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Abstract
Tree health and growth rate must both be considered in Scots pine breeding for harsh areas such as northern Sweden. Univariate
(UV) and multivariate (MV) multi-environment trial (MET) analyses of tree vitality (a measure of tree health) and height (a
measure of growth rate) were conducted for four series of open-pollinated Scots pine progeny trials (20 trials total), to evaluate
age trends, patterns, and drivers of genotype-by-environment interaction (G × E). The lowest standard errors were obtained for
theMVMETanalyses, indicating thatMVanalyses are preferable to UVanalyses. By incorporating factor-analytic structures, the
most complex data sets could be handled, suggesting that factor-analytic analyses are preferred for evaluation of forest progeny
trials. We detected strong patterns of G × E for both tree vitality and height, and the driver of G × E was found mainly to be
differences in degree day temperature sum, such that G × E was higher between trials with more contrasting temperature sums.
The genetic correlations, between vitality and height within sites, were generally positive and were driven by the harshness of the
trial; mild trials had lower genetic correlations than did harsh trials. The sign of the across-site genetic correlations between
vitality and height changed from positive to negative in some cases, as the differences between the temperature sum of the trials
increased. These findings support the hypothesis that tree height assessed in harsh environments with low survival is likely to
reflect health and survival ability to a greater extent than growth capacity.
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Harsh environments

Introduction

In harsh climates, such as in northern Sweden, both individual
tree vitality (a measure of survival ability, over the range from
healthy to dead) and growth impact forest productivity
(Ruotsalainen and Persson 2013). They are therefore impor-
tant traits in tree breeding programs tomaximize stand volume
production.

In cold northern areas, mortality in artificially regenerated
Scots pine (Pinus sylvestris L.) forests is seldom caused by a
single event but is usually the result of damage accumulated
over several years (Eiche 1966; Stefansson and Sinko 1967).
The accumulated injuries are primarily related to the harsh
climate, reducing the plant’s capacity to grow and develop
during subsequent growing seasons. This may result in further
damage (climatic-, fungal-, or insect-related), increased mor-
tality and suppressed the growth of surviving-but-damaged
individuals. In Scots pine regeneration in cold areas, two of
the most common fungi for which additive genetic variation in
resistance has been reported are Gremmeniella abietina
(Lagerb.) and Phacidium infestans L. (Persson et al. 2010).
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As a consequence of accumulated damage, only unstressed
and healthy individuals are likely to express their growth po-
tential fully, which in turn may influence the genetic associa-
tion between tree vitality and growth. The major proportion of
mortality occurs during the first years after planting and typ-
ically decreases considerably after the trees reach 20 years of
age (Persson and Ståhl 1993). The reduced mortality related to
tree size and aging may be explained by the remaining indi-
viduals being more hardy and less sensitive to near-ground
environmental disturbances as the trees mature.

Multivariate (MV) within-site analyses of northern Scots
pine trials found generally positive additive genetic correla-
tions between tree vitality and height in the age range 6 to
27 years (Olsson and Ericsson 2002; Persson and Andersson
2003). In a MV analysis of three series of Scots pine trials,
Kroon (2011) found generally that within-site correlations be-
tween vitality and height were positive at young ages on harsh
sites, but that correlations weakened as the trials aged. Kroon
(2011) also showed that the pattern of within- and across-site
genetic correlations between health and growth traits changed
from positive to negative when the two traits were expressed
in contrasting environments.

Perttu and Morén (1994) showed a strong relationship be-
tween tree growth and temperature sum (Tsum) in degree days,
at the planting site, with a threshold value of + 5 °C. Tsum is
used and recommended as a climate index for operational for-
estry applications in Sweden and Finland (Bärring et al. 2017).
It is of great interest to examine whether there is a general trend,
whereby the genetic correlations between growth and vitality
are associated with the degree day Tsum at the sites.

In crop and tree breeding, multi-environmental trials
(MET) are established to evaluate the degree and pattern of
genotype-by-environment interactions (G × E interactions, or
G × E), as well as to test the robustness in performance of
genotypes in different environments. In this context, type B
genetic correlations (Burdon 1977), i.e., correlations between
the same trait in different environments, can reveal rank
changes among genotypes across different environments and
are therefore widely used to evaluate the degree of G × E
(Baltunis et al. 2010; Kelly et al. 2007; Li et al. 2017; Smith
et al. 2015; Ukrainetz et al. 2018; Zapata-Valenzuela 2012).

Nevertheless, more complex patterns of G × E can be dis-
tinguished when multiple traits are analyzed, such as type A
genetic and phenotypic correlations (i.e., correlations between
different traits within the same environment) differing among
environments, and type AB genetic correlations (term proposed
by Li et al. 2017), i.e., correlations between different traits
expressed among environments. Also, according to Mathew
et al. (2016), MVanalysis is generally more accurate and pow-
erful than across-site univariate (UV) analysis, because it is able
to harness the possible hidden correlation structure that can
exist among different variables. In a study with simulated data,
Bauer and Leon (2008) concluded that a larger selection

response was obtainedwithMVanalysis thanwith UVanalysis,
and they also observed lower overall standard error (SE) inMV
analysis. Moreover, if the trees in a trial are exposed to non-
random mortality, the probability of obtaining biased genetic
correlation estimates is greater with UVanalysis compared with
MV analysis, since UV analysis cannot take into account the
factors to which the selection process is related, in our case, tree
vitality (Persson and Andersson 2004, and references therein).

