2018) [CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0)]. 

1.2 Scots pine breeding in Sweden 

Forest tree breeding, combined with forest management, has become an essential 

part of the forestry operations by supplying improved individuals for traits of 

particular interest to the industry (Pâques, 2013). It involves multiple steps, such 

as, inter-mating, genetic testing and selections, with the final aim of increase the 

frequency of favourable alleles of those important traits in breeding populations 

(Grattapaglia, 2014). The final goal of each breeding program is to produce 

improved trees in an economically efficient way, by maximizing the genetic gain 

(i.e., a higher frequency of favourable alleles than the earlier population) per unit 

time at the lowest possible cost (White et al., 2007).  

Possibly due to its commercial importance, Scots pine is considered the most 

studied tree species from the point of view of provenance research and its 

improvement started already around 100 years ago (in 1907) with the 

https://creativecommons.org/licenses/by/4.0)
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establishment of an international IUFRO provenance study with individuals 

from different climatic regions (Mullin et al., 2011). 

The Swedish Scots pine tree improvement program started between the 1950-

1960’s, by selecting around 1300 plus-trees from natural stands based on their 

superior phenotypes and grafting them into seed orchards or clonal archives, 

known as the first round of seed orchards (Andersson et al., 2003). Those trees 

became the parents of the progeny trees which started to be tested in the field in 

the 1970’s – 1980’s and are part of the actual Scots pine breeding program 

(Mullin et al., 2011). In the early 1980’s about 4700 plus-trees were selected, 

comprising the second round of seed orchards. Roughly, those 6000 plus-trees 

conformed the base material used to establish the founder populations for the 

long-term Scots pine breeding program in Sweden (Wilhelmsson & Andersson, 

1993). Approximately a 6% and 10% of gain in production at full rotation was 

obtained from the first and second rounds of seed orchards, respectively. 

However, survival rates were not improved; for the third round of seed orchards 

from tested progeny, it is expected to obtain gains among 23–27% in volume 

production and 5–15% in survival rates (Andersson et al., 2007; Rosvall et al., 

2001). 

Around 1500 selected parent trees conform a meta-population that was 

divided into 24 breeding populations, each containing between 50 to 70 

individuals. Long term breeding is managed for each of the breeding populations 

that are distributed overlapping each other according to different adaptation 

targets based on photoperiod (latitude) and Tsum (Figure 2), covering an area 

larger than the actual Tsum range of Sweden (Danell et al., 1993).  

The first generation (F1) progeny trials are formed by full-sib (FS) families 

(generated by partial diallel mating design) or half-sibs (generated by poly-

crosses or OP seeds from plus-tree stands). From those tested trees a double-pair 

mating design and, if possible, positive assortative mating are used to generate 

the second generation (F2) of progeny trials, to test families in four different sites 

and perform essentially within-family selection for the next generation (Krakau 

et al., 2013; Ruotsalainen & Persson, 2013). 

The Swedish Scots pine breeding program combines a series of different 

selection strategies, classified here into two groups according to the cycle 

lengths (Rosvall, 2011): 

• The first group of strategies consist of both forward and backward 

selections, requiring natural or stimulated flowering to produce new 

generations of progeny tests, thereby the breeding cycle length takes 

up to 36 years. 
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• The cycle length of the second group takes up to 21 years, and 

among- and within-family selections are made forward, based on FS 

or poly-cross family tests. 

 
Figure 2. Scots pine breeding populations. 

 

All strategies are used to achieve the general breeding objectives which are 

essentially to 1) improve traits of economic value (vitality, growth, wood 

density, stem-wood quality, survival and resistance against biotic and abiotic 

stresses), 2) prepare for new climatic conditions derived from the climate change 

(plasticity/adaptability), and 3) assure the adequate genetic diversity in the 

breeding populations (Andersson et al., 2011; Danell et al., 1993). 

1.3 Quantitative genetics  

Most of the traits of interest within the breeding programs are complex traits also 

known as polygenic or quantitative traits, as they are controlled by many loci 

each of which has a small effect on the phenotypic expression of the trait 

(Goddard & Hayes, 2009). Complex traits differ from Mendelian traits in that 

the former ones must be studied at population levels (i.e., large numbers of 

related individuals), because in addition to their polygenic attributes, their 
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phenotypic expression is also affected by environmental effects (White et al., 

2007; Falconer & Mackay, 1996). 

Quantitative genetics study quantitative traits using diverse statistical 

methods that essentially divide the previously quantified phenotypic variation of 

populations into their genetic and environmental components, to predict the 

genetic values of each individual or family studied (Lynch & Walsh, 1998). 

1.3.1 Genetic parameter estimation 

The major goal of the breeding studies is to estimate the proportion of the genetic 

variance that is transmitted to the offspring, i.e., the additive variance or breeding 

value; and, to estimate heritabilities of the traits, i.e., the ratio between the 

additive variance and the phenotypic variance (White et al., 2007; Falconer & 

Mackay, 1996). Such estimations can only be performed through field tests with 

different family structures and mating designs, that facilitate the decomposition 

of the phenotypic variance into its components (genetic and environmental 

variances). Moreover, genetic gains rely on the accuracy and reliability of the 

estimates since they can be biased by different factors such as, spatial variation, 

interactions between different genotypes and environment, pleiotropy among 

different traits, etc., as it is described below. 

1.3.2 Spatial analysis  

Spatial analysis can improve the estimations of genetic parameters by discerning 

the spatial and non-spatial components of the environmental variation and 

therefore reducing error variance (Chen et al., 2018c; White et al., 2007). Spatial 

analysis can detect global trend (gradient), local trend (patchy) and extraneous 

(nugget) variations across large heterogeneous agricultural and forest field trials 

used in breeding programs, with the consequent reduction of the residual errors 

and improvement in the accuracy of genetic parameter estimations (Dutkowski 

et al., 2002; Cullis et al., 1998; Gilmour, 1997). Different methods of spatial 

analysis have been studied and applied like post-blocking (Gezan et al., 2006; 

Ericsson, 1997) or kriging (Zas, 2006). However, a method that fits both design 

features and the spatial component as first-order separable autoregressive model 

of residuals, had shown less bias in the estimation of genetic parameters 

(Dutkowski et al., 2006; Dutkowski et al., 2002; Gilmour, 1997). The latter 

method has aided to increase the accuracy of breeding values estimates by 

reducing residual variation in different tree species, like at Cappa et al. (2017); 

Silva et al. (2013) in Eucalyptus grandis, Bian et al. (2017) in Chinese fir 

(Cunninghammia lanceolata (Lamb.) Hook), Chen et al. (2018c) in Norway 
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spruce (Picea abies (L.) Karst.) or Resende et al. (2016) in eucalyptus hybrids 

(Eucalyptus grandis  E. uropphylla) or Ivkovic et al. (2015) in radiata pine 

(Pinus radiata D. Don); therefore, it was the method used to perform spatial 

analysis in all Scots pine trials analysed in this thesis (Papers I – IV).  

1.4 Multi-environment trials (MET) and genotype-by-
environment (G  E) interactions 

With the objective to obtain unbiased variance components estimates, field tests 

must be established at different locations (White et al., 2007), as the estimates 

in one single site can be overestimated, due to the different expression of  the 

genetic variance in different sites (Burdon et al., 2019; Li et al., 2017; Burdon, 

1977). Multi-environment trials (MET) allow to select individuals that perform 

better across multiple environments, as well as to detect the degree and pattern 

of genotype-by-environment interactions (G  E interactions or G  E); besides, 

in the case that some unexpected event occur, MET aid reduce the risk of losing 

genetic material (Isik et al., 2017). 

Genetic correlations between the same trait in different environments, known 

as Type-B genetic correlations (Burdon, 1977), are commonly used to evaluate 

the degree and pattern of G  E (Burdon et al., 2019; Chen et al., 2017; Berlin 

et al., 2015; Baltunis et al., 2010; Hannrup et al., 2008). Type-B genetic 

correlations and patterns of G  E were studied in Papers I and II. Different traits 

can be correlated as well, and the main cause could be pleiotropy, i.e., a gene 

that affects the expression of more than one trait (He & Zhang, 2006). 

Correlations among traits are important since they can affect the response to 

selection of correlated traits i.e., indirect selection (White et al., 2007).  

1.4.1 Univariate and multivariate MET analysis 

If multiple traits are simultaneously analysed (multivariate analysis), more 

complex patterns of G  E can be detected such as, Type-A genetic correlations, 

i.e., correlations between different traits within the same environment, and Type-

AB genetic correlations, i.e., correlations between different traits expressed 

among environments (Li et al., 2017; Dutkowski et al., 2016). Multivariate 

(MV) analysis are preferable over univariate (UV) analysis because they can 

increase the accuracy of breeding values and heritabilities by taking advantage 

of the possible hidden covariances and correlations existing among traits (Isik et 

al., 2017; Mathew et al., 2016). Simulation studies have shown the selection 

response is larger with MV MET (Bauer & Leon, 2008) than UV MET analyses, 

especially for trees located in trials in which they are exposed to non-random 
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mortality, because UV MET analysis cannot take into account the factors to 

which the selection process is related, like survival in Scots pine trials located in 

northern areas (Persson & Andersson, 2004). Large mortality rates of Scots pine 

occur in harsh areas of Northern Sweden; previous studies at early ages showed 

evidence that there is a negative association between tree vitality and height, but 

suggested to perform more studies at adult ages to confirm this theory (Persson, 

2006). Hence, within the current thesis we studied the association between tree 

height and survival in harsh and mild areas in four different populations of the 

Scots pine breeding program, at both early and mature ages (Paper I), by 

implementing UV and MV MET analysis with real assessments, to estimate 

Type-A, Type-B and Type-AB genetic correlations, as well, as patterns of G  

E, among tree vitality (i.e., a measure of tree health) and height. 

