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A B S T R A C T

Soil compaction constitutes a major threat to the fertility of arable soils and food security. The aim of this paper
is to highlight the need and opportunities for plant eco-physiological approaches to identify strategies to recover
crop yields after soil compaction. Reduced productivity on compacted soil primarily results from decreased root
elongation rates and thus limited accessibility to water and nutrients. Hence, strategies to recover productivity
after compaction must address plant eco-physiological phenomena that underlie low root system expansion
rates. In compacted soil, root growth is decreased due to high soil penetration resistance and due to low oxygen
concentration in soil air caused by reduced fluid transport capability. Thus, plant roots are exposed to a multi-
stress environment, which needs to be addressed directly when aiming to recover productivity after compaction
in the long-term. Here, we discuss possibilities to increase root growth in order to enhance resource accessibility
and recover crop productivity on compacted soil. Yield recovery can be achieved through breeding of novel
cultivars and targeted soil management approaches. On the one hand, the tolerance of plants to the different soil
physical stresses can be enhanced by selecting for specific root traits that facilitate root growth in compacted
soil. Soil management approaches that improve specific physical properties of compacted soil on the other hand
can facilitate root growth in compacted soil. Since plant roots are major drivers of soil structure dynamics,
increasing root growth in compacted soil may not only mitigate crop productivity losses but also recover soil
structure.

1. Introduction: compacted soil constitutes a multi stress
environment for plants

The use of heavy agricultural machinery in modern agriculture has
resulted in an estimated 68 million hectares of compacted arable land
(Hamza and Anderson, 2005). This area has increased in the last decade
and will likely increase even more in the future due to ever rising
weights of agricultural machinery (Schjønning et al., 2015; Stolte et al.,
2016). These projections show that the problem of compacted soil in
arable systems persists despite strategies to avoid compaction, such as
conservation tillage and controlled traffic farming (e.g. Batey, 2009;
Hamza and Anderson, 2005). Compacted soils typically show a de-
graded structure with low (macro-) porosity, and low pore continuity
and connectivity (Horn et al., 1995). The structural degradation, which
can last for decades (Berisso et al., 2013; Besson et al., 2013; Hakansson
and Reeder, 1994), adversely affects ecosystem services of arable soil
including crop productivity (Batey, 2009; Hamza and Anderson, 2005;
Tracy et al., 2011). Graves et al. (2015) estimated the compaction costs

to be higher than 500 million Euros per year in England and Wales, of
which productivity losses account for more than 40% (Graves et al.,
2015). In order to mitigate these costs and to ensure food security in the
long-term, strategies to recover crop yields on compacted soils are ur-
gently needed.

Low crop productivity on compacted soil results primarily from
impeded root system expansion and thus limited access to soil water
and nutrients pools (Araki and Iijima, 2005; Bengough et al., 2011;
Colombi et al., 2018; Nosalewicz and Lipiec, 2014; Valentine et al.,
2012). Plants acquire different resources from the topsoil and the
subsoil due to uneven resource distribution. Immobile nutrients such as
phosphorus and potassium are mainly taken up from the topsoil, while
mobile resources such as water and nitrogen are acquired from the
topsoil and the subsoil. Whether root growth is slowed down in the
topsoil or the subsoil, the consequence for plant is limited access to
resources. Water and nutrient availability may also decrease as a result
of compaction but results are inconsistent (Archer and Smith, 1972;
Colombi et al., 2018; George et al., 2011; Kristoffersen and Riley, 2005;
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Lipiec and Hatano, 2003; Pfeifer et al., 2014; Richard et al., 2001;
Romero et al., 2011). Even though low resource availability may con-
tribute to yield losses on compacted soil, reduced resource accessibility
resulting from impeded root growth is considered the main cause for
decreased crop productivity (Bengough et al., 2011; Valentine et al.,
2012). There are different soil physical properties that cause root
growth rates in compacted soil to decrease (Fig. 1). On the one hand,
compaction increases soil penetration resistance due to the decreased
void space available for displacement of soil particles (Batey, 2009;
Hamza and Anderson, 2005). On the other hand, compaction results in
low connectivity and continuity of the pore space, reduced water and
air transport capability of soil (Keller et al., 2017; Kuncoro et al., 2014),
which may lead to critically low concentrations of oxygen in soil air
(Horn and Smucker, 2005; Tracy et al., 2011). Therefore, reduced crop
productivity on compacted soils results from adversely changed soil
physical conditions, which are a consequence of soil structural de-
gradation.