Factor analytic (FA) variance-covariance structures in
mixed models have been used in MET analysis of crops
(Beeck et al. 2010; Kelly et al. 2009; Kelly et al. 2007;
Smith et al. 2001; Smith et al. 2015) to account for the het-
erogeneity of variances and correlations that traditional
methods, such ANOVA under the assumption of compound
symmetry, cannot provide when many traits and sites are in-
volved (Meyer 2009). FA structures mainly summarize the
pattern of G × E, by generating several latent variables that
account for G × E (Smith et al. 2001). Furthermore, FA struc-
tures are considered a good approximation to unstructured
(US) variance-covariance structures, but require fewer param-
eters (Isik et al. 2017; Kelly et al. 2009; Kelly et al. 2007;
Smith et al. 2015). FA models are named with the number of
multiplicative terms (k factors) so that a model with k factors
can be denoted as a FAk model. More recently, several MET
studies in forest tree species have used FAk, e.g., in
Eucalyptus hybrids (Hardner et al. 2010), Pinus radiata D.
Don (Cullis et al. 2014; Ivkovic et al. 2015; Smith and
Cullis 2018), Pinus taeda L. (Gezan et al. 2017; Ogut et al.
2014), Picea abies (L.) Karst. (Chen et al. 2017), or Pinus
contortaDouglas ex Louden (Ukrainetz et al. 2018), showing
an improvement in prediction accuracy in most cases.

The objectives of this study were the following: (1) com-
pare the utility of UV and MV MET analyses; (2) estimate
genetic correlations between tree vitality and tree height, at
different ages, in different environmental conditions, based
on the robust method; (3) test whether there is a dynamic
relationship between site harshness and genetic correlations,
and whether G × E is related to temperature heterogeneity
among sites; and (4) estimate additive and environmental co-
efficients of variation for vitality and height at two ages, in
four unrelated series of five open-pollinated (OP) Scots pine
progeny trials (20 trials in total), in northern Sweden.

Materials and methods

Genetic material, experimental designs, and assessed
traits

The study used data for tree vitality and height from four unre-
lated series of progeny trials, each comprising an independent
set of OP families collected from Scots pine plus trees. The
trials are part of the northern Swedish tree improvement
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program at Skogforsk. Each trial series comprised of five field
trials with between 288 and 360 families. The selected plus
trees were assumed to be unrelated, as they were widely sepa-
rated in 30- to 50-year-old naturally regenerated forest stands,
or in stands regenerated by direct seeding or planting of seed-
lings from locally collected bulked seed (occasionally from the
seed of unknown origin). The stands accepted for plus tree
selection were typically 5–10 ha, fully stocked, with healthy,
well-growing trees. Between two and 30 trees were selected
from each of 33–40 stands in each series.

The field trials were planted with 1-year-old container
seedlings in a randomized single-tree plot design. The seed-
lings were grown from OP seeds collected on the plus trees in
the original forest stands.Most of the OP families within a trial
series were represented in all five field trials. In the majority of
the trials, both tree vitality and height were measured on two
occasions. The age of the trees at the time of the first measure-
ment varied from 9 to 13 years and from 18 to 22 years for the
second (Tables 1 and 2), with the range of age ratios between
assessments (Lambeth 1980) varying between 0.47 to 0.63.
Reflecting survival ability, tree vitality was scored on all orig-
inally planted tree positions at the first and second assessments
(V1 and V2) for each individual in four ordered classes:
healthy, slightly damaged, severely damaged but still alive,
and dead (or missing). Heights at the first and second mea-
surements (H1 and H2) were measured in all living trees from
ground to terminal bud. Tsum for each trial (Table 1) was
based on estimates from Bärring et al. (2017).

Statistical analyses

Initial analyses

Normal score transformation was performed on the vitality
scores to linearize the data with mean zero and standard devi-
ation one, using the proportion of outcomes in the different
classes (Gianola and Norton 1981). Back transformation to
the real scale was then possible using an arbitrary mean of
50%. Large-scale environmental variation in the trials was tak-
en into account by using a post-blocking procedure (Ericsson
1997). In addition, and prior to any other analyses, UV single-
trial spatial analyses were performed, using ASReml (Gilmour
et al. 2015), with the objective to adjust the data for within-trial
micro-environmental effects (see Supplementary Material S1).
Diagnostic tools, variograms, and plots of spatial residuals were
used to detect design, treatment, local, and extraneous effects.
The predicted design effects and spatial residuals were extracted
from the ASReml output files and used to remove estimated
environmental effects from the raw data (Chen et al. 2017; de la
Mata and Zas 2010). The environmentally adjusted individual
tree data were then used to perform the genetic analyses de-
scribed in the following sections.

Model structures

With the aim to detect differences in estimated genetic
variances and parameters, and in the absence of pedigree
information (other than seed-parent identity), we per-
formed both UV and MV MET analyses, with family
models. Due to the lack of family connections among
trial series (Fig. S1), all the analyses were performed
within series (Tables 1 and 2). For each analysis, and
with the objective to detect the most accurate method,
we fitted up to seven different variance-covariance func-
tions (Tables 3, and S1). All models were fitted using
ASReml (Gilmour et al. 2015). To perform MV MET
analysis, each variable (V1, V2, H1, and H2) at each
trial was considered as a separate trait; therefore, when
referring to the MV MET analysis, Btrait^ denotes a giv-
en trait-assessment-trial combination.

The first model fitted an unstructured variance-
covariance matrix, parameterized as heterogeneous
(co)variances (US model). The second model was similar
but parameterized as heterogeneous correlations (CORGH
model) between trials and traits. US and CORGH models
require n(n + 1)/2 parameters to be estimated, i.e., the
genetic variance for each trial or trait and covariance
(US) or correlation (CORGH) between each pair of trials
or pair of traits.