1.4.2  Factor analysis 

Diverse methodologies have been regularly used to analyse G  E and their 

patterns, such as, analysis of variance (ANOVA), principal component analysis 

or linear regression (Meyer, 2009; Freeman, 1973), still, they are not the most 

adequate methods to explore unbalance MET data, and in addition, they cannot 

discern G  E patterns; therefore, to achieve more accurate estimates of genetic 

parameters and patters of G  E, more complex methods that account for the 

heterogeneity of variance-covariance components across different environments 

are needed (Kelly et al., 2007; Cullis et al., 1998). The unstructured (US) 

variance-covariance matrix in mixed models is the general model that accounts 

for site specific variances and heterogeneous covariances among sites; 

nevertheless, with large number of environments and traits, US models are 

computational restrictive and can end up with convergence problems, which 

make their real applicability very limited (Isik et al., 2017).  

Factor analytic (FA) structures, also account for site specific variances and 

heterogeneous covariances among sites and are considered a good 

approximation to US models requiring less parameters (Isik et al., 2017; Smith 

et al., 2001). FA models are widely applied in crops (Smith et al., 2015; Beeck 

et al., 2010; Kelly et al., 2009; Kelly et al., 2007; Smith et al., 2001), and 

recently have been applied in several forest tree species (Walker et al., 2019; 

Smith & Cullis, 2018; Ukrainetz et al., 2018; Chen et al., 2017; Gezan et al., 

2017; Ivkovic et al., 2015; Cullis et al., 2014; Ogut et al., 2014; Hardner et al., 

2010). In the studies carried out in this thesis (Papers I – II), it has been studied 

the utility of FA for UV and MV MET analysis, for the first time in Scots pine 

MET data within the Swedish breeding program. 
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1.5 Genomic selection   

1.5.1 Association- and quantitative trait loci- mapping 

The development of marker technologies and the consequent discovering of 

large number of polymorphic markers, can help to dissect the genetic 

architecture of complex traits. Quantitative-trait-loci (QTL) mapping and 

association mapping (AM), were developed to better understand the architecture 

of complex traits. QTL mapping aims to identify the regions where genes have 

influence in the quantitative trait, and can help to approximately locate,  estimate 

the number, size and effect of the genes affecting the trait; whereas, AM can 

detect the genes that affect the trait more precisely, and the mutations that have 

effect on the phenotypic differences of the trait among individuals (White et al., 

2007).   

One of the most important challenges for forest tree breeding programs is the 

long term of breeding cycles. Marker-aided-selection (MAS) was thought to be 

the instrument to short breeding cycles and better understand complex traits 

(Neale & Williams, 1991). Generally, MAS consist of selecting individuals 

(normally biparental populations) with QTL-associated markers that have major 

effects, and use those QTL to make decisions in breeding (Grattapaglia, 2014; 

Neale & Williams, 1991); however, MAS was not really implemented in tree 

breeding because, among others, 1) it is very limited by the genetic background, 

i.e., cannot be applied in different families or populations than those involved in 

the QTL study; 2) G  E or QTL-by-environment (QTL  E)  interactions, i.e., 

different expression of QTL across environments; 3) low linkage disequilibrium 

(LD) at population levels in tree breeding, 4) the polygenic nature of traits 

(White et al., 2007; Strauss et al., 1992). Additionally, a challenge of AM is the 

detection of false positives and overestimation of QTL effects (Isik, 2014), but 

this can be address aided by new methodologies recently implemented (Li et al., 

2017). With the aim to dissect the genetic architecture of complex traits 

(adaptive and growth traits) a de-biased LASSO method was implemented to 

detect QTL in a three generation pedigree of Scots pine (Paper II).  

1.5.2 From MAS to Genomic Selection 

The limitations of traditional MAS defined in the above section, were overcome 

by the genomic selection (GS) methodology proposed by Meuwissen et al. 

(2001), that uses all available genome-wide markers simultaneously to predict 

genomic estimated breeding values (GEBV) with the help of additive genetic 

models, and/or the total genomic estimated genetic values (GEGV) when non-
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additive models are used. A notable difference between traditional MAS and GS 

is that the latter one does not need to detect the marker-trait associations or QTL 

prior to selection (Isik, 2014; Grattapaglia & Resende, 2011). 

The implementation of GS in breeding programs essentially requires two 

phases; 1) developing prediction models in a population that is phenotyped and 

genotyped, known as training population or training set (TS); and, 2) performing 

cross validation of the prediction models in selection candidates genetically 

related with the TS, known as validation population or set (VS), that are only 

genotyped and for which GEBV are predicted (Meuwissen et al., 2016; Goddard 

& Hayes, 2009). 

It is expected to obtain higher genetic gains through GS mainly due to a 

reduction of the breeding cycle lengths by shortening field test time through 

early selections obtained by GS predictions, as it has been shown already in 

animal and crop breeding (Crossa et al., 2017; Meuwissen et al., 2016). Higher 

selection intensities would be possible, since more progenies could be genotyped 

than those that nowadays are established in field trials (Grattapaglia et al., 2018; 

Crossa et al., 2017).   

Several GS prediction studies have been recently published in forest trees 

(Chen et al., 2018b; Lenz et al., 2017; Ratcliffe et al., 2017; Isik et al., 2016; 

Beaulieu et al., 2014; Resende et al., 2012a; Resende et al., 2012c). This thesis 

comprises the first attempt (or proof-of-concept) to study GS in the Swedish 

Scots pine breeding program (Papers III – IV). 

1.5.3 Additive and non-additive effects through GS  

Phenotypic variance, in addition to additive and environmental effects, is also 

influenced by non-additive effects, which are not directly transmitted from 

parent to offspring (White et al., 2007). Non-additive effects can help to obtain 

more reliable and unbiased estimations of the additive effect; for example, if 

only a small proportion of the phenotypic variance is due to additive effects, the 

remaining will be due to environmental and non-additive effects, and it is 

important to discern among them to get unbiased estimates of narrow-sense 

heritabilities and breeding values (Walsh & Lynch, 2018; Lynch & Walsh, 1998; 

Falconer & Mackay, 1996). 

Additional advantages of GS are that it does not rely on the pedigree, which 

is susceptible to errors; and, that GS can predict GEGV, i.e., additive and non-

additive effects (dominance and epistasis) without establishing complicated and 

expensive mating designs, needed when phenotypic and pedigree data are used 

to predict estimated breeding values (EBV) or genetic values. In particular, with 

the traditional pedigree-based genetic analysis, the genetic variance components 
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can only be discerned when FS families (additive and dominance components) 

or FS families with replicated clone structures (additive, dominance and epistatic 

components) are available. That might be the reason why only a few forest 

species have been studied to evaluate the non-additive variation based on 

pedigree (Baltunis & Brawner, 2010; Isik et al., 2004; Isik et al., 2003). El-Dien 

et al. (2016) and El-Dien et al. (2018) were able to estimate GEGV aided by 

genomic prediction methods in an OP population. In the studies underlying this 

thesis, both additive (Paper III – IV)  and non-additive effects (Paper IV) with 

pedigree and genomic information have been estimated and compared.  

1.5.4 Prediction accuracies 

According to Hayes et al. (2009), several factors can affect the accuracy and 

prediction ability (PA) of genomic predictions: 1) the level of extent of LD 

between markers and QTL, which is dependent on the effective population size 

(Ne) and the number of markers used; 2) the number of individuals in the TS 

from which the marker effects are estimated; 3) the heritability of the trait under 

study; 4) the marker density (distribution of QTL effects). Moreover, predictions 

depend also on G  E, age-age correlations and the statistical method used to 

perform predictions (Grattapaglia et al., 2018; Isik, 2014). 

Different statistical methods are available to estimate GEBV and differ with 

respect to the genetic architecture of the trait or QTL effects. GBLUP (genomic 

best linear unbiased prediction) and RR-BLUP (ridge-regression BLUP) assume 

that QTL allelic effects are normally distributed and all have similar contribution 

to the genetic variance (Isik et al., 2017; Endelman, 2011), whereas Bayesian 

approaches presume a prior gamma or exponential distribution of QTL allelic 

effects, thus that the variance at each locus can vary (Isik et al., 2016; Resende 

et al., 2012c; Meuwissen et al., 2001). In the literature, several methods have 

been tested in forest trees with similar results (Chen et al., 2018b; Suontama et 

al., 2018; Tan et al., 2017; Thistlethwaite et al., 2017; Bartholome et al., 2016b; 

Ratcliffe et al., 2015).  