Soil penetration resistance and oxygen concentration in soil air are
strongly influenced by soil moisture and thus local pedo-climatic con-
ditions, and short-term precipitation and temperature events.
Penetration resistance increases as soils dry, while the risk for low
oxygen concentration in soil air is particularly high after heavy rainfall
(Batey, 2009; Bengough et al., 2011; Colombi et al., 2018; Grzesiak
et al., 2014; Tracy et al., 2011). Hence, soil penetration resistance is
likely to be the dominant stress for growing roots under dry conditions.
Under wet conditions, root growth in compacted soil is likely to be
limited by low concentration of oxygen in soil air (Fig. 1). Since both
dry and wet periods typically occur during the same season, an in-
dividual plant is exposed to different physical stresses, which fluctuate
over time. Finally, plants themselves affect their soil physical en-
vironment by root water uptake and consumption of oxygen in soil air
due to root respiration (Fig. 2). Therefore, crops growing on compacted
soil experience critical levels of soil penetration resistance (Colombi
et al., 2018) and oxygen concentrations in soil air (Buyanovsky and
Wagner, 1983) multiple times during a single season. Due to the pro-
jected increase in extreme weather events with climate change (IPCC,
2014), the severity of dry and wet spells and thus periods of high pe-
netration resistance and low concentration of oxygen in soil air will

increase in the future. Hence, reductions of crop yields resulting from
compaction are likely to increase in the course of global change.

This paper discusses the need for the integration of a plant eco-
physiological perspective into the development of strategies to recover
crop productivity on compacted soil. Plant eco-physiological research
aims to understand relationships and interactions between environ-
mental parameters and plant physiological processes. We argue that
accounting for plant eco-physiological processes is crucial in order to
understand why crop yields decrease with soil compaction. Such an
understanding is pivotal to identify measures that increase root growth
and resource accessibility on compacted soil, and ultimately allow to
regain crop productivity. Because plant roots significantly contribute to
soil structure dynamics through bioturbation, carbon input, and water
uptake (Dexter, 1991; Vogel et al., 2018), increased root growth will
not only contribute to yield recovery but also to structural and func-
tional recovery of compacted soil.

2. Plant eco-physiological responses to soil compaction
underlying low crop productivity

Root and shoot growth respond within hours to days to changes in
soil penetration resistance (Bengough et al., 2011; Young et al., 1997)
and reduced oxygen concentration in soil air (Dresbøll et al., 2013;

Fig. 1. Conceptual framework illustrating the need for a plant eco-physiological perspective to understand yield formation on compacted soil and the development of
recovery strategies (light green box and arrows). Soil structural degradation upon compaction leads to unfavourable conditions for root growth, which imposes stress
on plants and reduces access to soil resources and crop productivity (brown arrows). Increasing root growth by enhancing the tolerance of plants to stress through
breeding and by improving the physical conditions for root growth through management contributes to the recovery of crop yields and soil structure (blue arrows).

Fig. 2. Illustration of feedbacks between soil physical properties, i.e., soil pe-
netration resistance and aeration, and root physiological processes in com-
pacted soil. Root growth and thus resource accessibility is limited to shallow
soil layers leading to increased water uptake (left) and root respiration (right)
in the topsoil. In turn, soil penetration resistance increases while oxygen con-
centration in soil air decreases, leading to even more unfavourable conditions
for root growth.
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Thomson et al., 1992; Watkin et al., 1998). Both high penetration re-
sistance and low concentration of oxygen in soil air result in reduced
root elongation rates, shallow root growth and in delayed initiation of
lateral roots (Barraclough and Weir, 1988; Blackwell and Wells, 1983;
Botta et al., 2010; Colombi et al., 2018; Colombi and Walter, 2016;
Dresbøll et al., 2013; Fukao and Bailey-Serres, 2004; Grzesiak et al.,
2014; Materechera et al., 1992). However, the underlying plant phy-
siological mechanisms and the functional implications of stress re-
sponses differ distinctly between high penetration resistance and low
concentration of oxygen in soil air (Fig. 1).