The remaining models fitted five different factor-
analytic (FAk) covariance structures following Smith
et al. (2001) and Smith and Cullis (2018). In FAk
models, the family effect in trial t (for UV MET analysis)
or trait-trial t (for MV MET analysis) is modeled as the
sum of k multiplicative terms

ujt ¼ λ1t f 1 j þ λ2t f 2 j þ…þ λkt f kj þ δtj;

Each k term represents the product of the family effect (frj),
known as Bscores,^ and a trial (UV MET) or trait/assessment/
trial (MV MET) effect (λrt), known as Bloading.^ δtj is the
error or lack-of-fit in the model. The model can also be written
in vector notation as

u¼ λ1⨂Imð Þ f1þ λ2⨂Imð Þ f2þ…þ λk⨂Imð Þ fkþδ¼ Λ⨂Imð Þ fþδ;

where u is them-vector of stacked family effect in each trial or
trait-trial (trial or trait-trial by family interaction for UV and
MV MET, respectively) vector; λr is the t-vector of trial or
trait-trial loadings for the rth common factor and fa is the
associated m-vector of family scores; Λ = [λ1,λ2… λk] is
the t × kmatrix of factor loadings;⨂ is the Kronecker product;

Im is the m-identity matrix with dimension of m families; f¼
fT1 ; f

T
2… fTk

� �
is the mk-vector of family scores and δ is the

tm-vector of deviations of the effect of themth family in the tth
trial or trait-trial from that predicted by the factors. Family
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scores and trial or trait-trial deviations were assumed to be
normally distributed with zero means and variances, var(f) =
Imk, and var(δ) =Ψ⨂ Im, whereΨ is the t × t diagonal matrix
containing trial- or trait-trial variances. Therefore, the

variance-covariance matrix for family effects within each trial
or trait-trial can be expressed as

G¼ ΛΛ
0þΨ

� �
⨂Im;

Table 1 Particulars of the progeny trials included in the study. The trials are clustered in four-trial series (TS), each series containing a separate set of
open-pollinated families

TS Trial Lat. °′ N Long. °′ E Alt. (m) Tsum No. blocks No. families Total no.
offspring

Phenotypic traits Survival (%) at assessment

First Second

1 F356 67.067 20.278 482 631 14 305 7690 H1, V1, V2 54.9 13.4
1 F357 66.383 18.368 507 626 11 305 7355 H1, H2, V1, V2 52.5 21.3
1 F422 66.435 23.886 132 912 15 303 6061 H1, H2, V1, V2 62.3 52.7
1 F423 67.605 22.999 306 717 10 303 7578 H1, H2, V1, V2 23.2 12.1
1 F429 66.915 19.136 370 713 18 291 6070 H1, V1 65.1 .
2 F495 67.067 20.290 505 618 18 297 4168 H1, H2, V1, V2 34.4 24.3
2 F496 66.549 19.363 370 756 11 303 4116 H1, H2, V1, V2 81.7 76.3
2 F497 64.792 20.127 265 885 14 308 4187 H1, H2, V1, V2 79.4 73.5
2 F498 62.171 14.266 535 767 16 304 4207 H1, H2, V1, V2 92.3 89.4
2 F499 62.231 14.060 395 931 16 305 4116 H1, H2, V1, V2 94.7 91.9
3 F506 63.882 20.555 27 1044 24 360 6160 H1, H2, V1, V2 68.7 67.1
3 F507 64.542 19.275 243 942 19 360 6212 H1, H2, V1, V2 91.1 70.1
3 F508 64.359 17.804 546 686 28 358 6512 H2, V1, V2 57.7 53.5
3 F509 64.988 21.205 78 989 18 360 7193 H1, H2, V1, V2 90.6 87.0
3 F510 67.068 20.288 470 631 24 359 8116 H1, H2, V1, V2 32.9 31.2
4 F560 64.331 15.221 443 744 15 319 3027 H1, H2, V1, V2 70.0 60.0
4 F561 64.386 18.746 361 842 15 334 3886 H1, H2, V1, V2 77.2 62.1
4 F565 65.451 17.972 449 739 18 288 3686 H1, H2, V1, V2 85.9 83.3
4 F566 65.622 18.418 434 745 9 290 3786 H1, H2, V1, V2 60.2 56.4
4 F567 67.067 20.287 482 631 15 304 4193 H1, H2, V1, V2 49.3 42.3

Tsum, temperature sum in degree days above 5 °C, obtained from PlantVal tool (https://www.skogforsk.se/produkter-och-evenemang/verktyg/plantval-
tall/) and based on estimates fromBärring et al. (2017). No. denotes number. The two last columns of the table present the percentage of trees surviving at
the first and second assessments

Table 2 Basic statistics (mean and standard deviation) for each trait and trial

TS Trial H1 SD (H1) H1a H1b H2 SD (H2) V1 SD (V1) V2 SD (V2)