Genomic predictions can be improved through the inclusion of all 

components of the genetic variance, i.e., additive, dominance and epistatic 

effects, as several studies in forest tree species have already demonstrated (Chen 

et al., 2018a; Tan et al., 2018; Bouvet et al., 2016; de Almeida et al., 2016; 

Munoz et al., 2014). Accuracies of genomic predictions and PA have been 

studied within this thesis; several BLUP and Bayesian genomic prediction 

models have been tested (Paper III), and predictions with only additive (Papers 

III – IV) and with both additive and non-additive effects (Paper IV) have been 

compared. 
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1.5.5 Next generation sequencing (NGS) 

The change from MAS to GS, was only possible through the development of 

next generation sequencing technologies (NGS) that allowed the detection of 

thousands of single nucleotide polymorphism (SNP) markers in a more cost-

effective way, such as, SNP arrays or exome probe panels (Grattapaglia et al., 

2018). For forest tree species, such as Scots pine, genotyping-by-sequencing 

(GBS) is an attractive and alternative genotyping method since the species has 

large genome, absence of reference ones and for which SNP arrays or exome 

panels are not yet developed (Dodds et al., 2015; Chen et al., 2013; Elshire et 

al., 2011). GBS has been successfully used in genomic predictions of animal, 

crop and tree breeding (El-Dien et al., 2018; El-Dien et al., 2015; Gorjanc et al., 

2015; Ratcliffe et al., 2015; Crossa et al., 2013; Poland et al., 2012; Poland & 

Rife, 2012). GBS data were used to perform genomic predictions in Scots pine 

(Papers III – IV). 
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The overall aim of the studies underlying this thesis is to estimate genetic 

parameters and breeding values for vitality, growth and wood quality traits of 

Scots pine in Sweden, by incorporating factor analytic and genomic prediction 

methods, as well as, delving into the dissection of complex traits. The following 

specific objectives were addressed: 

 

• To explore whether there are G  E patterns for survival, growth and 

adaptive traits in Scots pine trials of Northern Sweden (Papers I – II); to 

test if genetic correlations among tree vitality and height vary depending 

on the harshness of the sites (Paper I); and, to study if more accurate 

estimations of genetic parameters and more complex patters of G  E, are 

obtained with MV MET analysis compared with UV MET analysis (Paper 

I). 

 

• To dissect the genetic architecture of adaptive and growth traits, by 

using phenotypic data and EBV, from a three generation MET data,  (Paper 

II). 

 

• To predict GEBV and GEGV with GBS data for growth and wood 

quality traits in Scots pine (Papers III – IV); to evaluate predictive abilities 

and accuracies based on different genomic prediction models and to 

examine whether the size of TS and VS, and the number of SNPs have any 

effect on the prediction abilities and accuracies (Paper III). 

 

• To incorporate non-additive effects to genomic and pedigree 

prediction models and assess their prediction abilities for growth and wood 

quality traits (Paper IV); to estimate genetic parameters considering non-

additive effects, and to compare the precision of the EBV, GEBV and 

GEGV (Paper IV). 

2 Objectives 
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• To compare the relative genomic selection efficiency (Paper III) and 

the expected response of genomic selection (Paper IV), with the 

traditional phenotypic pedigree-based selection. 
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3.1 Scots pine field trials 

All trials addressed in this thesis belong to the Swedish Scots pine breeding 

program and are located in middle and northern Sweden (Figure 3).  

 
Figure 3. Location of all trials 

3 Materials and methods 
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The trials belong to five different breeding populations within the Scots pine 

breeding program and were all planted in randomized single tree plot designs. 

Four unrelated populations (Pop 1, 3, 5 and 6) or trial series of, in total, 20 

progeny trials were used in Paper I; every trial includes between 288 and 360 

OP families originated from plus tree selection. Each trial series contain five 

field trials and almost all the OP families were represented in all trials within 

each series (Figure 4). Trial series 1 (Pop 1) was planted between 1983 – 1986, 

whereas trial series 2 (Pop 6) and 3 (Pop 5) were respectively planted in 1990 

and 1991. The trial series 4 (Pop 3) was planted between 1993 – 1994. The total 

amount of individuals planted per trial varied between 6061 – 8116 at Pop 1 and 

5, and among 3027 – 4207 for Pop 6 and 3.  

 
Figure 4. Location of the open-pollinated progeny trials within each breeding population, used in 

Paper I. 

From breeding Pop 11, two plus-trees, AC3065 and Y3088 (F0-generation), were 

selected for their superior performance in field evaluations (Figure 5). AC3065 

was selected as female and artificially pollinated with Y3088. In 1988, 1000 

seedlings originated from the control-cross were established in the field (trial 

F485), thus creating one of the largest FS families planted in one field trial in 

Sweden (F1-generation). A total of 455 FS individuals were selected for Paper 
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II. 360 trees, out of the 455 FS individuals, produced wind pollinated cones in 

2006, resulting in OP seedlings (F2-generation). No pollen production was 

observed therefore it was assumed that pollination occurred from external 

resources without inbreeding. The OP seedlings were grown at the Skogforsk 

nursery in Sävar and, in 2008 the OP individuals were planted in three different 

F2 field trials (F723, F725 and F726), and were also used in Paper II.  

 
Figure 5. Location of the plus-trees and, full-sib (FS) and open-pollinated (OP) field trials studied 

in Paper II. 

For Papers III – IV, 694 progeny trees from 183 FS families were selected from 

trial F261 which belongs to breeding Pop 11. The field trial (F261, Grundtjärn) 

was established in 1971 and is located at latitude 63.55°N and longitude 17.42°E 

(green circle in Figure 3); it is composed of 184 families and 7240 trees 

generated from a partial diallel mating design of 40 plus-trees and five reference 

seed-lots.  

3.2 Traits studied 

All traits addressed in this thesis and their age of assessment as well as the study 

and field trial in which they were measured are summarized in Table 1, and are 

defined underneath. 
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Table 1. Traits assessed and their acronyms, the age of assessment and trial and paper for which 

they were assessed. 

Trait Acronym Age assessment Paper / Trial 

Height Ht 10, 20 I / all 
  

3 II / F2 (F726) 
  

8 II / F2 (all) 
  

8 – 18 II / F1 (FS) 
  

10, 30 III, IV  

Diameter at breast height DBH 8 II / F1 F2   
11, 16, 17 II / F1   
30, 36 III, IV  

Branch diameter BrD 8, 11, 16 II / F1 

Branch quality BrQ 8 II / F2 

Branch angle  BrA 8 II / F1 F2   
11, 16 II / F1 

Microfibril angle MFA 40 III, IV 

Static modulus of elasticity MOEs 40 III, IV 

Wood mean density DEN 40 III, IV 

Dynamic modulus of elasticity MOEd 40 III, IV 

Tree vitality Vt 10, 20 I / all 
  

1, 8 II / F2   
3 II / F2 (F726) 

Cold hardiness Ct 3 II / F2 (F726) 
  

4, 9, 11, 16 II / F1 

Flower production FP 18 II / F1 

Number of cones per tree CO 18 II / F1 

Number of seeds per cone nSC . II / F1 

Weight of 1000 seeds W . II / F1 

 

3.2.1 Height 

Height (Ht) was measured in all trials studied in this thesis (Papers I – IV) 

although it was assessed at different ages depending on the study, as it is 

explained below. 

In Papers I, III and IV, trees were assessed at two different ages; in Paper I, 

the first age of assessment varied between 9 – 13 years, and the second age of 

assessment between 18 – 22 years, depending on the trial, however within each  

series, trials were measured with a maximum difference of two years; for 

simplicity, we denote those assessments as Ht10 and Ht20 (Ht1 and Ht2, in Paper 

I), to refer to the first and second assessments respectively. In Papers III and IV, 
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all individuals in the trial were assessed at ages 10 and 30, i.e., Ht10 and Ht30, 

respectively.  

In Paper II, Ht measurements were assessed at different ages depending on 

the F1 and F2 trials. The F1 trial (F485, in Figure 5) was measured annually 

between ages 8 – 18, whereas F2 trials were measured at age eight; additionally, 

the F2 F726 trial (Figure 5) was measured at age three in a former study 

(Abrahamsson et al., 2012), and was chosen due to its highest survival rates 

compared with the two remaining F2 trials. 

3.2.2 Diameter at breast height 

Diameter at breast height (DBH) was measured at age eight in all F2 trials in 

Paper II; at ages 11, 16 and 17 in the FS trial from Paper II, and at ages 30 and 

36 in the trial used in Papers III – IV. 

3.2.3 Tree vitality (survival ability) 

Mortality of Scots pine in harsh areas is higher than in milder ones and normally 

is caused by diverse events as a result of accumulated damages over several 

years (Stefansson & Sinko, 1967; Eiche, 1966); mortality occurs predominantly 

during the first 12–16 years after planting and decreases considerably after 20 

years, approximately (Persson & Ståhl, 1993). Tree vitality (Vt), i.e., a measure 

of survival ability, was scored according to Persson & Andersson (2003) in four 

categorical classes: healthy, slightly damaged, severely damaged but alive, and 

dead (or missing).  

In Paper I, Vt was assessed two times at two different ages, which are the 

same as described before for Ht; for simplicity, we denoted Vt10 and Vt20 for 

all trials (Vt1 and Vt2, in Paper I), to refer to the first and second assessments 

respectively. Vt was scored  at the age of eight in all OP trials used for Paper II, 

and additionally at age three in the F726 trial.  

3.2.4 Wood quality traits 

Brach properties 

Branch angle (BrA), branch quality (BrQ) and branch diameter (BrD) are 

routinely measured within the Scots pine breeding program, as they are an 

indicator of wood quality and biomass (Mäkinen & Colin, 1998). BrA, BrQ and 

BrD were studied in Paper II. BrD was only measured in the individuals from 

the FS trial, at ages 8, 11, 16; BrA was assessed at the same ages as BrD for the 
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FS trial and at age 8 in the OP field trials, where BrQ was assessed too (at age 

eight). 