Increased soil penetration resistance imposes greater mechanical
stresses on the root tip in the form of higher frictional resistance and
higher cavity expansion pressure (Bengough et al., 2011). Hence, high
penetration resistance mainly affects the apical zone of roots. Plants
acclimate to increased penetration resistance by various adjustments of
the root phenotype. Mucilage excretion and sloughing of root cap cells
increases under high penetration resistance, which lubricates the root-
soil interface and decreases frictional resistance (Bengough and
McKenzie, 1997; Iijima et al., 2000, 2003a). To reduce the resistance to
cavity expansion and to stabilize roots against buckling, plants increase
the diameter of their roots upon greater penetration resistance
(Chimungu et al., 2015; Kirby and Bengough, 2002; Materechera et al.,
1992). Low oxygen concentration in soil air affects not only the root tip
but the entire root system (Fukao and Bailey-Serres, 2004). Sufficient
oxygen in root tissues is required to maintain aerobic cell respiration.
Upon decreasing cellular oxygen concentration, respiration is replaced
by anaerobic fermentation, resulting in reduced metabolic efficiency
(Bailey-Serres et al., 2012; Drew, 1997; Fukao and Bailey-Serres, 2004).
As with high soil penetration resistance, plants modify their roots in
order to withstand low concentration of oxygen in soil air. Many plant
species develop an internal aeration system to counteract reduced
oxygen in soil air (Colmer, 2003a; Sauter, 2013; Yamauchi et al., 2018).
The formation of cortical aerenchyma, which are continuous air-filled
structures in roots, connects the root system to the aboveground
(Marashi and Mojaddam, 2014; Shimamura et al., 2003; Striker et al.,
2007; Thomas et al., 2005; Xu et al., 2013; Yamauchi et al., 2014).
Furthermore, the development of oxygen barriers in the outer root
cortex prevent radial oxygen loss (Colmer, 2003b; Manzur et al., 2015;
Nishiuchi et al., 2012; Sauter, 2013).

Despite these adjustments, root system expansion and thus resource
accessibility declines substantially under high soil penetration re-
sistance and low oxygen concentration in soil air (Bengough et al.,
2011; Colombi and Walter, 2017; Dresbøll et al., 2013; Grzesiak et al.,
2014; Thomson et al., 1992; Watkin et al., 1998). Reduced root elon-
gation rates and delayed initiation of lateral roots limit soil exploration
to the topsoil. In turn, water uptake and root respiration in the upper
soil layers increase, resulting in even higher soil penetration resistance
and further depletion of oxygen in soil air (Araki and Iijima, 2005;
Colombi et al., 2018; Dresbøll et al., 2013; Grzesiak et al., 2014;
Nosalewicz and Lipiec, 2014). This feedback between soil physical
conditions, root growth and resource accessibility, eventually leads to
decreased shoot growth and low crop productivity (Fig. 2) (Colombi
et al., 2018; Grzesiak et al., 2013; Pang et al., 2004; Tubeileh et al.,
2003). In order to enhance root growth and resource accessibility in
compacted soil, and thus to regain productivity, these feedback cycles
need to be broken (Fig. 1).

3. Increasing root growth to recover crop productivity after
compaction

Since limited crop productivity on compacted soil results primarily
from impeded access to soil resources, root growth must be increased to
recover yields. The abiotic stresses occurring on compacted soil – high
penetration resistance and low oxygen concentration in soil air – need
to be addressed directly in the development of recovery strategies
(Fig. 1). It is known that the tolerance to high soil penetration

resistance and low soil oxygen differs between plant species (Azam
et al., 2014; Bailey-Serres et al., 2012; Bushamuka and Zobel, 1998;
Busscher et al., 2000; Fukao and Bailey-Serres, 2004; Grzesiak et al.,
2014). Therefore, adapting crop rotations may contribute to yield re-
covery on compacted soil. Furthermore, perennial and deep rooting
plants that tolerate high soil penetration resistance and low con-
centrations of oxygen in soil air can help recover soil structure, re-
sulting in better soil penetrability and aeration (Chen et al., 2014;
Lesturgez et al., 2004; Stewart et al., 2014; Young et al., 1998). By
improving soil physical conditions, the introduction of such species into
crop rotations may contribute to higher productivity of succeeding
crops on compacted soils. However, climatic conditions as well as socio-
economic preferences and constraints may prevent the inclusion of such
tolerant species into rotations. Given these limitations, we suggest al-
ternative approaches for the recovery of crop productivity on com-
pacted soils. In principle, root growth can either be increased by
breeding novel crop varieties with improved root growth in compacted
soil or by improving the soil conditions for root growth through soil
management and amelioration.