1 F356 102.1 24.4 113.8 96.1 326.4 85.3 1.1 1.2 0.4 1.0
1 F357 118.5 36.5 142.7 102.1 337.0 80.0 1.1 1.3 0.6 1.2
1 F422 196.8 24.3 205.4 150.4 533.2 92.3 1.7 1.4 1.4 1.5
1 F423 160.3 31.5 173.3 146.5 374.0 74.4 0.4 0.9 0.3 0.9
1 F429 125.4 29.9 . . . . 1.7 1.4 . .
2 F495 141.6 38.4 156.3 105.5 440.4 86.5 0.9 1.3 0.7 1.3
2 F496 152.9 39.5 155.3 119.1 402.3 100.9 2.3 1.2 2.2 1.3
2 F497 223.4 56.2 228.2 165.6 652.0 129.1 2.2 1.2 2.2 1.3
2 F498 159.8 41.4 160.9 125.4 463.0 106.6 2.7 0.8 2.7 0.9
2 F499 178.5 47.0 179.9 132.3 448.6 117.4 2.8 0.7 2.7 0.9
3 F506 268.5 72.9 271.7 155.1 632.2 140.8 2.0 1.4 2.0 1.4
3 F507 244.5 72.6 260.0 169.0 555.0 135.5 2.7 0.9 2.6 1.0
3 F508 . . . . 394.1 9.4 1.5 1.4 1.5 1.5
3 F509 320.8 74.9 322.5 279.1 716.7 132.5 2.6 0.9 2.6 1.0
3 F510 215.6 48.0 219.6 144.0 487.5 92.1 0.9 1.4 0.9 1.4
4 F560 162.3 54.5 165.6 135.2 380.3 86.8 1.8 1.3 1.6 1.5
4 F561 187.2 54.2 190.3 164.4 432.1 9.9 2.0 1.3 1.6 1.4
4 F565 163.7 43.8 165.4 115.3 353.7 87.0 2.3 1.2 2.1 1.3
4 F566 178.7 45.4 182.3 128.5 358.7 93.7 1.5 1.5 1.5 1.5
4 F567 176.4 40.9 184.3 135.5 340.2 79.7 1.2 1.4 1.0 1.4

TS denotes trial series. H1, V1;H2, and V2 are the height and vitality means at the first assessment (age 9–13) and second assessments (age 18–22)
measured in centimeters. H1a and H1b denote the height mean at the first assessment of the trees that survived (a) and died (b) before the next
assessment. SD (H1), SD (H2), SD (V1), and SD (V2) are the standard deviations for height and vitality at the first and second assessments

   36 Page 4 of 15 Tree Genetics & Genomes           (2019) 15:36 

https://www.skogforsk.se/produkter-och-evenemang/verktyg/plantval-tall/
https://www.skogforsk.se/produkter-och-evenemang/verktyg/plantval-tall/


Model comparisons were made using model log likeli-
hood, Akaike (AIC), and Bayesian (BIC) information
criteria, all appropriate to compare US and CORGH
models with FAk. Extended factor analysis (XFAk) is a
FAkmodel with different fitting algorithm and was developed
to reduce the computational requirements of FAk models and
thus make them easier to converge (Isik et al. 2017).
Henceforth, and in order to distinguish between the different
variance-covariance structures, we have adopted the acronyms
used by ASReml for extended factor analysis and unstructured
variance-covariance with heterogeneous correlations methods,
i.e., XFAk and CORGH, respectively.

Multivariate and univariate multi-environment trial
analyses

The MV MET data set combined between 16 and 19 traits,
whereas the UV MET data set comprises single traits com-
bined across trials. The linear mixed model was

y¼XbþZuþe;

where y is the vector of observations (trait-assessment-trial
and traits combined across trials, for MV MET and UV
MET analyses, respectively); b is the vector of fixed effects

Table 3 Models fitted for the
multivariate multi-environmental
trial analysis for each trial series
(TS), according to the different G
structures (random family
effects). All models fitted have
heterogeneous variance-
covariance structures between
traits/trial/assessment. Values
extracted from ASReml output
files

TS Model G structure LogL AIC BIC N.P. PVE (%)