Silviscan assessments 

Increment cores at breast height were extracted for 694 individuals from trial 

F261 and processed by Silviscan (Innventia AB, Stockholm, Sweden). In Papers 

III and IV, three solid-wood quality traits were addressed from the Silviscan 

analysis: wood density (DEN), microfibril angle (MFA) and stiffness (expressed 

in terms of static modulus of elasticity: MOEs).  

Acoustic velocity 

The dynamic modulus of elasticity (MOEd) predicted by Hitman ST300 

(Fibergen, Christchurch, New Zealand) and further describe in (Hong et al., 

2014), was addressed in Papers III and IV. 

3.2.5 Additional traits assessed 

The following traits were addressed also in Paper II; cold hardiness (Ct) was 

estimated according to Nilsson & Walfridsson (1995) at ages 4, 9, 11 and 16 in 

the FS trial (F485) and at age three in the F726 OP trial; flower production (FP) 

and number of cones per tree (CO) were estimated at age 18 in the FS trial 

(F485). Finally, the number of seeds per cone (nSC) and the weight of 1000 

seeds in grams (W), which are two traits routinely measured in the analysis and 

processing of seeds, were also considered. 

3.3 Genotypic data 

The marker data used for Paper II were previously described in Li et al. (2014). 

Briefly, a set of 492 FS individuals from trial F485 were genotyped with 

amplified polymorphism (AFLP) and SNP markers. After sorting and mapping 

simultaneously all marker data, 155 AFLP markers genotyped on 455 

individuals and 166 SNP markers genotyped on 91 individuals were retained in 

the analysis; and two data sets were used for further analysis, the A dataset with 

AFLP only, and the S+A dataset with both SNP and AFLP data. 

In Papers III and IV, 694 progeny trees and 46 parents were genotyped. DNA 

from vegetative buds was extracted and three GBS libraries were prepared and 

sequence on an Illumina HiSeq 2000 platform (at SciLifeLab, Sweden). SNP 

filtering, calling and a first baseline imputation of missing genotypes through 

LD K-nearest neighbour method (Money et al., 2015) in TASSEL (Bradbury et 
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al., 2007) were performed commonly for Papers III and IV. In Paper III two 

additional and separate imputation methods were used to compare them in the 

subsequent analysis, i.e., random (RND) and expectation maximization 

algorithm (EM) imputation methods, under the same assumptions of minor allele 

frequency (MAF) cut-off  of 1% and a missing data threshold of 10%; 8707 and 

8719 SNP were retained respectively for RND and EM methods. After the 

baseline imputation, RND imputation was perform in Paper IV, assuming a 

MAF of 1% and a missing data rate of 5%, such that 6344 SNP were retained. 

RND and EM imputations were implemented in synbreed (Wimmer et al., 2012) 

and rrBLUP (Endelman, 2011) packages in R (R Core Team, 2016). 

3.4 Statistical analysis 

3.4.1 Prior adjustment of phenotypic data 

Prior to any genetic analysis the phenotypic measurements were adjusted for 

within trial environmental effects for all trials used in this thesis. A post-blocking 

procedure (Ericsson, 1997) was used to take into account the large-scale 

environmental variation in trials addressed in Papers I, III and IV. Normal-score 

transformation (Gianola & Norton, 1981) was performed on Vt assessments to 

linearize the data addressed in Paper I. 

Univariate single site spatial analysis was performed (when possible) for all 

trials and traits (Papers I – IV), with the objective to adjust the data for within-

trial microenvironmental effects. Spatial adjustments were performed using the 

row and column coordinates of the trial, and by fitting a linear mixed model with 

the residual structure incorporating only the experimental design elements as 

factors; if the spatial distribution of residuals were non-random for any trait, a 

second model was fitted, such that the residual component was structured as 

first-order separable autoregressive model (Dutkowski et al., 2006; Dutkowski 

et al., 2002; Gilmour, 1997).  

The adjusted values of the wood properties addressed in Papers III – IV (i.e., 

MFA, MOEs, DEN and MOEd) were calculated by removing the variation of 

the experimental design features and post-block effects, since spatial 

adjustments were not possible due to unavailable data for the full trial. 
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3.4.2 General linear mixed model  

To estimate the genetic variance-covariance components, linear mixed models 

were used in the studies underlying this thesis (Papers I – IV). The general linear 

mixed model used was 

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝜺, (1.) 

with 

var(y) = ZGZ’ + R = V, var(u) = G, var(𝜺)=R 

where y is the vector of individual tree adjusted phenotypic observations with 

expectation y ~ N(𝑿𝜷, V), 𝜷 is the vector of fixed effects; u is the vector of 

random effects with expectation u ~ N(0, G), and 𝛆 is the vector of residuals 

with expectation 𝜺 ~ N(0, R). X and Z are the respective incidence matrices of 𝛃 

and u. Estimates of the fixed (BLUE) and random (BLUP) effects were obtained 

by solving the Henderson mixed model equation: 

[𝐗′𝐑−𝟏𝐗 𝐗′𝐑−𝟏𝐙
𝐙′𝐑−𝟏𝐙 𝐙′𝐑−𝟏𝐙 + 𝐆−𝟏] [�̂�

�̂�
] =  [

𝐗′𝐑−𝟏𝐲

𝐙′𝐑−𝟏𝐲
] 

(2.) 

 

where R and G are the variance-covariance matrices of the residuals and random 

effects, respectively. 

Univariate and multivariate multi-environment trial analysis 

To estimate variances, covariances, breeding values and Type-B genetic 

correlations, UV MET analyses were used in Papers I – II. In addition, with the 

aim to estimate more precise variances, covariances, Type-A, Type-B and Type-

AB genetic correlations, MV MET analyses were also used in Paper I. 

For the UV MET analysis, the G matrix was modelled for both studies 

(Papers I-II) using FA covariance structures following Smith et al. (2001) and 

Cullis et al. (2010). In Paper II, three different trials were analysed, thus we 

considered that fitting just one factor (FA1) was adequate; whereas in Paper I, 

the four populations were evaluated separately and five trials per population 

were analysed, therefore we compared the convenience of using different factors 

(FA1 and FA2) as well as extended-factor-analytic structures with up to three 

factors (XFA1, XFA2 and XFA3). Besides, we also modelled G with an 

unstructured variance-covariance matrix parameterized as heterogeneous 

covariances (US) and as heterogeneous correlations (CORGH), in Paper I. For 

all models fitted in the UV MET analysis (Papers I-II), residuals were assumed 

to be independent, with expectation 𝜺 ~ N(0, I𝜎𝛆
2), where I is the identity matrix 

and 𝜎𝛆
2 is the residual variance. 
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In the case of the MV MET analysis, each variable at each trial was considered 

as a separate trait (trait-assessment-trial). To evaluate the precision of different 

variance-covariance structures in MV MET analysis, G was modelled by fitting 

the same seven different variance-covariance structures defined above (i.e., 

CORGH, US, FA1, FA2, XFA1,XFA2 and XFA3; in this case, the R matrix was 

modelled using a US structure model, but with covariances set to zero for traits 

measured in different trials. 

3.4.3 Family, pedigree and genomic relationships 

In Paper I  family model was used since no pedigree information other than the 

seed-parent identity was available, i.e., the vector u from Eq. 1 and Eq. 2 has an 

expectation of ~N(0, 𝜎𝑓
2 ), where 𝜎𝑓

2 is the family variance.  

ABLUP-A and ABLUP-AD models 

Pedigree information existed for the data used in Papers II, III and IV therefore, 

an individual (animal) model was used by incorporating the pedigree-based 

additive numerator relationship matrix (A) to the model (ABLUP-A model)  

such that the u vector from Eq. 1 and 2 has an expectation  ~N(0, A𝜎𝑎
2) where 

𝜎𝑎
2 is the pedigree-based additive genetic variance. Univariate ABLUP-A 

models were used in Papers III-IV. 

The pedigree-based dominance numerator genetic relationship matrix (D) 

was estimated according to Lynch and Walsh (1998) in Paper IV, i.e., ABLUP-

AD model, such that the Eq. 1 was extended to include both additive and non-

additive effects as: 

𝒚 =  𝑿𝜷 +  𝒁𝒂𝒂 +  𝒁𝒅𝒅 + 𝜺 (3.) 

where a and d, are the vectors of additive and dominance random effects, 

respectively, which follow a normal distribution with correspondingly 

expectations a ~ N(0, A𝜎𝑎
2) and d ~ N(0,D𝜎𝑑

2); 𝜎𝑑
2is the pedigree-based 

dominance genetic variance, and Za and Zd are the incidence matrix for a and d 

respectively. 

GBLUP-A, GBLUP-AD and GBLUP-ADE 

Genomic relationships based on the SNP marker information describe above 

were calculated for the data addressed in Papers III-IV. A genomic best linear 

unbiased predictor (GBLUP) method with only additive effects was used in both 

papers, whereas in Paper IV genomic-based dominance (GBLUP-AD) and 

epistatic (GBLUP-ADE) effects were examined additionally. GBLUP-A is 
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derived from ABLUP-A but differs in that the A matrix is substituted by a 

genomic-based realized relationship matrix (GA) which is calculated from the 

SNP marker data according to VanRaden (2008), such that the vector u in Eq. 1 

and the vector a in Eq. 3, follow a normal distribution with expectation 

~N(0,GA𝜎𝑎
2) where 𝜎𝑎

2 is now the additive genetic variance but based on SNP 

marker information. 