3.1. Selection of physiological traits to increase root growth

Genotypic diversity of root traits within single crop species may be
harnessed to adapt crop germplasms to unfavourable soil conditions
(Bishopp and Lynch, 2015). The concept of ‘physiological breeding’,
which refers to the selection of basic traits with direct physiological
implications, is thereby of crucial importance (Ghanem et al., 2015;
Reynolds and Langridge, 2016). Previous research showed that it is
possible to identify such basic root traits, which lead to improved root
growth under high soil penetration resistance and low oxygen con-
centration in soil air. Such fundamental information is needed to define
selection targets for crop breeding programs.

Acute root tip angles reduce the penetration stress exerted by roots,
which facilitates root elongation under high penetration resistance
(Colombi et al., 2017b; Iijima et al., 2003b; Vollsnes et al., 2010).
Anchoring roots to the soil with root hairs promotes the penetration of
hard soil layers (Bengough et al., 2016; Haling et al., 2013) and small
cells in the outer root cortex reduce the risk of root buckling (Chimungu
et al., 2015). Moreover, mucilage excretion and sloughing of root cap
cells differs among genotypes (Somasundaram et al., 2008). Hence,
friction at the root-soil interface can be reduced by selecting for in-
creased lubrication around the growing root tip. Efficient internal
aeration of the root system is crucial for plants to maintain aerobic root
respiration and thus to withstand low oxygen concentration in soil air.
Increased abundance of root cortical aerenchyma promotes air diffusion
from the soil surface to the root elongation zone and facilitates root
growth under low soil oxygen concentrations (Broughton et al., 2015;
Thomson et al., 1992; Watkin et al., 1998). Prevention of radial oxygen
loss from roots by increased suberization and lignification of the outer
root cortex is typical for wetland species such as paddy rice (Colmer,
2003a; Sauter, 2013; Yamauchi et al., 2018). However, genotypic dif-
ferences in the development of barriers preventing radial oxygen loss
were reported for upland rice, i.e., a dryland crop. The same study
showed that the genotypic ability of upland rice to develop oxygen
barriers promotes root growth under low oxygen concentrations in soil
air (Colmer, 2003b). Wild relatives of maize and barley are also known
to develop such barriers and this ability may be introduced into crop
genomes through hybridization (Sauter, 2013; Yamauchi et al., 2018).
Furthermore, a high number of lateral and adventitious roots increases
the soil volume that plants can explore and contributes to improved
shoot growth under low soil oxygen concentration and high penetration
resistance (Colombi and Walter, 2017; Fukao and Bailey-Serres, 2004).

In summary, there is a plethora of root traits that improve root
growth and resource accessibility and these traits may be selected for to
develop new varieties with improved performance on compacted soil.
Methods allowing for high throughput quantification, which are

T. Colombi and T. Keller Soil & Tillage Research 191 (2019) 156–161

158



required to screen large populations in order to link phenotypic in-
formation to the plant genome, are available for certain traits of in-
terest. Root number (Bucksch et al., 2014; Lobet et al., 2011), root
cortical aerenchyma and cortical cell size (Burton et al., 2012), root tip
shape (Colombi et al., 2017b), and root hair area (Vincent et al., 2017)
can be quantified from images using automated and semi-automated
approaches. Furthermore, quantitative trait loci, i.e., regions in the
genome associated with particular traits, have been reported for cor-
tical aerenchyma (Broughton et al., 2015), root hair length (Zhu et al.,
2005a), and root number in major crop species (Cai et al., 2012; Zhu
et al., 2005b). However, effects of the above mentioned root traits on
yield on compacted soil as well as possible tradeoffs between target
traits and productivity remain to be investigated. Hence, further re-
search is needed before varieties with improved tolerance to soil
compaction can be developed.