1 M1 CORGH LC. PNC . . . .

1 M2 US NC

1 M3 FA1 LC. PNC . . . .

1 M4 FA2 NC . . . .

1 M5 XFA1 LC. PNC . . . .

1 M6 XFA2 − 85,264.1 170,700.3 171,507.7 86 81.0

1 M7 XFA3 − 85,249.6 170,697.3 171,626.8 99 86.4

2 M1 CORGH LC. PNC . . . .

2 M2 US NC . . . .

2 M3 FA1 NC . . . .

2 M4 FA2 NC . . . .

2 M5 XFA1 − 127,678.8 255,493.5 256,105.5 68 64.9

2 M6 XFA2 − 127,652.5 255,465.0 256,185.0 80 93.1

2 M7 XFA3 −127,631.2 255,444.5 256,263.5 91 94.6

3 M1 CORGH NC . . . .

3 M2 US NC . . . .

3 M3 FA1 NC . . . .

3 M4 FA2 NC . . . .

3 M5 XFA1 − 159,828.6 319,789.3 320,410.5 66 81.7

3 M6 XFA2 − 159,787.4 319,734.8 320,487.8 80 91.0

3 M7 XFA3 − 159,767.0 319,716.0 320,572.6 91 94.5

4 M1 CORGH − 170,632.5 341,737.1 343,845.0 236 .

4 M2 US NC . . .

4 M3 FA1 LC.PNC . . . .

4 M4 FA2 LC.PNC . . . .

4 M5 XFA1 − 73,903.6 147,959.1 148,638.0 76 85.8

4 M6 XFA2 − 73,834.2 147,854.5 148,685.2 93 87.5

4 M7 XFA3 − 73,809.3 147,832.5 148,788.2 107 93.2

Model: column with models numbered according to the different G structures. CORGH and US: heterogeneous
correlation-variance structure and heterogeneous covariance-variance structure, respectively. FA1 and FA2: factor
analytic model with one and two factors respectively. XFA1, XFA2, and XFA3: extended factor analytic model
with one, two, and three factors, respectively. LogL is the acronym for log likelihood. AIC is the acronym for the
Akaike information criterion. BIC is the acronym for Bayesian information criterion. N.P. denotes the number of
parameters. PVE represents the average percentage of variance explained by the loadings (or factors) of the XFA
models. LC. PNC indicates that the model LogL converged, but parameters did not converge. NC indicates that
the model did not converge. Statistics for models with LC. PNC or NC are not shown. The random residual effects
were all fitted with an independent heterogeneous variance structure (IDH)
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(which are intercept and latitudes of the plus tree origins for
MV MET analyses, and additionally trial for UV MET analy-
sis) with the associated design matrix X; u is the vector of
random family or family-within-trial effects for MV and UV
MET analyses, respectively and was modeled by fitting the
structures defined in the previous section, i.e., CORGH, US,
FAk, and XFAk;Z is the designmatrix associated to u; and e is
the vector of random residuals; in the case of MV MET anal-
yses, residual variances and covariances weremodeled using a
US structure model, while for traits measured in different tri-
als, covariances were set to zero. For UV MET analysis, e is
the vector of residuals from all trials.

Genetic parameters

Within-trial narrow-sense heritabilities (h2w ) were estimated
for each trait and trial, assuming that the OP families had true

half-sib structure, as
4σ̂2f

σ̂2f þσ̂2e
, where σ̂2

f and σ̂
2
e are the estimated

among family and residual variances, respectively.

Overall, across-trial narrow-sense heritabilities (h2bÞ were
estimated within series for each trait according to Isik et al.

(2017) as
4 σ̂jssËC

σ̂2jsþσ̂2εs
, where σ̂2

js and σ̂
2
εs are the pooled estimates of

within-trial family and residual variances, respectively, within

the sth trial, and σ̂jssËC is the estimated average covariance

between trials.
To evaluate genetic and environmental variation, additive

genetic (CVA) and environmental (CVE) coefficients of varia-

tion were estimated as 100 σ̂
�
x

� �
for height, and 100

100Φ σ̂ð Þ−50½ ��
50

h i
for vitality at assumed 50% average mortali-

ty, where σ̂ applies to σ̂A and σ̂E, which are the additive

genetic and environmental standard deviations for cCVA and
cCVE, respectively; x is the least-square mean for height; and
Φ is the standard normal probability distribution function
(Persson and Andersson 2003; Persson et al. 2010).

Type A, type B, and type AB additive genetic correlations
(rA, rB, and rAB, respectively), and their standard errors were
extracted from ASReml output files (Gilmour et al. 2015) and
respectively calculated as:

rA ¼ σ̂ t1;t2ð Þffiffiffiffiffiffiffiffiffi
σ̂2t1σ̂

2
t2

p , rB ¼ σ̂ s1;s2ð Þffiffiffiffiffiffiffiffiffi
σ̂2s1σ̂

2
s2

p and, rAB ¼ σ̂t1s1;t2s2ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂2t1s1σ̂

2
t2s2

p , where

σ̂ t1;t2ð Þ is the estimated family covariance between traits t1
and t2; σ̂

2
t1 and σ̂2

t2 are the family variances of traits t1 and
t2, respectively; σ̂ s1;s2ð Þ is the covariance of family effects of

the trait t between trials s1 and s2; σ̂
2
s1 and σ̂2

s2 are the family
variances of trait t at trial s1 and trial s2, respectively; σ̂t1s1; t2s2

is the family covariance between trait t1 at trial s1 and trait t2 at
trial s2; σ̂

2
t1s1 is the family variance of trait t1 at trial s1; and

σ̂2
t2s2 is the family variance of trait t2 at trial s2. Standard errors

of estimated variances and variance ratios were calculated
using first-order Taylor series approximation.

Cluster analysis and heatmaps

Heatmaps were implemented through the heatmap.2 function
available in the gplots package (Warnes et al. 2016) in the R
statistical environment (R Development Core Team 2014),
with the objective to illustrate the genetic correlations estimat-
ed previously. In addition, also for illustrative purposes, clus-
ter analyses were performed using the hierarchical clustering
algorithm through the hclust function from the R package and
computing the dissimilarity between genetic correlations
among trials, as 1 − r, where r is the genetic correlation.

Results

Descriptive statistics

The wide latitudinal and altitudinal distribution of the field
trials implied that there would be a large variation in site index
and temperature regime, affecting both field survival and
height growth (Tables 1 and 2). The percentage of trees sur-
viving at the first assessment varied between 23.2–94.7 and
for the second assessment varied between 12.1–91.9
(Table 1). The average height assessments varied between
102 and 321 cm for H1 and between 326 and 717 cm for
H2 (Table 2). The average H1 of trees that were alive at the
second assessment varied from 114 to 322, whereas those that
were dead varied between 96 and 279 cm.

Model fitting

All results are based on the analysis of environmentally
adjusted data. Initially, an attempt to perform a single-
step approach (spatial- and UV MET analyses combined)
was made, but resulted in a high computational expense
(up to 8 h and non-convergence for some models), so that
a two-step approach was adopted (Chen et al. 2017; de la
Mata and Zas 2010).