The genomic-based dominance relationship matrix (GD) was estimated 

following Vitezica et al. (2013) such that the vector d in Eq. 3 follows now a 

normal distribution with expectation ~ N(0,D𝜎𝑑
2). The genomic-based matrices 

based on the first-order epistatic interaction were calculated by the Hadamard 

products of GA and GD, as GAA=GA#GA (additive by additive terms), 

GAD=GA#GD (additive by dominance terms) and GDD= GD # GD (dominance by 

dominance terms), with the following model including all effects: 

𝒚 =  𝑿𝜷 +  𝒁𝒂𝒂 +  𝒁𝒅𝒅 + 𝒁𝒆𝟏𝒆𝒂𝒂 + 𝒁𝒆𝟐𝒆𝒂𝒅 + 𝒁𝒆𝟑𝒆𝒅𝒅 + 𝜺 (4.) 

where, Ze1, Ze2 and Ze3 are the incidence matrices for eaa, ead and edd which are 

the vectors of additive by additive, additive by dominance and dominance by 

dominance epistatic effects; and these components are assumed to follow a 

normal distribution with expectations ~N(0,GAA𝜎𝑎𝑎
2 ), ~N(0,GAD𝜎𝑎𝑑

2 ) and 

~N(0,GDD𝜎𝑑𝑑
2 ), respectively; where 𝜎𝑎𝑎

2 , 𝜎𝑎𝑑
2  and 𝜎𝑑𝑑

2   are the additive by 

additive, additive by dominance and dominance by dominance epistatic 

interaction variances. 

Bayesian methods 

With the aim to estimate and compare prediction abilities based on SNP marker 

effects, Bayesian ridge regression (BRR) and Bayesian LASSO (BL) were 

applied to the data addressed in Paper III, with the BGLR package in R (Perez 

& de los Campos, 2014). 

BRR method assumes that the vector u from Eq. 1 follows a multivariate 

normal prior distribution with a common variance to all marker effects, i.e., 

~N(0, Ip𝜎𝑚
2 ), where p is the number of markers, 𝜎𝑚

2  is the unknown genetic 

variance which is contributed by each marker and assigned as ~𝜒−2(𝑑𝑓𝑚 , 𝑆𝑚), 

where 𝑑𝑓𝑚 are the degrees of freedom and 𝑆𝑚 the scale parameter.  

The BL method assumes that vector u from Eq. 1 follows a hierarchical prior 

distribution with u ~N(0, T𝜎𝑚
2 ), where 𝑻 = diag(𝜏1

2, … , 𝜏𝑝
2). 𝜏𝑗

2 is assigned as 

𝜏𝑗
2~𝐸𝑥𝑝(𝜆2), 𝑗 = 1, … , 𝑝. 𝜆2 is assigned as 𝜆2~𝐺𝑎𝑚𝑚𝑎(𝑟, 𝛿).  

In both cases, the residual variance is assigned as 𝜎
2~𝜒−2(𝑑𝑓, 𝑆), where 

𝑑𝑓 is degrees of freedom and 𝑆 is the scale parameter for residual variance. 

For the QTL mapping study (Paper II) the de-biased LASSO approach by 

Javanmard and Montanari (2014) and Li et al. (2017b) was applied. In brief, this 
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approach differs from traditional LASSO estimator in that it constructs an 

unbiased LASSO estimator which asymptotically follow a normal distribution, 

and aims to calculate the p-values for all markers in the study, instead of only 

the markers selected by the standard LASSO.  

3.4.4 Accuracies and predictive abilities of breeding values 

The accuracy of the predicted pedigree-based EBV at Paper II was calculated 

for each F1 mother as r = √1 − (𝑃𝐸𝑉/𝜎𝑏
2)  , where PEV is the prediction error 

variance derived from the elements of the inverse of the coefficient matrix of the 

mixed model equations, and 𝜎𝑏
2 is the across-site additive variance. Prediction 

accuracy in Paper III, was defined as the Pearson product-moment correlation 

between the cross-validated GEBVs and the pedigree-based EBVs, 

r(GEBV,EBV); and the predictive ability (PA), in Papers III-IV as the Pearson 

product-moment correlation between the cross-validated GEBV or GEGV and, 

the adjusted phenotypes,  r(GEBV, y) or r(GEGV, y). In Paper IV, based on the 

full dataset, goodness-of-fit was calculated by estimating the correlation 

between the adjusted phenotypes and the total predicted genetic (r(Ĝfull,Ŷfull)) or 

additive values (r(Âfull,Ŷfull)). The fitted lined plot of the standard error of the 

predictions (SEPs)  was evaluated to assess the precision of the predicted BVs 

among all models. 

3.4.5 Selection response of Genomic Selection 

Compared to the traditional phenotypic selection (TPS), the relative efficiency 

of GS, RE and RE per year (RE/year) were estimated at Paper III according to 

Grattapaglia & Resende (2011) as 

𝑅𝐸 =  
𝑟(𝐺𝐸𝐵𝑉𝐺𝑆 , 𝐸𝐵𝑉)

𝑟(𝐸𝐵𝑉𝑇𝑃𝑆, 𝐸𝐵𝑉)
  (5.) 

 

Whereas, in Paper IV, the expected response of GS (RGS) was calculated 

following Resende et al. (2017) as 

𝑅𝐺𝑆(%) =  (
𝐸𝐺𝑉̅̅ ̅̅ ̅̅

𝑆 − 𝐸𝐺𝑉̅̅ ̅̅ ̅̅
0

𝐸𝐺𝑉̅̅ ̅̅ ̅̅
0

) × 100 (6.) 

where, 𝐸𝐺𝑉̅̅ ̅̅ ̅̅
𝑆 is the average of the expected genetic values and 𝐸𝐺𝑉̅̅ ̅̅ ̅̅

0 is the 

population average.  

By reducing 50% the breeding cycle (shortening or omitting the times of progeny 

testing), RE  and RGS per year were also estimated. 
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3.4.6 Statistical software 

All statistical analyses were executed in ASReml 3.0 (Gilmour et al., 2009), 

ASReml 4.0 (Gilmour et al., 2015) or ASReml-R (Butler et al., 2009), except 

those already indicated above.  
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4.1 Multi-environment analyses and G  E 

4.1.1 Type-B genetic correlations 

Multi-environment trials allow to detect the different performance of genotypes 

at different locations in the presence of G  E, and the Type-B genetic 

correlations can be used to detect the rank changes among several environments, 

as well as the degree of G  E (Burdon et al., 2019; Ukrainetz et al., 2018; 

Baltunis et al., 2010; Burdon, 1977). Our results showed that all Type-B genetic 

correlations for the traits and sites studied in Paper II  (see Table 3 in Paper II) 

were positive. However, they were very small for some traits and trials; indeed, 

small favourable Type-B genetic correlations were observed among trial F725 

(Site 2 in Paper II) and the other two trials for Vt, whereas for DBH and Ht the 

smallest Type-B genetic correlations were detected among F726 (Site 3 in Paper 

II) and the remaining trials, showing the presence of  a large G  E, at young 

ages. EBV through single site and through UV MET analysis (Figure 6), for 

DBH, Ht and Vt (at ages one and eight) could also be considered as sign of G  

E, as they notably differ depending on the site. 

Nevertheless, as results of Paper I showed, when UV MET analysis was used, 

genetic parameter estimations resulted in higher standard errors (SE), compared 

with MV MET analysis. Simulation studies in crops reported better accuracies 

and selection efficiencies, as well as estimates of genetic correlations when MV 

REML model was used (Viana et al., 2010; Holland, 2006). Large SE were 

obtained in Paper II, but were not possible to compare with other methods, since 

only UV MET was used; still, we were able to compare the results from UV 

MET with those from MV MET analyses in Paper I, since in this study, both 

analyses were performed independently in four different unrelated populations.  

4  Results and discussion 
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Figure 6. Estimated breeding values EBV for DBH, BrA, Ht and Vt. Overall  EBV obtained 

through the univariate multi-environment analysis are represented by the acronym MET. 

All SE for Type-B genetic correlations, in all trial series were generally higher 

when calculated from UV MET analysis than MV MET analysis (see Tables 6 

and S2 from Paper I). XFA3 was the model that showed the lowest SE for both 

methods, and therefore the results presented here and in Paper I for the MV MET 

analysis, are based on the XFA3 model. Our results agree with previous studies 

in which it was reported that FA models are more effective to capture genetic 

variances and covariances and therefore, more accurate predictions of genotypes 

can be obtained (Walker et al., 2019; Chen et al., 2018a; Ogut et al., 2014). 

Based on the Type-B genetic correlations estimated from MV MET analysis, 

remarkable G  E was observed, at age 10 for both traits within trial series 2 and 

3, among trials with the lowest Tsum and those with the largest Tsum; further, a 

similar pattern was discernible at age 20 for both traits. A trend was clearly 

recognisable by the moderate negative Pearson product-moment correlation (-

0.41, p <  0.001), that showed how the Type-B genetic correlations for Ht at both 

ages, became smaller as the difference in Tsum between trials increased (Figure 

7A).  

The existence of G  E  for growth traits has been previously reported for 

species such as Pinus radiata D. Don (Ivkovic et al., 2015) or Norway spruce, 
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Picea abies L. (Chen et al., 2017). Studies in Pinus elliottii Engelm. (Dieters et 

al., 1995) and Pinus taeda L. (Xiang et al., 2003), reported an increase on Type-

B genetic correlation with the age, which was also observed for Scots pine in 

this thesis (Paper I), still it was possible to detect G  E  for Ht and Vt at older 

ages.  