3.2. Recovery of specific soil properties to improve physical conditions for
root growth

Yield mitigation after compaction may also be achieved through soil
management. Deep tillage can improve crop productivity on compacted
soil in the short-term but beneficial effects may disappear rapidly due to
severe recompaction (Botta et al., 2006; Hamza and Anderson, 2005;
Tessier et al., 1997). Therefore, alternative management approaches are
required. To improve physical conditions for root growth in the long-
term, soil management needs to focus on the recovery of specific soil
properties that were adversely affected by compaction and that are
crucial for root growth and crop development.

Continuous vertical macropores and cracks offer pathways of least
resistance for growing roots and reduce the risk of low soil oxygen
concentration due to improved water infiltration and soil aeration
(Colombi et al., 2017a; Dexter, 1991; Mori et al., 2014; Stirzaker et al.,
1996). It has been observed that roots grow preferentially towards
macropores to use them as a path of least resistance as well as a source
of oxygen (Colombi et al., 2017a; Dexter, 1986; Stirzaker et al., 1996;
White and Kirkegaard, 2010). In addition, increased water infiltration
through macropores may also decrease soil penetration resistance, and
increase water replenishment, and thus water retention in the subsoil.
Pot and field plot experiments showed that artificial macropores in-
serted into compacted soil foster root growth, resource accessibility and
shoot development (Colombi et al., 2017a; Mori et al., 2014; Stirzaker
et al., 1996). Similar to such artificial pores, vertical biopores created
by roots of preceding crops can be exploited by plants to reach re-
sources in deeper soil layers (Athmann et al., 2013; Kautz et al., 2013;
White and Kirkegaard, 2010). Vertical macropores are rather stable
under uniaxial compression (Schäffer et al., 2008) and may therefore
resist tractor passes. Hence, it is likely that such macropores can persist
over several seasons, similar to vertical burrows from anecic earth-
worms (Edwards et al., 1990; Ligthart and Peek, 1997). While soil
perforation is so far limited to small experimental plots (Colombi et al.,
2017a; Mori et al., 2014), soil slotting can be carried out at much large
scales (Blackwell et al., 1990, 1991; Kirchhof et al., 1991). Through
slotting, only parts of the soil are loosened whereas other parts of the
soil remain undisturbed, which decreases the risk of recompaction
compared to deep tillage. Similar to soil perforation, slotting opens
pathways for growing roots and improves water infiltration and soil
aeration, which facilitates root growth and crop productivity
(Hartmann et al., 2008a, 2008b). These vertical slots can additionally
be stabilized by applying gypsum in order to maintain their beneficial
effects on soil physical conditions in the longer term (Blackwell et al.,
1991; Jayawardanea and Chan, 1994).

Hence, restoring specific soil properties, rather than entirely
breaking up compacted soil may improve soil physical conditions for
root growth and plant productivity in the long-term. The effects of such
targeted soil management approaches and the resulting increase in root
growth on properties of the bulk soil remain to be investigated. Such

knowledge is ultimately needed to assess the potential of these mea-
sures to recover not only crop productivity but also soil structure.

4. Conclusion: plant eco-physiology needs to be included in the
development of recovery strategies

Low yields on compacted soil result from interactions and feedbacks
between soil penetration resistance, oxygen concentration in soil air,
soil moisture, root growth and the accessibility of plants to water and
nutrients. Addressing high root penetration stress and low cellular
oxygen concentration, and thus plant physiological processes that ul-
timately underlie low root growth, allows to develop efficient and
sustainable mitigation strategies. The root penetrability of hard soil and
the internal aeration of root systems can be improved through breeding,
resulting in increased root growth in compacted soil. Root growth may
also be enhanced by creating vertical soil macropores or opening thin
slots in soil, which enhance water infiltration and soil aeration, and
create root pathways of least resistance. Hence, increased tolerance to
abiotic stresses occurring in compacted soil and improved soil physical
conditions for root growth enhance the accessibility of plants to re-
sources in compacted soil. Ultimately, greater access to water and nu-
trients fosters whole plant development and therefore crop pro-
ductivity. In addition, increased root growth also accelerates structural
and functional recovery of compacted soils through bioturbation and
macropore formation, carbon input, as well as crack formation caused
by water uptake. Taking plant eco-physiological processes into account
is crucial to understand crop responses and crop productivity decrease
caused by soil compaction and to develop sustainable recovery strate-
gies for compacted soils.
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