Generally, for MV MET analyses, we were unable to fit
CORGH, US, and FA2 structures (Table 3), whereas XFAk
were more easily implemented, such that a full MV MET
analysis was possible with up to 16–19 trait/assessment/trial
variables (depending on the series). With five trials per trial
series (Fig. S1), we fitted equal variances and genetic correla-
tions with REMLRT, AIC, and BIC (Table S1), for all model
structures in the UV MET analysis (i.e., CORGH, US, FA1,
XFA1, XFA2, and XFA3 models). XFA3 always showed the
lowest SE for both UVand MV MET analyses, but SEs were
generally larger for UV MET analysis than for MV MET
analysis and were therefore considered less reliable
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(Table S2), so that all results are based only on the MV MET
analyses using the XFA3 model. Variance estimates fixed at a
boundary during the single-site spatial analysis were excluded
from both UVandMVanalysis (i.e., V2-F498, V1, and V2 for
F499, V1, and V2 for F509). In addition to those, we excluded
as well H1 assessed in trial F560, because at the time of the
assessment large amounts of damage frommoose were detect-
ed in the trial, which could bias the estimates.

Heritabilities and coefficients of variation

In general, from the MVMET analyses, ĥ
2

w slightly increased
with age height (Fig. 1 and Table S3) and did not change for

vitality; likewise, the ĥ
2

b did not vary with age for any trait.

The range of ĥ
2

w varied between 0.08 and 0.29 for H1, between
0.05 and 0.33 for H2, and between 0.01 and 0.18 for both V1
and V2.

In general, the cCVA increased with age for height and
slightly decreased with age for vitality in trials with lower

Tsum, but increased on the milder trials (Table 4). cCVE for
tree height generally decreased with age in trials with

higher Tsum (milder ones) and increased with age in
harsher trials, whereas for tree vitality, it decreased with
age in almost all trials.

The lower ĥ
2

b, if compared with ĥ
2

w, and the large variation

of cCVA, for both tree vitality and height, confirmed the pres-
ence of G × E.

Type A and type AB genetic correlations

The rA and rAB from the MV MET analyses are shown in
Table 5 and Fig. 2. In general, rA between vitality and height
became positive and stronger as the harshness of the trial
(lower Tsum) and mortality increased, whereas the opposite
pattern was observed in milder environments with higher
Tsum. This pattern is also evident by the strong negative
Pearson product-moment correlation between Tsum and rA
(− 0.61, p < 0.001), illustrated in Fig. 3.

In trial series 2 and 3, negative rAB were detected between
vitality scored on trials with a low Tsum and height assessed
on trials with larger Tsum. Between trials with similar Tsum,
rAB, were in general, positive and moderate to strong, when
both traits were scored in low-Tsum trials. Trial series 1 and 4
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Fig. 1 Within- and overall across-trials estimated narrow-sense heritabilities (denoted by the trial number and the acronym MV, respectively) and their
calculated standard errors, for each trait and trial obtained through the multivariate multi-environment trial analyses and XFA3 model
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did not show the same patterns. However, it should be noted
that both trial series 1 and 4 represented more homogeneous
Tsum among most of the trials within respective series.

Cluster analysis (Fig. 2 and Fig. S2) showed two clusters in
series 2; cluster I formed by all V1 and V2, plus H1 and H2
from the trials with the lowest Tsum within series, whereas
cluster II was formed by the remaining H1 and H2. A similar
pattern was found in series 3, where H1 and H2 from the trials
with the lowest Tsum were grouped in cluster I together with
almost all V1 and V2, while in cluster II, V1 and V2 from the
trial with the largest Tsum was grouped together with the
remaining H1 and H2.

Type B genetic correlations

Within series 2 and 3, we generally observed weak rB from the
MVMET analyses (i.e., remarkable G × E) between the trials
with the lowest Tsum and those with the largest Tsum within
each series, for H1 and H2, as well as for V1 and V2, although
the latter showed large SE (Table 6 and Fig. 2). The same trend
was observed in the moderate negative Pearson product-
moment correlation (− 0.41, p < 0.001) between Tsum differ-
ences among trials and rB for H1 and H2, illustrated in Fig. 4,
which show that rB weakens as the difference in the Tsum
increases. In addition, rB for both tree vitality and height

increased slightly with age. Again, trial series 1 and 4 showed
a different pattern, such that rB were generally moderate to
strong for both traits, with no G × E detected.

Age-age correlations

Age-age genetic correlations from the MV MET analyses
(Table 7) between H1 and H2 and between V1 and V2 within
the same trial were generally strong and positive, varying from
0.75 to 1.00.

Discussion

Tolerance to harsh climatic conditions in Scots pine regener-
ation seems to depend, partly, on tree size, and mortality oc-
curs predominately before the trees reach a height of two
meters, corresponding approximately to 12–16 years after
planting (Persson and Ståhl 1993). The stabilized mortality
rate associated with height and age may be explained by in-
creased tolerance among surviving individuals and ability to
overcome a near-ground disruptive environment, which in
turn may influence genetic parameters for both tree survival
and height as the trees grow older.

Table 4 Table of estimated additive (ĈVAÞ and environmental (ĈVE ) coefficients of variation obtained through multivariate multi-environment
analysis and XFA3 model

cCVA
cCVE

Trials H1 H2 V1 V2 H1 H2 V1 V2

F356 8.92 . 27.58 15.51 17.97 . 50.98 42.45

F357 9.94 11.16 24.53 20.46 25.58 14.60 52.23 45.15

F422 7.65 8.20 7.71 7.27 24.35 26.21 53.46 55.87

F423 9.93 11.54 20.99 17.26 18.66 17.81 41.08 36.16

F429 9.15 . 19.64 . 18.94 . 50.98 .