 
Figure 7. Plots of A) Type-B genetic correlations between Ht at different assessments against Tsum 

differences among trials, and B) Type-A genetic correlations among Vt and Ht against Tsum. 

4.1.2 Type-A and Type-AB genetic correlations 

Type-A and Type-AB genetic correlations were possible to detect through MV 

MET analysis implemented in Paper I (see Table 5 and Fig. 2 in Paper I). In trial 

series 2 and 3, Type-A genetic correlations between Vt and Ht were higher as 

the mortality and harshness (lower Tsum) of the trials increased, while it 

decreased as the trials became milder (higher Tsum); this pattern was observed 

by the strong negative Pearson product-moment correlation (-0.61, p < 0.001),  

among Tsum and Type-A genetic correlations between Vt and Ht, illustrated in 

Figure 7B, and that shows how the Type-A genetic correlations decreased as the 

Tsum of the trials increased. The sign of Type-AB genetic correlations between 

Vt and Ht, changed from positive to negative, as the differences in Tsum 

increased, which indicate that tree height is more dependent on the health of the 

trees in harsh environments. Additionally, it was observed that those trials with 

positive Type-A correlation were the same that showed significant genetic 

variation in susceptibility to Phacidium infestans in a previous study (Persson et 

al., 2010). This fact in conjunction with the trend observed for Type-A and Type-

B genetic correlations, indicates that height in harsh environments reflects the 

health of the trees, as Persson (2006) suggested. 

No clear G  E was detected for trial series 1 and 4, with high positive Type-

B genetic correlations, nevertheless both series represented more homogenous 

Tsum among most of the trials within series. 
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4.1.3 Multi-environment heritabilities and coefficients of variation 

Within-trial narrow-sense estimated heritabilities (ℎ̂𝑤
2 ) were low to moderate for 

all traits addressed in Paper II, and they differ notably among sites (see Table 2b 

in Paper II); overall across-site narrow-sense heritabilities (ℎ̂𝑏
2) were generally 

smaller, which is also an indication of G  E. Most of the values estimated for 

narrow-sense heritabilities were similar to those reported in the literature for 

growth traits (DBH, Ht),  BrA or Ct (Pagliarini et al., 2016; Bian et al., 2014; 

Prada et al., 2014; Abrahamsson et al., 2012). However, they were estimated 

through UV MET analysis and could be overestimated, as it was observed in 

results from Paper I, for which narrow-sense heritabilities (and SE) from UV 

MET analysis were higher than those form MV MET analysis, particularly for 

height (Figure 8). The ℎ̂𝑤
2  and the additive coefficient of variation (𝐶�̂�𝐴) for Ht 

increased with the age, consistent with previous studies in Scots pine in Sweden 

(Kroon et al., 2011; Jansson et al., 2003), but these parameters did not change 

for Vt. Besides, the environmental coefficients of variation (𝐶�̂�𝐸) increased as 

well for Ht in harsh trials and decreased at milder ones. On the contrary, 𝐶�̂�𝐴  and 

𝐶�̂�𝐸  for Vt decreased with the age in harsh sites and increased in milder ones. 

The magnitudes of 𝐶�̂�𝐴  and 𝐶�̂�𝐸 estimates, agree with previous ones reported in 

Scots pine and other pine species (Baltunis & Brawner, 2010; Persson & 

Andersson, 2003; Haapanen, 2001). 

 
Figure 8. Within- and overall across-trial narrow-sense heritabilities for height estimated at 10 (tree 

height 1) and 20 (tree height 2) years, calculated in Paper I. 
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4.2 Genetic architecture of complex traits 

The experiments of QTL studies in trees are usually based on phenotypic values 

from only one generation, normally a FS family with environmental and genetic 

factors confounded (Hall et al., 2016; Thavamanikumar et al., 2013; Lerceteau 

et al., 2001). Although the candidate gene approach is not going to play an 

important role in the tree breeding, it is still important to decipher the 

relationship between genes and complex traits (Bartholome et al., 2016a; Isik, 

2014; Markussen et al., 2003). In Paper II, 18 AFLP and 12 SNP markers were 

identified to be associated with QTL with medium to large effects, for one or 

more phenotypic traits, intercepts or EBV (see Tables 4 and D1, in Paper II); it 

was observed that when a QTL was associated simultaneously to a phenotype- 

and EBV-based QTL, the latter one always expressed a higher proportion of the 

variance. Besides, some QTL were detected for the same trait across several 

ages, making them possible candidates for early selection. QTL detection was 

not consistent across environments, probably due to the detected G  E or QTL 

 E, as it has been previously stated for different tree species (Bartholome et al., 

2013; Freeman et al., 2013; Rae et al., 2008; Groover et al., 1994). 

4.3 Genomic prediction 

Nowadays GS is a subject undergoing intense study in animal, crop and tree 

breeding, as theoretical results seems to indicate that GS could be the tool that 

can aid to improve accuracy of breeding value predictions, reduce breeding 

cycles, increase selection intensities and obtain greater genetic gains per unit 

time (Grattapaglia et al., 2018; Crossa et al., 2017; Isik et al., 2015; Grattapaglia, 

2014; Isik, 2014). The GS studies underlying this thesis are the initial analyses 

to have a first indication of the possible advantages of genomic predictions for 

Scots pine in Sweden and are the basis for future GS studies in the specie (Papers 

III-IV). 

4.3.1 Effect of the imputation method on predictions (Paper III) 

For species as Scots pine, GBS is a good genotyping alternative to perform GS 

or GWAS studies, however this GBS data generate large amounts of missing 

sequences, thus filtering and imputation of SNPs are extremely important steps 

that could have an effect on predictions (Dodds et al., 2015). Accordingly with 

previous studies that used GBS data (El-Dien et al., 2018; El-Dien et al., 2015; 

Poland et al., 2012), generally the EM algorithm performed better than the RND 

imputation method, since slightly higher PAs and prediction accuracies for all 

genomic prediction models and traits were achieved (Table 2).  
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4.3.2 Impact of the model on predictions (Paper III) 

The ABLUP model produced the highest prediction accuracies for all traits, 

among all models; however in terms of PA, genomic prediction models 

(GBLUP, BRR and BL) performed better for almost all traits analysed (Table 

2). None of the genomic prediction models presented better predictions for all 

traits. Similar results were reported in other species where all genomic 

predictions models have similar impacts on PAs or prediction accuracies (Chen 

et al., 2018b; Tan et al., 2017; Thistlethwaite et al., 2017; Bartholome et al., 

2016b; Isik et al., 2016; Ratcliffe et al., 2015). Among all genomic models and 

based on results and computational requirements, GBLUP was the most 

effective method in Paper III. 

Table 2. Predictive ability (PA) and prediction accuracy (Accuracy) of each model for each trait.  

Model Type Traits               

    Ht1 Ht2 DBH1 DBH2 MFA MOEs DEN  MOEd 

ABLUP PA 0.20 0.38 0.26 0.23 0.30 0.39 0.41 0.44 
 

Accuracy 0.83 0.81 0.83 0.84 0.83 0.75 0.81 0.82 

GBLUP-EM PA 0.20 0.39 0.26 0.26 0.29 0.39 0.40 0.41 
 

Accuracy 0.69 0.75 0.73 0.74 0.73 0.69 0.73 0.74 

GBLUP-RND PA 0.19 0.38 0.25 0.25 0.28 0.37 0.38 0.40 
 

Accuracy 0.67 0.74 0.71 0.72 0.71 0.67 0.71 0.72 

BL-EM PA 0.15 0.39 0.22 0.30 0.33 0.36 0.32 0.40 
 

Accuracy 0.66 0.74 0.70 0.75 0.76 0.67 0.69 0.71 

BL-RND PA 0.26 0.36 0.26 0.26 0.28 0.34 0.40 0.41 
 

Accuracy 0.69 0.73 0.71 0.72 0.68 0.65 0.71 0.72 

BRR-EM PA 0.18 0.41 0.25 0.27 0.33 0.42 0.40 0.46 
 

Accuracy 0.65 0.77 0.72 0.75 0.73 0.70 0.72 0.76 

BRR-RND PA 0.24 0.39 0.21 0.24 0.27 0.40 0.40 0.45 

  Accuracy 0.72 0.75 0.70 0.74 0.73 0.68 0.72 0.75 

4.3.3 Effect of TS, VS and number of SNPs (Paper III) 

Based on the cross-validation results presented above, EM combined with 

GBLUP or BRR showed slightly better results among the genomic prediction 

models, and ABLUP in terms of  accuracy, therefore were the methods choose 

to evaluate the effect of TS and VS on the predictions (Paper III). Agreeing to 

previous reports (Chen et al., 2018b; Lenz et al., 2017), all models had 
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increasing and similar patterns of PA for all traits, with the increasing sizes of 

TS (Figure 9A), whereas ABLUP presented the best accuracies for all traits and 

TS ratios. Using about 70–80% of individuals sampled in this population would 

produce similar PAs and accuracies as the full sample size.  

 
Figure 9. A) Predictive ability and prediction accuracy of ABLUP, BRR and GBLUP models for 

different sizes of training and validation sets. 

The BRR method, combined with EM imputation, was used to evaluate the 

impact of number of SNPs on the predictions (see Fig. 2 in Paper III). It has been 

earlier reported that accuracies increased with the number of markers reaching a 

plateau when the number of markers are between 4K–8K (Chen et al., 2018b; 

Lenz et al., 2017; Tan et al., 2017), but in the Scots pine population study in 

Paper III a plateau was not reached; however, only 3K – 4K SNPs were 

necessary to get similar efficiencies to those achieved for all 8719 SNPs for all 

traits. 
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4.3.4 Outcomes of non-additive effect on genomic predictions (Paper 

IV) 

The use of genome-wide markers and GS has the additional advantage of 

decomposing the genetic variance into its additive and non-additive components 

without the need to perform specific mating designs to obtain FS families or 

replicated clonal material. In Paper IV, pedigree and genomic data were used to 

construct BLUP models that accounted for additive and non-additive 

(dominance and first order epistatic effects). 

As expected, the cross-validated PA was slightly higher for all traits with 

ABLUP models regardless of the non-additive effects (Figure 10), yet very 

similar for both genomic and pedigree models, in concordance with studies in 

eucalyptus, Norway spruce and Pinus taeda (Chen et al., 2018a; Bouvet et al., 

2016; de Almeida et al., 2016). 

 
Figure 10. Mean of predictive abilities and standard errors for the different models and genetic 

effects. 

Based on the full dataset and correlations between adjusted phenotypes and total 

or additive genetic values, additive values based on ABLUP fitted better than 

additive values with GBLUP, only for Ht30 and MOEd (Table 3). Tan et al. 

(2018) observed that most genetic values based on ABLUP-AD correlated better 

with phenotypes. In Paper IV, the highest correlations were detected among 

genetic values and adjusted phenotypes (0.76 – 0.97) for the GBLUP model with 

epistatic effects, which is in accordance to Bouvet et al. (2016) which found 

better fitting of GBLUP models. These results indicate that GBLUP epistatic 

model outperformed in the genetic response estimations the ABLUP and 
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GBLUP dominance models, and specially for some traits can end up in better 

estimations of genetic values. 

Table 3. Goodness-of-fit: correlation between adjusted phenotypes and additive- (Âfull) or total- 

(Ĝfull) genetic value of the full dataset. Correlations statistically significant at 0.01. 

Trait Genetic 

effects 

GBLUP 

r(Âfull,Ŷfull) 

  

r(Ĝfull,Ŷfull) 

  ABLUP 

r(Âfull,Ŷfull) 

  

r(Ĝfull,Ŷfull) 

Ht1 A 0.72 . 
 

0.68 . 
 

AD 0.72 0.72 
 

0.68 0.94 
 

ADE 0.72 0.83 
 

. . 

Ht2 A 0.79 . 
 

0.84 . 
 

AD 0.79 0.81 
 

0.84 0.92 
 

ADE 0.78 0.97 
 

. . 

DBH1 A 0.73 . 
 

0.74 . 
 

AD 0.73 0.73 
 

0.74 0.74 
 

ADE 0.73 0.76 
 

. . 

DBH2 A 0.72 . 
 

0.71 . 
 

AD 0.72 0.77 
 

0.70 0.89 
 

ADE 0.71 0.95 
 

. . 

MFA A 0.81 . 
 

0.78 . 
 

AD 0.81 0.81 
 

0.78 0.78 
 

ADE 0.81 0.81 
 

. . 

MOEs A 0.86 . 
 

0.85 . 
 

AD 0.86 0.86 
 

0.85 0.85 
 

ADE 0.86 0.86 
 

. . 

DEN A 0.86 . 
 

0.87 . 
 

AD 0.86 0.86 
 

0.87 0.87 
 

ADE 0.85 0.95 
 

. . 

MOEd A 0.85 . 
 

0.88 . 
 

AD 0.85 0.85 
 

0.88 0.88 

  ADE 0.84 0.97   . . 

 

Comparable SEPs for most traits were seen regardless the model used, with 

slightly higher SEPs for GBLUP compared with ABLUP for Ht10 and MFA. 

GBLUP epistatic model exhibited the slight highest SEPs for almost all traits 

(see Fig.2, Paper IV), in contrast with studies in interior spruce (El-Dien et al., 
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2018), white spruce (El-Dien et al., 2016) or Pinus taeda (Munoz et al., 2014) 

that showed the lowest SEPs when GBLUP epistatic model was used. 

4.3.5 Genomic-based variance components and heritabilities. 

Narrow-sense heritabilities were generally higher with ABLUP than GBLUP 

models (Papers III – IV), similar to other studies in conifers (Chen et al., 2018b; 

El-Dien et al., 2018; Lenz et al., 2017); which can be explained by the genomic 

marker relationship matrix that consider the variation (deviation) among 

individuals of a family from the family average relatedness (Hayes et al., 2009; 

VanRaden, 2008; White et al., 2007). 

Accounting for dominance effects in both ABLUP and GBLUP models, 

resulted in detection of dominance variance only for growth traits (see Table 1 

in Paper IV). When dominance variance was identified, a diminution in both 

additive and residual variances was seen (Figure 11), however the proportion of 

dominance variance detected with ABLUP was higher than with GBLUP. For 

all growth traits and two wood  quality traits, additional detection of additive by 

additive epistatic effects in GBLUP models, caused a further reduction of the 

additive and residual variance components, and as consequence, narrow-sense 

heritabilities were reduced and broad-sense heritabilities increased.  

 
Figure 11. Percentages of the different variance components for each model and trait. �̂�𝑎

2, �̂�𝑑
2, �̂�𝑒

2 

and �̂�𝑎𝑎
2  denote estimated additive, dominance, residual and epistatic additive  additive variances. 
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As it has been stated in previous studies (El-Dien et al., 2018; Tan et al., 2018; 

Bouvet et al., 2016; El-Dien et al., 2016; Munoz et al., 2014; White et al., 2007), 

additive and non-additive effects are not independent; an inadequate estimation 

of genetic effects, and therefore overestimation of narrow-sense heritabilities, 

could be a consequence of the insufficient power of pedigree-based methods to 

discern between both effects.  

In Scots pine, no clear patterns were noticed between prediction accuracies 

and narrow-sense heritabilities (Paper III), as it was previously stated for 

maritime pine and Norway spruce (Chen et al., 2018b; Bartholome et al., 

2016b); however, a linear trend was found among PAs and narrow-sense 

heritabilities (r = 0.99, p < 0.001), as the traits with lowest narrow-sense 

heritabilities exhibited the lowest PAs and the highest PAs were detected for the 

traits with highest heritabilities (Figure 12); similar patterns were observed in 

other tree species such as loblolly pine (Resende et al., 2012c) or maritime pine 

(Isik et al., 2016). 

 
Figure 12. Regression plot among PAs and narrow-sense heritabilities based on GBLUP-EM 

model. 

4.3.6 Relative GS efficiency and response of GS (Papers III – IV) 

The Scots pine breeding cycle takes up to 21 or 36 years depending on the 

selection strategies used. One of the advantages of GS is the possibility to reduce 

the field testing periods and consequently the cycle length.  

If the breeding cycle is reduced by 50% and 75% (omitting or reducing 

progeny test periods), the RE/year can doubled and triple, respectively (Ratcliffe 

et al., 2015; Resende et al., 2012b; Grattapaglia & Resende, 2011); in Scots pine, 

if the breeding cycle is shorten by 50%,  the RE/year increased between 59 – 

85%  for GBLUP, 50 – 90% for BRR and 52 – 83% for BL (Table 4).  
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Table 4. Relative efficiency (RE) and relative efficiency per year (RE/year) of genomic prediction 

models compared to ABLUP from cross validated models and for each trait. 

Trait RE 

GBLUP 

 

BRR 

 

BL 

REa/year 

GBLUP 

 

BRR 

 

BL 

REb/year 

GBLUP 

 

BRR 

 

BL 

Ht1 0.83 0.78 0.8 1.66 1.57 1.59 1.59 1.5 1.52 

Ht2 0.93 0.95 0.91 1.85 1.9 1.83 1.77 1.81 1.74 

DBH1 0.88 0.87 0.84 1.76 1.73 1.69 1.68 1.66 1.61 

DBH2 0.88 0.89 0.89 1.76 1.79 1.79 1.68 1.7 1.7 

MFA 0.88 0.88 0.92 1.76 1.76 1.83 1.68 1.68 1.75 

MOEs 0.92 0.93 0.89 1.84 1.87 1.79 1.76 1.78 1.71 

DEN 0.9 0.89 0.85 1.8 1.78 1.7 1.72 1.7 1.63 

MOEd 0.9 0.93 0.87 1.8 1.85 1.73 1.72 1.77 1.65 

a and b represent first and second group of selection strategies, respectively. 

 

RGS/year was estimated for GBLUP-AD and GBLUP-ADE using ABLUP-AD 

as a benchmark for the RPS/year, and again reducing the breeding cycle by 50%. 