F495 9.06 13.48 25.75 19.53 28.10 29.86 47.13 47.78

F496 11.17 11.79 14.54 11.58 21.16 27.20 52.23 50.98

F497 12.14 10.74 14.58 15.20 21.50 20.63 55.87 53.46

F498 10.93 11.34 4.61 n.e 19.60 17.82 44.48 n.e

F499 14.45 16.09 n.e n.e 18.67 18.31 n.e n.e

F506 8.97 9.24 5.79 7.86 21.71 19.61 43.81 43.81

F507 10.02 10.32 3.60 5.02 21.92 20.47 45.81 43.81

F508 . 12.95 19.05 15.22 . 30.65 50.35 49.71

F509 9.38 8.21 n.e n.e 15.48 12.37 n.e n.e.

F510 7.57 9.01 16.28 15.98 27.04 29.24 50.35 49.71

F560 n.e 11.06 19.80 18.42 n.e 16.89 41.76 47.13

F561 16.89 16.28 16.52 24.33 26.59 26.04 53.46 48.43

F565 12.92 14.80 n.e 19.44 18.81 19.01 n.e. 46.47

F566 12.03 13.75 19.93 21.42 18.89 23.25 42.45 42.45

F567 9.81 15.69 26.30 26.68 22.06 28.77 49.71 50.45

n.e., not estimable (estimate fixed at a boundary)
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Both Jansson et al. (2003) and Kroon et al. (2011) in a
review of breeding value reports from the Swedish tree breed-
ing program stated that the narrow-sense heritability for height
usually increased with age, which is consistent with our study.
Olsson and Ericsson (2002) observed that heritability for tree
vitality increased with age in a single-site MV analysis of a

northern located trial, in contrast to our study, where tree vi-
tality heritabilities commonly did not change with age. We
note, however, that while we were able to analyze up to 19
traits simultaneously, Olsson and Ericsson (2002) were limit-
ed to a maximum of five variables when vitality was included
in the models.

The cCVA for height in Scots pine was reported to decrease
with age in two different studies in southern Sweden and
southern Finland (Haapanen 2001; Jansson et al. 2003).

However, our results showed that the cCVA for height mainly
increased with age. The reason could be that in harsh areas of
northern Sweden, like in our study, height growth in younger
trials is still following an exponential curve, while in older
trials and more productive areas of southern Sweden and
Finland, height growth has shifted already from an exponen-
tial model to be more linear. In addition, we observed that the
cCVE for height generally increased with age at harsher trials
(but decreased at milder ones), suggesting that trees in harsher
trials are still susceptible to environmental disturbances at
older ages, which in turn also may influence the additive ex-

pression. While both the cCVA and the cCVE increased between

Fig. 2 Heatmaps and dendrograms for each trait/assessment/trial (within series) of the estimated additive genetic correlations obtained through the
multivariate multi-environment trial analysis and the XFA3 model. Each variable is represented by the acronym of the trait and the number of the trial

Fig. 3 Plot of the estimated Type A genetic correlations for tree vitality
and height (y-axis) from the multivariate multi-environment analysis and
XFA3 model against Tsum (x-axis). The shaded area represents the 95%
confidence interval
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the two assessments at the harsher trials, the increase in the
narrow-sense heritabilities is to a greater degree due to a larger
change in the additive variance than at the milder trials.

In general, a decreasing trend with age of cCVA and cCVE for
vitality was reported previously by Persson et al. (2010); ac-
cordingly, we observed the same trend in harsh sites, whereas,
cCVA for tree vitality in mild sites increased in contrast to harsh

sites. The decrease of cCVA on the harsh sites in our study is
probably due to the low survival rates in these trials and is
caused by the well-known behavior that the variance of a
variable declines as the variable mean approaches the lower

or upper measurement bounds. The magnitude of the cCVA

also agrees with the literature for Scots pine, where that re-
ported for height varies between 5 and 25% (Haapanen 2001),
8–9% (Kroon et al. 2011), 3.1–16.3% (Persson and Andersson
2003), 5.52% (Fries 2012), or 4.36% (Hong et al. 2014).
Similar values have been reported for other species, such as
5–8.8% in Pinus radiata (Baltunis and Brawner 2010) or
3.3% in Pinus elliottii Engelm (Pagliarini et al. 2016).

Detection of G × E is important to avoid overestimation of
genetic variances, and thereby heritabilities (Li et al. 2017). In
our study, G × E was observed by weak type B genetic corre-
lations and the reduction of the overall across trials narrow-
sense heritabilities in almost all trial series. We observed gen-
erally that rB increased slightly with age for both traits. The
increase with age of type B genetic correlations for growth
traits has been reported in other pines, such as Pinus elliottii
(Dieters et al. 1995) and Pinus taeda (Xiang et al. 2003).
Despite the increase of type B genetic correlations with age,
we were still able to detect G × E at older ages.