Relative higher RGS/year, i.e., higher genetic gains were obtained with GBLUP 

models compared with ABLUP, especially remarkable for wood traits for which 

expected gains varied between 33 – 117%, and between 7 – 70% for growth 

traits, for the top 50 (7%) individuals (Figure 13); our results are in accordance 

with similar studies in Norway spruce (Chen et al., 2018a), in which the genetic 

gains obtained from GBLUP with non-additive effects were higher for wood 

traits than growth traits, however in both cases superior than traditional 

phenotypic selection, whereas in eucalypts the greatest gains were observed for 

growth traits (Resende et al., 2017). 
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Figure 13. Expected response of genomic selection (RGS) as a percentage gain of the average 

population EGV per year of GBLUP-AD and GBLUP-ADE compared with the response of 

phenotypic selection (RPS) per year of ABLUP-AD, calculated for all traits and different 

proportions of individuals selected (7, 25, 50 and 100%). 
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In the studies underlying this thesis, we have combined new methods to the 

traditional quantitative genetics theory and applied for the first time (1) 

quantitative genomics, (2) factor-analytic methods and (3) multiple generation 

QTL study in Scots pine, to improve and understand genetic parameter 

estimations of complex traits of interest within the Swedish breeding program; 

and from which could be drawn the conclusions and future perspectives shown 

below.  

Genotype-by-environment interactions were found for adaptive and growth 

traits using univariate multi-environment analysis (Papers I – II); however, the 

estimates of single variables may be overestimated as it was observed in the 

multivariate multi-environment analysis implemented with factor analytic 

structures, that allowed the study of up to 19 traits simultaneously, and resulted 

in more accurate estimations of genetic parameters (Paper I). Therefore, factor-

analytic approach should be applied routinely in analysis of multiple genetically 

connected trials within the breeding program. 

In harsh environments, trees were still affected by environmental 

perturbations at older ages, and the main cause of the G  E for tree vitality and 

height at young and older stages was the difference in temperature sum between 

trials (Paper I). A high positive genetic association between tree vitality and 

height on harsh sites was observed, but it decreased as the temperature sum 

increased, which suggests that tree growth on harsh and mild environments 

should be treated as separate traits and targeted to different deployment regions. 

Further studies are recommended for genetically connected populations, 

covering trials located at wider ranges of temperature sums, to confirm the 

patterns found in this thesis. 

More accurate estimations were observed by using EBV than phenotypic data 

for the detection of QTL, since the former ones explained a higher percentage of 

the variance (Paper II); nevertheless, multivariate multi-environment analysis 

are recommended instead of univariate multi-environment to obtain more 

5 Conclusions and future perspectives 
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precise EBV. Besides, within this thesis the number of phenotypic data was 

much larger than the number of EBV, which made that most of the QTL were 

detected based on the phenotypic data. Hence, further studies with analogous 

number of EBV and phenotypes are suggested to deepen in the patterns showed 

here and possibly to detect more candidate genes for early selection within the 

breeding program. 

The genomic prediction studies underlying this thesis provide an initial 

perspective of the use of genomic data into prediction models in Scots pine. 

Growth and wood genetic parameters were more precisely estimated with 

genomic- than with pedigree-based models (Papers III – IV); and due to 

computational and predictive efficiency GBLUP was the most effective method 

to perform genomic predictions (Paper III).  The high efficiency of GS in Scots 

pine encourages to develop GS strategies for the species’ operational breeding 

program. 

The incorporation of the non-additive effects to the genomic predictions, 

showed that by accounting for these effects, the estimations of additive and 

residual variances and associated heritabilities would be more accurate, and 

consequently more precise estimated breeding values and higher genetic gains 

can be achieved (Paper IV). To confirm whether the epistatic variation observed 

in this thesis plays and important role for growth and wood quality traits of Scots 

pine populations, a bigger population than the current studied here, should be 

genotyped and phenotyped. 

While GBS is a good alternative for Scots pine as it was demonstrated in this 

thesis (Papers III – IV), faster and more reliable genotyping platforms should be 

developed. This is underway with current effort in de novo genome sequencing 

and re-sequencing in order to develop a SNP array for the Swedish Scots pine 

breeding populations. 

One of the greatest advantages of GS is the possibility to reduce the breeding 

cycle; here, it was proven that by shortening the breeding cycle in 50% 

(assuming a reduction in progeny tests periods), the expected response of GS per 

year could be 50% – 90% higher than the traditional pedigree-based selection, 

depending on the selection strategy used (Papers III – IV). 

Despite the promising results showed in this thesis, the population used to 

perform genomic predictions, was a small population with a shallow pedigree. 

Therefore, to understand better the utility and power of genomic selection for 

complex traits in Scots pine, more studies should be carried out using different 

populations, preferably with deeper pedigrees, tested through several 

generations, and at different environments, as well as, single-stage and 

multivariate genomic prediction approaches.  
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Scots pine is the second most important specie in Sweden, both from commercial 

and ecological points of view. Its wood and derivates are used among others, for 

construction, furniture, chip-boards, wood pulp, paper and energy products. To 

be able to determine if we can improve tree growth, survival and its properties, 

the tree characteristics and their variation, such as height, diameter, wood 

density, ability to survive or adapt, and resistance to pests and diseases, need to 

be understood. 

Forest management and tree breeding aid to improve the profitability of 

forest products, through silvicultural, economical, genetical and statistical 

principles. Tree breeding aims to understand and decompose the genetic 

variation of trees for the characters of interest, so that the quantity that is 

genetically transmitted from one generation to another can be predicted; this 

allows an early selection of individuals with the desirable characteristics, so that 

there is no need to complete the long rotation periods for breeding selection. 

However, it is necessary to test the trees in the field and that they reach a certain 

age to be able to evaluate them, which make that the tree breeding cycle of Scots 

pine lasts between 20 to 30 years. For example, for Scots pine in harsh areas of 

northern Sweden, large mortality occurs predominantly during the first 12 to 16 

years after planting, therefore evaluation of trees in such trials requires longer 

times than in southern Sweden. 

The studies underlying this thesis aim to evaluate new statistical 

methodologies to improve the accuracy of the genetic variation estimates on 

growth, adaptive and wood quality traits.  

Different families had been evaluated in several locations which allowed us 

to detect their different behaviour, and by using new statistical methods we were 

able to evaluate more characters simultaneously; this allowed us to observe that 

in harsh areas the trees are subject to a toughest environmental stress than in 

mild areas and for a longer time, and it seems to be related with the temperature. 
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In this thesis, a new methodology known as genomic selection was evaluated 

for the first time in Scots pine. One of the advantages of this methodology is that 

the trees can be evaluated at the seedling stage, which make that the tree 

improvement cycle can be shortened by omitting the evaluation of the trees in 

the field which, it can improve the profitability per year at higher rates than 

traditional methodology. By using this method we obtained more accurate 

estimation of the genetic variation of growth and wood quality traits, and we 

observed that by reducing the breeding cycle in 50%, genetic gain can increase 

between 50%–90%. 
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Tall är Sveriges näst viktigaste trädslag, både ur kommersiella och ekologiska 

synvinklar. Dess trä och beståndsdelar används bland annat för konstruktion, 

möbler, spånskivor, vedmassa, papper och energiprodukter. För att kunna avgöra 

om vi kan förbättra trädtillväxt, överlevnad och dess egenskaper, måste trädets 

egenskaper och deras variation, såsom höjd, diameter, trädensitet, förmåga att 

överleva eller anpassa sig och motståndskraft mot skadedjur och sjukdomar 

förstås. 

Skogsförvaltningen och skogsträdsförädlingen kan bidra till att förbättra 

lönsamheten för skogsprodukter genom skogsbruk, ekonomiska, genetiska och 

statistiska metoder. Skogsträdsförädlingen syftar till att förstå och särskilja den 

genetiska variationen för träd för de egenskaper som är av intresse, så att den 

mängd som är genetiskt överförd från en generation till en annan kan förutsägas; 

detta möjliggör tidigt urval av individer med önskvärda egenskaper, så att det 

inte finns något behov av att slutföra de långa rotationsperioderna för urval. 

Trots detta så är  det nödvändigt att testa träden i fält, där de måste nå en viss 

ålder för att kunna utvärderas, vilket gör att förädlingscykeln för tall är mellan 

20 till 30 år. För tall i kärva områden i norra Sverige så förekommer det hög 

dödlighet huvudsakligen under de första 12-16 åren efter plantering, därför krävs 

utvärdering av träd i sådana försök under lång tid än i södra Sverige. 

De studier som ligger till grund för denna avhandling syftar till att utvärdera 

nya statistiska metoder för att förbättra noggrannheten i de genetiska 

variationskalkylerna på tillväxtegenskaper, adaptiva egenskaper och 

träkvalitetsegenskaper. 

Olika familjer har utvärderats på flera olika lokaler som gjorde det möjligt 

för oss att upptäcka deras olika beteenden och genom att använda nya statistiska 

metoder kunde vi utvärdera flera egenskaper samtidigt. Detta gjorde det möjligt 

för oss att observera att i kärva områden är andelen träd som överlever mycket 

lägre än i milda områden. Träd i kärva områden utsätts för större miljöpåverkan 
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än i milda områden och under längre tid, och det verkar vara relaterat till 

temperatur. 

I denna avhandling utvärderades en ny metod som kallas genomiskt urval för 

första gången i tall. En av fördelarna med den här metoden är att träden kan 

utvärderas som fröplanta, vilket gör att förädlingscykeln kan förkortas genom att 

utelämna utvärderingen av träden i fält, vilket kan förbättra lönsamheten per år 

i högre uppskattning än traditionell metodik. Genom att använda den här 

metoden fick vi en mer exakt uppskattning av den genetiska variationen av 

tillväxt och träkvalitetsegenskaper, och vi observerade att genom att minska 

förädlingscykeln med 50% kan genetisk vinst öka med 50% – 90%. 
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