Loehle and Namkoong (1987) addressed the proposition
that there is a trade-off between growth potential and
climatic/biotic tolerance, where, e.g., energy invested in resis-
tance may reduce growth capacity, or where high growth rate
may work as defenses by rapid sealing of wounded parts or
help the tree to escape an unfavorable ground-level microcli-
mate. A possible example of that tree size may influence the
vitality of Scots pine regeneration in northern areas is the
occurrence of the pathogen Phacidium infestans, whose my-
celium can only develop and spread under winter snow cover

Fig. 4 Plot of the estimated Type B genetic correlations between heights
at the first (●) and second (▲) assessment (y-axis) against Tsum
differences between trials (x-axis), based on the multivariate multi-
environment trial analysis and XFA3 model. The shaded area represents
the 95% confidence interval

Table 7 Estimated type A age-age correlations (± calculated standard errors) derived from the multivariate multi-environment analysis and XFA3
model. Trials ranked from smaller to larger Tsum within series

H2-F357 H2-F356 H2-F423 H2-F429 H2-F422 V2-F357 V2-F356 V2-F423 V2-F429 V2-F422
H1-F357 0.75 ± 0.06 V1-F357 0.83 ± 0.05
H1-F356 . V1-F356 0.90 ± 0.06
H1-F423 0.79 ± 0.08 V1-F423 0.91 ± 0.03
H1-F429 . V1-F429 .
H1-F422 0.87 ± 0.05 V1-F422 0.84 ± 0.17

H2-F495 H2-F496 H2-F498 H2-F497 H2-F499 V2-F495 V2-F496 V2-F498 V2-F497 V2-F499
H1-F495 0.98 ± 0.03 V1-F495 0.93 ± 0.03
H1-F496 0.89 ± 0.03 V1-F496 0.94 ± 0.05
H1-F498 0.86 ± 0.03 V1-F498 n.e.
H1-F497 0.96 ± 0.02 V1-F497 0.83 ± 0.10
H1-F499 0.97 ± 0.01 V1-F499 n.e.

H2-F510 H2-F508 H2-F507 H2-F509 H2-F506 V2-F510 V2-F508 V2-F507 V2-F509 V2-F506
H1-F510 0.93 ± 0.03 V1-F510 1.00 ± 0.00
H1-F508 . V1-F508 1.00 ± 0.00
H1-F507 0.95 ± 0.02 V1-F507 0.91 ± 0.15
H1-F509 0.90 ± 0.02 V1-F509 n.e.
H1-F506 0.92 ± 0.02 V1-F506 0.71 ± 0.11

H2-F560 H2-F565 H2-F566 H2-F567 H2-F561 V2-F560 V2-F565 V2-F566 V2-F567 V2-F561
H1-F560 n.e. V1-F560 0.87 ± 0.06
H1-F565 0.98 ± 0.01 V1-F565 0.92 ± 0.05
H1-F566 0.94 ± 0.02 V1-F566 0.98 ± 0.01
H1-F567 0.97 ± 0.02 V1-F567 1.00 ± 0.00
H1-F561 0.96 ± 0.02 V1-F561 0.81 ± 0.05

n.e., not estimable (estimate fixed at a boundary). Among site estimates are presented in Fig. 2
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(the average snow depth in northern Sweden rarely reaches
above 1–1.5 m), and may cause heavy defoliation. Persson
et al. (2010) reported genetic variation in susceptibility to
Phacidium infestans in trials from three of the four series
presented here. When comparing results in the two studies, a
pattern can be seen, where trials with significant genetic var-
iation in susceptibility to Phacidium infestans coincide in all
cases with those having significant positive type A correlation
between vitality and height. It is uncertain if it is the resilience
of the trees and/or their growth that act as a defense in these
environments, but one can hypothesize that the suppressed
height growth in these trials does not represent the full growth
potential but is probably to a large extent a reflection of sur-
vival ability. This hypothesis is supported by our results for
the type B correlations that showed stronger G × E for height,
among trials with larger Tsum differences. Our results further
showed that the sign of type AB genetic correlations between
vitality and height changed from positive to negative in two of
the trial series as the differences between Tsum of the trials
increased, indicating that height in harsh environments reflects
the health of the trees, as also expressed by the type A corre-
lations, as suggested by Persson (2006).

In a bivariate simulation study including selectively deleted
records, Persson and Andersson (2004) observed that compar-
ing MVand UVanalyses can result in an underestimation by
50% of type B genetic correlations if a UVmodel was used. In
other crop-breeding simulations, Viana et al. (2010) detected
that accuracies and efficiencies in family selection were
greater with an MV REML model, compared with a UV
model, while Holland (2006) found that when missing data
are over 15%, an MV REML analysis showed better
accuracies and estimates of genetic correlations.
Ganesalingam et al. (2013) observed also greater accuracies
in a bivariate survival study of blackleg disease, compared to a

UV analysis. In our study, in general, ĥ
2

w, ĥ
2

b, and cCVA from
UV MET analyses were overestimated, compared with those
obtained through the MV MET analysis (Table S4 and Fig.
S3), probably because the genetic correlation between vitality
and height is not accounted for and less phenotypic informa-
tion is evaluated in the UV MET analysis. Our study also
agrees with others (Bauer and Leon 2008; Calleja-Rodriguez
et al. 2019; Persson and Andersson 2004), reporting larger SE
derived from the UV compared to the MV model.

Conclusions

Fitting factor-analytic structures inMVMETanalysis allowed
us to include up to 19 traits simultaneously, indicating that the
factor-analytic approach should be applied routinely in analy-
ses of multiple trials.

Trees in the harsh environments are still affected by envi-
ronmental perturbations at 20 years of age, which in turn in-
fluences estimated genetic parameters. We have detected G ×
E for both vitality and height within trial series and that the
difference in temperature sum between the trials was the main
statistical driver for the noteworthy G × E.

Our findings are in agreement with earlier investigations
and confirm that survival and tree growth should be given
strong focus in the breeding of Scots pine in northern areas.
We have observed a positive genetic association between tree
vitality and height on harsh sites, which weakened as the tem-
perature sum increased, suggesting that tree growth on harsh
andmild sites ought to be treated as separate traits and targeted
to different deployment regions.
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